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Spectral decimation of piecewise centrosymmetric
Jacobi operators on graphs
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Abstract. We study the spectral theory of a class of piecewise centrosymmetric Jacobi oper-
ators defined on an associated family of substitution graphs. Given a finite centrosymmetric
matrix viewed as a weight matrix on a finite directed path graph and a probabilistic Laplacian
viewed as a weight matrix on a locally finite strongly connected graph, we construct a new
graph and a new operator by edge substitution. Our main result proves that the spectral theory
of the piecewise centrosymmetric Jacobi operator can be explicitly related to the spectral theory
of the probabilistic Laplacian using certain orthogonal polynomials. Our main tools involve the
so-called spectral decimation, known from the analysis on fractals, and the classical Schur com-
plement. We include several examples of self-similar Jacobi matrices that fit into our framework.

1. Introduction

The aim of this paper is to introduce and study the spectral theory of a new class of
Jacobi operators on substitution graphs, inspired by B. Simon et al. [17,31]. Our main
results include the determination of the spectrum, spectral gaps, the type of the spec-
tral measures, and the eigenvalue counting function for a large new class of finite and
infinite substitution graphs. This class provides a new framework to study physically
relevant graph Laplacians, e.g. self-similar versions of almost Mathieu-type operators
[56]. In comparison to the previous literature, the appearance of orthogonal polyno-
mials is a significant new idea in the context of the classical spectral decimation.

Our work is part of a long term study of mathematical physics on fractals and
graphs, more specifically, quantum Hall systems with AMO and their topological
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quantum phases [1–6, 8–14, 27, 29, 33, 34, 37, 44, 54, 55, 59–62], in which novel fea-
tures of physical systems can be associated with the unusual spectral and geometric
properties of fractals and graphs compared to smooth manifolds.

Given a finite centrosymmetric matrix viewed as a weight matrix on a finite
directed path graph and a probabilistic Laplacian viewed as a weight matrix on a
locally finite strongly connected direct graph, we construct a new (possibly high
dimensional, large or infinite) graph and a new operator that acts as a weight matrix
on this graph. In a sense that will be made precise, this graph can be viewed as a result
of a substitution procedure involving the initial graphs, and as such will be referred
to as a substitution graph. Further, the new operator, which we call a piecewise cen-
trosymmetric Jacobi operator acts on the space of square summable functions defined
on the vertices of the substitution graph.

The construction of the substitution graphs allows us to show that these spectra are
related to the spectra of the initial finite centrosymmetric matrices and can be deter-
mined using the spectral decimation method popularized in mathematical physics and
analysis on fractals beginning with work of Rammal and Toulouse [63, 64]. This
method is equivalent to the classical Dirichlet to Neumann map and Schur com-
plement, see [12, 19, 23, 24, 27, 40, 50, 53, 54] and references therein. We make an
explicit link between the classical spectral theory and the spectral decimation method
through the analysis of families of orthogonal polynomials. We conclude the paper
with several examples of one-dimensional graphs that fit into our framework. These
self-similar graphs are obtained using a substitution method starting from a pair of
initial graphs and this framework allows us to consider finite and infinite self-similar
graphs defined in one or higher dimensions. The Jacobi operators are then defined
so as to respect the adjacency relations in the resulting graph, and can be naturally
viewed as weight matrices on the graphs. Thus, we say that a matrix J D .J.x;y// is a
Jacobi matrix if J reflects the adjacency relations of the graphG, where x; y 2 V.G/
and G D .V .G/; E.G// is a graph. For two different vertices x; y 2 V.G/, we set
J.x; y/ D 0, whenever x and y are not adjacent, i.e., .x; y/ … E.G/; see [17] for a
definition of Jacobi matrices on periodic trees.

We begin with previewing the substitution method to define the graphs of interest,
and refer to Section 2 for more details. We first introduce the two initial inputs of the
method: the building block graph Gcs and the model graph Gp .

(a) The building block graph Gcs. Let J cs be a finite tridiagonal matrix and assume
that J cs is centrosymmetric, i.e. J cs D R J cs R, where R is an anti-diagonal identity
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matrix

R D

0BBBBBBBB@

0 0 : : : 0 0 1

0 0 : : : 0 1 0

0 0 : : : 1 0 0
:::

:::
:::

:::
:::

0 1 : : : 0 0 0

1 0 : : : 0 0 0

1CCCCCCCCA
:

We regard J cs as the weight matrix of a finite directed path graphGcs, in the sense that
the diagonal and off-diagonal entries in J cs respectively denote the weights assigned
to the vertices and edges of Gcs. We note that centrosymmetric matrices have a rich
eigenstructure and appear in several applications [15, 18, 28, 32, 35, 52, 57, 58, 81, 86,
87]. Figure 1 shows an example of a building block graph Gsc associated with the
centrosymmetric matrix J cs.

b.0/ b.0/b.1/ b.1/

a.1/ a.2/ a.n0 1/ a.n0/

a.1/a.2/a.n0 1/a.n0/

Figure 1. A finite directed weighted path graph Gcs. The weights associated with the edges and
vertices are the entries of a centrosymmetric Jacobi matrix J cs.

(b) The model graph Gp. Let Gp be a locally finite connected directed graph. We
consider a random walk on Gp and therefore assume that the weight matrix of Gp is
given by a probabilistic graph Laplacian

�pf .x/ D f .x/ �
X

yW.x;y/2E.Gp/

p.x; y/f .y/;

where p D ¹p.x; y/º.x;y/2E.Gp/ is a given sequence of transition probabilities. Note
that if we consider a symmetric random walk on Gp , then �p becomes the standard
probabilistic graph Laplacian. Throughout this work, we fix Gp and assume that �p

is a probabilistic graph Laplacian on Gp .
Using the building block graph Gcs and the model graph Gp we obtain the substi-

tution graphs as follows.

(c) The substitution graphs. Given a building block Gcs and a model graph Gp ,
we construct a new graph G D .V .G/; E.G// by substituting copies of Gcs between
adjacent vertices in Gp . Figure 2 shows an example of a substitution graph starting
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Gp

G Gcs

Figure 2. Let Gcs be a finite directed weighted path graph associated with a centrosymmetric
Jacobi matrix J cs of Figure 1. Let Gp be a finite graph approximation of a Sierpinski lattice.
We construct a new graph G D .V .G/;E.G// by substituting copies of the graph Gcs between
adjacent vertices in Gp . The weight matrix of the graph G will be given by J WD FGp

.�p;J cs/

and is an example of a piecewise centrosymmetric Jacobi operator on G.

from the building block graphGcs of Figure 1. For a choice of the probabilistic Lapla-
cian �p of Gp , the weight matrix of the newly constructed graph G is given by a
substitution operator

.�p; J cs/ 7! FGp
.�p; J cs/;

which will be formally introduced in Definition 2.5. The substitution operator assigns
to each pair .�p; J cs/ a Jacobi matrix on the graph G, which we denote by J WD
FGp

.�p;J cs/ and refer to as a piecewise centrosymmetric Jacobi operator onG. That
the substitution operator is well defined is a consequence of the symmetry assumption
on J cs. In addition, as we will see later, this symmetry assumption is key in establish-
ing many of our results.

The paper is organized as follows. In Section 2, we define the substitution graph
and operator associated with a fixed graph Gp and a building block graph Gcs. We
show that each element in the range of the latter can be identified with a piecewise
centrosymmetric Jacobi operator. Proposition 2.8 summarizes some of the relevant
properties of the substitution operator.

In Section 3 we begin the spectral analysis of the centrosymmetric matrix J cs and
connects it to the analysis of a related family of polynomials and rational functions.
This is summarized in our first main result, Theorem 3.3 which allows us to find a rel-
atively simple formula for the Schur complement of J cs. Consequently, the spectral
analysis of the piecewise centrosymmetric Jacobi operators J D FGp

.�p;J cs/ can be
investigated in the realm of the spectral decimation method, a standard framework in
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the analysis on fractals. Developed in the 1980s [7,21,36,63,64], the spectral decima-
tion method attracted considerable attention over the last decades [20, 42, 49, 67–69,
75, 77, 78, 82]. For an overview of some modern approach to the spectral decimation
method, we refer to [48, 53, 76, 77, 80].

The framework for the spectral decimation method developed in [53] is the one
that is most suited for the piecewise centrosymmetric Jacobi operators. Using it along
with a set of assumptions (Assumption 4.4) we obtain one of our other main results,
Theorem 4.7, which gives a description of the spectrum of J D FGp

.�p; J cs/. The
essence of this result is that it relates the spectra �.J/, �.�p/, and an exceptional set
EJ cs that appears naturally in the spectral decimation method. The link between these
sets is obtained using a polynomial, the spectral decimation function RJ cs that we
are able to explicitly calculated. Furthermore, we prove that the resolvent operators
of J and �p satisfy the renormalization group identity given in (14). This result is
related to [25, Theorem 2.2] and Bellissard’s work on quasicrystals [21, Theorem 1],
although we do not rely on them. However, the connections and differences between
our framework and Bellissard’s are elaborated in [56, Section 6].

Section 3 is divided into two parts. The first part deals with the spectral analysis
of a centrosymmetric matrix J cs, to which is associated two families of polynomials.
Using these polynomials, we compute in Theorem 3.3 the Schur complement of J cs,
and identify the polynomial RJ cs.z/ as a spectral decimation function. Subsequently,
the second part of Section 3 is devoted to an analysis of RJ cs.z/. In particular, we
relate the preimages of the points ¹0; 2º under RJ cs to the exceptional set EJ cs , deter-
mine the critical points of RJ cs.z/ thereby establishing the existence of the branches
of the inverseR�1J cs

in the domain Œ0; 2�. These results are summarized in Theorem 3.6.
Section 4 contains the main results on the spectra of piecewise centrosymmetric matri-
ces. More specifically, in Proposition 4.6 we prove the spectral similarity between
J and �p and determine the exceptional set EJ cs . We then prove our main result,
Theorem 4.7 which gives a complete description of the spectrum of the piecewise
centrosymmetric Jacobi operator J . Finally, in Section 5, we illustrate our results by
focussing on one-dimensional path graphs which corresponds to the classical Jacobi
matrices.

2. Weighted substitution with centrosymmetric Jacobi matrices

This section introduces the main concepts of the paper, namely the definition of the
substitution graph and operator.
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2.1. Centrosymmetric Jacobi matrices

SupposeGcs D .V .Gcs/;E.Gcs// is a finite directed weighted path graph with vertices
V.Gcs/ and edges E.Gcs/. We assume that Gcs consists of n0 C 1 vertices for n0 � 1,
and denote the vertices by V.Gcs/ D ¹0; 1; : : : ; n0º. The set of edges is then given by
E.Gcs/ D ¹.i; i C 1/ j i 2 ¹0; : : : ; n0 � 1ºº [ ¹.i C 1; i/ j i 2 ¹0; : : : ; n0 � 1ºº. We
describe the weights assigned to the vertices and edges by the following .n0 C 1/ �
.n0 C 1/ centrosymmetric Jacobi matrix

J cs WD

0BBBBBB@
b.0/ a.1/ 0 : : : 0

a.n0/ b.1/ a.2/ : : : 0

0 a.n0 � 1/ b.2/
: : :

:::
:::

:::
: : :

: : : a.n0/

0 0 0 a.1/ b.0/

1CCCCCCA : (1)

The boundary and interior vertices of Gcs are given by

@Gcs WD ¹0; n0º and V.Gcs/n@Gcs D ¹1; : : : ; n0 � 1º;

respectively. In the sequel, the class of centrosymmetric Jacobi matrices will be
denoted by

C�J WD ¹J cs j J cs is centrosymmetric of the form .1/; where n0 � 1º:

2.2. Probabilistic graph Laplacians

SupposeGp D .V .Gp/;E.Gp// is a locally finite (strongly) connected directed graph.
Let ¹p.x; y/º.x;y/2E.Gp/ be a sequence of weights assigned to the directed edges.
The edge .x; y/ points from the vertex x to y and we regard p.x; y/ as a transition
probability from x to y. We impose the following conditions:8̂̂<̂

:̂
.x; y/ 2 E.Gp/ () 0 < p.x; y/ � 1;
.x; y/ … E.Gp/ () p.x; y/ D 0;P
yW.x;y/2E.Gp/

p.x; y/ D 1 for all x 2 V.Gp/:
(2)

Definition 2.1. Let pD ¹p.x; y/º.x;y/2E.Gp/ be a given sequence of transition prob-
abilities, i.e. p satisfies the conditions in (2). The probabilistic graph Laplacian on the
graph Gp associated to p is defined by

�pf .x/ D f .x/ �
X

yW.x;y/2E.Gp/

p.x; y/f .y/; (3)

where f 2 `.Gp/ WD ¹f WV.Gp/! Cº and x 2 V.Gp/.
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The collection of all probabilistic Laplacians on a fixed graph Gp is denoted by

LGp
WD ¹�p j �p defined in .3/;p D ¹p.x; y/º.x;y/2E.Gp/ satisfies .2/º:

Remark 2.2. The third equation in the conditions (2) arises naturally in different
contexts and applications [38, 43, 46, 47]. It is related to the consistency condition in
[78, equation (1.4)], where Strichartz utilizes the electrical network interpretation of
the weights. This condition is also found in [57, Assumption 2.8], in the framework
of Toda-lattices on fractal-type graphs as one of the sufficient conditions leading to
the existence of static soliton solutions on such graph. This condition also makes it
a Markov chain that later helps us to apply the Kolomogorov’s condition to establish
operators of interest as self-adjoint.

Throughout the paper, we make the following assumption on Gp .

Assumption 2.3. We assume that if .x; y/ 2 E.Gp/, then, so is .y; x/ 2 E.Gp/ and
we refer to x; y 2 V.Gp/ as adjacent vertices. Note that in general, the transition
probabilities p.x; y/ and p.y; x/ are not equal.

2.3. Weighted edge substitution operator

We construct a new graph G D .V .G/;E.G// by starting from Gp , then substituting
copies of a graph Gcs between adjacent vertices in Gp . We refer to [78] for similar
constructions. Now, recall that the vertices and boundary vertices of Gcs are given by
V.Gcs/D ¹0; 1; : : : ; n0º and @Gcs D ¹0; n0º, respectively. Let .x; y/ 2 E.Gp/ (hence
.y; x/ 2 E.Gp/) for some x; y 2 V.Gp/. We replace the edges .x; y/ and .y; x/ in
the graph Gp with a copy of Gcs, by identifying x with 0 and y with n0. Equivalently,
we can identify x with n0 and y with 0, due to the centrosymmetry assumption on
Gcs and in either case, the resulting graph G is the same. We distinguish two types of
vertices in the graphG. The vertices which we obtain fromGp and therefore being just
V.Gp/ and the vertices that are obtained from Gcs through the substitution procedure.
The edges of the graph G are exactly the edges in each copy of Gcs. We construct a
Jacobi matrix on the graphG, and view it as the graph weight matrix. We refer to [17]
for a similar definition.

Definition 2.4. A Jacobi matrix on a graph G D .V .G/; E.G// is a matrix J D
.J.x; y//x;y2V.G/ indexed by the vertices V.G/, such that J.x; y/ D 0 whenever
.x; y/ … E.G/ and x ¤ y. We denote the set of all Jacobi matrices on graphs by

J WD ¹J j J is a Jacobi matrix on a graphº:

Note that there are no specific requirements on J.x; y/ in the cases .x; y/ 2 E.G/ or
x D y, and J.x; y/ can be zero or not.
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Definition 2.5 (Substitution operator). Fix a graph Gp as defined in Section 2.2.
A substitution operator associated with Gp is the mapping FGp

given by

FGp
WLGp

� C�J ! J; .�p; J cs/ 7! FGp
.�p; J cs/;

where FGp
.�p;J cs/ is defined as follows. Let Gcs be the graph associated to the cen-

trosymmetric matrix J cs and G D .V .G/; E.G// is the resulting substitution graph.
The substitution procedure naturally induces a covering map, which we denote by
�WV.G/! V.Gcs/ (each vertex in G is in a copy of Gcs and hence corresponds nat-
urally to a vertex in Gcs).

(1) J WD FGp
.�p; J cs/ is a Jacobi matrix on the graph G. The diagonal entries

are given by

J.x; x/ WD J cs.�.x/; �.x//; x 2 V.G/:

(2) Each .x; y/ 2 E.G/ is associated with an edge .�.x/; �.y// in a copy of
Gcs and suppose that this copy replaced the edges between the vertices, say
u; v 2 V.Gp/. Then we set´

J.x; y/ WD p.u; v/ J cs.0; 1/ if x D u;
J.x; y/ WD J cs.�.x/; �.y// if x … V.Gp/:

(4)

Remark 2.6. In the particular case n0 D 1, we have V.Gp/ D V.G/. Moreover, if
we choose �0 for the Jacobi matrix J cs, where

�0 WD
�
1 �1
�1 1

�
: (5)

then the Substitution formula (4) gives J D �p. This implies that the graphs G and
Gp are identical.

Definition 2.7. Let J 2 J. If there exist a graph Gp , and a probabilistic Laplacian
�p 2 LGp

and J c 2 C�J, such that J D FGp
.�p; J c/, then we call J a piecewise

centrosymmetric Jacobi operator.

We end this section by summarizing the key properties of the substitution operator
that will be needed in the sequel.

Proposition 2.8. The following statements follow from the (4).

(1) FGp
.�p; �0/ D �p, (where �0 is defined in (5)).

(2) FGp
.�0; J cs/ D J cs.

(3) FGp
.�p; I / D I , where the identity matrices I might be of different size.
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(4) Let J .1/cs and J .2/cs be elements of C�J and of the same size. Then for �;� 2C,
we have

FGp
.�p; � J .1/cs C� J .2/cs / D �FGp

.�p; J
.1/
cs /C �FGp

.�p; J
.2/
cs /:

3. Orthogonal polynomials and centrosymmetric Jacobi matrices

In this section we elaborate on the connection between the centrosymmetric Jacobi
matrices and a family of orthogonal polynomials.

3.1. Schur complement of centrosymmetric Jacobi matrices

The connection between orthogonal polynomials and the spectral theory proved fruit-
ful during the last few decades and generated considerable interest among various
communities of researchers. Our reference list is by no means exhaustive, and we
refer the reader for instance to Simon’s treatises and the references therein [22,26,39,
70–72, 85]. The objective of this section is to reinterpret concepts from the spectral
decimation technique in terms of orthogonal polynomials. Because we are dealing
with Jacobi matrices, orthogonal polynomials naturally arise through the associated
three-term recurrence relations. For us, two cases are relevant, namely the three-term
recurrence relations corresponding to the centrosymmetric Jacobi matrices J cs and
the restriction of J cs to the interior vertices of Gcs, which we denote by JDcs . Note that
when dealing with JDcs we assume n0 � 2 as JDcs is the interior block matrix of J cs,

J cs D

0BBBBB@
b.0/ a.1/ 0 : : : 0

::: JDcs
:::

0 : : : 0 a.1/ b.0/

1CCCCCA :
We regard J cs as a matrix acting on `.V .Gcs// D `.¹0; 1; : : : ; n0º/, where `.I /

denotes the linear space of C-valued functions `.I / WD ¹f W I ! Cº for a set I . In
particular, JDcs acts on `.¹1; : : : ; n0 � 1º/. Throughout this section, we suppose that
J cs 2 C�J is fixed for some n0 � 2 and a.k/ ¤ 0 for each k D 0; : : : ; n0 C 1.
We introduce a sequence of monic polynomials P0.z/; P1.z/; : : : ; Pn0C1.z/ corre-
sponding to J cs as follows. We initialize P0.z/ WD 1 and P1.z/ WD z � b.0/. For
k 2 ¹2; : : : ; n0 C 1º, we define Pk.z/ to be the determinant of the leading principal
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k � k submatrix of zI � J cs, i.e.,

Pk.z/

WD det

0BBBBBB@
z � b.0/ �a.1/ 0 : : : 0

�a.n0/ z � b.1/ �a.2/ : : : 0

0 �a.n0 � 1/ z � b.2/ : : :
:::

:::
:::

: : :
: : : �a.k � 1/

0 0 0 �a.n0 C 2 � k/ z � b.k � 1/

1CCCCCCA :

Note that Pn0C1.z/D det.zI � J cs/ is the characteristic polynomial of J cs whose
eigenvalues are the zeros of Pn0C1.z/. It can be easily shown that the sequence of
polynomials P0.z/; P1.z/; : : : ; Pn0C1.z/ satisfies the following recurrence relations:´

P0.z/ D 1; P1.z/ D z � b.0/;
Pk.z/ D .z � b.k � 1//Pk�1.z/ � a.k � 1/a.n0 C 2 � k/Pk�2.z/;

(6)

for k 2 ¹2; : : : ; n0C 1º. Similarly, for the Jacobi matrix JDcs , we initialize PD0 .z/ WD 1
and PD1 .z/ WD z � b.1/. For k 2 ¹2; : : : ; n0 � 1º, we define PD

k
.z/ to be the deter-

minant of the leading principal k � k submatrix of zI � JDcs , i.e.,

PDk .z/

WD det

0BBBBBB@
z � b.1/ �a.2/ 0 : : : 0

�a.n0 � 1/ z � b.2/ �a.3/ : : : 0

0 �a.n0 � 2/ z � b.3/ : : :
:::

:::
:::

: : :
: : : �a.k/

0 0 0 �a.n0 C 1 � k/ z � b.k/

1CCCCCCA ;

where in this case PDn0�1
.z/ D det.zI � JDcs / is the characteristic polynomial of JDcs .

The sequence PD0 .z/, P
D
1 .z/, : : :, P

D
n0�1

.z/ satisfies the recurrence relations´
PD0 .z/ D 1; PD1 .z/ D z � b.1/;
PD
k
.z/ D .z � b.k//PD

k�1
.z/ � a.k/a.n0 C 1 � k/PDk�2.z/;

(7)

for k 2 ¹2; : : : ; n0 � 1º.
We first prove auxiliary lemmas.

Lemma 3.1. The following identities hold:

(1) PD1 .z/P1.z/ � PD0 .z/P2.z/ D a.1/a.n0/;
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(2) for n0 � 2 and k 2 ¹2; : : : ; n0º,
PDk .z/Pk.z/ � PDk�1.z/PkC1.z/
D a.n0 C 1 � k/a.k/.PDk�1.z/Pk�1.z/ � PDk�2.z/Pk.z//I

(3) PDn0�1
.z/Pn0�1.z/ � PDn0�2

.z/Pn0
.z/ D a.n0/a.1/.

Qn0�1
iD2 a.i//2.

Proof. To prove (1) we use the recurrence relations (6), (7) and obtain

PD1 .z/P1.z/ � PD0 .z/P2.z/ D .z � b.1//P1.z/ � P2.z/ D a.1/a.n0/:

Similarly for (2), repeated application of the recurrence relations (6), (7) gives

PDk .z/Pk.z/ � PDk�1.z/PkC1.z/
D PDk .z/Pk.z/ � PDk�1.z/..z � b.k//Pk.z/ � a.k/a.n0 C 1 � k/Pk�1.z//
D .PDk .z/ � PDk�1.z/.z � b.k///Pk.z/C a.k/a.n0 C 1 � k/Pk�1.z/PDk�1.z/
D �a.k/a.n0 C 1 � k/PDk�2.z/Pk.z/C a.k/a.n0 C 1 � k/Pk�1.z/PDk�1.z/:

To prove (3), we iterate the arguments in parts (1) and (2).

Lemma 3.2. Let n0 � 2. Then

.Pn0
.z//2 �

� n0Y
iD1

a.i/
�2
D det.zI � J cs/ det.zI � JDcs /:

Proof. We first compute Pn0
.z/ as a determinant and expand by the first row.

Using the centrosymmetric assumption of JDcs , we see that the cofactor of a.1/ is
�a.n0/PDn0�2

.z/, leading to

Pn0
.z/ D .z � b.0// det.zI � JDcs / � a.1/a.n0/PDn0�2

.z/:

Hence,

.z � b.0//PDn0�1
.z/ D Pn0

.z/C a.1/a.n0/PDn0�2
.z/: (8)

Repeated application of the recurrence relations (6), (7) gives

det.zI � J cs/ det.zI � JDcs / D Pn0C1.z/P
D
n0�1

.z/

D .z � b.0//Pn0
.z/PDn0�1

.z/ � a.n0/a.1/Pn0�1.z/P
D
n0�1

.z/

D .Pn0
.z/C a.1/a.n0/PDn0�2

.z//Pn0
.z/ � a.n0/a.1/Pn0�1.z/P

D
n0�1

.z/

D .Pn0
.z//2 � a.n0/a.1/.PDn0�1

.z/Pn0�1.z/ � PDn0�2
.z/Pn0

.z//;

where the third equality holds by (8). The statement follows by Lemma 3.1 (3).
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To state the main result of this section, we first establish some Schur comple-
ment computations for J cs. These computations will be relevant in Section 4 and used
in the context of the spectral decimation method. We decompose J cs on `.@Gcs/ ˚
`.V .Gcs/n@Gcs/ D `.¹0; n0º/˚ `.¹1; : : : ; n0 � 1º/ in the block form

�
S0 xX0
X0 Q0

�
D

0BBBBBBBBB@

b.0/ 0 a.1/ 0 : : : 0

0 b.0/ 0 0 : : : a.1/

a.n0/ 0 b.1/ a.2/ : : : 0

0 0 a.n0 � 1/ b.2/
: : :

:::
:::

:::
:::

: : :
: : : a.n0 � 1/

0 a.n0/ 0 0 a.2/ b.1/

1CCCCCCCCCA
: (9)

We observe that S0 is multiple of the identity matrix b.0/I and that Q0 D JDcs .
Let z 2 �.JDcs /, an element of the resolvent set of JDcs , then the Schur complement of
J cs with respect to the decomposition (9) is given by

Schur`.@Gcs/.J cs/ WD zI � S0 � xX0.zI �Q0/�1X0:

Our first result states that the Schur complement of J cs can be expressed using the
polynomials Pn0

.z/ and PDn0�1
.z/.

Theorem 3.3. For each z 2 �.JDcs / we have

Schur`.@Gcs/.J cs/ D �J cs.z/.RJ cs.z/I ��0/;

where �0 is defined in (5) and the functions RJ cs.z/ and �J cs.z/ are given by

RJ cs.z/ WD 1 �
Pn0

.z/Qn0

iD1 a.i/
; �J cs.z/ WD �

Qn0

iD1 a.i/

PDn0�1
.z/

: (10)

Remark 3.4. Note thatPDn0�1
.z/Ddet.zI � JDcs /. In particular, the domain of �J cs.z/

is given by �.JDcs /.

Before proving this result, we first establish an auxiliary lemma.

Lemma 3.5. Let xX0,Q0, andX0 be the block matrices defined in (9) and z 2 �.JDcs /.
The following identity holds:

xX0.zI �Q0/�1X0 D �
Qn0

iD1 a.i/

PDn0�1
.z/

0BB@�
PD

n0�2
.z/Qn0�1

iD2
a.i/

�1

�1 � PD
n0�2

.z/Qn0�1

iD2
a.i/

1CCA :
In particular, this implies Schur`.@Gcs/.J cs/ 2 C�J for all z 2 �.JDcs /.
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Proof. Recall thatQ0 is the Jacobi matrix JDcs . We invert the matrix .zI � JDcs / using
Cramer’s rule and restrict the computations to the relevant entries in the adjugate
matrix, i.e. .zI �Q0/�1 is equal

1

PDn0�1
.z/

0BBBBBB@
PDn0�2

.z/ � : : : � .�1/n0.�1/n0�2
Qn0�1
iD2 a.i/

� � : : : � �
:::

:::
:::

:::
:::

� � : : : � �
.�1/n0.�1/n0�2

Qn0�1
iD2 a.i/ � : : : � PDn0�2

.z/

1CCCCCCA:

For X0 and xX0, we have

X0 D

0BBB@
a.n0/ 0

0 0
:::

:::

0 a.n0/

1CCCA ; xX0 D
�
a.1/ 0 : : : 0

0 0 : : : a.1/

�
:

A direct computation gives

xX0.zI �Q0/�1X0 D a.1/a.n0/

PDn0�1
.z/

�
PDn0�2

.z/
Qn0�1
iD2 a.i/Qn0�1

iD2 a.i/ PDn0�2
.z/

�
:

Proof of Theorem 3.3. By Lemma 3.5 and (10), we have

xX0.zI �Q0/�1X0 D �J cs.z/

0BB@�
PD

n0�2
.z/Qn0�1

iD2
a.i/

�1

�1 � PD
n0�2

.z/Qn0�1

iD2
a.i/

1CCA
D �J cs.z/

�
1 �1
�1 1

�
� �J cs.z/.1C

PDn0�2
.z/Qn0�1

iD2 a.i/
/

�
1 0

0 1

�
:

Recall that S0 is multiple of the identity matrix b.0/I , hence

Schur`.@Gcs/.J cs/ D zI � S0 � xX0.zI �Q0/�1X0

D �J cs.z/
�z � b.0/
�J cs.z/

C 1C PDn0�2
.z/Qn0�1

iD2 a.i/

�
I � �J cs.z/�0:

Using (10) and the identity (8), we compute

z � b.0/
�J cs.z/

C 1C PDn0�2
.z/Qn0�1

iD2 a.i/
D � .z � b.0//P

D
n0�1

.z/Qn0

iD1 a.i/
C 1C a.1/a.n0/P

D
n0�2

.z/Qn0

iD1 a.i/

D 1 � Pn0
.z/Qn0

iD1 a.i/
D RJ cs.z/:
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3.2. Main technical tools

This section is devoted to analyzing the polynomial RJ cs.z/. In Section 4 we will
see that RJ cs.z/ is a spectral decimation function, which represents a significant tool
in the spectral analysis on fractals and self-similar graphs. The following theorem is
the main result of this section and summarizes the relevant features of RJ cs.z/ when
investigating spectral properties of Jacobi matrices on graphs.

Theorem 3.6. The following statements hold.

(1) For all z 2 C, we have

det.zI � J cs/ det.zI � JDcs / D
� n0Y
iD1

a.i/
�2
RJ cs.z/.RJ cs.z/ � 2/:

In particular, z 2 �.J cs/ [ �.JDcs / if and only if RJ cs.z/ 2 ¹0; 2º.
(2) If z 2 �.J cs/ \ �.JDcs /, then z is a critical point of RJ cs , i.e. R0J cs

.z/ D 0.

(3) Let z be a critical point of RJ cs.z/; then RJ cs.z/ … .0; 2/. In particular, there
exist n0 branches of the inverse R�1J cs

, that are defined and continuous in the
domain Œ0; 2�.

To prove this result, we make the following elementary observation.

Lemma 3.7. The polynomial Pn0
.z/ has n0 simple real roots. The critical points of

Pn0
.z/ are also real and interlaced between its roots. Moreover, if zc is a critical

point of Pn0
.z/, then we have

Pn0
.zc/P

00
n0
.zc/ < 0:

We now have all the tools needed to prove the main result of this section.

Proof of Theorem 3.6. It is assumed that n0 � 2 and a.k/ ¤ 0 for each k D 0; : : : ;
n0 C 1 (see Section 3.1), and therefore Pn0

.z/ is a polynomial of order at least 2.
Theorem 3.3 implies: Pn0

.z/ D 0 if and only if RJcs.z/ D 1.
(1) Use Lemma 3.2 and the following computation:

1

.
Qn0

iD1 a.i//
2

h
.Pn0

.z//2 �
� n0Y
iD1

a.i/
�2i
D
� Pn0

.z/Qn0

iD1 a.i/
� 1

�� Pn0
.z/Qn0

iD1 a.i/
C 1

�
D RJ cs.z/.RJ cs.z/ � 2/;

where in the last equality, we used the definition of the RJ cs given in (10).
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Statement (2) follows from differentiating the identity in part (1):

2RJ cs.z/R
0
J cs
.z/ � 2R0Jc

.z/

D Œdet.zI � J cs/�
0 det.zI � JDcs /C det.zI � J cs/Œdet.zI � JDcs /�

0

.
Qn0

iD1 a.i//
2

: (11)

In (3), if the critical point zc is in �.J cs/ [ �.JDcs /, then the first part of the statement
holds by part (1). We assume zc … �.J cs/ [ �.JDcs / and define

D.z/ WD det.zI � J cs/ det.zI � JDcs /

.
Qn0

iD1 a.i//
2

:

Note that the polynomial D.z/ is of degree 2n0 and the roots of D.z/ are given
by the eigenvalues �.J cs/ [ �.JDcs /. By (11), we see that zc is also a critical point
of D.z/. Moreover, zc lies between two roots of D.z/ due to the assumption zc …
�.J cs/ [ �.JDcs /. Using Lemma 3.2, we compute

D00.z/ D 2.P 0n0
.z//2 C 2Pn0

.z/P 00n0
.z/

.
Qn0

iD1 a.i//
2

:

By (10), we have P 0n0
.zc/ D 0 and Lemma 3.7 implies that zc is a local maximum of

D.z/, i.e.,

D00.zc/ D
2Pn0

.zc/P
00
n0
.zc/

.
Qn0

iD1 a.i//
2

< 0:

In particular, we have D.zc/ > 0. We rewrite the identity in part (1),

.RJ cs.zc/ � 1/2 D RJ cs.zc/
2 � 2RJ cs.zc/C 1 D D.zc/C 1;

which gives RJ cs.zc/ D 1˙
p
D.zc/C 1 … .0; 2/.

4. Spectral decimation of piecewise centrosymmetric Jacobi matrices
on graphs

We start by recalling some facts about of the spectral decimation method following
the framework set forth in [53], as it is the best suited for our results. Let H and H0

be Hilbert spaces, and U WH0 ! H be an isometry. Suppose H and H0 are bounded
linear operators on H and H0, respectively, and that �;  are complex-valued func-
tions. We call the operator H spectrally similar to the operator H0 with functions �
and  if [53, Definition 2.1]

U �.H � zI /�1U D .�.z/H0 �  .z/I /�1; (12)
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for all z 2 C such that the two sides of (12) are well defined. Note, in particular, that
for z in the domain of both � and  and satisfying �.z/ ¤ 0 we have z 2 �.H/ (the
resolvent set ofH ) if and only ifR.z/D  .z/

�.z/
2 �.H0/. We callR.z/ the spectral dec-

imation function. The functions �.z/ and  .z/ are difficult to determine directly from
the structure of the considered fractal or graph, but they can be computed effectively
using a Schur complement (several examples may be found in [19, 20]). Identifying
H0 with a closed subspace of H via U , let H1 be the orthogonal complement and
decompose H on H D H0 ˚H1 in the block form

H D
�
S xX
X Q

�
: (13)

Lemma 4.1 ([53, Lemma 3.3]). For z 2 �.H/ \ �.Q/ the operators H and H0 are
spectrally similar if and only if the Schur complement ofH (with respect to the decom-
position (13)), given by SchurH0

.H/ WD zI � S � xX.zI �Q/�1X , satisfies

SchurH0
.H/ D  .z/I � �.z/H0:

The following set plays a crucial role in the spectral decimation method.

Definition 4.2. The exceptional set of H is given by

EH WD ¹z 2 C j z 2 �.Q/ or �.z/ D 0º:

Proposition 4.3 ([53, Theorem 3.6]). Let H be spectrally similar to H0 with func-
tions � and  and z … EH . Then

(1) R.z/ 2 �.H0/ if and only if z 2 �.H/;
(2) R.z/ is an eigenvalue of H0 if and only if z is an eigenvalue of H . Moreover,

there is a one-to-one map

f0 7! f WD f0 � .zI �Q/�1Xf0
from the eigenspace of H0 corresponding to R.z/ onto the eigenspace of H
corresponding to z.

We now apply this framework of the spectral decimation method to the substitu-
tion graph G and operator J D FGp

.�p; J cs/ obtained from a graph Gp equipped
with a probabilistic Laplacian �p , and a graph Gcs be a finite path graph associated
to a centrosymmetric weight matrix J cs.

Assumption 4.4. We assume that

(1) there exists a Hilbert space of C-valued functions on V.Gp/, which we denote
by `2.Gp; d�p/, such that the probabilistic graph Laplacian �p is bounded
and self-adjoint;
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(2) there exists a Hilbert space of C-valued functions on V.G/, which we denote
by `2.G; d�J /, such that J is bounded and self-adjoint;

(3) there exists an isometry U W `2.Gp; d�p/! `2.G; d�J /.

Remark 4.5. The self-adjointness assumption is by no means necessary. In fact, the
results in [53] hold for more general operators. Section 5 shows how to construct such
Hilbert spaces in the one-dimensional path graphs case, for which Assumption 4.4
holds. The key idea is to equip the set of vertices V.Gp/ and V.G/ with a measure
satisfying a Kolmogorov’s cycle type condition, see (15) for more details.

We also note that Assumption 4.4 combined with Perron–Frobenius theorem
implies that �.�p/ � Œ0; 2�, as �p is a stochastic matrix (with spectrum in Œ�1; 1�)
shifted by the identity, see also [53, Remark 5.9].

Proposition 4.6. The following statements hold.

(1) For the exceptional set, we have EJ cs D �.JDcs /.

(2) J cs is spectrally similar to�0 (given in (5)) with the functions �J cs.z/ defined
in (10), and  J cs.z/ WD �J cs.z/RJ cs.z/, where RJ cs.z/ is given by (10). In
particular, RJ cs.z/ is the corresponding spectral decimation function.

(3) J D FGp
.�p;J cs/ is spectrally similar to�p with the same functions �J cs.z/

and  J cs.z/ as in part (2). The associated spectral decimation function and
exceptional set coincide with RJ cs.z/ and EJ cs , respectively.

Proof. Statement (1) follows by Definition 4.2 and �J cs.z/¤ 0 (see (10) and recall the
assumption a.i/ ¤ 0). Statement (2) follows by Lemma 4.1 and Theorem 3.3. State-
ment (3) is an immediate consequence of Lemma [53, Lemma 3.10] and its main idea
can be sketched as follows. Using the isometry U , we decompose J on `2.G;d�J /D
U.`2.Gp; d�p// ˚ U.`2.Gp; d�p//? in the block form (13) and denote the Schur
complement of J with respect to the decomposition (13) by Schur`.V.Gp//.J/ WD
zI � S � xX.zI �Q/�1X . The Schur complement is preserved under the substitu-
tion operator FGp

, in the sense

FGp
.�p;Schur`.@Gcs/.J cs// D Schur`.V.Gp//.J/:

Proposition 2.8, Theorem 3.3, and Lemma 4.1 imply the last statements:

Schur`.V.Gp//.J/ D �J cs.z/ FGp
.�p; RJ cs.z/I ��0/

D �J cs.z/.RJ cs.z/FGp
.�p; I / � FGp

.�p; �0//

D �J cs.z/.RJ cs.z/I ��p/:

The main result of this section is the following theorem.
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Theorem 4.7. The following statements hold.

(1) R�1J cs
.�.�p/n¹0; 2º/ � �.J/ � R�1J cs

.�.�p/ [ ¹0; 2º/.
(2) The resolvent operators satisfy the following renormalization identity:

U �.zI � J/�1U D � P
D
n0�1

.z/Qn0

iD1 a.i/
.RJ cs.z/I ��p/

�1 (14)

for z 2 �.J/ and z … EJ cs D �.JDcs /.

(3) The polynomial RJ cs preserves the types of the spectral measures of the oper-
ators J and �p outside of the finite exceptional set R�1J cs

.¹0; 2º/.
Proof. Theorem 3.6 asserts that is EJ cs �R�1J cs

¹0; 2º. Statements (1) and (2) follow by
Proposition 4.3 and Proposition 4.6. Statement (3) is proved following the same lines
as [80, Theorem 2.3]. We use (14), (12), and the Schur complement in Lemma 4.1 with
the block decomposition (13). Using the standard general theory [65, Section VIII.7]
or [84, Chapter 3], for a self-adjoint operator H on a Hilbert space H the spectral
measure � of  2 H is uniquely defined by the Herglotz function F .z/, a Borel
transform of a finite Borel measure, F .z/D h j .H � z/�1 iH D

R
R

1
��z

d� .�/,
z 2C nR. The measure� is unique by the Stieltjes inversion formula, which implies
the result. In particular, if �� 2 ¹pp; sc; acº stands for pure point, singular continuous,
absolutely continuous spectrum, then, for z … EJ cs , we have R.z/ 2 ���.�p/ if and
only if z 2 ���.J/.
Remark 4.8. Theorem 4.7 can be extended to a formula for the spectral projections
and the spectral resolution of the identity, similarly to [80, Theorem 2.3], using the
general theory of Schur complement for self-adjoint operators, see [19, 50, 51, 65, 73,
74, 79, 82]. Useful resolvent estimates are given in [45, 66].

Corollary 4.9. If the points 0 and 2 are limit points of �.�p/, then

�.J/ D R�1J cs
.�.�p//:

Proof. Theorem 3.6 asserts the existence and continuity of the branches of the inverse
R�1J cs

on the interval Œ0; 2�. We conclude

R�1J cs
.�.�p// D R�1J cs

.�.�p/n¹0; 2º/ � �.J/ � R�1J cs
.�.�p/ [ ¹0; 2º/

D R�1J cs
.�.�p//:

5. The one-dimensional path graphs case

In this section, we illustrate the results of the previous sections by focusing on one-
dimensional path graphs. We apply the framework of Section 4 and start by addressing
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pk 1 pk

1 pk
1 pkC1

.k 1/n0 kn0 .k C 1/n0

Figure 3. The directed path graph Gp D .V .Gp/; E.Gp//.

.k C 1/th copy of Gcs

a.1/ a.n0/a.n0/

kn0 .k C 1/n0 .k C 2/n0

kth copy of Gcs

a.1/a.1/ a.n0/

a.1/ a.n0/

kn0 .k C 1/n0 .k C 2/n0

a.1/a.n0/

a.1/

a.n0/

Figure 4. Constructing the graph G by substituting copies of Gcs between adjacent vertices
in Gp .

the question concerning the existence of the Hilbert spaces and the isometry mapping
in Assumption 4.4. LetGcs D .V .Gcs/;E.Gcs// be defined as in Section 2.1. Suppose
that Gcs consists of n0 C 1 vertices for fixed n0 � 1 and the associated weight matrix
J cs 2C�J is of the form (1). Next, we restrict the definition ofGp D .V .Gp/;E.Gp//
as given in Section 2.2 to path graphs. We distinguish three cases, whenGp is a finite,
semi-infinite, or infinite path graph. Accordingly, the set of vertices is given by

V.Gp/ D ¹0; n0; : : : ; k0n0º; V .Gp/ D n0 ZC or V.Gp/ D n0 Z :

The set of edges E.Gp/ is then given by

¹.kn0; kn0 C n0/ j kn0; .k C 1/n0 2 V.Gp/º
[ ¹.kn0 C n0; kn0/ j kn0; .k C 1/n0 2 V.Gp/º:

We simplify the notation and set for the transition probabilities pk WD p.kn0;

kn0 C n0/. In particular, the third equation in conditions (2) implies that p.kn0;
kn0 � n0/ D 1 � pk , see Figure 3. Let G D .V .G/; E.G// be the constructed
graph when substituting copies of Gcs between adjacent vertices in Gp as explained
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in Section 2.3. Depending on Gp , we distinguish three cases, where G is a finite,
semi-infinite or infinite path graph. Accordingly, the set of vertices is given by

V.G/ D Œ0; n� \ ZC; V .G/ D ZC or V.G/ D Z;

where n 2 N, n � 1. In the finite graph case, we assume that n0 is a divisor of n,
i.e. n D k0n0, and k0 is the number of the copies of Gcs in G. We regard the vertices
¹kn0; : : : ; .k C 1/n0º as the vertices of the kth copy of Gcs, see Figure 4. The weight
matrix associated with the graph G is a tridiagonal matrix, that is created by the
substitution operator J D FGp

.�p; J cs/. The operators �p and J are assumed to
act on the Hilbert spaces´

`2.Gp; d�p/ WD ¹f WV.Gp/! C jPx2V.Gp/
jf .x/j2�p.x/ <1º;

hf; gip D
P
x2V.Gp/

f .x/g.x/�p.x/;´
`2.G; d�J / WD ¹f WV.G/! C jPx2V.G/ jf .x/j2�J .x/ <1º;
hf; giJ D

P
x2V.G/ f .x/g.x/�J .x/;

respectively, where the set of vertices V.Gp/ and V.G/ are equipped with the follow-
ing measures satisfying the Kolmogorov’s cycle condition [38, 43, 46, 47]:´

�p.0/ D 1; �p.kn0/ D �p..k � 1/n0/pk�1

pk
; kn0 2 V.Gp/n¹0º;

�J .0/ D 1; �J .x/ D �J .x � 1/J.x�1;x/
J.x;x�1/

; x 2 V.G/:
(15)

Note that if we set J.x � 1; x/ D J.x; x � 1/ for all x 2 Z in the infinite graph case,
we obtain `2.G; d�J / D `2.Z/.
Proposition 5.1. The operator J (resp. �p) is a bounded self-adjoint operator on
`2.G;d�J / (resp. `2.Gp;d�p/). Moreover, for x 2 V.Gp/� V.G/, we have �p.x/D
�J .x/.

Proof. Let Wn.f; g/ WD �J .n/ J.n; n C 1/.f .n/g.n C 1/ � f .n C 1/g.n// be the
n-th Wronskian of f and g. Direct computation gives

nX
xDm

f .x/ J g.x/�J .x/ �
nX

xDm

J f .x/g.x/�J .x/ D Wn.f; g/ �Wm�1.f; g/:

For f; g 2 `2.G; d�J /, we see that hf; J giJ � hJ f; giJ D limn!1 Wn.f; g/ �
limm!�1 Wm�1.f; g/ D 0. Similar computations for the semi-infinite graph case
and the proof is identical for �p. The second statement follows by (15) and the cen-
trosymmetry assumption on J cs.
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Using Proposition 5.1, we view `2.Gp; d�p/ as a subspace of `2.G; d�J / via the
identification

`2.Gp; d�p/ Š ¹ 2 `2.G; d�J / j  .x/ D 0 for all x 2 V.G/nV.Gp/º:

In this sense, U W `2.Gp; d�p/! `2.G; d�J / is the inclusion operator.

Proposition 5.2. Assume Gp is a finite path graph. Then

�.J/ D .R�1J cs
.�.�p//n¹0; 2º/ [ �.J cs/:

Proof. The constant vector .1; 1; 1; : : : /> is an eigenvector with the eigenvalue 0 and
the alternating vector .1;�1; 1 : : : /> is an eigenvector with the eigenvalue 2 for �p.
Hence, we have ¹0; 2º � �.�p/� Œ0; 2�. In particular, j�.�p/n¹0; 2ºj D k0 � 1. Note
that RJ cs.z/ is as Pn0

.z/ a polynomial of degree n0. Theorem 3.6 implies

jR�1J cs
.�.�p/n¹0; 2º/j D n0.k0 � 1/ D n0k0 � n0:

Note that all the n0k0 � n0 preimages are not in the exceptional set and therefore
distinct eigenvalues of J . Theorem 3.6 asserts R�1J cs

.¹0; 2º/ D �.J cs/ [ �.JDcs /. By
excluding the exceptional points EJ cs D �.JDcs /, we see that R�1J0

.¹0; 2º/ generates
n0 C 1 distinct eigenvalues of J , namely the eigenvalues in �.J cs/. We generated
.n0k0 � n0/C .n0C 1/D n0k0C 1 distinct eigenvalues, which shows with a dimen-
sion argument that we completely determined the spectrum �.J/.

We now restrict our investigations to the case Gp is a finite path graph and use
the substitution operator FGp

to generate a multi-parameter family of self-similar
probabilistic Laplacians. A key observation is that the centrosymmetric probabilistic
Laplacians are invariant under the substitution operator in the sense that if�p1

;�p2
2

C�J with �p1
2 LGp

, then FGp
.�p1

; �p2
/ 2 C�J \LG .

Definition 5.3. Let �.1/p 2 C�J \LGp
be given. We define the sequence

¹�.`/p º`2N � C�J

inductively by
�.`C1/p WD FGp

.�.1/p ; �.`/p / for ` � 1.

We refer to ¹�.`/p º`2N as a sequence of self-similar probabilistic Laplacians.
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If we initialize �.1/p WD �0, then �.`/p is a constant sequence, i.e., �.`/p D �0 for
all ` � 1. For k0 � 2, p D ¹p0; p1; : : : ; pk0

º with p0 D 1 and pk0
D 0, we initialize

�
.1/
p as the following .k0 C 1/ � .k0 C 1/-matrices:

�.1/p D

0BBBBBB@
1 �1 0 : : : 0

p1 � 1 1 �p1 : : : 0

0 p2 � 1 1
: : :

:::
:::

:::
: : :

: : : p1 � 1
0 0 0 �1 1

1CCCCCCA ; (16a)

�.1/;Dp D

0BBBB@
1 �p1 : : : 0

p2 � 1 1
: : :

:::
:::

: : :
: : : p2 � 1

0 0 �p1 1

1CCCCA : (16b)

Note that the centrosymmetry assumption impose p1 D 1 � pk0�1, p2 D 1 � pk0�2,
and so on. Proposition 4.6 implies that �.1/p is spectrally similar to �0 with the func-
tions R

�
.1/
p

and �
�

.1/
p

given by

R
�

.1/
p
.z/ D 1 � .�1/k0

Pk0
.z/Qk0�1

iD0 pi
; �

�
.1/
p
.z/ D .�1/k0C1

Qk0�1
iD0 pi

PD
k0�1

.z/
; (17)

where the polynomial Pk0
(resp. PD

k0�1
) is defined by the recurrence relation (6) cor-

responding to the matrix �.1/p (resp. by the recurrence relation (7) corresponding to
the matrix �.1/;Dp ).

Note that in the special case of a symmetric random walk, i.e., pk D 1
2

for
k D 1; : : : ; k0 � 1, we refer to �.1/p as a standard probabilistic Laplacian. A direct
computation shows that the spectral decimation function corresponding to a standard
probabilistic Laplacian can be derived from a Chebyshev polynomial. Recall that the
Chebyshev polynomials of the first kind satisfy the recurrence relations Cheb0.z/D 1,
Cheb1.z/ D z, Chebk.z/ D 2z, Chebk�1.z/ � Chebk�2.z/, where k 2 ¹2; : : : ; k0º.
If �.1/p is a standard probabilistic Laplacian, i.e., given by (16) and pk D 1

2
for

k D 1; : : : ; k0 � 1, then the corresponding spectral decimation function in (17) is
R
�

.1/
p
.z/ D 1 � .�1/k0 Chebk0

.z � 1/. This is discussed in detail in [20, Section 4].
It is evident that for k0 D 2 the 3 � 3 standard probabilistic Laplacian is the only
possible centrosymmetric probabilistic Laplacian of this size.

When k0 D 3, then �.1/p is of size 4 � 4 with p D ¹1; p1; p2; 0º. Imposing the
centrosymmetry assumption on the transition probabilities gives p2 D 1� p1. Hence,
we obtain a one-parameter family of centrosymmetric probabilistic Laplacians and
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it is not difficult to see that this type of probabilistic Laplacians was already studied
in [83] under the terminology of a pq-model, see also [16, 30] and more recent [56,
Proposition 2.3].

5.1. One-parameter family of Laplacians with k0 D 4

Now, we consider the case k0 D 4, i.e., a centrosymmetric probabilistic Laplacian
�
.1/
p of size 5 � 5 with pD ¹1;p1; p2; p3; 0º. Imposing the centrosymmetry assump-

tion on the transition probabilities gives p3 D 1 � p1 and p2 D 1 � p2. We obtain
again a one-parameter family of centrosymmetric probabilistic Laplacians whose
matrices are given by

�.1/p D

0BBBBB@
1 �1 0 0 0

p � 1 1 �p 0 0

0 �1
2

1 �1
2

0

0 0 �p 1 p � 1
0 0 0 �1 1

1CCCCCA ; �.1/;Dp D

0B@ 1 �p 0

�1
2

1 �1
2

0 �p 1

1CA (18)

where we set p1 D p for some p 2 .0; 1/. Note that this type of probabilistic Lapla-
cians is related to the graph Laplacians studied in [41]. Direct computation gives´

�.�
.1/
p / D ¹0; 1 �p1 � p; 1; 1Cp1 � p; 2º;

�.�
.1/;D
p / D ¹1 �pp; 1; 1Cppº:

We compute the spectral decimation function using the formula in (17),

R
�

.1/
p
.z/ D 2z.2 � z/.z � 1/2

p.1 � p/ : (19)

We obtain for the set of the preimages8<:R
�1

�
.1/
p

.0/ D ¹0; 1; 2º;
R�1
�

.1/
p

.2/ D ¹1 �p1 � p; 1 �pp; 1Cpp; 1Cp1 � pº:
(20)

Figure 5 (top) shows the preimages in (20) using the cutoffs y D 0 and y D 2. The
sequence of self-similar probabilistic Laplacians�.`/p is then constructed as in Defini-
tion 5.3, where �.1/p is initialized by (18). Figure 5 (bottom) shows how the spectrum
of �.`/p , ` D 6 changes when varying the parameter p 2 .0; 1/.
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Figure 5. Top. The spectral decimation function (19) corresponding to the probabilistic Lapla-
cians (18). The preimages in (20) are indicated using the cutoffs y D 0 and y D 2. Bottom. The
spectrum of �.`/

p for ` D 6 (x-axis) is plotted for p 2 .0; 1/ (y-axis).

5.2. Two-parameter family of Laplacians with k0 D 5

Now, we consider the case k0D 5, i.e. a centrosymmetric probabilistic Laplacian�.`/p

of size 6� 6with pD¹1;p1;p2;p3;p4; 0º. Imposing the centrosymmetry assumption
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on the transition probabilities gives p4 D 1 � p1 and p3 D 1 � p2. We obtain in
this case a two-parameter family of centrosymmetric probabilistic Laplacians whose
matrices are given by

�.1/p D

0BBBBBBB@

1 �1 0 0 0 0

p1 � 1 1 �p1 0 0 0

0 p2 � 1 1 �p2 0 0

0 0 �p2 1 p2 � 1 0

0 0 0 �p1 1 p1 � 1
0 0 0 0 �1 1

1CCCCCCCA ; (21a)

�.1/;Dp D

0BBB@
1 �p1 0 0

p2 � 1 1 �p2 0

0 �p2 1 p2 � 1
0 0 �p1 1

1CCCA : (21b)

We compute the spectral decimation function using the formula in (17),

R
�

.1/
p
.z/ D z

p1p2.p1 � 1/.p2 � 1/.z
2 C z.p2 � 3/C p1p2 � 2p2 C 2/

� .z2 � z.p2 C 2/C p1p2 � p1 C p2 C 1/

For the convenience of the notation, we fix p1 D 2
3

and compute the eigenvalues
as functions of the parameter p2,

�.�.1/p / D ¹�1; �2; �3; �4; �5; �6º; �.�.1/;Dp / D ¹�D1 ; �D2 ; �D3 ; �D4 º: (22)

The formulas for eigenvalues are given by

�1 D 0;

�2 D 1C p2
2
�

q
9p22 � 6p2 C 9

6
;

�3 D 1C p2
2
C

q
9p22 � 6p2 C 9

6
;

�4 D 3 � p2
2
�

q
9p22 � 6p2 C 9

6
;

�5 D 3 � p2
2
C

q
9p22 � 6p2 C 9

6
;

�6 D 2;
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Figure 6. (Top) The spectrum of�.`/
p for `D 5 is plotted on the x-axis for p2 2 .0; 1/ (y-axis),

while p1 D 2
3

is fixed. (Bottom) Plotting the eigenvalues as functions of p2 reproduces the
contour of the spectra.

and

�D1 D
2 � p2
2
�

q
9p22 � 24p2 C 24

6
; �D2 D

2 � p2
2
C

q
9p22 � 24p2 C 24

6
;

�D3 D
2C p2
2
�

q
9p22 � 24p2 C 24

6
; �D4 D

2C p2
2
C

q
9p22 � 24p2 C 24

6
:
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Now, we construct the sequence of self-similar probabilistic Laplacians �.`/p as
in Definition 5.3, where �.1/p is initialized by (21). Figure 6 (top) shows how the
spectrum of �.`/p , ` D 5 changes when varying the parameter p2 2 .0; 1/ and fixing
p1 D 2

3
. Plotting the eigenvalues (22) as functions of p2 reproduces the contour of

the spectra in Figure 6 (top). Using the eigenvalue-formulas, we can for example
determine when the spectral gap between �D1 and �2 closes, namely by reducing the
problem to solving the equation �D1 D �2, see Figure 6 (bottom).
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