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Magnetic Lieb–Thirring inequalities on the torus

Alexei Ilyin and Ari Laptev

Abstract. In this paper we prove Lieb–Thirring inequalities for magnetic Schrödinger opera-
tors on the torus, where the constants in the inequalities depend on the magnetic flux.

1. Introduction

Lieb–Thirring inequalities have important applications in mathematical physics, anal-
ysis, dynamical systems, attractors, to mention a few. A current state of the art of many
aspects of the theory is presented in [7].

In certain applications, Lieb–Thirring inequalities are considered on a compact
manifold (e. g., torus, sphere [10]). In this case, one has to impose the zero mean
orthogonality condition. However, in the case of a torus the corresponding constants in
the Lieb–Thirring inequalities depend on the aspect ratios of the periods, for example,
on the 2D torus the rate of growth of the constants is proportional to the aspect ratio.

On the other hand, on the torus Td with arbitrary periods it is possible to obtain
bounds for the Lieb–Thirring constants that are independent of the ratios of the peri-
ods, provided that we impose a stronger orthogonality condition that the functions
must have zero average over the shortest period uniformly with respect to the remain-
ing variables [8].

In this work, we prove Lieb–Thirring inequalities on the torus for the magnetic
Laplacian. The introduction of the magnetic potential not only removes the orthog-
onality condition but makes it possible to obtain bounds for the constants that are
independent of the periods of the torus (more precisely, depend only on the corre-
sponding magnetic fluxes).

In this paper, when obtaining the constant in the Lieb–Thirring inequality we use
a combination of the result obtained in [9] and also adopting the proof from [7] to
the case of the magnetic operator on the torus. Surprisingly, both such independent

2020 Mathematics Subject Classification. Primary 35P15; Secondary 46E35, 26D10.
Keywords. Magnetic Schrödinger operator, Lieb–Thirring inequalities, interpolation
inequalities.

https://creativecommons.org/licenses/by/4.0/


A. Ilyin and A. Laptev 1112

estimates play important and non-interchangeable roles depending on the magnetic
fluxes.

In conclusion of this brief introduction, we point out that magnetic interpolation
inequalities both in Rd , and in the periodic case received much attention over the last
years, see [2, 3, 13] and the references therein.

We now describe our main result. Let Td D Td .L/ be the d -dimensional torus
with periods L1; : : : ; Ld . Let us consider the eigenvalue problem for the magnetic
Schrödinger operator H in L2.Td /:

H‰ D .irx � A.x//2‰ � V.x/‰

D

dX
jD1

.i@xj � aj .xj //
2‰ � V.x/‰ D ��‰; (1.1)

where
A.x/ D .a1.x1/; : : : ; ad .xd //

is the real-valued magnetic vector potential in the “diagonal” case when aj .x/ D
aj .xj /. For each j , we define the magnetic flux

j̨ D
1

2�

LjZ
0

aj .xj / dxj 1 � j � d;

and assume that j̨ 62 Z for all j . Then we have the following result.

Theorem 1.1. Suppose that V.x/� 0 and V 2L
Cd=2.Td /. Let 
 � 1. Then the fol-
lowing bound holds for the 
 -moments of the negative eigenvalues of operator (1.1):X

n

�
n � L
;d

Z
Td

V 
Cd=2.x/ dx; (1.2)

where

L
;d �
� �
p
3

�d
Lcl

;d

dY
jD1

q
K. j̨ /: (1.3)

Here Lcl

;d

is the semiclassical constant (3.4), and

K.˛/ � min.K1.˛/;K2.˛//:
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The expressions for K1.˛/ and K2.˛/ are as follows:

K1.˛/ D k.˛/2; k.˛/ D

8̂̂<̂
:̂

1
j sin.2�˛/j ; 0 < ˛mod.1/ < 1=4;

1; 1=4 � ˛mod.1/ � 3=4;
1

j sin.2�˛/j ; 3=4 < ˛mod.1/ < 1,

(1.4)

K2.˛/ D
5

3
p
3�
�

h
sup
b�0

b5=3
X
k2Z

1

.jk C ˛j3 C b/2

i2
: (1.5)

In Sections 2 and 3 we consider the one dimensional case, where this theorem
is proved in the equivalent dual formulation in terms of orthonormal systems in the
scalar case and the matrix case, respectively. We point out that this theorem with
K.˛/ � K1.˛/ was proved in [9] and the proof was based on the magnetic interpo-
lation inequality (2.3) (whose proof is briefly recalled in Section 2). In the 1D scalar
case, this inequality immediately gives the result by the method of [5], while the
inequality in the essential matrix case was proved in [9] (see also [4] for the starting
point of this approach).

The bound for the constant K.˛/ � K2.˛/ was proved in the 1D scalar case
in [11]. The proof in the matrix case is given in Theorem 3.1. Then the inequalities for
orthonormal systems are equivalently reformulated in Theorem 3.2 in terms of esti-
mates for the negative trace and for higher-order Riesz means of negative eigenvalues
in Corollary 3.1. Finally, Theorem 1.1 is proved in Section 4 by using the lifting argu-
ment with respect to dimensions [12]. The fact that the magnetic potential is of the
special diagonal form is crucial here.

We see in (1.4) and (1.5) that unlike K1.˛/, the constant K2.˛/ is not given in the
explicit form. A computation in Section 5 shows that in the central region j˛ � 1=2j<
0:2273 it holds that K2.˛/ < K1.˛/, while near the end-points K1.˛/ is better, see
Figure 2.

2. 1D periodic case

We consider here the magnetic Lieb–Thirring inequality in the 1D periodic case. We
assume that the period equals

L D
2�

"
; " > 0:

Of course, one can use scaling and consider only the case " D 1, but we prefer to
consider the general case in order to trace down the corresponding constants in the
most explicit way.
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Theorem 2.1. Let the family of functions 1; : : : ; N 2H 1.Œ0;L�per/ be orthonormal
in L2.Œ0; L�per/. Then

LZ
0

�.x/3 dx � K.˛/
NX
nD1

LZ
0

ji 0n.x/ � a.x/ n.x/j
2 dx; (2.1)

where

�.x/ D

NX
nD1

j n.x/j
2

and
K.˛/ � min.K1.˛/;K2.˛//:

Here ˛ is the magnetic flux

˛ WD
1

2�

LZ
0

a.x/ dx; (2.2)

and the constants K1.˛/ and K2.˛/ are defined in (1.4), (1.5).

Proof. We first point out that estimate (1.4) was obtained in [9, (6.8)], where k.˛/ is
the constant in the 1D magnetic interpolation inequality

kuk21 � k.˛/
� LZ
0

ji u0.x/ � a.x/u.x/j2dx

�1=2� LZ
0

ju.x/j2dx

�1=2
: (2.3)

The sharp constant k.˛/ (shown in Figure 2) was found in [9, (3.5)] and is given
in (1.4). For the sake of completeness, we briefly recall the proof of (2.3). We further
assume for the moment that the magnetic potential is constant a.x/ � a D const. We
use the Fourier series

 .x/ D

r
"

2�

X
k2Z

O ke
ik"x; O k D

r
"

2�

2�="Z
0

 .x/e�ik"xdx:

We consider the self-adjoint operator

A.�/ WD
�
i
d

dx
� a

�2
C �I

and its Green’s function G�.x; �/

A.�/G�.x; �/ D ı.x � �/;
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which is found in terms of the Fourier series

G�.x; �/ D
"

2�

X
n2Z

ein".x��/

.n"C a/2 C �
: (2.4)

On the diagonal, we obtain

G.�/ WD G�.�; �/ D
"

2�

X
n2Z

1

.n"C a/2 C �

D
1

"

1

2�

X
n2Z

1

.nC ˛/2 C �="2

D
1

2
p
�

sinh.2�
p
�="/

cosh.2�
p
�="/ � cos.2�˛/

:

Using a general result (see [14, Theorem 2.2] with � D 1=2), we find that the sharp
constant in (2.3) is as follows:

k.˛/ D
1

�� .1 � �/1��
sup
�>0

��G.�/ D sup
'>0

F.'/;

where

F.'/ D
sinh.'/

cosh.'/ � cos.2�˛/
; ' D 2�

p
�=":

An elementary analysis of the dependence of the behaviour of the function F.'/ on
the parameter ˛ D a=" (see [9] for the details) gives the expression for k.˛/ in (1.4).

We now consider the case of a non-constant magnetic potential a.x/. It this case
instead of the complex exponentials we consider the orthonormal system of functionsr

"

2�
'n.x/; 'n.x/ D e

i..nC˛/"x�
R x
0 a.y/dy/ (2.5)

that are periodic with period 2�=" in view of (2.2) and satisfy�
i
d

dx
� a.x/

�
'n.x/ D �".nC ˛/'n.x/:

Therefore, the Green’s function of the operator A.�/ is

G�.x; �/ D
"

2�

X
n2Z

ei.nC˛/".x��/�
R x
� a.y/dy

"2.nC ˛/2 C �
;

giving the same expression for G�.�; �/ as in (2.4) and hence the same expression for
k.˛/ as in the case a.x/ D const.
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We can now obtain inequality (2.1) with K.˛/ � k.˛/2 by the method of [5]. For
an arbitrary � D .�1; : : : ; �N / 2 CN , we set u.x/ D

PN
nD1 �n n.x/ in (2.3). Using

orthonormality, we obtainˇ̌̌ NX
nD1

�n n.x/
ˇ̌̌4
� k.˛/2j�j2

NX
n;kD1

�n N�k.i 
0
n � a n; i 

0
k � a k/

For a fixed x, we set �j WD N j .x/, j D 1; : : : ; N , which gives

�.x/3 � k.˛/2
NX

n;kD1

 .x/n N k.x/.i 
0
n � a n; i 

0
k � a k/:

Integrating in x and again using orthonormality, we obtain (2.1) with (1.4).
It now remains to prove (1.5): K.˛/ � K2.˛/. Let f be a non-negative function

on RC with
R1
0
f .t/2dt D 1 so that

1Z
0

f .t=E/2dt D E:

Let a.x/ ¤ const. We use the Fourier series with respect to system (2.5):

 .x/ D

r
"

2�

X
k2Z

O k'k.x/; O k D

r
"

2�

2�="Z
0

 .x/'k.�x/dx:

Then we obtain that

LZ
0

ji 0.x/ � a.x/ .x/j2 dx D
X
k2Z

"2jk C ˛j2j O .k/j2

D

1Z
0

X
k2Z

f
� E

"2jk C ˛j2

�2
j O kj

2dE

D

LZ
0

1Z
0

j E .x/j2dEdx;

where

 E .x/ D

r
"

2�

X
k2Z

f
� E

"2jk C ˛j2

�
O k'k.x/:
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Therefore,

 .x/ �  E .x/ D

r
"

2�

X
k2Z

�
1 � f

� E

"2jk C ˛j2

��
O k'k.x/ D . .�/; �

E .�; x//;

(2.6)

where

�E .x0; x/ D

r
"

2�

X
k2Z

�
1 � f

� E

"2jk C ˛j2

��
'k.x

0/'k.�x/: (2.7)

For any ı > 0, we have

�.x/ � .1C ı/

NX
nD1

j En .x/j
2
C .1C ı�1/

NX
nD1

j n.x/ �  
E
n .x/j

2: (2.8)

In view of orthonormality, Bessel’s inequality, (2.6) and the fact that j'k.x/j � 1 we
have

NX
nD1

j n.x/ �  
E
n .x/j

2
D

NX
nD1

j. n.�/; �
E .�; x//j2

� k�E .�; x/k2
L2.0;L/

D
"

2�

X
k2Z

�
1 � f

� E

"2jk C ˛j2

��2
: (2.9)

Next, following [6, 7] (see Remark 1) we set

f .t/ D
1

1C �t3=2
; � D

� 4�
9
p
3

�3=2
: (2.10)

This gives

k�E .�; x/k2 D
1

2�
"�2E3

X
k2Z

1

."3jk C ˛j3 C �E3=2/2

D
1

2�
"�5�2

p
EE5=2

X
k2Z

1

.jk C ˛j3 C �.
p
E="/3/2

D
1

2�
�1=3
p
E � b5=3

X
k2Z

1

.jk C ˛j3 C b/2

�
1

2�
�1=3
p
E � sup

b�0

b5=3
X
k2Z

1

.jk C ˛j3 C b/2

D
1

35=4�1=2

p
E � sup

b�0

b5=3
X
k2Z

1

.jk C ˛j3 C b/2
DW A.˛/

p
E; (2.11)
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where
A.˛/ D

1

35=4�1=2
� sup
b�0

b5=3
X
k2Z

1

.jk C ˛j3 C b/2
;

and where we singled out the factor
p
E, set b WD �E3=2="3, and recalled the defini-

tion of �.
Substituting this into (2.8) and optimizing with respect to ı, we obtain

�.x/ �

 p
NX
nD1

j En .x/j
2
C
p
A.˛/E1=4

!2
;

which gives that

NX
jD1

j Ej .x/j
2
� .

p
�.x/ �

p
A.˛/E1=4/2C:

Finally,

LZ
0

ji 0.x/ � a.x/ .x/j2dx D

LZ
0

1Z
0

j E .x/j2dE dx

�

LZ
0

1Z
0

.
p
�.x/ �

p
A.˛/E1=4/2CdE dx

D
1

15A.˛/2

LZ
0

�.x/3dx:

The proof is complete.

Remark 1. The series over k 2 Z in (2.9), which we obviously want to minimize
under the condition

R1
0
f .t/2dt D 1, corresponds (after the change of variable t !

t�1=2) to the integral
1Z
0

.1 � f .t//2t�3=2dt:

A more general problem

1Z
0

.1 � f .t//2t�ˇdt ! inf
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subject to the same condition
R1
0
f .t/2dt D 1 was solved in [6]:

f .t/ D
1

1C �tˇ
; � D

�ˇ � 1
ˇ
�

�=ˇ

sin.�=ˇ/

�ˇ
; ˇ > 1:

This explains the choice of f .t/ in (2.10).

3. 1D periodic case for matrices

Let ¹ nºNnD1 be an orthonormal family of vector-functions

 n.x/ D . n.x; 1/; : : : ;  n.x;M//T ;  n W Œ0; L�per ! CM

and

. n; m/ WD . n; m/L2.Œ0;L�;CM /

D

MX
jD1

LZ
0

 n.x; j / m.x; j /dx

D

LZ
0

 n.x/
T m.x/dx D ınm:

We consider the M �M matrix U.x/ D
PN
nD1 n.x/ n.x/

T
:

Theorem 3.1. The following inequality holds:

LZ
0

TrŒU.x/3�dx � K.˛/
NX
nD1

LZ
0

ji 0n.x/ � a.x/ n.x/j
2
CM dx; (3.1)

where K.˛/ is defined in Theorem 1.1.

Proof. We first show that K.˛/ � K2.˛/. As before, let f be a scalar function withR1
0
.t/2dt D 1. Then

LZ
0

ji 0.x/ � a.x/ .x/j2CM dx D
X
k2Z

"2jk C ˛j2j O .k/j2CM

D

1Z
0

X
k2Z

f
� E

"2jk C ˛j2

�2
j O kj

2
CM dE

D

LZ
0

1Z
0

j E .x/j2CM dE dx;
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where

 E .x/ D

r
"

2�

X
k2Z

f
� E

"2jk � ˛j

�
'k.x/ O k; O k D . O k.1/; : : : ; O k.M//T :

Let e 2 CM be a constant vector. Then

hU.x/e; ei D
NX
nD1

jeT n.x/j2 D
NX
nD1

jh n.x/; eij2

D

NX
nD1

jh n.x/ � 
E
n .x/; ei C h 

E
n .x/; eij

2

� .1C ı/

NX
nD1

jh n.x/ � 
E
n .x/; eij

2
C .1C ı�1/

NX
nD1

jh En .x/; eij
2

where h�; �i denotes the scalar product in CM . For the first term, we have

h .x/ � E .x/; ei D
r

"

2�

X
k2Z

�
1 � f

� E

"2jk � ˛j2

��
'k.x/h O k; ei

D . .�/; �E .�; x/e/L2.L;CM /;

where the scalar function �E .x0; x/ is as in (2.7). Now, again by orthonormality,
Bessel’s inequality and (2.11) we obtain

NX
nD1

jh n.x/ � 
E
n .x/; eij

2
D

NX
nD1

. n.�/; �
E .�; x/e/L2.L;CM /

� k�E .�; x/ek2
L2.L;CM /

D k�E .�; x/k2
L2
kek2CM

� A.˛/
p
Ekek2CM :

For the second term, we simply write

NX
nD1

jh n.x/; eij2 D hUE .x/e; ei; UE .x/ D

NX
nD1

 En .x/ 
E
n .x/

T
:

Combining the above, we obtain

hU.x/e; ei � .1C ı�1/hUE .x/e; ei C .1C ı/A.˛/
p
Ekek2CM :

If we denote by �j .x/ and �Ej .x/, j D 1; : : : ;M the eigenvalues of the (Hermitian)
matrices U.x/ and UE .x/, respectively, then the variational principle implies that

�j .x/ � .1C ı
�1/�Ej .x/C .1C ı/A.˛/

p
E:
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Optimizing with respect to ı, we find that

�j .x/ �
�q
�Ej .x/C A.˛/

1=2E1=4
�2
;

or
�Ej .x/ �

�q
�j .x/ � A.˛/

1=2E1=4
�2
C
; j D 1; : : : ;M:

Therefore,
NX
nD1

j En .x/j
2
CM D TrCM UE .x/ �

MX
jD1

.

q
�j .x/ � A.˛/

1=2E1=4/2C:

Integration with respect to E gives that

NX
nD1

1Z
0

j En .x/j
2
CM dE �

MX
jD1

1Z
0

.

q
�j .x/ � A.˛/

1=2E1=4/2CdE

D
1

15A.˛/2

MX
jD1

�j .x/
3
D

1

15A.˛/2
TrU.x/3;

and integration with respect to x gives (3.1) with (1.5).
We finally point out that matrix inequality (3.1) with estimate of the constant (1.4)

was previously proved in [9, Theorem 6.2]. The proof given there holds formally for
the case of a constant magnetic potential. However, if a.x/ ¤ const we only have to
use the orthonormal family (2.5) as we have done in the proof of the scalar Lieb–
Thirring inequality in Theorem 2.1. The proof is complete.

It is well known [4, 7] that inequalities for orthonormal systems are equivalent to
the estimates for the negative trace of the corresponding Schrödinger operator. In our
case we consider the magnetic Schrödinger operator

H D
�
i
d

dx
� a.x/

�2
� V (3.2)

in L2.Œ0; L�per/ with matrix-valued potential V .

Theorem 3.2. Let V.x/� 0 be anM �M Hermitian matrix with TrV 3=2 2L1.0;L/.
Then the spectrum of operator (3.2) is discrete and the negative eigenvalues ��n � 0
satisfy the estimate

X
n

�n �
2

3
p
3

p
K.˛/

LZ
0

TrŒV .x/3=2�dx

D
�
p
3

p
K.˛/Lcl

1;1

LZ
0

TrŒV .x/3=2�dx; (3.3)
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where

Lcl

;d D

1

.2�/d

Z
Rd

.1 � j�j2/


C d� D

�.
 C 1/

2d�d=2�.
 C d=2C 1/
: (3.4)

Proof. Let ¹ nºNnD1 be the orthonormal vector valued eigenfunctions corresponding
to ¹��nºNnD1: �

i
d

dx
� a.x/

�2
 n � V n D ��n n:

Taking the scalar product with  n, using inequality (3.1), Hölder’s inequality for
traces, and setting X D

R L
0

TrŒU.x/3�dx, we obtain

NX
nD1

�n D �

NX
nD1

LZ
0

ji 0.x/ � a.x/ n.x/j
2
CM dx C

LZ
0

TrŒV .x/U.x/�dx

� �K.˛/�1X C
� LZ
0

TrŒV .x/3=2�dx
�2=3

X1=3:

Calculating the maximum with respect to X , we obtain (3.3).

The inequalities for higher-order moments of the eigenvalues of the magnetic
Schrödinger operators with matrix-valued potentials are obtained by the Aizenmann–
Lieb argument [1, 7].

Corollary 3.1. Let V � 0 be anM �M Hermitian matrix with TrV 
C1=2 2L1.0;L/.
Then for 
 � 1 the negative eigenvalues of the operator (3.2) satisfy the inequalities

X
�
n � L
;1

LZ
0

TrŒV .x/1=2C
 � dx; (3.5)

where

L
;1 �
2

3
p
3

p
K.˛/

Lcl

;1

Lcl
1;1

D
�
p
3

p
K.˛/Lcl


;1:

4. Magnetic Schrödinger operator on the torus

Proof of Theorem 1.1. We use the lifting argument with respect to dimensions devel-
oped in [12]. More precisely, we apply estimate (3.5) d � 1 times with respect to
variables x1; : : : ; xd�1 (in the matrix case), so that 
 is increased by 1=2 at each step,
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and, finally, we use (3.5) (in the scalar case) with respect to xd . Using the variational
principle and denoting the negative parts of the operators by Œ � ��, we obtain

X
n

�
n.H / D
X
n

�
n

�
.i@x1 � a1.x1//

2
C

d�1X
jD2

.i@xj � aj .xj //
2
� V.x/

�
�

X
n

�
n

�
.i@x1 � a1.x1//

2
�

h d�1X
jD2

.i@xj � aj .xj //
2
� V.x/

i
�

�

�
�
p
3

p
K1.˛1/Lcl


;1

L1Z
0

Œ.i@xj � aj .xj //
2
� V.x/�
C1=2� dx1

:::

�

� �
p
3

�d�1 d�1Y
jD1

q
K. j̨ /

d�1Y
jD1

Lcl

C.j�1/=2;1

�

L1Z
0

� � �

Ld�1Z
0

TrŒ.i@xd � ad .xd //
2
� V.x/�
C.d�1/=2� dx1 : : : dxd�1

�

� �
p
3

�d dY
jD1

q
K. j̨ /

dY
jD1

Lcl

C.j�1/=2;1

Z
Td

V 
Cd=2.x/dx;

which proves (1.2), (1.3), since

dY
jD1

Lcl

C.j�1/=2;1 D L

cl

;d :

Remark 2. The method of Theorem 2.1 (namely, its second part) is difficult to apply
in the case orthonormal system on the torus Td with d > 1, because the corresponding
series (2.11) is now over the lattice Zd and depends on d parameters. However, the
Lieb–Thirring inequality for an orthonormal system ¹ j ºNjD1 2H

1.Td / follows from
Theorem 1.1
D1 by duality. For example, for d D 2 it holdsZ

T2

�.x/2dx �
�

6

p
K.˛1/K.˛2/

NX
jD1

Z
T2

jir j .x/ � A.x/ j .x/j2C2dx:
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Figure 1. The graphs of F.b; 0:1/, F.b; 0:25/, and F.b; 0:5/.

5. Some computations

We now present some computational results. We set in (2.11)

F.b; ˛/ WD b5=3
X
k2Z

1

.jk C ˛j3 C b/2
: (5.1)

We clearly have that for all ˛ (including integers)

lim
b!1

F.b; ˛/ D 2

1Z
0

dx

.x3 C 1/2
D

8

27

p
3� D 1:6122:

This immediately gives in the framework of this approach (see (1.5)) a lower bound
for the constant K2.˛/:

K2.˛/ �
5

3
p
3�
�

h 8
27

p
3�
i2
D
320�

313=2
D 0:7961: (5.2)

The graphs of F.b; ˛/ for ˛ D 0:1; 0:25, and 0:5 are shown in Figure 1.
The unique point of maximum b�.˛/ has the following asymptotic behaviour as

˛! 0C. For a small ˛, the main contribution in the sum in (5.1) comes from the term
with k D 0, that is, from

b5=3
1

.˛3 C b/2
;

whose global maximum is attained at b D 5˛3 and equals 5
5=3

36
�
1
˛

. Then (1.5) gives

K2.˛/ �
513=3

33=2 64 �

1

˛2
D 0:0505

1

˛2
as ˛ ! 0;
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Figure 2. The graphs of K1.˛/ D k.˛/2 (black) and K2.˛/ (red). The horizontal blue line is
the constant in (5.2).

while it follows from (1.4) that

K1.˛/ �
1

4�2
1

˛2
D 0:025

1

˛2
as ˛ ! 0;

which explains why K1.˛/ < K2.˛/ near ˛ D 0 and ˛ D 1 in Figure 2. On the other
hand, in the middle region j1

2
� ˛j � 0:2273 the new estimate (1.5) is better. It is also

worth pointing out that

K2.1=2/ D K2.1=4/.D 0:8819/

the equality holding since

F.b; 1=2/ D F.b=8; 1=4/:

The minimum is attained at ˛� D 0:273 giving K2.˛�/ D K2.1 � ˛�/ D 0:811.
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