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Nodal domain theorems for p-Laplacians on signed graphs

Chuanyuan Ge, Shiping Liu, and Dong Zhang

Abstract. We establish various nodal domain theorems for p-Laplacians on signed graphs,
which unify most of the existing results on nodal domains of graph p-Laplacians and arbitrary
symmetric matrices. Based on our nodal domain estimates, we obtain a higher order Cheeger
inequality that relates the variational eigenvalues of p-Laplacians and Atay–Liu’s multi-way
Cheeger constants on signed graphs. In the particular case of p D 1, this leads to several
identities relating variational eigenvalues and multi-way Cheeger constants. Intriguingly, our
approach also leads to new results on usual graphs, including a weak version of Sturm’s oscil-
lation theorem for graph 1-Laplacians and nonexistence of eigenvalues between the largest and
second largest variational eigenvalues of p-Laplacians with p >1 on connected bipartite graphs.

1. Introduction

The graph p-Laplacian is a natural discretization of the continuous p-Laplacian on
Euclidean domains, and it is also a simple nonlinearization of the Laplacian matrix.
The spectrum of the graph p-Laplacian is closely related to many combinatorial prop-
erties of the graph itself; and its eigenpairs, reveal important information about the
topology and geometry of the graph. For example, similar to the original Euclidean
p-Laplacian and graph linear Laplacian, the p-Laplacian on graphs has some impor-
tant relations to Cheeger cut problem and shortest path problem on graphs. Just as
the Laplacian matrix which has been successfully used in diverse areas, the graph
p-Laplacian has been also widely used in various applications, including spectral
clustering [10,32,55,56], data and image processing problems, semi-supervised learn-
ing and unsupervised learning [35, 55, 56]. Much recent work has shown that algo-
rithms based on the graph p-Laplacian perform better than classical algorithms based
on the linear Laplacian in solving these practical problems in image science.

The theoretical aspects of p-Laplacians on graphs and networks are still not well
understood due to the nonlinearity. Among several progresses in this direction,
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a remarkable development is that the second eigenvalue has a mountain-pass char-
acterization and it is a variational eigenvalue which satisfies the Cheeger inequality
[3, 10]. Another important result is the nodal domain count for graph p-Laplacians,
including an interesting relation that connects the nodal domains of the p-Laplacian
and the multi-way Cheeger constants on graphs [49]. For the limiting case p D 1,
the spectral theory for graph 1-Laplacian was proposed by Hein and Bühler [32] for
1-spectral clustering, and was latter studied by Chang [13] from a variational point of
view. For example, Cheeger’s constant, which has only some upper and lower bounds
given by the second eigenvalues of p-Laplacians with p > 1, equals the second eigen-
value of graph 1-Laplacian [13,32]. Moreover, any Cheeger set can be identified with
any strong nodal domain of any eigenfunction corresponding to the second eigenvalue
of graph 1-Laplacian.

To some extent, nodal domain theory provides a good perspective for under-
standing the spectrum of graph p-Laplacians. Indeed, various versions of discrete
nodal domain theory have been developed in different contexts. A very useful context
should be the signed graphs, whose spectral theory has led to a number of break-
throughs in theoretical computer science and combinatorial geometry, including the
solutions to the sensitivity conjecture [34] and the open problems on equiangular
lines [11,36,37]. In addition, signed graphs have many other practical applications on
modeling biological networks, social situations, ferromagnetism, and general signed
networks [4, 5, 31]. Therefore, it should be natural and useful to develop a general
spectral theory that includes nodal domain theorems on signed graphs. Along this
line, Ge and Liu [30] provided a definition of the strong and weak nodal domains
on signed graphs, which is compatible with the classical one in [22] on graphs. They
also obtained sharp estimates of the number of strong and weak nodal domains for
generalized linear Laplacian on signed graphs. We notice that estimates of strong
nodal domains on signed graphs has been established in an earlier work of Moham-
madian [43], see [30, Remark 3.12]. For more details and historical background of
nodal domain theory, we refer the readers to [30]. We particularly mention that the
results in Fiedler’s classical 1975 paper [26] can be considered as nodal domain the-
orems on signed trees (see [30, Section 5]). In 2013, Berkolaiko [8] and Colin de
Verdière [18] computed the nodal count of edges on signed graphs by allowing the
signs of each edge to become complex. See Remark 2.2 for more detailed comments.

The combination of signed versions and nonlinear analogs of nodal domain theo-
rems is the main focus of this paper. To the best of our knowledge, the p-Laplacian
on signed graphs has not been well studied. A related research was given in [38]
for p-Laplacians on oriented hypergraphs, which includes the p-Laplacian on signed
graphs as a special case. However, that paper does not focus on the nodal domain
property, so there are no sufficiently in-depth results on nodal domain theorems for
p-Laplacians on signed graphs.
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In this paper, we systematically establish a nodal domain theory for p-Lapla-
cians on signed graphs, which unifies the ideas and approaches from these recent
works [23, 30, 38, 49]. Based on our nodal domain estimates, we also obtain a higher
order Cheeger inequality that relates the variational eigenvalues of p-Laplacians and
Atay–Liu’s multi-way Cheeger constants on signed graphs [6]. Although these results
appear to be formally similar to that in [23, 49], there are several key differences in
both results and approaches. First, our upper bounds for the number of dual nodal
domains for p-Laplacians on signed graphs are new, and the proof relies heavily on
the intersection property of Krasnoselskii genus. In particular, for p > 1, the estimate
of the number of dual weak nodal domains, and the bound on the number of dual
strong nodal domains of the k-th eigenfunction with minimal support, further require
the odd homeomorphism deformation lemma in Struwe’s book [48]; while the case
of p D 1 should be treated separately by using the localization property. It is worth
noting that a cautious analysis gives us a stronger result for the signed 1-Laplacian
case, which is also new for graph 1-Laplacian. Second, the approach we use to obtain
the lower bound estimates for the number of strong nodal domains, further relies on
a duality argument by considering the quantity S.f / C xS.f /, which is similar to
the linear case in [30], but the nonlinear estimate requires more subtle techniques.
Third, the k-way Cheeger inequality connecting variational eigenvalues of p-Lapla-
cians and Atay–Liu’s k-way Cheeger constants on signed graphs is essentially new,
although the proof is not difficult for anyone who is familiar with analysis or spec-
tral graph theory. Interestingly, this result also reveals that variational eigenvalues
of the 1-Laplacian on signed graphs are very closely related to certain combinato-
rial quantities on signed graphs. Fourth, it should be noted that many of the nodal
domain properties of p-Laplacians are different on graphs of different signatures.
For example, on a balanced graph, the second eigenfunction has exactly two weak
nodal domains (see [23]), which is not always the case on an unbalanced graph,
see Example 3.1. Very interestingly, we prove a nonlinear Perron–Frobenius theorem
for p-Laplacians on antibalanced graphs, that is, the eigenfunction corresponding to
the largest eigenvalue is positive everywhere or negative everywhere. Moreover, the
eigenfunction corresponding to the largest eigenvalue is unique up to a constant mul-
tiplication. However, this does not hold for p-Laplacians on balanced graphs.

Even on the usual graphs, our theorems directly derive at least two new results.

• Any eigenfunction corresponding to the k-th variational eigenvalue �k (such that
�k > �k�1) of the graph 1-Laplacian with minimal support has at least k C r � 2
zeros, where r is the variational multiplicity of �k (see Theorem 4). Recall Sturm’s
oscillation theorem, which says that the k-th eigenfunction of the second-order
linear ODE has exactly .k � 1/ zeros. Our result actually shows that the k-th
variational eigenfunction of the graph 1-Laplacian with minimal support has at
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least .k � 1/ zeros. Therefore, in a sense, we are actually building a weak version
of Sturm’s theorem for the graph 1-Laplacian.

• When p > 1, there are no other eigenvalues between the largest and the second
largest variational eigenvalues of the graph p-Laplacian on connected bipartite
graphs (see Corollary 5.1). This new phenomenon can be seen as a dual version
of the classic result that there are no other eigenvalues between the smallest and
the second smallest variational eigenvalues of the graph p-Laplacian.

The paper is structured as follows. In Section 2, we collect preliminaries on
p-Laplacians and signed graphs, particularly on the continuity and switching prop-
erty of p-Laplacian spectrum of signed graphs. In Section 3, we present the upper
bounds of strong and weak nodal domains for p-Laplacians on signed graphs, and
discuss the related nodal domain properties on forests. In Section 4, we show multi-
way Cheeger inequalities related to strong nodal domains involving p-Laplacians on
signed graphs. In Section 5, we establish a nonlinear Perron–Frobenius theorem for
the largest eigenvalue of the p-Laplacian on antibalanced graphs. In Section 6, we
develop the interlacing theorem which is a signed version of Weyl-like inequalities
proposed in [23]. Finally, we show lower bound estimates for the number of strong
nodal domains in Section 7.

2. Preliminaries

To explain the interesting story clearly, let us present our setting and notations in this
section.

Let G D .V; E/ be a finite graph with a positive edge measure wWE ! RC, a
vertex weight �W V D ¹1; 2; : : : ; nº ! RC and a real potential function �W V ! R.
In this paper, we work on a signed graph � D .G; �/ with an additional signature
� WE ! ¹�1; 1º. We use C.V / to denote the set of all the real functions on V , and we
always identify C.V / with Rn, i.e., C.V / Š Rn. We denote w.¹x; yº/, �.x/, �.x/
and �.¹xyº/ bywxy , �x ,�x and �xy for simplicity. We assume p� 1. Let p̂WR!R

be defined as p̂.t/ D jt j
p�2t if t ¤ 0 and p̂.t/ D 0 if t D 0. We also write x � y

when ¹x; yº 2 E. For p > 1, the signed p-Laplacian ��p WC.V /! C.V / is defined
[3, 23] by

��pf .x/ D
X
y�x

wxy p̂.f .x/ � �xyf .y//C �x p̂.f .x//; x 2 V; f 2 C.V /:

A nonzero function f W V ! R is an eigenfunction of ��p associated with the eigen-
value � if the following identity holds

��pf .x/ D ��x p̂.f .x// for all x 2 V:
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The signed 1-Laplacian ��1 [13] is a set-valued map defined by

��1f .x/ D
°X
y�x

wxyzxy C �xzx W zxy 2 Sgn.f .x/ � �xyf .y//;

zxy D ��xyzyx; zx 2 Sgn.f .x//
±
;

in which

Sgn.t/ WD

8̂̂<̂
:̂
¹1º if t > 0;

Œ�1; 1� if t D 0;

¹�1º if t < 0:

We always use Sgn to denote the above set-valued sign function. And we use sgn to
denote the usual sign function as follows

sgn.t/ WD

8̂̂<̂
:̂
1 if t > 0;

0 if t D 0;

1 if t < 0:

For a nonzero function f WV ! R, we say that it is an eigenfunction of��1 corre-
sponding to an eigenvalue � 2 R if

��1f .x/ \ ��x Sgn.f .x// ¤ ;; for all x 2 V;

or equivalently, the differential inclusion

0 2 ��1f .x/ � ��x Sgn.f .x// for all x 2 V

holds in the language of Minkowski sum of convex sets.
We will also discuss eigenfunctions with minimal supports (see Theorem 4 in the

next section).

Definition 2.1. For any function gW V ! R, define supp.g/ WD ¹x 2 V W g.x/ ¤ 0º.
Let f be an eigenfunction of ��p corresponding to �. We say f has minimal support
if for any eigenfunction g of ��p corresponding to � with supp.g/ � supp.f /, we
must have supp.g/ D supp.f /.

Definition 2.2 (Switching). A function � is called a switching function if it maps from
V to ¹C1;�1º. Switching the signature of � D .G; �/ by � refers to the operation of
changing � to be � � where

� �xy WD �.x/�xy�.y/

for any ¹x; yº 2 E.
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Definition 2.3. Two signed graphs � D .G; �/ and � 0 D .G:� 0/ are switching equiv-
alent if there exists a switching function � such that � 0 D � � .

Next, we define balanced and antibalanced graphs. The definition given below is
equivalent to the original one by Harary [31] due to Zaslavsky’s switching lemma [53].

Definition 2.4. A balanced (resp., antibalanced) graph is a signed graph which is
switching equivalent to a graph whose edges are all positive (resp., negative).

Remark 2.1. For � D 0, ��p is the usual p-Laplacian on signed graphs.
For � � C1, ��p is nothing but the usual p-Schrödinger operator on graphs.

It is known that the graph p-Schrödinger eigenvalue problem covers the Dirichlet
p-Laplacian eigenvalue problem on graphs, see, e.g., [33].

For p D 2, ��2 reduces to an arbitrary symmetric matrix by taking certain param-
eters w, � , � and �.

Before giving the following definition, we recall that a set S in a Banach space is
centrally symmetric if S D �S where �S WD ¹�xW x 2 Sº.

Definition 2.5 (Index). The index (or Krasnoselskii genus) of a compact centrally
symmetric set S in a Banach space is defined by


.S/ WD

´
0 if S D ;;

min¹k 2 ZCW 9 odd continuous hWS ! Rkº if S ¤ ;:

If, in the above, ¹k 2 ZCW 9 odd continuous hWS ! Rkº D ;, we set

min¹k 2 ZCW 9 odd continuous hWS ! Rkº D 1:

The following proposition can be found in [48, Proposition 5.2].

Proposition 2.1. For any bounded centrally symmetric neighborhood� of the origin
in Rm, we have 
.@�/ D m.

Let
�p.V / D

°
f 2 C.V /W

X
x2V

�xjf .x/j
p
D 1

±
;

and let

Fk.�p.V // D ¹A � �p.V /WA is compact centrally symmetric and 
.A/ � kº:

For convenience, we omit the symbol V if no confusion arises, e.g.,

Sp WD Sp.V /; Fk.Sp/ WD Fk.Sp.V //:
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Denote by

R�
p .f / D

P
¹x;yº2E wxy jf .x/ � �xyf .y/j

p C �xjf .x/j
pP

x2V �xjf .x/j
p

the p-Rayleigh quotient. The Lusternik–Schnirelman theory allows us to define a
sequence of variational eigenvalues of ��p :

�k.�
�
p / WD inf

S2Fk.�p/
sup
f 2S

R�
p .f /; k D 1; 2; : : : ; jV j:

Moreover, each variational eigenvalue is an eigenvalue of ��p .
It is worth noting that there does exist graphs with non-variational eigenvalues, see

[3, Theorem 6]. It is proved in [23, Theorem 3.7] that forests admit only variational
eigenvalues.

Definition 2.6 (Eigenspace). The eigenspace X�.��p / of ��p corresponding to an
eigenvalue � is the subset of �p consists of the all eigenfunctions corresponding to �.

The multiplicity of an eigenvalue � of ��p is defined to be 
.X�.��p //, and we
shall denote it by multi.�.��p //. In this paper, we write �k to denote �k.��p /, if it is
clear.

Definition 2.7 (Variational multiplicity). For a variational eigenvalue � of ��p , its
variational multiplicity is defined as the number of times � appears in the sequence
of variational eigenvalues. We will denote it by multiv.�.��p //.

It is known that for any variational eigenvalue, its variational multiplicity is always
less than or equal to its multiplicity [48, Lemma 5.6].

Definition 2.8 (Nodal domains [30, Definitions 3.1–3.4]). Let � D .G;�/ be a signed
graph and f WV ! R be a function. A sequence ¹xiºkiD1 of vertices is called a strong
nodal domain walk of f if xi � xiC1 and f .xi /�xixiC1f .xiC1/ > 0 for each i D
1; 2; : : : ; k � 1.

A sequence ¹xiºkiD1, k � 2 of vertices is called a weak nodal domain walk of f
if for any two consecutive non-zeros xi and xj of f , i.e., f .xi / ¤ 0, f .xj / ¤ 0, and
f .x`/ D 0 for any i < ` < j , it holds that

f .xi /�xixiC1 : : : �xj�1xj f .xj / > 0:

We remark that every walk containing at most 1 non-zero of f is a weak nodal domain
walk.
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Let � D ¹x 2 V Wf .x/ ¤ 0º be the set of non-zeros of f .

(i) Define an equivalence relation S
� on� as follows. For any x; y 2 �, x S

� y

if and only if x D y or there exists a strong nodal domain walk connecting
x and y.

We denote by ¹Siº
nS
iD1 the equivalence classes of the relation S

� on�. We
call the induced subgraph of each Si a strong nodal domain of the func-
tion f . We denote the number nS of strong nodal domains of f by S.f /.

(ii) Define an equivalence relation W
� on� as follows. For any x; y 2 �, x W

� y

if and only if x D y or there exists a weak nodal domain walk connecting
x and y.

We denote by ¹Wiº
nW
iD1 the equivalence classes of the relation W

� on �.
We call the induced subgraph of each set

W 0
i WD Wi [ ¹v 2 V W there exists a weak nodal domain walk

from v to some vertex in Wiº

a weak nodal domain of the function f . We denote the number nW of weak
nodal domains of f by W.f /.

Note that ¹Wiº
nW
iD1 is a partition of� WD ¹x 2 V Wf .x/ ¤ 0º. And W 0

i is obtained
by adding some zeros to Wi .

Next, we give two examples to illustrate this definition.

Example 2.1. We consider the signed graph � D .G; �/ which is shown in Figure 1.
The corresponding signed Laplacian is given as below

��2 D

0BBBBB@
1 0 1 0 0

0 1 1 0 0

1 1 4 1 1

0 0 1 1 1

0 0 1 1 1

1CCCCCA :
By numerical computation, we have the eigenvalues of ��2

�1 D 0 � �2 � 0:238 � �3 D 1 � �4 � 1:637 � �5 � 5:125;

and the corresponding eigenfunctions

f1 D .0; 0; 0;�1; 1/
T ;

f2 � .2:313; 2:313;�1:762; 1; 1/
T ;

f3 D .�1; 1; 0; 0; 0; 0/
T ;

f4 � .�0:517;�0:517;�0:363; 1; 1/
T ;

f5 � .0:758; 0:758; 3:125; 1; 1/
T :
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Figure 1. � D .G; �/.

In Table 1, we list the strong and weak nodal domains of each eigenfunction. Notice
that we only provide vertex subsets. The strong and weak nodal domains are the
induced subgraphs of those vertex subsets.

Eigenfunction Strong nodal domain Weak nodal domain
f1 ¹4; 5º ¹1; 2; 3; 4; 5º

f2 ¹1; 2; 3; 4; 5º ¹1; 2; 3; 4; 5º

f3 ¹1º; ¹2º ¹1; 2; 3; 4; 5º

f4 ¹1º¹2º; ¹3; 4; 5º ¹1º¹2º; ¹3; 4; 5º

f5 ¹1º; ¹2º; ¹3º; ¹4º; ¹5º ¹1º; ¹2º; ¹3º; ¹4º; ¹5º

Table 1. Strong and weak nodal domains.

It is worth noting that for the eigenfunction f3, vertices 1 and 2 lie in the same
weak nodal domain because 1! 3! 4! 5! 3! 2 is a weak nodal domain walk.

Example 2.2. We consider a signed star graph � D .G; �/ depicted in Figure 2 and
its signed Laplacian matrix:

��2 D

0BBBBB@
4 1 1 1 1

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

1CCCCCA :

The eigenvalues of M are �1 D 0 < �2 D �3 D �4 D 1 < �5 D 5. We consider
the eigenfunction f D .0; 1; 1;�1;�1/ corresponding to �2. It is direct to check that
there are 4 strong nodal domains of f . Next, we investigate the weak nodal domains.
Observe that 3! 1! 2 and 4! 1! 5 are both weak nodal domain walks of f .
And there are no weak nodal domain walks between ¹2; 3º and ¹4; 5º. Using the
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Figure 2. The signed star graph.

notation of Definition 2.8, we have W1 D ¹2; 3º and W2 D ¹4; 5º. Furthermore, we
have W 0

1 D ¹1; 2; 3º and W 0
2 D ¹1; 4; 5º. That is, f has two weak nodal domains.

Now, we recall two propositions from [30, Propostions 3.16 and 3.17] which will
be useful later in the proof of Theorem 3.

Proposition 2.2. Let ¹Diº
q
iD1 be the all weak nodal domains of a non-zero function

f on a signed graph � D .G; �/. Let GD D .VD; ED/ be the graph given by

VD WD ¹Diº
q
iD1; and ED WD ¹¹Di ;Dj ºWDi � Dj º;

where Di � Dj means that there exist x 2 Di and y 2 Dj such that x � y. Then, if
the graph G is connected, so does the graph GD .

Proposition 2.3. Let f be a non-zero function on a signed graph � D .G; �/. Then
for any three weak nodal domains D1;D2;D3 of f , we have D1 \D2 \D3 D ;.

Remark 2.2. Another way to study the discrete nodal domains is to consider the
edges instead of vertices. Given a function f , define two edge setsECD ¹¹x;yº 2EW
f .x/�xyf .y/>0º,E�D¹¹x;yº2EWf .x/�xyf .y/<0º and a vertex set V0D¹x2V W
f .x/ ¤ 0º. Then the number of strong nodal domains of a function f is equal to the
number of connected components of the graph � 0 D .G0; � 0/ where G0 D .V0; EC/
and � 0xy D �xy for any ¹x; yº 2 EC. Mohammadian [43] proved the upper bound of
the signed strong nodal domains by considering the graph � 0. When f is a generic
eigenfunction, i.e., f is simple and non-zero on every vertex, the set E� is regarded
as the nodal set of f , and the cardinality of E� is called the nodal count of f . The
properties of nodal count have been studied in, e.g., [2, 7, 8, 18]. The nodal count of
signed Laplacian plays an important role in the extension of the Nodal Universality
Conjecture from quantum graphs [1] to discrete graphs [2].

We use xS.f / (resp., SW.f /) to denote the number of strong (resp., weak) nodal
domains of f with respect to .G;��/.
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The perturbation theory plays an important role in studying of the properties of
linear operators [40]. The following proposition is about the perturbation theory of
eigenvalues of p-Laplacian. To state the proposition, we first recall the definition of
upper hemi-continuity of set-valued maps.

Definition 2.9. Let X and Y be metric spaces. A set-valued map F WX ! P .Y /,
where P .Y / stands for the collection of all subsets of Y , is called upper hemi-
continuous at x 2 X if for any neighborhood U of F.x/ in Y , there exists � > 0,
such that for any x0 2 BX .x; �/ WD ¹z 2 X W dX .x; z/ < �º where dX is the metric of
X , we haveF.x0/�U . It is said upper hemi-continuous if it is upper hemi-continuous
at any point of X .

Proposition 2.4. The k-th variational eigenvalue is continuous with respect to

.w; �; �/ 2 .0;C1/E �RV � .0;C1/V :

Moreover, the multiplicity and variational multiplicity of the k-th variational eigen-
value are both upper semi-continuous with respect to .w; �;�/ and the corresponding
eigenspace is upper hemi-continuous with respect to .w;�;�/. In particular, the set of
the parameters .w; �; �/ such that �k.��p / has multiplicity 1 is open in .0;C1/E �
RV � .0;C1/V . Similarly, the set of the parameters .w; �; �/ such that the varia-
tional multiplicity of �k.��p / is 1 is also open in .0;C1/E �RV � .0;C1/V .

Proof. Since R�
p is locally Lipschitz continuous with respect to

.w; �; �; f / 2 .0;C1/E �RV � .0;C1/V � .RV n ¹0º/;

it is easy to show that the k-th variational eigenvalue

�k D inf
S2Fk.�p/

sup
f 2S

R�
p .f / D min

S2Fk.�p/
max
f 2S

R�
p .f /

is continuous with respect to .w; �; �/.
First, we prove the upper semi-continuity of the variational multiplicity. Let r be

the variational multiplicity of �k.��p Œw0; �0;�0�/, where .w0; �0;�0/ 2 .0;C1/E �
RV � .0;C1/V . Without loss of generality, we assume that

�k�1.�
�
p Œw0; �0; �0�/ < �k.�

�
p Œw0; �0; �0�/

and

�kCr�1.�
�
p Œw0; �0; �0�/ < �kCr.�

�
p Œw0; �0; �0�/:
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By continuity, the above two inequalities hold in an open neighborhood U of .w0; �0;
�0/. Therefore, the variational multiplicity of �k.��p Œw; �; ��/ with .w; �; �/ 2 U
is equal to or less than r . This proves the upper semi-continuity of the variational
multiplicity.

Next, we prove the upper semi-continuity of the multiplicity. LetXk.w;�;�/� �p

be the collection of all normalized eigenfunctions corresponding to the k-th
variational eigenvalue of ��p with the parameter .w; �; �/. We first verify that the
eigenspace Xk.w; �; �/ is upper hemi-continuous with respect to .w; �; �/. Suppose
the contrary, that there exists "0 > 0 such that there exists a sequence .!i ; �i ; �i /
converges to .!; �;�/ as i !C1, butXk.!i ; �i ;�i / is not included in the "0-neigh-
borhood B"0.Xk.!; �;�// ofXk.!; �;�/. That is, we can take f i 2Xk.!i ; �i ;�i / n
B"0.Xk.!;�;�//, for any i � 1. Since f i 2 �p , by the compactness, there exists a sub-
sequence, still denoted by ¹f iºi�1, converging to a limit f 2 �p n B"0.Xk.!; �;�//.
Since f i is an eigenfunction corresponding to the k-th variational eigenvalue
�k.�

�
p Œ!

i ; �i ; �i �/ of ��p Œ!
i ; �i ; �i �, we have the eigen-equation

��p Œ!
i ; �i ; �i �f i D �k.�

�
p Œ!

i ; �i ; �i �/ � �i p̂.f
i /:

Taking i!C1, we have��p Œ!; �;��f D �k.�
�
p Œ!; �;��/ �� p̂.f /, which implies

that f is an eigenfunction corresponding to �k.��p Œ!; �;��/. Thus, f 2 Xk.!; �;�/,
which contradicts to the fact f 2 �p n B"0.Xk.!; �; �//.

By the monotonicity and continuity of the index function 
 ([48, Proposition 5.4]),
we have

multi.�k.��p Œw
0; �0; �0�// D 
.Xk.w

0; �0; �0// � 
.B".Xk.w; �; �///

D 
.Xk.w; �; �// D multi.�k.��p Œw; �; ��//;

where B".Xk.w; �; �// denotes the "-neighborhood of Xk.w; �; �/, and where
multi.�k.��p Œw; �; ��// indicates the multiplicity of the k-th variational eigenvalue
of ��p with the parameter .w; �; �/. This implies that

¹.w; �; �/Wmulti.�k.��p Œw; �; ��// � C º

is an open subset of .0;C1/E �RV � .0;C1/V , for any constant C � 1. Hence, the
multiplicity of the k-th variational eigenvalue is upper semi-continuous with respect
to .w; �; �/.

In the linear case, we know that if .G;�/ and .G; Q�/ are switching equivalent with
the same edge measure, vertex weight and potential function, then the spectrum of
��2 coincides with that of �Q�2 . The following proposition shows this fact still holds
for the nonlinear case.
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Proposition 2.5. Let .G; �/ and .G; Q�/ be two signed graphs with the same edge
measure, vertex weight and potential function. If Q� is switching equivalent to � , then
the spectrum of �Q�p coincides with the spectrum of ��p . Moreover, the variational
spectra of �Q�p and ��p are the same.

Proof. Suppose Q� WD � � for some switching function � W V ! ¹�1;C1º. By direct
computation, we derive that .�; f / is an eigenpair of ��p if and only if .�; �f / is
an eigenpair of ��

�

p . Therefore, the set of eigenvalues of ��p agrees with the set of
eigenvalues of ��

�

p .
Note that for any centrally symmetric subset X � �p of index k, � � X WD ¹�f W

f 2 Xº is also a centrally symmetric subset of index k. For any eigenvalue � of ��p ,
it is clear that � � X�.��p / is nothing but the collection X�.��

�

p / of the eigenfunctions
corresponding to the eigenvalue � of ��

�

p . Hence, the multiplicity of the eigenvalue
� of ��p coincides with the multiplicity of the eigenvalue � of ��

�

p . In summary, we
obtain that the spectra of ��p and ��

�

p coincide.
Finally, we focus on the variational eigenvalues. It is direct to check that 
.A/ D


.� � A/ for any centrally symmetric subset A. And for any minimizing set A with
respect to �k.��

�

p /, � � A is a minimizing set with respect to �k.��p /. It then follows
from the fact R��

p .f / D R�
p .�f / that �k.��

�

p / D �k.�
�
p /.

3. Nodal domain theorems

In this section, we prove nodal domain theorems for p-Laplacians on signed graphs
and discuss several applications. Let � D .G; �/ be a signed graph with G D .V;E/,
and let

�1 � �2 � � � � � �jV j�1 � �jV j

be the variational eigenvalues of ��p . For ease of notation, we denote n D jV j.
For any eigenfunction f corresponding to �, we prove the following upper bounds

for the quantities S.f /; W.f /; xS.f / and SW.f /.

Theorem 1. For p � 1, if � < �kC1, then we have W.f / � S.f / � k:

Theorem 2. For p � 1, if � > �k , then we have SW.f / � xS.f / � n � k:

Theorem 3. For p > 1, if � D �k and

�1 � � � � � �k�1 < �k D �kC1 D � � � D �kCr�1 < �kCr � � � � � �n;

then we have

W.f / � k C c � 1 and SW.f / � n � k � r C c C 1;

where c is the number of connected components of G.
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Theorem 4. For p � 1, if � D �k where

�1 � � � � � �k�1 < �k D �kC1 D � � � D �kCr�1 < �kCr � � � � � �n;

and the corresponding eigenfunction f has minimal support, then we have

S.f / � k and xS.f / � n � k � r C 2:

In addition, when p D 1, and f has minimal support, we further have that S.f /D 1.
Moreover, when the graph is balanced, the number of zeros of f is at least k C r � 2.

Let us first remark on the estimates of xS.f / (resp., SW.f /), i.e., the number of
strong (resp., weak) nodal domains of f with respect to .G;��/. In the linear case,
if f is an eigenfunction of the signed Laplacian ��2 corresponding to �, then it is
also an eigenfunction of ���2 corresponding to ��. Since ���2 can be considered
as a signed Laplacian of the graph .G;��/ (with a suitable choice of the potential
function), the upper bound estimates of xS.f / and SW.f / follows directly from the
signed nodal domain theorem [30, Theorem 4.1]. However, in the nonlinear case,
when f is an eigenfunction of ��p , f may not be an eigenfunction of ���p anymore.
It is an interesting question to ask whether there are still upper bound estimates of
xS.f / and SW.f / or not. Theorem 2, Theorem 3 and Theorem 4 above answer this
question positively. Intriguingly, these upper bound estimates will be very useful in
the proofs of our later results, including Theorem 5, Theorem 6 and Theorem 9.

Those above upper bounds can be regarded as discrete versions of the Courant’s
nodal domain theorem [19, 20] proved in the 1920s. Cheng [15] studied Courant’s
theorem on Riemannian manifolds. The study of discrete nodal domain theorems for
linear Laplacians on graphs dates back to the work of Gantmacher and Krein [29]
in the 1940s and the work of Fiedler [25–27] in the 1970s. Van der Holst [50, 51]
proved that the second eigenfunction f2 induces 2 strong nodal domains if it has min-
imal support. Duval and Reiner [24] studied the discrete nodal theorems of higher
eigenfunctions. In 2001, Davies, Gladwell, Leydold and Stadler [22] established the
discrete nodal domain theorems for generalized Laplacians. There are amount of
works about discrete nodal domain theorems for linear Laplacians, see, e.g., [7, 9,
17, 28, 42, 45, 46]. The extensions to linear Laplacians on signed graphs have been
discussed in [30,38,43], while the extensions to nonlinear Laplacians on graphs have
been carried out in [14, 23, 49].

Those above results unify many results on the upper bounds of the number of
nodal domains for p-Laplacians on graphs and signed graphs, including [30, Theo-
rem 4.1], [38, Theorem 5.4] for signed graphs, [49, Theorem 3.4 and Theorem 3.5]
for graphs. Moreover, the inequality (see [38, Theorem 5.3 ] and [39, Theorem 2.2])

N.f / � min¹k C r � 1; n � k C rº;
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where N.f / stands for the number of connected components of the support of f ,
becomes a direct consequence of these results, since we have N.f / � min¹S.f /;
xS.f /º.

We further point out that Theorem 3 cannot hold for the case p D 1, even for
balanced signed graphs. A counterexample is given in [14, Example 10].

For the proofs of these theorems, we prepare two lemmas. The first one has been
established in [3, 38, 49].

Lemma 1. Let t; s; a; b be real numbers. Then, we have for p > 1´
jtaC sbjp � .jt jpaC jsjpb/jaC bjp�2.aC b/; if ab � 0;

jtaC sbjp � .jt jpaC jsjpb/jaC bjp�2.aC b/; if ab � 0:

Moreover, the equality holds if and only if

ab D 0 or t D s (3.1)

in both cases.
In the case of p D 1, we have for any z 2 Sgn.aC b/,´

jtaC sbj � .jt jaC jsjb/z; if ab � 0;

jtaC sbj � .jt jaC jsjb/z; if ab � 0:

For any function gWV ! R, we define kgkpp D
P
x2V jg.x/j

p�x for p � 1. We
will use the notation

P
i¤j WD

P
i

P
j Wj¤i for simplicity.

Lemma 2. For p � 1, let f be an eigenfunction of ��p corresponding to an eigen-
value �. Set Z WD ¹x 2 V Wf .x/ D 0º. Let V1; : : : ; Vm be a partition of V nZ. Let X
be the linear function-space spanned by f1; : : : ; fm where

fi .x/ D

´
f .x/; if x 2 Vi ;

0; if x 62 Vi :

Then, for any g D
Pm
iD1 tifi 2 X n 0, we have

.R�
p .g/ � �/kgk

p
p D

1

2

X
i¤j

X
x2Vi

X
y2Vj

wxyGij .x; y/;

where

Gij .x; y/ D jtifi .x/ � �xy tjfj .y/j
p

� .jti j
pfi .x/ � �xy jtj j

pfj .y// p̂.fi .x/ � �xyfj .y//
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if p > 1, and if p D 1,

Gij .x; y/ D jtifi .x/ � �xy tjfj .y/j � .jti jfi .x/ � �xy jtj jfj .y//zxy ;

for some zxy 2 Sgn.f .x/ � �xyf .y//.

Proof. We first compute for any p � 1 thatX
¹x;yº2E

wxy jg.x/ � �xyg.y/j
p
C

X
x2V

�xjg.x/j
p

D

mX
iD1

X
x2Vi

X
y2Z

wxy jtifi .x/j
p
C
1

2

mX
iD1

X
x2Vi

X
y2Vi

wxy jti j
p
jfi .x/ � �xyfi .y/j

p

C
1

2

X
i¤j

X
x2Vi

X
y2Vj

wxy jtifi .x/ � �xy tjfj .y/j
p
C

X
x2V

�xjg.x/j
p: (3.2)

We next deal with the case p > 1. Employing the eigen-equation, we have for each
i 2 ¹1; : : : ; mº

�kfik
p
p D �

X
x2V

�xjfi .x/j
p
D

X
x2V

fi .x/��x p̂.f .x// D
X
x2V

fi .x/.�
�
pf /.x/

D

X
x2Vi

fi .x/
X
y�x

wxy p̂.f .x/ � �xyf .y//C
X
x2Vi

�xjf .x/j
p

D

X
x2Vi

X
y2Z

wxy jfi .x/j
p
C
1

2

X
x2Vi

X
y2Vi

wxy jfi .x/ � �xyfi .y/j
p

C

X
x2Vi

X
y2Vj
j¤i

wxyfi .x/ p̂.fi .x/ � �xyfj .y//C
X
x2Vi

�xjfi .x/j
p:

Consequently, we obtain

�kgkpp D �

mX
iD1

jti j
p
kfik

p
p

D

mX
iD1

X
xi2Vi

X
y2Z

wxy jti j
p
jfi .x/j

p

C
1

2

mX
iD1

X
x2Vi

X
y2Vi

wxy jti j
p
jfi .x/ � �xyfi .y/j

p

C
1

2

X
i¤j

X
x2Vi

X
y2Vj

wxy.jti j
pfi .x/ � �xy jtj j

pfj .y// p̂.fi .x/��xyfj .y//

C

mX
iD1

X
x2Vi

�xjti j
p
jf .x/jp: (3.3)
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Combining (3.2) and (3.3), we getX
¹x;yº2E

wxy jg.x/ � �xyg.y/j
p
C

X
x2V

�xjg.x/j
p
� �kgkpp

D
1

2

X
i¤j

X
x2Vi

X
y2Vj

wxyGij .x; y/;

where

Gij .x; y/ D jtifi .x/ � �xy tjfj .y/j
p

� .jti j
pfi .x/ � �xy jtj j

pfj .y// p̂.fi .x/ � �xyfj .y//:

This completes the proof for the case p > 1.
Finally, we discuss the case p D 1. By definition, we have

��1f .x/ \ ��x Sgn.f .x// ¤ ;;

for any x 2 V . Hence, there exist zxy 2 Sgn.f .x/ � �xyf .y//; zxy D ��xyzyx ,
zx 2 Sgn.f .x// and z0x 2 Sgn.f .x// such that

P
y�x wxyzxy C kxzx D ��xz

0
x , for

any x 2 V . For any i 2 ¹1; : : : ; mº, we compute

�kfik1 D �
X
x2V

�xjfi .x/j D
X
x2V

fi .x/��xz
0
x D

X
x2V

fi .x/
�X
y�x

wxyzxy C kxzx

�
D

X
x2Vi

fi .x/
X
y�x

wxyzxy C
X
x2Vi

�xjf .x/j

D

X
x2Vi

X
y2Z

wxy jf .x/j C
1

2

X
x2Vi

X
y2Vi

wxy jfi .x/ � �xyfi .y/j

C

X
x2Vi

X
y2Vj
j¤i

wxyfi .x/zxy C
X
x2Vi

�xjf .x/j:

Consequently, we derive

�kgk1 D �

mX
iD1

jti jkfik1

D

mX
iD1

X
xi2Vi

X
y2Z

wxy jtifi .x/j C
1

2

mX
iD1

X
x2Vi

X
y2Vi

wxy jti jjfi .x/ � �xyfi .y/j

C
1

2

X
i¤j

X
x2Vi

X
y2Vj

wxy.jti jfi .x/ � �xy jtj jfj .y//zxy

C

mX
iD1

X
x2Vi

�xjti jjf .x/j: (3.4)
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Combining (3.2) and (3.4) yieldsX
¹x;yº2E

wxy jg.x/ � �xyg.y/j C
X
x2V

�xjg.x/j � �kgk1

D
1

2

X
i¤j

X
x2Vi

X
y2Vj

wxyGij .x; y/;

where

Gij .x; y/ D jtifi .x/ � �xy tjfj .y/j � .jti jfi .x/ � �xy jtj jfj .y//zxy :

This completes the proof for the case p D 1.

We are now well prepared for the proof of Theorem 1.

Proof of Theorem 1. By definition, we have W.f /�S.f /. Next, we prove S.f /�k:

Suppose that f hasm strong nodal domains on � D .G; �/ which are denoted by
V1; : : : ; Vm. Consider the linear function-space X spanned by f1; : : : ; fm, where fi
is defined by

fi .x/ D

´
f .x/; if x 2 Vi ;

0; if x 62 Vi :

Since V1; : : : ; Vm are pairwise disjoint, we have dimX D m. Then we can use Propo-
sition 2.1 to get


.X \ �p/ D m:

We claim that R�
p .g/ � � for any g D

Pm
iD1 tifi 2 X n 0. Indeed, we have by

Lemma 2,

.R�
p .g/ � �/kgk

p
p D

1

2

X
i¤j

X
x2Vi

X
y2Vj

wxyGij .x; y/:

For any i ¤ j , x 2 Vi and y 2 Vj , we take a D fi .x/; b D ��xyfj .y/, t D ti

and s D tj . Because x and y lie in different strong nodal domains, we have ab D
�fi .x/�xyfj .y/ > 0. Then we use Lemma 1 to get Gij .x; y/ � 0. That is, we have
R�
p .g/ � �.

By definition, we have

�m D inf
X 02Fm.�p/

sup
g02X 0

R�
p .g

0/ � sup
g2X\�p

R�
p .g/ � � < �kC1:

This implies m � k.

In order to prove the upper bound of xS.f / in Theorem 2, we recall the following
lemma from [44, Proposition 4.2.20].
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Lemma 3 ([44]). If X is a Banach space, Y is a finite-dimensional linear subspace
of X , pY 2 L.X/ is the projection operator onto Y , and A is a closed centrally
symmetric subset with 
.A/ > k D dim.Y /, then A \ .Id�pY /.X/ ¤ ;.

Proof of Theorem 2. By definition, we have SW.f / � xS.f /. Next, we prove xS.f / �
n � k:

As above, we suppose that f hasm strong nodal domains on � 0 D .G;��/ which
are denoted by xV1; : : : ; xVm. Let xX be the linear function-space spanned by f1; : : : ; fm,
where fi is defined as follows

fi .x/ D

´
f .x/; if x 2 xVi ;

0; if x 62 xVi :

We first prove that R�
p .g/ � � for any g D

Pn
iD1 tifi 2

xX n 0. Indeed, we have
by Lemma 2,

.R�
p .g/ � �/kgk

p
p D

1

2

X
i¤j

X
x2 xVi

X
y2 xVj

wxyGij .x; y/:

For any i ¤ j , x 2 xVi and y 2 xVj , we take a D fi .x/; b D ��xyfj .y/ and t D ti ;
sD tj . Because x and y lie in different strong nodal domains on �D .G;��/, we have
by definition ab D�fi .x/�xyfj .y/ < 0. Then we use Lemma 1 to getGij .x;y/� 0.
That is, we have R�

p .g/ � �.
Notice that, by Lemma 3, X 0 \ xX ¤ ; for any X 0 2 Fn�mC1.�p/. Then we have

by definition

�n�mC1 D inf
X 02Fn�mC1.�p/

sup
g02X 0

R�
p .g

0/

� inf
X 02Fn�mC1.�p/

inf
g02X 0\ xX

R�
p .g

0/

� inf
g2 xXn0

R�
p .g/ � � > �k;

which implies n �mC 1 > k, i.e., m � n � k. This completes the proof.

To show the upper bounds of W.f / and SW.f / in Theorem 3, we prepare the
following two lemmas. The first one is a reformulation of a related result by Hein and
Tudisco [49, Lemma 2.3]; The second one is a new result for estimating the number
of dual nodal domains. It is worth noting that any f 2 �p is a critical point of R�

p

corresponding to �k if and only if it is an eigenfunction of ��p corresponding to �k .
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Lemma 4. For p � 1 and k � 1, let A� 2 Fk.�p/ be such that

�k D inf
A2Fk.�p/

sup
g2A

R�
p .g/ D sup

g2A�
R�
p .g/:

Then A� contains at least one critical point of R�
p corresponding to �k .

Proof. The proof follows the same line of that of [49, Lemma 2.3], with the only
difference being that the deformation lemma is used to construct an odd continuous
map to deform the minimizing set A�.

Lemma 5. For p � 1 and k � 1, let X be a linear subspace of dimension n � k C 1
such that

�k D inf
A2Fk.�p/

sup
g2A

R�
p .g/ D inf

g2Xn0
R�
p .g/ D min

g2X\�p
R�
p .g/:

Then X \ �p contains as least one critical point of R�
p corresponding to �k .

Proof. We first concentrate on the case of p > 1. Suppose the contrary, that X \ �p

has no critical points of R�
p corresponding to �k . Let K�k .R

�
p / be the set consists of

all critical points in �p of R�
p corresponding to �k . By definition, we knowK�k .R

�
p /

is closed. By assumption, we haveX \ �p \K�k .R
�
p /D;. Then there exists a neigh-

borhood of K�k .R
�
p / denoted by N.K�k .R

�
p // such that

X \ �p \N.K�k .R
�
p // D ;:

Since p > 1, �p is a C 1;1 manifold and R�
p is smooth, we can apply [48, Theo-

rem 3.11] to derive that there exists an odd homeomorphism � W �p ! �p with

�.¹g 2 �pWR
�
p .g/ � �k � "º nN.K�k .R

�
p /// � ¹g 2 �pWR

�
p .g/ � �k C "º;

where " > 0 is sufficiently small. In particular, we have

�.�p \X/ � ¹g 2 �pWR
�
p .g/ � �k C "º nN.K�k .R

�
p //:

Let A be a minimizing set corresponding to �k . We have 
.A/ � k. Since � is an odd
homeomorphism, the inverse map ��1 is odd continuous. By the continuity property
of the index function 
 , we have 
.��1.A// � k. So, by the intersection property of
the index function 
 (see also Lemma 3), ��1.A/ \ �p \X ¤ ;. Thus,

A \ �.�p \X/ D �.�
�1.A/ \ �p \X/ ¤ ;:

Then, we obtain

�k D sup
g2A

R�
p .g/ � min

g2�.�p\X/
R�
p .g/ � �k C "

which is a contradiction.
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For the case of p D 1, we consider the restriction R�
1 j�2 . Then [12, Remark 3.3]

implies that the generalized Clarke gradient @R�
1 j�2.g/ restricted on �2 is the set

¹h� hh;gigWh 2 @R�
1 .g/º. By [16, Proposition 2.3.14], the Clarke derivative satisfies

@R�
1 .g/ �

1

kgk1

�
@TV.g/ �

TV.g/
kgk1

@kgk1

�
�

1

kgk1

�
��1g �

TV.g/
kgk1

�Sgn.g/
�

where TV.g/ WD
P
¹x;yº2E wxy jg.x/� �xyg.y/j C �xjg.x/j. According to the facts

hg;��1giDTV.g/ and hg;�Sgn.g/iD kgk1, we have hg;@R�
1 .g/iD 0, i.e., hg;hiD

0 for any h 2 @R�
1 .g/. So, we have

@R�
1 j�2.g/ D @R

�
1 .g/ for any g 2 �2:

That is, the set of critical points of R�
1 with l2-norm one coincide with the that of the

restriction R�
1 j�2 . We then apply [13, Theorem 3.1, Remarks 3.3 and 3.4] to deduce

that there is an odd homeomorphism � W �2 ! �2 with

�.¹g 2 �2WR
�
1 .g/ � �k � "º nN.K�k .R

�
1 /// � ¹g 2 �2WR

�
1 .g/ � �k C "º;

where " > 0 is sufficiently small.
Let �W �1 ! �2 be an odd homeomorphism defined as �.f / D f=kf k2. Then,

along the line of the proof for the case of p > 1, we derive for a minimizing set
A � �1 corresponding to �k that,

�k D sup
g2A

R�
1 .g/ D sup

g2�.A/

R�
1 .g/ � min

g2�.�2\X/
R�
1 .g/ � �k C ";

which is a contradiction.

Proof of Theorem 3: upper bound of W.f /. Suppose f has m weak nodal domains
which are denoted by U1; : : : ; Um. LetW1; : : : ;Wc be the c connected components of
the graph. Then, for any i 2 ¹1; : : : ;mº, there exists a unique l 2 ¹1; : : : ; cº such that
Ui � Wl . For l D 1; : : : ; c, We denote by

Il D ¹i 2 ¹1; : : : ; mºWUi � Wlº

the index set corresponding to Wl . Then, we have
Fc
lD1 Il D ¹1; : : : ; mº.

We prove that by contradiction. Assumem � k C c. Let X be the linear function-
space spanned by f jU1 ; : : : ; f jUm where f jUi D f on Ui and f jUi D 0 on V n Ui
for any 1 � i � m. Let X 0 be the linear function-space spanned by f jW1 ; : : : ; f jWc
where f jWj D f on Wj and f jWj D 0 on V nWj for any 1 � j � c. Similarly to
the proof of Theorem 1, we drive from Lemma 1 and Lemma 2 that

R�
p .h/ � �k for any h 2 X n 0: (3.5)
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By definition, we have f jWl D
P
i2Il

f jUi , and hence X 0 is a linear subspace of X .
We can have a decomposition X D X 0

L
Y . Since dim X D m � k C c and

dimX 0 D c, we derive dimY � k, and hence, 
.Y \ �p/ � k by Proposition 2.1.
According to the definition of variational eigenvalues, there holds

�k D inf
Y 02Fk.�p/

sup
g02Y 0

R�
p .g

0/ � max
g02Y\�p

R�
p .g

0/ � �k :

So, we have max
g02Y\�p

R�
p .g

0/ D �k : By Lemma 4, there exists an eigenfunction

g D

mX
iD1

tif jUi 2 Y

corresponding to �k . That is, the equality in (3.5) holds for h D g D
Pm
iD1 tif jUi .

Let Ui and Uj be two adjacent weak nodal domains. If there exist x0 2 Ui and
y0 2 Uj such that ¹x0; y0º 2 E, f .x0/ ¤ 0 and f .y0/ ¤ 0, then we derive from the
condition (3.1) in Lemma 1 that ti D tj . If, otherwise, there exist x0 2 Ui and y0 2 Uj
such that ¹x0; y0º 2 E and f .x0/ D 0, f .y0/ ¤ 0 or f .x0/ ¤ 0, f .y0/ D 0, then
we claim ti D tj still holds. Without loss of generality, we assume f .x0/ D 0 and
f .y0/ ¤ 0.

Indeed, since f and g are eigenfunctions, we haveX
y�x

wx0y p̂.�x0yf .y// D 0 and
X
y�x

wx0y p̂.�x0yg.y// D 0: (3.6)

We derive from Proposition 2.3 that every y � x0 lies in either Ui or Uj . In fact, if
there exists y � x0 such that y 2 Uk for some k ¤ i; j , then we have x0 2 Ui \Uj \
Uk by definition of weak nodal domains and the fact f .x0/ D 0. This contradicts to
Proposition 2.3. From the equalities in (3.6), we obtainX

y2Ui

wx0y p̂.�x0yf .y//C
X
y2Uj

wx0y p̂.�x0yf .y// D 0;

p̂.ti /
X
y2Ui

wx0y p̂.�x0yf .y//C p̂.tj /
X
y2Uj

wx0y p̂.�x0yf .y// D 0;

and’ hence,
. p̂.ti / � p̂.tj //

X
y2Uj

wx0y p̂.�x0yf .y// D 0: (3.7)

By definition of weak nodal domain walk, for any y;y02Uj with ¹x0; yº; ¹x0; y0º2E,
we have

.�x0yf .y// � .�x0y0f .y
0// D f .y/�yx0�x0y0f .y

0/ � 0
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and f .y0/ ¤ 0, which implies thatX
y2Uj

wx0y p̂.�x0yf .y// D
X
y2Uj

wx0y jf .y/j
p�2.�x0yf .y// ¤ 0:

Thus, we derive from (3.7) that ˆ.ti / �ˆ.tj / D 0, which yields ti D tj .
In conclusion, we have ti D tj whenever Ui and Uj are adjacent. Thus, in each

connected component Wl , we use Proposition 2.2 to get ti D tj whenever i; j 2 Il .
But this implies g 2 X 0 n 0, which is a contradiction with g 2 Y . This completes the
proof of W.f / � k C c � 1.

Next, we prove the upper bound of SW.f /.

Proof of Theorem 3: upper bound of SW.f /. Suppose f has m weak nodal domains
which are denoted by xU1; : : : ; xUm with respect to the opposite signed graph .G;��/.

Suppose, to the contrary, that m � n � k � r C c C 2. Let ¹ xWiºciD1 be the con-
nected components of G. For any 1 � i � m, let f j xUi be the function that equals
f on xUi and zero on V n xUi . Define xX to be the linear function-space spanned by
f j xU1 ; : : : ; f j xUm . For any 1 � j � c, let f j xWj be the function that equals f on xWj
and equals zero on V n xWj . Define xX 0 to be the linear function-space spanned by
f j xW1 ; : : : ; f j xWc . As above, xX 0 is a linear subspace of xX and we can have a decom-
position xX D xX 0

L
xY . Since dim xX � n � k � r C c C 2 and dim xX 0 D c, we have

dim xY � n � k � r C 2.
Following the same line of the proof of Theorem 2, we drive from Lemma 1 and

Lemma 2 that
R�
p .h/ � �k; for any h 2 xX n 0: (3.8)

Observe by Lemma 3 that A \ xY ¤ ; for any A 2 FkCr�1.�p/. Then we prove that

�k D �kCr�1 D inf
A2FkCr�1.�p/

sup
g02A

R�
p .g

0/

� inf
A2FkCr�1.�p/

inf
g02A\xY

R�
p .g

0/

� inf
g2xY n0

R�
p .g/ � �k;

So, the above inequalities hold with equalities. In particular,

min
g02xY n0

R�
p .g

0/ D �k :

Then, Lemma 5 implies that there exists an eigenfunction g D
Pm
iD1 tif j xUi 2

xY with
R�
p .g/ D �k . That is, the equality in (3.8) holds for h D g D

Pm
iD1 tif j xUi .

Along the same line of the proof for W.f / � k C c � 1, we get a contradiction
that the nonzero function g belongs to both xX 0 and xY , which completes the proof.
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In the following, we prove Theorem 4. For the p D 1 part of Theorem 4, we show
the following lemma.

Lemma 6 (Localization property of 1-Laplacian). Let .�; f / be an eigenpair of ��1 .
Then, for any strong nodal domainU of f , and any c � 0 such that ¹x 2U Wf .x/ > cº
or ¹x 2 U W f .x/ < �cº is nonempty, both f jU and 1¹x2U Wf .x/>cº � 1¹x2U Wf .x/<�cº
are eigenfunctions corresponding to the same eigenvalue � of ��1 .

In addition, if f has minimal support, then f has only one strong nodal domain,
denoted by U , and f must be in the form of t .1A � 1B/ for some t ¤ 0 and some
disjoint subsets A;B with A [ B D U . Moreover,

X�.��1 / \ ¹g 2 C.V /W supp.g/ � A [ Bº � ¹1A0 � 1B0 WA0 [ B 0 D A [ Bº

is a finite set with index 1.

Proof. Set fU;c WD 1¹x2U Wf .x/>cº � 1¹x2U Wf .x/<�cº. First, it is straightforward to ver-
ify that

Sgn.f .x/ � �xyf .y// � Sgn.f jU .x/ � �xyf jU .y//

� Sgn.fU;c.x/ � �xyfU;c.y//

and
Sgn.f .x// � Sgn.f jU .x// � Sgn.fU;c.x//

for any x; y 2 V , any c � 0 and any strong nodal domain U of f . It means that as
a set-valued map, ��1f .x/ � �

�
1f jU .x/ � �

�
1fU;c.x/ for any x 2 V . Since f is

an eigenfunction corresponding to an eigenvalue � of ��1 , we have the differential
inclusion

0 2 ��1f .x/ � ��x Sgn.f .x// � ��1f jU .x/ � ��x Sgn.f jU .x//

� ��1fU;c.x/ � ��x Sgn.fU;c.x//;

for any x 2 V . That is, both f jU and fU;c are eigenfunctions corresponding to �.
Now, we further assume that f has minimal support. Then, by the localization

property proved above, f has only one strong nodal domain, denoted by U . Suppose,
to the contrary, that f is not in the form of t .1A � 1B/. Then there exists c > 0

such that the support of fU;c is a nonempty proper subset of U . So, we construct
an eigenfunction fU;c corresponding to the eigenvalue �, but its support is a proper
subset of the support of f , which leads to a contradiction with the minimal support
assumption on f .

Therefore, we have shown that f is in the form of t .1A � 1B/, and its strong
nodal domain U is the disjoint union of A and B . Clearly, for any g whose support
is included in U , if g is also an eigenfunction corresponding to the eigenvalue �,
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gD t 0.1A0 � 1B0/ for some t 0¤ 0 and some disjoint subsetsA0 andB 0 withA0 [B 0D
U D A [ B . That means, X�.��1 / \ ¹g 2 C.V /W supp.g/ � U º is a finite set, and its
index is one.

Proof of Theorem 4. Recall we assume that f has minimal support.
We first prove that S.f / � k. Let ¹ViºmiD1 be the strong nodal domains of f on

� D .G;�/. We prove it by contradiction. Assumem> k. Consider two linear spaces
X and X 0 defined as follows:

X D
° mX
iD1

aif jVi W ai 2 R
±

and X 0 D
°m�1X
iD1

aif jVi W ai 2 R
±
;

where f jVi is the restriction of f to Vi . By the proof of Theorem 1, we have

R�
p .g/ � �k; for any g 2 X n 0:

By Proposition 2.1, we have 
.X \ �p/ D m > k and 
.X 0 \ �p/ D m � 1 � k.
By definition of variational eigenvalues, we get

�k D inf
A2Fk.�p/

sup
g02A

R�
p .g

0/ � sup
g2X 0\�p

R�
p .g/ � sup

g2X\�p

R�
p .g/ � �k :

Therefore, all the inequalities above are equalities. In particular,X 0 \ �p is a minimiz-
ing set. By Lemma 4, there exists an eigenfunction g0D

Pm�1
iD1 bif jVi corresponding

to �, which contradicts to the fact that f has minimal support. This proves m � k.
Next, we prove xS.f / � n � k � r C 2. Let ¹ xViºmiD1 be the strong nodal domains

of f with respect to the opposite signed graph .G;��/. We prove it by contradiction.
Assume m > n � k � r C 2. Consider two linear spaces X and X 0 defined as

X D
° mX
iD1

aif j xVi W ai 2 R
±

and X 0 D
°m�1X
iD1

aif j xVi W ai 2 R
±
:

By the proof of Theorem 2, we have

R�
p .g/ � �k; for any g 2 X n 0:

By Proposition 2.1, 
.X \ �p/Dm � n� k � r C 3 and 
.X 0 \ �p/Dm� 1 �

n� k � r C 2. Applying Lemma 3, A\X 0 ¤ ; for any centrally symmetric compact
subset A � �p with 
.A/ � k C r � 1. Then we have

�kCr�1 D inf
A2FkCr�1.�p/

sup
g02A

R�
p .g

0/ � inf
g2X 0\�p

R�
p .g/

� inf
g2X\�p

R�
p .g/ � �k D �kCr�1:
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Therefore, all the inequalities above are equalities. Next, by Lemma 5, X 0 \ �p con-
tains a critical point of R�

p corresponding to �k . That is, there exists an eigenfunction
Ng D

Pm�1
iD1 bif j xVi 2 X

0 n 0 corresponding to the eigenvalue �k , which contradicts to
the fact that f has minimal support. This shows m � n � k � r C 2.

In the particular case of p D 1, we actually have S.f / D 1 by Lemma 6. More-
over, we can assume without loss of generality that f D 1A � 1B for disjoint subsetsA
and B , whereA[B is the strong nodal domain of f . When the graph is balanced, we
obtain by the definition of strong nodal domains that xS.f / D jA [ Bj. The estimate
xS.f / � n � r � k C 2 proved above tells jA [ Bj � n � r � k C 2. Consequently,
the number of zeros of f is at least k C r � 2.

Next, we present two important applications of the upper bounds for S.f /, xS.f /,
W.f / and SW.f / in Theorem 1, Theorem 2, and Theorem 3. The estimates of the
quantity

S.f /C xS.f /

for an eigenfunction f will play an essential role.

Theorem 5. Let � D .G; �/ be a signed graph with G D .V;E/. Let f be an eigen-
function corresponding to a non-variational eigenvalue. If jEj < jV j, then f must
have zeros.

We emphasize that the graph G D .V; E/ in the above theorem is allowed to be
disconnected.

Proof. We prove it by contradiction. We assume that f is non-zero on all vertices.
Define

EC WD ¹¹x; yº 2 EWf .x/�xyf .y/ > 0º

and

E� WD ¹¹x; yº 2 EWf .x/�xyf .y/ < 0º:

By assumption, we have jEj D jECj C jE�j: By definition of strong nodal domains,
we have

S.f / � n � jECj and xS.f / � n � jE�j;

where nD jV j. Let k be the index such that �k < �< �kC1, where � is the eigenvalue
to f . Then, Theorems 1 and 2 tell that

S.f / � k and xS.f / � n � k:

Combining the above inequalities, we have

n � S.f /C xS.f / � 2n � jECj � jE�j D 2n � jEj > n;

which is a contradiction.
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On a forest G, Theorem 5 implies that any eigenvalue � with an everywhere non-
zero eigenfunction f must be a variational eigenvalue. This can be strengthened as
follows. Theorem 6 below has been obtained in [23, Theorem 3.8]. We provide here an
alternative simple proof using the estimates of nodal domains and anti-nodal domains.

Theorem 6. Let G D .V; E/ be a forest with c connected components and f be an
everywhere non-zero eigenfunction corresponding to an eigenvalue �. Then � is a
variational eigenvalue with variational multiplicity c and f has exactly k C c � 1
strong nodal domains.

This can be regarded as a nonlinear version of the results on the linear Laplacian
[7, 9, 26].

Proof. SinceG is a forest, we have jV j � jEj D c > 0. By Theorem 5 and the assump-
tion that f is non-zero on every vertex, � is a variational eigenvalue. We assume that
� D �k and

�k�1 < �k D � � � D �kCr�1 < �kCr :

We define

EC WD ¹¹x; yº 2 EWf .x/�xyf .y/ > 0º

and

E� WD ¹¹x; yº 2 EWf .x/�xyf .y/ < 0º:

Since f does not have zeros, we have jEj D jECj C jE�j: By definition of strong
nodal domains, we have

S.f / D n � jECj and xS.f / D n � jE�j;

where n D jV j. This yields

S.f /C xS.f / D 2n � jECj � jE�j D nC c:

We first prove r � c. Since f is non-zero on every vertex, we can use Theorem 3 to
get

S.f / DW.f / � k C c � 1 and xS.f / D SW.f / � n � k � r C c C 1:

We compute

nC c D S.f /C xS.f / � k C c � 1C n � k � r C c C 1 D nC 2c � r; (3.9)

which implies r � c.
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Next, we prove r � c. By Theorems 1 and 2, we have

S.f / � k C r � 1 and xS.f / � n � k C 1:

Hence, we obtain

nC c D S.f /C xS.f / � k C r � 1C n � k C 1 D nC r:

Then we have c � r . This concludes that r D c. So, the equality holds in (3.9), which
implies that S.f / D k C c � 1 and xS.f / D n � k C 1:

We present below a nonlinear version of [30, Theorem 3.18]. It tells that there exist
many weighted signed graphs for which all the eigenfunctions of the first variational
eigenvalue have no zeros.

Theorem 7. Let � D .G; �/ be a connected signed graph with G D .V;E/. For any
vertex weight � and potential function �, there exists an edge measure wWE ! RC

compatible withG, that is wxy ¤ 0 if and only if x � y, such that the first variational
eigenvalue �1 of ��p ; p > 1 has multiplicity 1, and any corresponding eigenfunction
f1 is nonzero everywhere.

Proof. Choose a switching function � such that �� D .G; � � / has a spanning tree
consisting of positive edges. Set

E�C WD ¹¹x; yº 2 EW �
�
xy D C1º

and

E�� WD ¹¹x; yº 2 EW �
�
xy D �1º:

Then, the graph .V; E�C/ is a connected graph. By [23, Theorem 4.1], for any edge
measure wC on E�C, the first variational eigenvalue of the p-Laplacian on the graph
.V; E�C/ has multiplicity 1 and the corresponding eigenfunctions are either positive
everywhere or negative everywhere.

For any edge measure w� on E��, and for any " > 0, wC C "w� provides an edge
measure on E. In fact, we have for every edge ¹x; yº 2 E that

.wC C "w�/xy D

´
wCxy ; if ¹x; yº 2 E�C;

"w�xy ; if ¹x; yº 2 E��:

By Proposition 2.4, it still holds for " sufficiently small that the first eigenvalue �1
of ��

�

p on the signed graph �� equipped with the edge measure wC C "w� has
multiplicity 1 and any corresponding eigenfunction f1 is either positive everywhere or
negative everywhere. By Proposition 2.5, �f1 is an eigenfunction of��p on the signed
graph � with the edge measure wC C "w�, and �1 is the corresponding eigenvalue
of ��p .
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To conclude this section, we point out that nodal domain properties of unbalanced
signed graphs are quite different from that of balanced ones. Let p > 1. Recall from
Theorem 3 that W.f1/ D 1, where f1 is the eigenfunction corresponding to the first
variational eigenvalue �1. Let f2 be an eigenfunction corresponding to the second
variational eigenvalue �2. When the graph is connected and balanced, we have by
[23, Theorem 4.1] and Theorem 3 that 1 < W.f / � 2, and hence, W.f / D 2. How-
ever, this is not always true for unbalanced signed graphs. Indeed, the first variational
eigenvalue �1 of��p on an unbalanced signed graph can have high multiplicity. There-
fore, it can happen that W.f2/ D 1. The following example tells that, even if �1 has
multiplicity 1, it is still possible that W.f2/ D 1.

Example 3.1. Let p D 2. Consider the complete graph K7 with the signature � �
�1. Define the symmetric matrix A where Aij D 1 for any i ¤ j and Ai i D i for
i D 1; : : : ; 7. By construction, A is compatible with .K7; �/. It is direct to check that
every eigenvalue has multiplicity 1 and the number of weak nodal domains of the
second eigenfunction is 1.

4. Cheeger inequalities related to nodal domains

In this section, we assume the potential function � D 0. Let us first introduce the
following notations. For any subsets V1; V2 � V , we denote by

jE˙.V1; V2/j WD
X
x2V1

X
y2V2

�xyD˙1

wxy :

When V1 D V2, we write jE˙.V1/j D jE˙.V1; V1/j for short. We further have the
following notations for boundary measure and volume:

j@V1j WD
X
x2V1

X
y 62V1

wxy ; and vol�.V1/ WD
X
x2V1

�.x/:

For ease of notation, we denote n D jV j.

Definition 4.1 ([6, Definition 3.2]). For any integer 1 � k � n, the k-way signed
Cheeger constant h�

k
of a signed graph � D .G; �/ is defined as

h�k WD min
¹.V2i�1;V2i /º

k
iD1

max
iD1;:::;k

ˇ� .V2i�1; V2i /;

where

ˇ� .V2i�1; V2i /

WD
2jEC.V2i�1; V2i /j C jE

�.V2i�1/j C jE
�.V2i /j C j@.V2i�1 [ V2i /j

vol�.V2i�1 [ V2i /
;



C. Ge, S. Liu, and D. Zhang 966

and the minimum is taken over all possible k-sub-bipartitions, i.e., .V2i�1 [ V2i / \
.V2j�1 [ V2j / D ; for any i ¤ j , and V2l�1 [ V2l ¤ ;, V2l�1 \ V2l D ; for any l .

It is direct to check the following monotonicity of the multi-way singed Cheeger
constants. For the readers’ convenience, we provide a proof below.

Lemma 7 (Monotonicity). For any integer 1 � k � n � 1, we have h�
k
� h�

kC1
.

Proof. Let ¹.V2i�1; V2i /ºkC1iD1 be a .k C 1/-sub-bipartitions of V satisfying

h�kC1 D max
1�i�kC1

ˇ� .V2i�1; V2i /:

We define a new k-sub-bipartitions ¹.U2l�1; U2l/ºklD1 of V as follows:

Um D

´
Vm; 1 � m � 2k � 2;

Vm [ VmC2; m D 2k � 1 or 2k:

By definition, we have ˇ� .U2l�1;U2l/D ˇ� .V2l�1; V2l/ for any 1� l � k � 1. Next,
by direct computation, we get

ˇ� .U2k�1; U2k/ � max¹ˇ� .V2k�1; V2k/; ˇ� .V2kC1; V2kC2/º:

So, this implies

h�k D min
¹.W2i�1;W2i /º

k
iD1

max
iD1;:::;k

ˇ� .W2i�1; W2i / � max
iD1;:::;k

ˇ� .U2i�1; U2i /

� max
1�i�kC1

ˇ� .V2i�1; V2i / D h
�
kC1:

Remark 4.1. The above signed Cheeger constants on signed graphs can be con-
sidered as an optimization of a mixture of isoperimetric constant and the so-called
frustration index. The frustration index �� .�/ of a subset � � V measures how far
the signature on � is from being balanced. It is defined as

�� .�/ WD min
� W�!¹˙1º

X
x;y2�
x�y

j�.x/ � �xy�.y/j:

By switching, we see �� .�/ D 0 if and only if the signature restricting to the sub-
graph induced by � is balanced. Indeed, the k-th signed Cheeger inequality can be
reformulated as [41]

h�k WD min
¹�i º

k
iD1

max
iD1;:::;k

�� .�i /C j@�i j

vol�.�i /
:
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This can be verified using the one-to-one correspondence between the function
� W�i ! ¹˙1º and the bipartition .V2i�1; V2i / of �i via the relation

V2i�1 WD ¹x 2 �i W �.x/ D C1º; and V2i WD ¹x 2 �i W �.x/ D �1º:

Notice that h�
k

reduces to the classical k-th Cheeger constant when � D .G; �/ is
balanced, since �� .�i / vanishes for any subset �i .

Theorem 8. For any p � 1 and any k 2 ¹1; : : : ; nº, the k-th variational eigenvalue
�k.�

�
p / satisfies

2p�1

Cp�1pp
.h�m/

p
� �k.�

�
p / � 2

p�1h�k ;

where C WD maxx2V
P
y�x wxy
�x

and m is the number of strong nodal domains of an
eigenfunction corresponding to �k.��p /.

This theorem can be regarded as a signed version of [49, Theorem 5.1], which is
an extension of previous works [3, 10, 13, 21].

Before proving this theorem, we first show an elementary inequality.

Lemma 8. For any a; b 2 R, p � 1 and �ab 2 ¹�1; 1º, we have

ja � �abbj
p
� 2p�1jjajp sgn.a/ � �abjbjp sgn.b/j:

Proof. Without loss of generality, we can assume ab ¤ 0. We consider the case of
�ab D �1 below. The proof for the case of �ab D 1 can be done similarly.

If ab > 0, we assume a > 0 and b > 0 without loss of generality. Then we get

ja � �abbj
p
D jaC bjp:

By the convexity of f .x/ D jxjp , we have f .aCb
2
/ � 1

2
f .a/C 1

2
f .b/, i.e.,

jaC bjp � 2p�1.jajp C jbjp/

D 2p�1jjajp sgn.a/ � �abjbjp sgn.b/j:

If, otherwise, ab < 0, we assume a > 0, b < 0, and a D �kb with k > 1 without
loss of generality. Then we get

ja � �abbj
p
D jaC bjp D jk � 1jpjbjp:

By the convexity of the following function

g.x/ D

´
jxjp; if x � 0;

x; if x < 0;
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we have g.k�1
2
/ � 1

2
g.k/C 1

2
g.�1/, i.e., jk � 1jp � 2p�1.jkjp � 1/. Next, we com-

pute

jk � 1jpjbjp � 2p�1.jkpj � 1/jbjp

D 2p�1jjajp sgn.a/ � �abjbjp sgn.b/j:

This completes the proof of the case �ab D �1.

Proof of Theorem 8. Observe that for any k-sub-bipartitions ¹.V2i�1; V2i /ºkiD1 of V
that

R�
1 .1V2i�1 � 1V2i / D ˇ

� .V2i�1; V2i /;

where 1Vi is the indicator function of Vi .
We first show the upper bound estimate of �k . By abuse of notation, we use

¹.V2i�1; V2i /º
k
iD1 for a k-sub-bipartitions of V that realizes h�

k
, i.e.,

h�k D max
1�i�k

ˇ� .V2i�1; V2i /:

For any g 2 span.1V1 � 1V2 ; : : : ; 1V2k�1 � 1V2k /, i.e.,

g.x/ D

kX
iD1

ti .1V2i�1.x/ � 1V2i .x// with t1; : : : ; tk 2 R;

we derive by Lemma 8 that

jg.x/ � �xyg.y/j
p

� 2p�1jjg.x/jp sgn.g.x// � �xy jg.y/jp sgn.g.y//j

D 2p�1
ˇ̌̌ kX
iD1

jti j
p sgn.ti /.1V2i�1.x/ � 1V2i .x/ � �xy.1V2i�1.y/ � 1V2i .y///

ˇ̌̌
� 2p�1

kX
iD1

jti j
p
j1V2i�1.x/ � 1V2i .x/ � �xy.1V2i�1.y/ � 1V2i .y//j:

Therefore, we compute

R�
p .g/ D

X
¹x;yº2E

wxy jg.x/ � �xyg.y/j
p

X
x2V

�xjg.x/j
p

� 2p�1

X
¹x;yº2E

wxy

kX
iD1

jti j
p
j1V2i�1.x/�1V2i .x/��xy.1V2i�1.y/ � 1V2i .y//j

kX
iD1

X
x2V2i�1[V2i

�xjti j
p
j1V2i�1.x/ � 1V2i .x/j
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D 2p�1

kX
iD1

jti j
p
X
¹x;yº2E

wxy j1V2i�1.x/ � 1V2i .x/ � �xy.1V2i�1.y/ � 1V2i .y//j

kX
iD1

jti j
p
X
x2V

�xj1V2i�1.x/ � 1V2i .x/j

� 2p�1 max
iD1;:::;k

R1.1V2i�1.x/ � 1V2i .x//

D 2p�1 max
1�i�k

ˇ� .V2i�1; V2i /

D 2p�1h�k :

By definition of the variational eigenvalue �k , we obtain �k � 2p�1h�k .
Next, we prove the lower bound estimate of �k . Let f be an eigenfunction corre-

sponding to �k , and let V1; : : : ; Vm be the strong nodal domains of f . By the proof of
Theorem 1, we have

R�
p .fi / � �k; i D 1; : : : ; m;

where fi equals f on Vi and equals zero otherwise.
We prove two claims.

Claim 1. For any i D 1; : : : ; m, we denote by f pi WV ! R the function

x 7! jfi .x/j
p sgn.fi .x//:

Then we have

R�
p .fi / �

2p�1

Cp�1pp
R�
1 .f

p
i /

p; i D 1; : : : ; m:

Indeed, by [3, Lemma 3], we have

jf
p
i .x/ � �xyf

p
i .y/j � pjfi .x/ � �xyfi .y/j

�
jf
p
i .x/j C jf

p
i .y/j

2

�1� 1p
:

Following the proof of [49, Lemma 5.2], we obtain

R�
1 .f

p
i /

D

X
¹x;yº2E

wxy jf
p
i .x/ � �xyf

p
i .y/jX

x2Vi

�xjf .x/j
p

� p

X
¹x;yº2E

wxy jfi .x/ � �xyfi .y/j
�
jf
p
i .x/j C jf

p
i .y/j

2

�1� 1p
X
x2Vi

�xjf .x/j
p
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� p

� X
¹x;yº2E

wxy jfi .x/ � �xyfi .y/j
p
� 1
p
� X
¹x;yº2E

wxy
jf
p
i .x/j C jf

p
i .y/j

2

�1� 1p
X
x2Vi

�xjf .x/j
p

� p

0BBB@
X
¹x;yº2E

wxy jfi .x/ � �xyfi .y/j
p

X
x2Vi

�xjf .x/j
p

1CCCA
1
p �C

2

�1� 1p
D p.R�

p .fi //
1
p

�C
2

�1� 1p
:

This proves Claim 1.

Claim 2. There exist U2i�1 t U2i � Vi , i D 1; : : : ; m, such that

R�
1 .f

p
i / � R�

1 .1U2i�1 � 1U2i / D ˇ
� .U2i�1; U2i /:

For any t � 0, define V t
˙
.f / WD ¹x 2 V W˙f .x/ > t

1
p º and a function Of t WV !R

as follows

Of t .x/ D

8̂̂<̂
:̂
1; if f .x/ > t

1
p ;

�1; if f .x/ < �t
1
p ;

0; otherwise.

Then, we have

1Z
0

X
x2Vi

�xj Of
t .x/jpdt D

X
x2Vi

�x

1Z
0

j Of t .x/jpdt D
X
x2Vi

�x

jf .x/jpZ
0

1dt D
X
x2Vi

�xjf .x/j
p;

and
1Z
0

j Of ti .x/ � �xy
Of ti .y/jdt D jf

p
i .x/ � �xyf

p
i .y/j; for any ¹x; yº 2 E:

Note that the function f pi is defined as in Claim 1. So, by direct calculation, we have

1Z
0

X
¹x;yº2E

wxy j Of
t
i .x/ � �xy

Of ti .y/jdt D
X
¹xyº2E

wxy

1Z
0

j
Of ti .x/ � �xy

Of ti .y/jdt

D

X
¹x;yº2E

wxy jf
p
i .x/ � �xyf

p
i .y/j:
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Therefore, there exists t0 � 0 such that

R�
1 .f

p
i / D

P
¹x;yº2E wxy jf

p
i .x/ � �xyf

p
i .y/jP

x2V �xjfi .x/j
p

D

R1
0

P
¹x;yº2E wxy j

Of ti .x/ � �xy
Of ti .y/jdtR1

0

P
x2Vi

�xj Of t .x/jpdt

�

P
¹x;yº2E wxy j

Of
t0
i .x/ � �xy

Of
t0
i .y/jP

x2V �xj
Of
t0
i .x/j

p

D R�
1 .
Of
t0
i / D R�

1 .1U2i�1 � 1U2i /

D ˇ� .U2i�1; U2i /;

where U2i�1 WD V
t0
C .fi / and U2i WD V t0� .fi /. This completes the proof of Claim 2.

Combining the above two claims, we get

2p�1

Cp�1pp
.ˇ� .U2i�1; U2i //

p
� �k; for i D 1; : : : ; m:

In consequence, 2p�1

Cp�1pp
.h�m/

p � �k . The proof is completed.

It was proved in [6, Proposition 3.2] that h�1 D � � � D h
�
k
D 0 < h�

kC1
if and only

if � D .G; �/ has exactly k balanced connected components. Combining Theorem 8
with [6, Proposition 3.2], we derive the proposition below.

Proposition 4.1. For any p � 1 and any k 2 ¹0; 1; : : : ; nº, a signed graph � has
exactly k balanced connected components if and only if the variational eigenvalues
of the p-Laplacian satisfy

�1.�
�
p / D � � � D �k.�

�
p / D 0 < �kC1.�

�
p /:

Moreover, suppose � has k C l connected components denoted by �1; : : : ; �kCl ,
in which �1; : : : ; �k are balanced, while �kC1; : : : ; �kCl are not balanced. Then,
the smallest positive eigenvalue of the p–Laplacian coincides with the .k C 1/-th
variational eigenvalue, which can be expressed as follows

�kC1.�
�
p / D min¹ min

iD1;:::;k
�2.�

�
p j�i /; min

jDkC1;:::;kCl
�1.�

�
p j�j /º; (4.1)

where �s.��p j�i / is the s-th variational eigenvalue of the p-Laplacian restricted
on �i .

Proof. We first assume � has exactly k balanced connected components. Then by
[6, Proposition 3.2], we have h�1 D � � � D h

�
k
D 0 < h�

kC1
. By Theorem 8, we have

�k.�
�
p / � 2

p�1h�
k
D 0. Since 0 � �1.�

�
p / � � � � � �k.�

�
p /, they are all zero.
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On the other hand, according to [39, Theorem 2.1], the smallest positive eigenvalue
of ��p on � is �kC1.��p /. So, we have �kC1.��p / > 0. Conversely, we assume that
�1.�

�
p / D � � � D �k.�

�
p / D 0 < �kC1.�

�
p /. Denote by m the number of balanced

connected components of � . Along the same line of the above arguments, we derive
that

�1.�
�
p / D � � � D �m.�

�
p / D 0 < �mC1.�

�
p /:

Comparing with our assumption, we have m D k.
Next, we prove (4.1). It is direct to check that the eigenvalue of ��p on � is the

multiset-sum of the eigenvalue of ��p on �i for i D 1; : : : ; k C l , i.e.,

¹�W� is an eigenvalue of ��p on �º D
kClM
iD1

¹�W� is an eigenvalue of ��p on �iº:

Therefore, the smallest positive eigenvalue of ��1 on � coincides with

min
iD1;:::;kCl

¹the smallest positive eigenvalue of ��p on �iº:

Noticing the result from [39, Theorem 2.1], this completes the proof of (4.1).

For particular cases, the variational eigenvalues of the 1-Laplacian might coincide
with the signed Cheeger constants.

Corollary 4.1. For any signed graph � D .G; �/, we have �1.��1 / D h
�
1 . Moreover,

if � is balanced, we have �2.��1 / D h
�
2 .

Proof. Let f1 be an eigenfunction corresponding to �1.��1 /. Setting p D 1 and k D 1
in Theorem 8 leads to h�m � �1.�

�
1 / � h

�
1 , wherem D S.f1/. Sincem � 1, we have

h�1 � h
�
m. This implies �1.��1 /D h

�
1 . When � is balanced, the identity �2.��1 /D h

�
2

follows directly from Proposition 2.5 and [13, Theorem 5.15].

As a consequence of Proposition 4.1 and Corollary 4.1, we have the following
expression of the first positive eigenvalue of the 1-Laplacian.

Proposition 4.2. Suppose a signed graph � has kC l connected components denoted
by �1; : : : ; �kCl , in which �1; : : : ; �k are balanced, while �kC1; : : : ; �kCl are not
balanced. Then, the smallest positive eigenvalue of the 1-Laplacian �kC1.��1 / can be
expressed via signed Cheeger constants as follows

�kC1.�
�
1 / D h

�
kC1.�/ D min¹ min

iD1;:::;k
h�2 .�i /; min

jDkC1;:::;kCl
h�1 .�j /º: (4.2)

Proof. Combining Corollary 4.1 with (4.1), we have

�kC1.�
�
1 / D min¹ min

iD1;:::;k
h�2 .�i /; min

jDkC1;:::;kCl
h�1 .�j /º: (4.3)
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Since the smallest positive eigenvalue of ��1 on � is �kC1.��1 / and it is direct to
check by definition that the quantity (4.3) agrees with h�

kC1
.�/, the proof of (4.2) is

completed.

By the above results, the smallest positive eigenvalue of the 1-Laplacian must be
some multi-way signed Cheeger constant in Atay–Liu’s sense. However, their multi-
plicities may not coincide. We show an example below.

Example 4.1. Consider the complete graph K5 with � � C1. It is direct to check
that h�1 D 0, h�2 D

3
4

and h�3 D h
�
4 D h

�
5 D 1. Furthermore, by the calculations in [13,

Section 6.3] and [54, Proposition 4.1], we have �1.��1 /D 0, �2.��1 /D �3.�
�
1 /D

3
4

,
and �4.��1 /D �5.�

�
1 /D 1. Thus, the multiplicity of the smallest positive eigenvalue

does not agree with the multiplicity of the multi-way signed Cheeger constant h�2 .

Corollary 4.2. If S.f / D k for some eigenfunction f corresponding to �1.��1 /
or �2.��1 / or the smallest positive eigenvalue of ��1 , then we have �i .��1 / D h�i ,
i D 1; : : : ; k.

Proof. We need the following simple observation: if h�j � �i .�
�
1 / for some j � i ,

then

�i .�
�
1 / D �iC1.�

�
1 / D � � � D �j .�

�
1 / D h

�
i D h

�
iC1 D � � � D h

�
j : (4.4)

In fact, Theorem 8 tells that �j .��1 / � h
�
j and �i .��1 / � h

�
i . Since j � i , we have

h�i � h
�
j and �i .��1 / � �j .�

�
1 /. Together with the assumption h�j � �i .�

�
1 /, we

obtain that

h�j � �i .�
�
1 / � �j .�

�
1 / � h

�
j ; and h�j � �i .�

�
1 / � h

�
i � h

�
j ;

which implies immediately that �i .��1 / D �j .�
�
1 / D h

�
i D h

�
j and hence (4.4).

Now, we move on to the proof of the corollary. Recall from Corollary 4.1 that the
identity �1.��1 / D h

�
1 always holds. So, it remains to show the case that k � 2.

If f is an eigenfunction corresponding to �1.��1 /, then Theorem 8 yields h�
k
�

�1.�
�
1 /, and the above observation implies that

�1.�
�
1 / D � � � D �k.�

�
1 / D h

�
1 D � � � D h

�
k :

If f is an eigenfunction corresponding to �2.��1 /, then we similarly have

�2.�
�
1 / D � � � D �k.�

�
1 / D h

�
2 D � � � D h

�
k :

The case �1.��1 / D h
�
1 holds universally.

Suppose �s.��1 / is the smallest positive eigenvalue, and f is an eigenfunction
corresponding to �s.��1 / with S.f / D k. Without loss of generality, we further
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assume that �s�1.��1 /D 0. By Proposition 4.2, we have �1.��1 /D � � � D �s�1.�
�
1 /D

h�1 D � � � D h
�
s�1 D 0. When k � s � 1, nothing needs to be proved. Suppose k � s.

Then we apply Theorem 8 and the above observation to derive �s.��1 / D � � � D
�k.�

�
1 / D h

�
s D � � � D h

�
k
> 0.

5. Perron–Frobenius theorem on antibalanced graphs

As is well known, the Perron–Frobenius theorem implies for any connected graph
that, the first eigenvalue of its linear Laplacian (i.e., p-Laplacian with pD 2) is simple
and the corresponding eigenfunction can be taken to be positive on every vertex. For
the p-Laplacian on graphs with p > 1, the same property has been shown in [23,
Theorem 4.1] and [33, Theorem 1.1]. For the case of connected antibalanced signed
graphs, it was shown in [30, Theorem 3.13] that the largest eigenvalue of ��p with
p D 2 is simple and the corresponding eigenfunction can be taken to be positive on
every vertex. This can be considered as a Perron–Frobenius theorem for Laplacians
on antibalanced signed graphs. In this section, we prove a nonlinear version of [30,
Theorem 3.13] for p-Laplacians on antibalanced signed graphs with p > 1 by using
the estimate in Theorem 3 for the number SW.f / of anti-weak nodal domains.

Theorem 9. Assume that p > 1. Let � D .G; �/ be a connected signed graph where
� ��1,G D .V;E/ and jV j D n. For any eigenfunction f corresponding to the n-th
variational eigenvalue �n of ��p , we have the following properties:

(i) f is either strictly positive or strictly negative, i.e., either f .x/ > 0 for any
x 2 V or f .x/ < 0 for any x 2 V ;

(ii) for any other eigenfunction g corresponding to �n, there exists a constant
c 2 R n ¹0º such that g D cf ;

(iii) if g is an eigenfunction corresponding to an eigenvalue �, and g.x/ > 0 for
any x 2 V or g.x/ < 0 for any x 2 V , then � D �n.

Let us remark that the Perron–Frobenius theorem above does not hold for the case
of p D 1. Indeed, according to Theorem 4, there exists an eigenfunction f corre-
sponding to �n of ��1 such that S.f / D 1. However, if Theorem 9 were true for
p D 1, we would have S.f / D n for any eigenfunction corresponding to �n of ��1 ,
which is a contradiction.

Proof of Theorem 9. (i) Since �n is the n-th variational eigenvalue, Theorem 3 implies
SW.f / � 1. By definition of weak nodal domains, we have f .x/ � 0 for any x 2 V
or f .x/ � 0 for any x 2 V . We can assume f .x/ � 0 for any x 2 V , since otherwise,
we can consider the eigenfunction �f .
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If f .x/ D 0 for some x 2 V , we have by the eigen-equation that

��pf .x/ D
X
y�x

wxy p̂.f .x/ � �xyf .y//C �x p̂.f .x// D �n�x p̂.f .x// D 0:

Since � � �1, we obtain
P
y�x wxy p̂.f .y// D 0. Because f .y/ is non-negative

for all y 2 V , we have f .y/ D 0 for all y with y � x. By the connectedness of G,
we have f � 0. This contradicts to the assumption that f is an eigenfunction of �n.
Thus, we get f .x/ > 0 for any x 2 V .

(ii) Suppose that g is an eigenfunction corresponding to �n. Without loss of gen-
erality, we can assume g.x/ > 0 for any x 2 V . By definition, we have for any x 2 V ,X

y�x

wxy p̂.f .x/C f .y// D .�n�x � �x/ p̂.f .x//; (5.1)

X
y�x

wxy p̂.g.x/C g.y// D .�n�x � �x/ p̂.g.x//: (5.2)

Multiplying (5.1) by f .x/ � jg.x/jp

ˆp.f .x//
, and (5.2) by g.x/ � jf .x/jp

ˆp.g.x//
, we deriveX

y�x

wxy p̂.f .x/C f .y//
�
f .x/�

jg.x/jp

p̂.f .x//

�
D .�n�x � �x/.jf .x/j

p
� jg.x/jp/;

(5.3)X
y�x

wxy p̂.g.x/C g.y//
�
g.x/ �

jf .x/jp

p̂.g.x//

�
D .�n�x � �x/.jg.x/j

p
� jf .x/jp/:

(5.4)
Summing (5.3) and (5.4) over all x 2 V , we get

R.f; g/CR.g; f / D 0; (5.5)

where

R.f;g/D
X
¹x;yº2E

wxy

�
jg.x/C g.y/jp� p̂.f .x/Cf .y//

�
jg.x/jp

p̂.f .x//
C
jg.y/jp

p̂.f .y//

��
:

We apply Lemma 1 by setting aD f .x/, bD f .y/, taD g.x/ and sbD g.y/ to derive
that each summand in R.f; g/ is non-positive. Similarly, we have each summand in
R.g;f / is also non-positive. Therefore, the identity (5.5) implies that every summand
of R.f; g/ and R.g; f / equals zero. By the equality condition (3.1) in Lemma 1, we
have for any ¹x; yº 2 E that

g.x/

g.y/
D
f .x/

f .y/
:

Since G is connected, we drive that g is proportional to f . This concludes the proof
of (ii).
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(iii) If g is an eigenfunction corresponding to � and g.x/ > 0 for any x 2 V . By
definition, we haveX

y�x

wxy p̂.f .x/C f .y// D .�n�x � �x/ p̂.f .x//; (5.6)

X
y�x

wxy p̂.g.x/C g.y// D .��x � �x/ p̂.g.x//: (5.7)

As above, we multiply (5.6) by f .x/ � jg.x/jp

ˆp.f .x//
and (5.7) by g.x/ � jf .x/jp

ˆp.g.x//
, and

sum them over all x 2 V . Then, we obtain

R.f; g/CR.g; f / D .�n � �/
X
x2V

�x.jf .x/j
p
� jg.x/jp/: (5.8)

We can choose sufficiently small " > 0 such that f .x/ � "g.x/ > 0 for any x 2 V .
So, without loss of generality, we can assume jf .x/jp � jg.x/jp > 0 for any
x 2 V . If � < �n, then the right-hand side of (5.8) is strictly positive and the left-
hand side of (5.8) is non-positive. This is a contradiction. The proof of �D �n is then
completed.

Notice that a connected bipartite graph with � � 1 is both balanced and antibal-
anced. Hence, our Theorem 9 covers the conclusion of [23, Theorem 4.4] and [33,
Theorem 1.2]. Next, we use Theorem 9 to derive the following results.

Theorem 10. Let � D .G;�/ be a connected antibalanced signed graph and ¹�iºniD1
be the variational eigenvalues of ��p with p > 1. Then we have �n�1 < �n and there
are no other eigenvalues between �n�1 and �n.

Proof. Since � is antibalanced, by Proposition 2.5, we can assume � � �1 without
loss of generality.

We prove the theorem by contradiction. Assume that � is an eigenvalue satisfying
�n�1 < � < �n and f is an eigenfunction corresponding to �. By Theorem 2, we get
xS.f /� 1. Then by definition of xS, we have f � 0 on every vertex or f � 0 on every
vertex. We assume f � 0 on every vertex and the case that f � 0 on every vertex can
be proved similarly. If f is zero on some x 2 V , we have by the eigen-equation thatX

y�x

wxy p̂.f .x/C f .y//C �x p̂.f .x// D ��x p̂.f .x//:

So, we have
P
y�x wxy p̂.f .y// D 0. Because f .y/ � 0 for any y 2 V , we obtain

f .y/ D 0 for any y � x. By the connectedness of � , we have f D 0 on all vertices,
which cannot happen. So, f is positive on all vertices. Then, we apply Theorem 9 to
get � D �n, which leads to a contradiction.
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Using again the fact that a bipartite graph with � � 1 is antibalanced, we derive
from Theorem 10 the following corollary.

Corollary 5.1. For any connected bipartite graph, there are no eigenvalues between
the largest and the second largest variational eigenvalues of the corresponding
p-Laplacian with p > 1.

6. Interlacing theorems

When one wants to understand a quantitative property of a graph, it is natural to
investigate how this quantity changes under modifying the graph via deleting vertices
or edges.

In this section, for an eigenpair .�;f / of��p with p > 1, we give a way to modify
a signed graph to a forest T such that .�;f jT / is again an eigenpair of T . We estimate
how the eigenvalue changes in each step. This leads to a nonlinear version of the
Cauchy Interlacing Theorem. The theorems in this section are signed versions of the
theorems in [23, Section 5]. Those interlacing theorems will be useful for the lower
bound estimates of S.f / in the next section.

Removing an edge

Consider a signed graph � D .G; �/, where G D .V; E/, with an edge measure w, a
vertex weight�, and a potential function �. Let f 2C.V / be a function and ¹x0;y0º 2
E be an edge such that f .x0/f .y0/ ¤ 0. We define a new signed graph

� 0 D .G0; � 0/

where
G0 D .V;E 0/; E 0 WD E n ¹x0; y0º;

and
� 0xy D �xy for any ¹x; yº 2 E 0;

with an edge measure w0, a vertex weight �0 and a potential function �0 defined as
follows: w0xy D wxy for any ¹x; yº 2 E 0, �0x D �x for any x 2 V , and

�0x D

8̂̂<̂
:̂
�x; if x ¤ x0; y0;

�x C wx0y0 p̂.1 � �x0y0
f .y0/
f .x0/

/; if x D x0;

�x C wx0y0 p̂.1 � �x0y0
f .x0/
f .y0/

/; if x D y0:
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Then, the corresponding p-Laplacian with p > 1 of the new signed graph � 0 is given
by

��
0

p g.x/ D
X

y2V W¹y;xº2E 0

w0xy p̂.g.x/ � �
0
xyg.y//C �

0
x p̂.g.x//: (6.1)

It is direct to check that the above choices of w0, �0 and �0 lead to the following
property: if f 2 C.V / is an eigenfunction corresponding to an eigenvalue � of the
p-Laplacian ��p with p > 1, then f is still an eigenfunction of ��

0

p corresponding
to �.

Let R� 0

p be the Rayleigh quotient of ��
0

p defined as

R� 0

p .g/ D

P
xy2E 0 w

0
xy jg.x/ � �

0
xyg.y/j

p C
P
x2V �

0
xjg.x/j

pP
x2V �

0
xjg.x/j

p
:

We recall the following lemma from [47, Proposition 4.4], which will be very
useful in the proofs of Theorem 11, Lemma 10 and Theorem 12.

Lemma 9. Let A be a centrally symmetric subset in a Banach space with 
.A/ > k.
Let �WA! Rk be a continuous odd map. Then we have 
.��1.0// � 
.A/ � k.

Theorem 11. Consider a signed graph � D .G;�/ whereG D .V;E/ and a function
f 2 C.V /. Let��p be the corresponding p-Laplacian with p > 1, and � 0 D .G0; � 0/,
��
0

p be defined as above. Denote by �k and �k the k-th variational eigenvalues of��p
and ��

0

p , respectively.

(1) If f .x0/�x0y0f .y0/ < 0, then �k�1 � �k � �k for any 1 < k � n.

(2) If f .x0/�x0y0f .y0/ > 0, then �k � �k � �kC1 for any 1 � k < n.

Proof. We first assume f .x0/�x0y0f .y0/ < 0: Setting E.g/ WDR� 0

p .g/�R�
p .g/ for

any gWV ! R, we compute

kgk
p
pE.g/

wx0y0
D� jg.x0/ � �x0y0g.y0/j

p

C

�
jg.x0/j

p

p̂.f .x0//
� �x0y0

jg.y0/j
p

p̂.f .y0//

�
p̂.f .x0/ � �x0y0f .y0//:

Applying Lemma 1 by taking a D f .x0/, b D ��x0y0f .y0/, ta D g.x0/, and sb D
��x0y0g.y0/, we have E.g/ � 0, and hence

R�
p .g/ � R� 0

p .g/ for any gWV ! R;

where the equality holds if and only if g.x0/f .y0/ � g.y0/f .x0/ D 0.
Let Ak 2 Fk.�p/ be a set such that �k D maxg2Ak R�

p .g/: Define

�WAk ! R; g 7! g.x0/f .y0/ � g.y0/f .x0/:
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Observe that � is odd. Since k > 1 and 
.Ak/ � k, we use Lemma 9 to get


.��1.0// � k � 1:

Moreover, we have R�
p .g/ D R� 0

p .g/ for any g 2 ��1.0/. So, we derive that

�k�1 D min
A2Fk�1.�p/

max
g2A

R� 0

p .g/ � max
g2��1.0/

R� 0

p .g/

D max
g2��1.0/

R�
p .g/ � max

g2Ak
R�
p .g/ D �k :

By definition of variational eigenvalues, we obtain

�k D min
A2Fk.�p/

max
g2A

R�
p .g/ � min

A2Fk.�p/
max
g2A

R� 0

p .g/ � �k :

This proves (i). The proof of (ii) follows similarly.

Remark 6.1. We define �m D �m D �1 for m � 0 and �m D �m�1 D C1 for
m > n. Then the above theorem holds for any k 2 Z.

Removing a node

Consider a signed graph � D .G; �/ and the corresponding p-Laplacian ��p with
p > 1. For a given vertex x0 2 V , we define a new signed graph � 0 D .G0; � 0/ where
G0 D .V 0; E 0/ is the subgraph induced by V 0 WD V n ¹x0º, and � 0xy D �xy for any
¹x; yº 2 E 0, with an edge weight w0, a vertex weight �0 and a potential function �0

defined as follows: w0xy D wxy for any ¹x; yº 2 E 0, �0x D �x for any x 2 V 0, and
�0x D �x C wxx0 for any x 2 V 0.

Then, we define the corresponding p-Laplacian ��
0

p on � 0 as follows:

��
0

p g.x/ D
X

y2V 0W¹x;yº2E 0

w0xy p̂.g.x/ � �
0
xyg.y//C �

0
x p̂.g.x//; (6.2)

For convenience, we define two maps ‰WC.V /! C.V 0/ and  WC.V 0/! C.V /

between the function spaces C.V / WD ¹f W V ! Rº and C.V 0/ WD ¹f W V 0 ! Rº as
follows. For any gWV ! R, we define .‰g/.x/ D g.x/ for any x 2 V 0 D V n ¹x0º.
For any hW V 0 ! R, we define . h/.x/ D h.x/ for any x 2 V 0 D V n ¹x0º and
. h/.x0/ D 0.

The reason to choose the new w0, �0 and �0 as above is to ensure that, for an
eigenfunction f of ��p corresponding to an eigenvalue � such that f .x0/ D 0, ‰f is
an eigenfunction of��

0

p corresponding to the same eigenvalue �. Indeed, we have for
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any x 2 V 0 that

��
0

p .‰f /.x/ D
X

y2V 0W¹x;yº2E 0

w0xy p̂.‰f .x/ � �
0
xy‰f .y//C �

0
x p̂.‰f .x//

D

X
y2V 0W¹x;yº2E 0

wxy p̂.f .x/ � �
0
xyf .y//C .�x C wxx0/ p̂.f .x//

D

X
y2V 0W¹x;yº2E 0

wxy p̂.f .x/ � �xyf .y//C wxx0 p̂.f .x/ � �xx0f .x0//

C �x p̂.f .x//

D

X
y2V W¹x;yº2E

wxy p̂.f .x/ � �xyf .y//C �x p̂.f .x//

D ��x p̂.f .x// D ��
0
x p̂.‰f .x//:

Let R� 0

p be the Rayleigh quotient of ��
0

p defined as

R� 0

p .g/ D

P
xy2E 0 w

0
xy jg.x/ � �

0
xyg.y/j

p C
P
x2V 0 �

0
xjg.x/j

pP
x2V 0 �

0
xjg.x/j

p
:

It is direct to check the following facts:

• for any g 2 C.V / with g.x0/ D 0, we have R�
p .g/ D R� 0

p .‰g/;

• for any h 2 C.V 0/, we have R�
p . h/ D R� 0

p .h/.

Lemma 10. Consider a signed graph � D .G;�/ whereG D .V;E/ and a given ver-
tex x0 2 V . Let ��p be the corresponding p-Laplacian with p > 1, and � 0 D .G0; �/,
��
0

p be defined as above. Denote by �k and �k the k-th variational eigenvalues of��p
and ��

0

p , respectively. Then we have

�k � �k � �kC1; for any 1 � k � n � 1:

Proof. Define � 0p D ¹gW V
0 ! R j

P
x2V 0 �xjg.x/j

p D 1º. Let A0
k
2 Fk.�

0
p/ be a

set such that �k D maxg2A0
k

R� 0

p .g/. Define Ak WD  .A0
k
/. By definition, we have

Ak 2 Fk.�p/, and

�k D min
A2Fk.�p/

max
g2A

R�
p .g/ � max

g2Ak
R�
p .g/ D max

g2A0
k

R� 0

p .g/ D �k :

This concludes the proof of the first inequality.
Let AkC1 2 FkC1.�p/ be a set such that �kC1 D maxg2AkC1 R�

p .g/. Define

�WAkC1 ! R; g 7! g.x0/:
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By Lemma 9, we have ��1.0/ � Fk.�p/ and ‰.��1.0// � Fk.�
0
p/. So, we get

�k D min
A2Fk.�

0
p/

max
g2A

R� 0

p .g/ � max
g2‰.��1.0//

R� 0

p .g/ D max
g2��1.0/

R�
p .g/

� max
g2AkC1

R�
p .g/ D �kC1:

This concludes the proof of the second inequality.

We can use Lemma 10 iteratively to get the following theorem.

Theorem 12. Consider a signed graph � D .G; �/ where G D .V;E/, with an edge
measure w, a vertex weight � and a potential function �. Given a subset ¹x1; : : : ;
xmº � V of m vertices, we define a new signed graph � 0 D .G0; � 0/, where G0 D
.V 0; E 0/ is the subgraph induced by V 0 WD V n ¹x1; : : : ; xmº, with an edge measure
w0, a vertex weight �0 and a potential function �0 defined as follows: w0xy D wxy for
any ¹x; yº 2 E 0, �0x D �x for any x 2 V 0, and

�0x D �x C

mX
iD1

wxxi ; for any x 2 V 0:

Denote by ¹�iºniD1 and ¹�iºn�miD1 the variational eigenvalues of the corresponding
p-Laplacians ��p and ��

0

p with p > 1, respectively. Then, we have

�k � �k � �kCm; for any 1 � k � n �m:

7. Lower bounds of the number of strong nodal domains

In this section, we prove the lower bound estimates of the strong nodal domains. For
convenience, we give the following symbols.

Given a signed graph � D .G; �/ where G D .V; E/, we denote by c.G/ the
number of the connected components ofG. For a given function gWV !R, we define
two edge sets

EgC D ¹¹x; yº 2 EWg.x/�xyg.y/ > 0º

and

Eg� D ¹¹x; yº 2 EWg.x/�xyg.y/ < 0º;

and two signed graphs

�gC D .GgC ; �/ with GgC D .V;EgC/
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and

�g� D .Gg� ; �/ with Gg� D .V;Eg�/:

Let

l.G/ WD jEj � jV j C c.G/;

l.�gC/ WD jEgC j � jV j C c.GgC/;

l.�g�/ WD jEg� j � jV j C c.Gg�/:

Notice that the number l.G/ is the minimal number of edges that need to be removed
fromG in order to turn it into a forest. We further denote by z.g/ the number of zeros
of g.

The theorem below is our main result in this section.

Theorem 13. Let � D .G;�/ be a connected signed graph. Let f be an eigenfunction
of ��p corresponding to an eigenvalue �, and �1 � � � � � �n be the variational eigen-

values of ��p , where p > 1. Assume that ¹xiº
z.f /
iD1 are the zero vertices of f . Define

� 0 D .G0; �/, where G0 D .V 0; E 0/ is the subgraph induced by V 0 WD V n ¹xiº
z.f /
iD1 .

(i) If � > �k , then

S.f / � k � l.G0/C l.�fC/ � z.f /C c.G
0/:

(ii) If � D �k > �k�1 and the multiplicity of �k is r , then

S.f / � k C r � 1 � l.G0/C l.�fC/ � z.f /:

This theorem can be regarded as a signed version of [23, Theorem 3.10] for
generalized p-Laplacian on graphs, which is an extension of previous results on
2-Laplacian in the work of Berkolaiko [7] and Xu-Yau [52]. The lower bound esti-
mates of strong nodal domains for 2-Laplacians on signed graphs have been discussed
in [30, 43]. Restricting to the linear case p D 2, Theorem 13 is, in fact, weaker than
[30, Theorem 6.6]. The estimate in [30, Theorem 6.6] uses the cardinality of the so-
called Fiedler zero set – a special subset of the whole zero set – instead of z.f /. It
is still open whether the lower bound in [30, Theorem 6.6] can be extended to the
current setting or not.

We first prove the following lemma.

Lemma 11. Let � D .G; �/ be a signed graph with G D .V; E/ and .�; f / be an
eigenpair of��p on � . Denote byEz the set of edges incident to the zero vertices of f .
Then we have

jEf � j D jEj � jEzj C z.f /� jV j � l.�fC/CS.f /� jEj � jV j CS.f /� l.�fC/:
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Proof. First, we remove all zero vertices of f on � D .G; �/ to get an induced sub-
graph � 0 D .G0; � 0/ with G0 D .V 0; E 0/. By definition, we have jE 0j D jEj � jEzj.

Next, assume EfC D ¹eiº
m
iD1 with m D jEfC j and ei D ¹xi ; yiº. We remove all

edges in EfC one by one to get the graph � 00 D .G00; � 00/ withG00 D .V 00;E 00/ at end.
At the i -th step, we remove the edge ei . For j D 1; : : : ; m, let �j D .Gj ; � .j // be
the signed graph which is obtained by removing the edges ¹eiº

j
iD1 from � . We denote

�lC.ej ; f / D l.�
j

fC
/ � l.�

j�1

fC
/, and define �v.ej ; f / to be the variation between

the number of nodal domains of f on �j and �j�1, where we use �0 to denote � . By
a direct computation, we have for any j D 1; : : : ; m that

�v.ej ; f / ��l
C.ej ; f / D

´
0; f .xj /�xjyj f .yj / < 0;

1; f .xj /�xjyj f .yj / > 0:
(7.1)

Therefore, we derive that

mX
jD1

.�v.ej ; f / ��l
C.ej ; f // D jEfC j D jE

0
j � jEf � j D jEj � jEzj � jEf � j:

(7.2)
On the graph � 00, there are no strong nodal domain walks of f . Hence, lC.� 00

fC
/ D 0

and the number of nodal domains of f on � 00 is jV j � z.f /. Then, we have

mX
jD1

�v.ej ; f / D jV j � z.f / �S.f / and
mX
jD1

�lC.ej ; f / D �l.�fC/: (7.3)

Combining (7.2) and (7.3), we have

jV j � z.f / �S.f /C l.�fC/ D jEj � jEzj � jEf � j:

This implies

jEf � j D jEj � jEzj � jV j C z.f / � l.�fC/CS.f /

� jEj � jV j � l.�fC/CS.f /:

The last inequality is because of jEzj � z.f /. Then we complete the proof.

Proof of Theorem 13 (i). First, since � 0 is obtained by removing all zero vertices of
f from � , we can define a new p-Laplacian on � 0 as (6.2) denoted by ��

0

p . Next, we
remove all the edges in E 0

f �
of f on � 0 one by one to get the graph � 00 D .G00; � 00/

with G00 D .V 00; E 00/ at end. At each step, we define a new p-Laplacian as in (6.1).
Denote by��

00

p the p-Laplacian on we obtain at end. By Theorem 11 and Theorem 12,
we get

� > �k � �
0
k�z.f / � �

00
k�z.f /�jEf� j

:
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For any ¹x;yº 2E 00, we have f .x/�xyf .y/ > 0. Define �.x/D f .x/
jf .x/j

for any x 2 V 00.
It is a switching function such that � � � 1 and �f is positive on all vertices in G00.
By switching invariance of eigenvalues and the Perron–Frobenius-type theorem [23,
Theorem 4.1], � is the first variational eigenvalue of ��

00

p . Since � > �00
k�z.f /�jEf� j

,
we have

k � z.f / � jEf � j � 0:

We use Lemma 11 to obtain

S.f / � k � z.f / � .jEj � jEzj/C .jV j � z.f //C l.�fC/

� k � z.f / � l.G0/C c.G0/C l.�fC/:

This concludes the proof of (i).

Proof of Theorem 13 (ii). As above, we first define a new p-Laplacian on � 0 as in (6.2)
denoted by ��

0

p . Let ¹�0iº
n�z.f /
iD1 be the variational eigenvalues of ��

0

p . By Theo-
rem 12, we have

�0kCr�1�z.f / � � � �
0
kCr�1:

Then there is a unique h 2 N such that � 2 Œ�0
h
; �0
hC1

/. So, we have �0
kCr�1�z.f /

<

�0
hC1

. This implies hC 1 > k C r � 1 � z.f /.
Next, we remove l.G0/ edges of � 0 to make � 0 to be a forest T . Assume that

¹eiº
l.G0/
iD1 are all the edges we remove, where ei D ¹xi ; yiº. We define �j as the sub-

graph obtained by removing edges ¹eiº
j
iD1 from � 0. At each step, we define a new

p-Laplacian on �j as in (6.1) denoted by ��p;j . Denote by ¹�.j /
k
º
n�z.f /

kD1
the varia-

tional eigenvalues of ��p;j .

At the j -th step, suppose that � 2 Œ�.j /
l
; �
.j /

lC1
/. By Theorem 11, we have

� 2 Œ�
.jC1/

l�1
; �
.jC1/

lC1
/ if f .xj /�xjyj f .yj / < 0,

and

� 2 Œ�
.jC1/

l
; �
.jC1/

lC2
/ if f .xj /�xjyj f .yj / > 0.

Define

�n.ej ; f / D

8̂̂<̂
:̂
�1; if � 2 Œ�.jC1/

l�1
; �
.jC1/

l
/;

0; if � 2 Œ�.jC1/
l

; �
.jC1/

lC1
/;

C1; if � 2 Œ�.jC1/
lC1

; �
.jC1/

lC2
/;

and

�M.ej ; f / D

8̂̂̂̂
<̂
ˆ̂̂:
�1; if f .xj /�xjyj f .yj / < 0 and � 2 Œ�.jC1/

l�1
; �
.jC1/

l
/;

0; if f .xj /�xjyj f .yj / < 0 and � 2 Œ�.jC1/
l

; �
.jC1/

lC1
/;

�1; if f .xj /�xjyj f .yj / > 0 and � 2 Œ�.jC1/
l

; �
.jC1/

lC1
/;

0; if f .xj /�xjyj f .yj / > 0 and � 2 Œ�.jC1/
lC1

; �
.jC1/

lC2
/:
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Recalling (7.1), we derive by a direct computation that

�n.ej ; f / ��M.ej ; f / D �v.ej ; f / ��l
C.ej ; f /; (7.4)

where v.ej ; f / and �lC.ej ; f / are defined as in the proof of Lemma 11. Since f
has no zeros on the forest T , we have by Theorem 6 that � is a variational eigen-
value. Suppose � D �m < �mC1, where ¹�iº

n�z.f /
iD1 are variational eigenvalues of the

p-Laplacian on T . Assume that f has ST .f / nodal domains on T . By Theorem 6
again, we have ST .f / D m. By definition, there holds that

l.G0/X
jD1

�n.ej ; f / D m � h; (7.5)

l.G0/X
jD1

�v.ej ; f / D ST .f / �S.f /; (7.6)

l.G0/X
jD1

�lC.ej ; f / D �l.�fC/; (7.7)

l.G0/X
jD1

�M.ej ; f / � �l.G
0/: (7.8)

We insert (7.5), (7.6), (7.7), and (7.8) into (7.4) to get

S.f / D ST .f /C l.�fC/ �mC h � l.G
0/ D l.�fC/C h � l.G

0/

� k C r � 1 � z.f /C l.�fC/ � l.G
0/:

This concludes the proof.
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