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Scattering theory with both regular and singular perturbations

Andrea Mantile and Andrea Posilicano

Abstract. We provide an asymptotic completeness criterion and a representation formula for
the scattering matrix of the scattering couple .AB; A/, where both A and AB are self-adjoint
operator and AB formally corresponds to adding to A two terms, one regular and the other
singular. In particular, our abstract results apply to the couple .�B;�/, where� is the free self-
adjoint Laplacian in L2.R3/ and�B is a self-adjoint operator in a class of Laplacians with both
a regular perturbation, given by a short-range potential, and a singular one describing boundary
conditions (like Dirichlet, Neumann and semi-transparent ı and ı0 ones) at the boundary of an
open, bounded Lipschitz domain. The results hinge upon a limiting absorption principle for AB

and a Kreı̆n-like formula for the resolvent difference .�AB C z/
�1 � .�AC z/�1 which puts

on an equal footing the regular (here, in the case of the Laplacian, a Kato–Rellich potential
suffices) and the singular perturbations.

1. Introduction

The mathematical scattering theory for short-range potential is a well-developed sub-
ject; the existence and completeness of the wave operators can be obtained by two
essentially different approaches: the trace-class method and the smooth method (see,
e.g., [21]). An important object defined in terms of the wave operators is the scattering
operator and, even more important from the point of view of its physical applications,
the scattering matrix, which is its reduction to a multiplication operator in the spectral
representation of the self-adjoint free Laplacian.

The scattering problem for singular perturbations of self-adjoint operators, which
is outside the original scope of these methods, is connected with scattering from
obstacles with impenetrable or semi-transparent boundary conditions (see, e.g., [3,
4, 11–14]). On this side, a general scheme has been developed in [11] by combining
the construction in [16] with an abstract version of the Limiting Absorption Principle
(simply LAP in the following) due to W. Renger (see [18]) and a variant of the smooth
method due to M. Schechter (see [19]). In particular, the results in [11] apply to obsta-
cle scattering with a large class of interface conditions on Lipschitz hypersurfaces in
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any dimension. Let us recall that in [4] boundary triple theory and properties of the
associated operator-valued Weyl functions were used to obtain a similar representa-
tion of the scattering matrix for singularly coupled self-adjoint extensions. It is worth
to remark that, while the approach in [11] avoids any trace-class condition, these are
needed in [4] and so the applications there are limited to the case of smooth obstacles
in two dimensions.

The target of the present paper is to provide a general framework for the scat-
tering with both potential type and singular perturbations. Since our concern is the
scattering theory with respect to the free Laplacian, we regard the regular and the sin-
gular parts of the perturbation as a single object; this constitutes the main novelty of
our approach. In particular, we give an abstract resolvent formula, generalizing the
one in [16], which puts on an equal footing the two components of the perturbation.
Such a representation is a key ingredient in the derivation of LAP which leads then
to the main results of the first part: the asymptotic completeness and an explicit for-
mula for the scattering matrix. These results rely on a certain number of assumptions
whose validity is carefully analyzed in the second part where we consider the spe-
cific case of a short range potential plus a distributional term, supported on a closed
surface and describing self-adjoint interface conditions. In this way, we obtain new
representation formulae for the scattering matrix which are expected to be relevant in
different physical applications involving wave propagation in inhomogeneous media
with impenetrable or semi-transparent obstacles.

Here, in more details, the contents of the paper. In Section 2, following the scheme
proposed in [16], we provide an abstract resolvent formula for a perturbation AB of
the self-adjoint A by a linear combination of the adjoint of two bounded trace-like
maps �1Wdom.A/! h1 and �2Wdom.A/! h2; while the kernel of �2 is required to be
dense, so ��2 plays the role of a singular perturbation, no further hypothesis is required
for �1 and in applications that allows ��1 to represent a regular perturbation by a short-
range potential. In Section 2.3, by block operator matrices and the Schur complement,
we re-write the obtained resolvent formula in terms of the resolvent of the operator
corresponding to the non-singular part of the perturbations; that plays an important
role in the subsequent part regarding LAP and the scattering theory.

In Section 3, following the scheme proposed in [13] and further generalized
in [11], at first we provide, under suitable hypothesis, a Limiting Absorption Prin-
ciple for AB (see Theorem 3.1) and then an asymptotic completeness criterion for the
scattering couple .AB; A/ (see Theorem 3.5). Then, by a combination of LAP with
stationary scattering theory in the Birman–Yafaev scheme and the invariance princi-
ple, we obtain a representation formula for the scattering matrix of the couple .AB;A/

(see Theorem 3.10). WheneverA is the free Laplacian inL2.R3/, such a formula con-
tains, as subcases, both the usual formula for the perturbation given by a short-range
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potential as given, e.g., in [21] and the formula for the case of a singular perturbation
describing self-adjoint boundary conditions on a hypersurface as given in [11].

In Section 4, in order to apply our abstract results to the case in which A is the
free 3D Laplacian and the regular part represents a perturbation by a potential, we
give various regularity results for the boundary layer operators associated to �C v,
where v is a potential of Kato–Rellich type.

In Sections 5 and 6, we present various applications, where the free Laplacian
is perturbed both by a regular term, given by a short range potential v decaying as
jxj��.1C�/, and by a singular one describing either separating boundary conditions
(as Dirichlet and Neumann ones) or semi-transparent (as ı and ı0-type ones). In order
to satisfy all our hypotheses, we need � D 2. However, all our hypotheses but a single
one (see Lemma 5.6) hold with � D 1; we conjecture that the requirement � D 2

is merely of technical nature and that our results are true for a short range potential
decaying as jxj�.1C�/. Finally, let us remark that whenever one is only interested in
the construction of the operators and not in the scattering theory, then it is sufficient
to assume that v is a Kato–Rellich potential (see Section 5.1).

Schrödinger operators with a Kato–Rellich potential plus a ı-like perturbation
with a p-summable strength (p > 2) have been already considered in [14], while for
a different construction with a bounded potential and a ı- or a ı0-like perturbation
with bounded strength we refer to [3]. None of such references considered the scat-
tering matrix (however, [14] provided a limiting absorption principle). Whenever the
singular part of the perturbations is absent, our framework extends from compactly
supported potentials in one dimension to short range potentials in three dimensions
the kind of results provided in [5, Section 5].

Let us notice that, building on the results in [1,11], the abstract models introduced
in Section 2 and the related scattering theory presented in Section 3 apply to pertur-
bations of the Laplacian in Rn, n � 2, with a suitable short-range potential plus a
singular term supported on a bounded hypersurface of codimension one.

1.1. Some notation and definition

We introduce the following notation.

• k � kX denotes the norm on the complex Banach space X ; in case X is a Hilbert
space, h�; �iX denotes the (conjugate-linear with respect to the first argument)
scalar product.

• h�; �iX�;X denotes the duality (assumed to be conjugate-linear with respect to the
first argument) between the dual couple .X�; X/.

• L�Wdom.L�/ � Y �! X� denotes the dual of the densely defined linear operator
LWdom.L/ � X ! Y ; in a Hilbert spaces setting L� denotes the adjoint operator.
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• %.A/ and �.A/ denote the resolvent set and the spectrum of the self-adjoint opera-
tor A; �p.A/, �ess.A/, �pp.A/, �cont.A/, �ac.A/, �sc.A/, denote the point, discrete,
essential, pure point, continuous, absolutely continuous and singular continuous
spectra.

• B.X; Y /, B.X/ � B.X;X/, denote the Banach space of bounded linear operator
on the Banach spaceX to the Banach space Y ; k � kX;Y denotes the corresponding
norm.

• S1.X; Y / denotes the space of compact operators on X to Y .

• X ,! Y means that X is continuously embedded into Y .

• ���in � R3 denotes an open and bounded subset with a Lipschitz boundary �;
�ex WD R3nx�.

• H s.�/ and H s.�ex/ denote the scales of Sobolev spaces.

• H s.R3n�/ WD H s.�/˚H s.�ex/.

• jxj denotes the norm of x 2 Rn. hxi denotes the function x 7! .1C jxj2/1=2.

• L2w.R
3/,w 2R, denotes the set of complex-valued functions f such that hxiwf 2

L2.R3/.

• H s
w.R

3n�/WDH s.�/˚H s
w.�ex/, whereH s

w.�ex/ denotes the weighted Sobolev
space relative to the weight hxiw .

• 
 in/ex
0 and 
 in/ex

1 denote the interior/exterior Dirichlet and Neumann traces on the
boundary � .

• 
0 WD
1
2
.
 in
0 C 


ex
0 /, 
1 WD

1
2
.
 in
1 C 


ex
1 /.

• Œ
0� WD 

in
0 � 


ex
0 , Œ
1� WD 
 in

1 � 

ex
1 .

• SLz and DLz denote the single- and double-layer operators.

• Sz WD 
0 SLz , Dz WD 
1 DLz .

• D �R is said to be discrete in the open setE �D whenever the (possibly empty)
set of its accumulations point is contained in RnE; D is said to be discrete when-
ever E D R.

• VD denotes the open part of the set D � R; @D denotes its boundary; D� WD
D \ .�1; 0�.

• Given x � 0 and y � 0, x . y means that there exists c � 0 such that x � c y.
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2. An abstract Kreı̆n-type resolvent formula

2.1. The resolvent formula

Let AW dom.A/ � H! H be a self-adjoint operator in the Hilbert space H. We denote
by Rz WD .�AC z/�1, z 2 %.A/, its resolvent; one has Rz 2 B.H;HA/, where HA is
the Hilbert space given by dom.A/ equipped with the scalar product

hu; uiHA WD h.A
2
C 1/1=2u; .A2 C 1/1=2viH:

Let
hk ,! hık ,! h�k; k D 1; 2;

be auxiliary Hilbert spaces with dense continuous embedding; we do not identify hk
with its dual h�

k
(however, we use hk � h��

k
) and we work with the h�

k
-hk duality

h�; �ih�
k
;hk

defined in terms of the scalar product of the intermediate Hilbert space hı
k

.
The scalar product and hence the duality are supposed to be conjugate linear with
respect to the first variable; notice that h'; �ihk ;h�k D h�; 'i

�

h�
k
;hk

.
Given the bounded linear maps

�k WHA ! hk; k D 1; 2;

such that
ker.�2/ is dense in H and ran.�2/ is dense in h2, (2.1)

we introduce the bounded operators

� WHA ! h1 ˚ h2; �u WD �1u˚ �2u;

and
Gz W h

�
1 ˚ h�2 ! H; Gz WD .�R Nz/

�; z 2 %.A/:

We further suppose that there exist reflexive Banach spaces bk , k D 1; 2, with dense
continuous embeddings hk ,! bk (hence b�

k
,! h�

k
), such that ran.Gzjb�1 ˚ b�2/ is

contained in the domain of definition of some (supposed to exist) .b1 ˚ b2/-valued
extension of � (which we denote by the same symbol) in such a way that

�Gzjb
�
1 ˚ b�2 2 B.b�1 ˚ b�2;b1 ˚ b2/: (2.2)

Given these hypotheses, we set B D .B0; B1; B2/, with

B0 2 B.b�2;b
�
2;2/; B1 2 B.b1;b

�
1/; B2 2 B.b2;b

�
2;2/; (2.3)

where b2;2 is a reflexive Banach space,

B1 D B
�
1 ; B0B

�
2 D B2B

�
0 ; (2.4)
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and introduce the map

ZB 3 z 7! ƒB
z 2 B.b1 ˚ b2;b

�
1 ˚ b�2/; ƒB

z WD .M
B
z /
�1.B1 ˚ B2/; (2.5)

where

ZB WD ¹z 2 %.A/W .M
B
w/
�1
2 B.b�1 ˚ b�2;2;b

�
1 ˚ b�2/; w D z; Nzº (2.6)

M B
z WD .1˚ B0/ � .B1 ˚ B2/�Gz 2 B.b�1 ˚ b�2;b

�
1 ˚ b�2;2/:

Theorem 2.1. Suppose hypotheses (2.1), (2.2), (2.3), and (2.4) hold and that ZB

defined in (2.6) is not empty. Then, defined ƒB
z as in (2.5),

RB
z WD Rz CGzƒ

B
zG
�
Nz ; z 2 ZB; (2.7)

is the resolvent of a self-adjoint operator AB and ZB D %.AB/ \ %.A/.

Proof. By (2.4), one gets

..1˚ B0/ � .B1 ˚ B2/�G Nz/.B1 ˚ B
�
2 /

D .B1 ˚ B2/..1˚ B
�
0 / � �G Nz.B1 ˚ B

�
2 //

D .B1 ˚ B2/..1˚ B0/ � .B1 ˚ B2/�Gz/
�:

This entails, by the definitions (2.5) and (2.6),

.ƒB
z/
�
D ƒB

Nz : (2.8)

By the resolvent identity, there follows

..1˚ B0/ � .B1 ˚ B2/�Gz/ � ..1˚ B0/ � .B1 ˚ B2/�Gw/

D .B1 ˚ B2/�.Gw �Gz/ D .z � w/.B1 ˚ B2/�RwGz

D .z � w/.B1 ˚ B2/G
�
NwGz;

which entails

..1˚ B0/ � .B1 ˚ B2/�Gw/
�1
� ..1˚ B0/ � .B1 ˚ B2/�Gz/

�1

D .z � w/..1˚ B0/ � .B1 ˚ B2/�Gw/
�1.B1 ˚ B2/G

�
NwGz

� ..1˚ B0/ � .B1 ˚ B2/�Gz/
�1;

and hence
ƒB
w �ƒ

B
z D .z � w/ƒ

B
wG
�
NwGzƒ

B
z : (2.9)

By (2.8) and (2.9),

.RB
z/
�
D RB

Nz; RB
z D R

B
w C .w � z/R

B
zR

B
w
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(see [16, p. 113]). Hence, RB
z is the resolvent of a self-adjoint operator whenever it is

injective (see, e.g., [20, Theorems 4.10 and 4.19]). By (2.7),

.B1 ˚ B2/�R
B
z D .B1 ˚ B2/.1C �Gzƒ

B
z/G

�
Nz

D ..B1 ˚ B2/C .B1 ˚ B2/�Gzƒ
B
z/G

�
Nz

D ..B1 ˚ B2/C ..1˚ B0/ � ..1˚ B0/ � .B1 ˚ B2/�Gz//ƒ
B
z/G

�
Nz

D .1˚ B0/ƒ
B
zG
�
Nz :

Thus, if RB
zu D 0 then

0˚ 0 D .1˚ B0/ƒ
B
zG
�
Nzu D .ƒ

B
zG
�
Nzu/1 ˚ B0.ƒ

B
zG
�
Nzu/2

By
Gz.�1 ˚ �2/ D G

1
z�1 CG

2
z�2; Gkz WD .�kR Nz/

�;

there follows

0DRB
zuDRzuCG

1
z .ƒ

B
zG
�
Nzu/1CG

2
z .ƒ

B
zG
�
Nzu/2 DRzuCG

2
z .ƒ

B
zG
�
Nzu/2: (2.10)

Since the denseness of ker.�2/ implies

ran.G2z / \ dom.A/ D ¹0º

(see [16, Remark 2.9]), the relation (2.10) gives G2z .ƒ
B
zG
�
Nzu/2 D 0. Thus, RB

zu D 0

compels Rzu D 0 and hence u D 0.
Finally, the equality ZB D %.AB/\ %.A/ is consequence of [7, Theorem 2.19 and

Remark 2.20].

Remark 2.2. Looking at the previous proof, one notices that Theorem 2.1 holds with-
out requiring the denseness of ran.�2/; that hypothesis comes into play in later results.

Remark 2.3. By (2.7), if u2 dom.AB/, then uDu0CGz.�1˚�2/ for some u0 2HA
and �1 ˚ �2 2 b�1 ˚ b�2; hence, by (2.2),

� W dom.AB/! b1 ˚ b2:

2.2. An additive representation

At first, let us introduce the Hilbert space H�A defined as the completion of H endowed
with the scalar product

hu; viH�
A
WD h.A2 C 1/�1=2u; .A2 C 1/�1=2viH:

Notice thatRz extends to a bounded bijective map (which we denote by the same sym-
bol) on H�A onto H. The linear operator A, being a densely defined bounded operator
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on H to H�A, extends to a bounded operator xAWH! H�A given by its closure. Moreover,
denoting by h�; �iH�

A
;HA the pairing obtained by extending the scalar product in H, since

A is self-adjoint and since dom.A/ is dense in H,

hu;AviH D h xAu; viH�
A
;HA ; u 2 H; v 2 HA:

Further, we define ��W h�1 ˚ h�2 ! H�A by

h���; uiH�
A
;HA D h�; �uih�1˚h�

2
;h1˚h2 ; u 2 HA; � 2 h�1 ˚ h�2 :

Obviously, ��.�1 ˚ �2/ D ��1 �1 C �
�
2 �2, where ��

k
W hk ! H�A, k D 1; 2, are defined

in the same way as ��.
Let us notice that Rz WH�A! H is the adjoint, with respect the pairing h�; �iH�

A
;HA , of

R Nz WHA ! H and it is the inverse of .� xAC z/WH! H�A; therefore

Gz D Rz�
�: (2.11)

Lemma 2.4. Let ABWdom.AB/� H! H be the self-adjoint operator provided in The-
orem 2.1 and define, for any u 2 H and z 2 %.AB/ \ %.A/,

�BW dom.AB/! h�1 ˚ h�2; �B.R
B
zu/ WD .�

�
1 ˚ 1/ƒ

B
zG
�
Nzu; (2.12)

where �1 denotes the orthogonal projection onto the subspace ran.�1/. Then, the def-
inition of �B is well posed, i.e.,

RB
z1
u1 D R

B
z2
u2 H) .��1 ˚ 1/ƒ

B
z1
G�Nz1u1 D .�

�
1 ˚ 1/ƒ

B
z2
G�Nz2u2

and

hu;ABviH D hAu; viH C h�u; �Bvih1˚h2;h
�
1
˚h�

2
; u 2 dom.A/; v 2 dom.AB/:

(2.13)

Proof. Let v D RB
zuD vz CGzƒ

B
z�vz , where vz WD Rzu (hence �vz D G�Nzu). Then

hu;ABviH � hAu; viH

D �hu; .�AB C z/viH C h.�AC Nz/u; viH

D �hu; .�AC z/vziH C h.�AC Nz/u; vz CGzƒ
B
z�vziH

D h.�AC Nz/u;Gzƒ
B
z�vziH D h�u;ƒ

B
z�vzih1˚h2;h

�
1
˚h�

2

D h.�1 ˚ 1/�u;ƒ
B
z�vzih1˚h2;h

�
1
˚h�

2
D h�u; .��1 ˚ 1/ƒ

B
z�vzih1˚h2;h

�
1
˚h�

2
:

Suppose now that RB
z1
u1 D R

B
z2
u2. Then, by the above identities, one gets, for any

u 2 dom.A/,

h��.��1 ˚ 1/.ƒ
B
z1
G�Nz1u1 �ƒ

B
z2
G�Nz2u2/; uiH�A;HA

D 0:
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Hence,
��..��1 ˚ 1/ƒ

B
z1
G�Nz1u1 � .�

�
1 ˚ 1/ƒ

B
z2
G�Nz2u2/ D 0:

However, ker.��/ \ ran..��1 ˚ 1// D ¹0º since ��1 ˚ 1 is the projector onto the sub-
space orthogonal to ker.��/.

The next lemma provides a sort of abstract boundary conditions holding for the
elements in dom.AB/.

Lemma 2.5. Let AB be the self-adjoint operator in Theorem 2.1. Then, for any z 2
%.AB/ \ %.A/, one has the representation

dom.AB/ D ¹u 2 HWuz WD u �Gz�Bu 2 dom.A/º;

.�AB C z/u D .�AC z/uz :

Moreover,
u 2 dom.AB/ H) .��1B1 ˚ B2/�u D .1˚ B0/�Bu:

Proof. Since Gz D Rz�
� (see (2.11) below) and ��1 ˚ 1 is the projection onto the

orthogonal to ker.��/, one has Gz D Gz.��1 ˚ 1/. Hence, u 2 dom.AB/ if and only
if u D Rzv CGz.��1 ˚ 1/ƒ

B
zG
�
Nz v D Rzv CGz�Bu. Therefore,

dom.AB/ D ¹u 2 HWu D uz CGz�Bu; uz 2 dom.A/º:

Moreover, given any u 2 dom.A/, u D RB
zv, one has

.�AC z/uz D .�AC z/Rzv D .�AB C z/R
B
zv D .�AB C z/u:

Finally, given u D RB
zv 2 dom.AB/, one has

.��1B1 ˚ B2/�u D .�
�
1 ˚ 1/.B1 ˚ B2/�R

B
zv

D .��1 ˚ 1/
�
.B1 ˚ B2/G Nzv C .B1 ˚ B2/�Gz..1˚ B0/

� .B1 ˚ B2/�Gz/
�1.B1 ˚ B2/G Nzv

�
D .��1 ˚ 1/.1˚ B0/ƒ

B
zG Nzv

D .1˚ B0/.�
�
1 ˚ 1/ƒ

B
zG Nzv

D .1˚ B0/�Bu:

Now, we provide an additive representation of the self-adjoint AB in Theorem 2.1.

Theorem 2.6. Let ABW dom.AB/ � H! H be the self-adjoint operator appearing in
Theorem 2.1. Then

AB D xAC �
��B;

where �B is defined in (2.12). In particular, if B�10 2 B.b�2;2;b
�
2/, then

AB D xAC �
�
1B1�1 C �

�
2B
�1
0 B2�2:
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Proof. By (2.13), for any u 2 dom.AB/ and v 2 HA,

hABu; viH�
A
;HA � hABu; viH D hu;AviH C h�Bu; �vih�

1
˚h�

2
;h1˚h2

D h xAuC ���Bu; viH�
A
;HA :

By Lemma 2.5 and by ��1�
�
1 D .�1�1/

� D ��1 ,

���B D �
�.��1B1�1 ˚ B

�1
0 B1�2/ D �

�
1B1�1 C �

�
2B
�1
0 B2�2:

2.3. An alternative resolvent formula

At first, let us notice that hypothesis (2.2), can be re-written as

�jG
k
z jbk 2 B.b�k;bj /; j; k D 1; 2; Gkz WD .�kR Nz/

�:

Moreover,

M B
z D .1˚ B0/C .B1 ˚ B2/�Gz D

�
M
B1
z B1�1G

2
z

B2�2G
1
z M

B0;B2
z

�
where

MB1
z WD 1 � B1�1G

1
z ; MB0;B2

z WD B0 � B2�2G
2
z :

Then, supposing all the inverse operators appearing in the next formula exist, by the
inversion formula for block operator matrices, one gets

.M B
z /
�1
D

�
.M

B1
z /�1C.M

B1
z /�1B1�1G

2
z .C

B
z /
�1B2�2G

1
z .M

B1
z /�1 .M

B1
z /�1B1�1G

2
z .C

B
z /
�1

.C B
z /
�1B2�2G

1
z .M

B1
z /�1 .C B

z /
�1

�
;

(2.14)

where C B
z denotes the second Schur complement, i.e.,

C B
z W DM

B0;B2
z � B2�2G

1
z .M

B1
z /�1B1�1G

2
z

DMB0;B2
z .1 � .MB0;B2

z /�1B2�2G
1
z .M

B1
z /�1B1�1G

2
z /

DMB0;B2
z .1 �ƒB0;B2z �2G

1
zƒ

B1
z �1G

2
z /;

ƒB1z WD .1 � B1�1G
1
z /
�1B1; (2.15)

ƒB0;B2z WD .B0 � B2�2G
2
z /
�1B2: (2.16)

Regarding the well-posedness of (2.14), taking into account the definition of C B
z , one

has

ZB D ¹z 2 %.A/W .M
B
z /
�1
2 B.b�1 ˚ b�2;2;b

�
1 ˚ b�2/; w D z; Nzº �

yZB;
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where

yZB WD ¹z 2 ZB1 \ZB0;B2 W

.1 �ƒB0;B2w �2G
1
wƒ

B1
w �1G

2
w/
�1
2 B.b�2/; w D z; Nzº; (2.17)

ZB1 WD ¹z 2 %.A/W .1 � B1�1G
1
w/
�1
2 B.b�1/; w D z; Nzº; (2.18)

ZB0;B2 WD ¹z 2 %.A/W .B0 � B2�2G
2
w/
�1
2 B.b�2;2;b

�
2/; w D z; Nzº: (2.19)

Therefore, supposing that yZB is not empty, for any z 2 yZB, by (2.7) and by

.C B
z /
�1B2 D †

B
zƒ

B0;B2
z ; †B

z WD .1 �ƒ
B0;B2
z �2G

1
zƒ

B1
z �1G

2
z /
�1;

one has

ƒB
z D .M

B
z /
�1
h
B1 0
0 B2

i
D

�
ƒ
B1
z Cƒ

B1
z �1G

2
z†

B
zƒ

B0;B2
z �2G

1
zƒ

B1
z ƒ

B1
z �1G

2
z†

B
zƒ

B0;B2
z

†B
zƒ

B0;B2
z �2G

1
zƒ

B1
z †B

zƒ
B0;B2
z

�
:

Therefore,

RB
z D Rz C ŒG

1
z G

2
z �

�
ƒ
B1
z Cƒ

B1
z �1G

2
z†

B
zƒ

B0;B2
z �2G

1
zƒ

B1
z ƒ

B1
z �1G

2
z†

B
zƒ

B0;B2
z

†B
zƒ

B0;B2
z �2G

1
zƒ

B1
z †B

zƒ
B0;B2
z

��
G1�
Nz

G2�
Nz

�
:

(2.20)

In particular, taking B D .1; B1; 0/, one gets, for any z 2 ZB1 ,

RB1z WD R
.1;B1;0/
z D Rz C ŒG1z G2z �

h
ƒ
B1
z 0
0 0

i�
G1�
Nz

G2�
Nz

�
D Rz CG

1
zƒ

B1
z G

1�
Nz (2.21)

while, taking B D .B0; 0; B2/, one gets, for any z 2 ZB0;B2 ,

RB0;B2z WD R.B0;0;B2/z D Rz C ŒG1z G2z �
h
0 0

0 ƒ
B0;B2
z

i�
G1�
Nz

G2�
Nz

�
D Rz CG

2
zƒ

B0;B2
z G2�Nz :

Therefore, by Theorem 2.1 with B D .1; B1; 0/, one gets the following result.

Corollary 2.7. Let �1 2 B.HA; h1/ be such that �1G1z jb
�
1 2 B.b�1; b1/ and let B1 2

B.b1;b
�
1/ be self-adjoint; suppose that ZB1 defined in (2.18) is not empty. Then

RB1z D Rz CG
1
zƒ

B1
z G

1�
Nz ; z 2 ZB1 ; (2.22)

where ƒB1z is defined in (2.15), is the resolvent of a self-adjoint operator AB1 and
ZB1 D %.AB1/ \ %.A/.

By Theorem 2.1 with B D .B0; 0; B2/, one gets the following result.
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Corollary 2.8. Let �2 2 B.HA; h2/ satisfy (2.1) be such that �1G1z jb
�
2 2 B.b�2; b2/

and let B0 2 B.b�2; b
�
2;2/, B2 2 B.b2; b

�
2;2/ be such that B0B�2 D B2B

�
0 ; suppose

that ZB0;B2 defined in (2.19) is not empty. Then

RB0;B2z D Rz CG
2
zƒ

B0;B2
z G2�Nz ; z 2 ZB0;B2 ; (2.23)

where ƒB0;B2z is defined in (2.16), is the resolvent of a self-adjoint operator AB0;B2
and ZB0;B2 D %.AB0;B2/ \ %.A/.

Supposing yZB 6D ¿, by (2.20), by (2.21) and by the relations

GB1z WD .�2R
B1
Nz /� D .�2R Nz C �2G

1
Nzƒ

B1
Nz G

1�
z /
� (2.24)

D G2z CG
1
zƒ

B1
z �1G

2
z

G
B1�
Nz D �2R

B1
z D �2Rz C �2G

1
zƒ

B1
z G

1�
Nz (2.25)

D G2�Nz C �2G
1
zƒ

B1
z G

1�
Nz

yM B
z D B0 � B2�2G

B1
z D B0 � B2�2G

2
z C �2G

1
zƒ

B1
z �1G

2
z

DMB0;B2
z C B2�2G

1
zƒ

B1
z �1G

2
z

DMB0;B2
z .1CƒB0;B1z �2G

1
zƒ

B1
z �1G

2
z /

yƒB
z WD .

yM B
z /
�1B2 D .B0 � B2�2G

B1
z /�1B2 D †

B
zƒ

B0;B2
z

one gets

ƒB
z D

�
ƒ
B1
z Cƒ

B1
z �1G

2
z
yƒB
z�2G

1
zƒ

B1
z ƒ

B1
z �1G

2
z
yƒB
z

yƒB
z�2G

1
zƒ

B1
z

yƒB
z I

�
(2.26)

D

�
1C

�
ƒ
B1
z 0

0 yƒB
z

�h
�1G

2
z
yƒB
z�2G

1
z �1G

2
z

�2G
1
z 0

i��
ƒ
B1
z 0

0 yƒB
z

�
: (2.27)

Therefore,

RB
z D Rz C ŒG

1
z G

2
z �

�
ƒ
B1
z Cƒ

B1
z �1G

2
z
yƒB
z�2G

1
zƒ

B1
z ƒ

B1
z �1G

2
z
yƒB
z

yƒB
z�2G

1
zƒ

B1
z

yƒB
z

��
G1�
Nz

G2�
Nz

�
D Rz C ŒG1z G2z �

�
ƒ
B1
z G1�

Nz
Cƒ

B1
z �1G

2
z
yƒB
z�2G

1
zƒ

B1
z G1�

Nz
Cƒ

B1
z �1G

2
z
yƒB
zG

2�
Nz

yƒB
z�2G

1
zƒ

B1
z G1�

Nz
CyƒB

zG
2�
Nz

�
D Rz CG

1
zƒ

B1
z G

1�
Nz CG

1
zƒ

B1
z �1G

2
z
yƒB
z�2G

1
zƒ

B1
z G

1�
Nz CG

1
zƒ

B1
z �1G

2
z
yƒB
zG

2�
Nz

CG2z
yƒB
z�2G

1
zƒ

B1
z G

1�
Nz CG

2
z
yƒB
zG

2�
Nz

D RB1z CG
B1
z
yƒB
zG

B1�
Nz : (2.28)

This also entails, by [7, Theorem 2.19 and Remark 2.20], that if yZB 6D ¿, then yZB D

ZB D %.AB/ \ %.AB1/. Summing up, one has the following result.
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Theorem 2.9. Assume that hypotheses (2.2), (2.3), and (2.4) hold and that yZB defined
in (2.17) is not empty. Then, for any z 2 %.AB/ \ %.AB1/, the resolvent RB

z in (2.7)
has the representation (2.28) and

RB
z D R

B1
z CG

B1
z
yƒB
zG

B1�
Nz ; z 2 %.AB/ \ %.AB1/; (2.29)

where RB1z , GB1z and yƒB
z are defined in (2.22), (2.24), and (2.15).

Remark 2.10. Let us notice that the resolvent formula (2.29) is of the same kind of
the one in (2.23), whenever one replaces A with AB1 .

Let us now introduce the map

O�BW dom.AB/! h�2; O�B.R
B
zu/ WD

yƒB
zG

B1�
Nz u:

By the definition of �B in (2.12) and by (2.25), (2.26), one obtains the relation

�Bu D �
�
1B1�1u˚ O�Bu:

Then, by using the same kind of arguments as in the proofs of Lemma 2.5 and Theo-
rem 2.6, one gets the following.

Theorem 2.11. Let AB be the self-adjoint operator in Theorem 2.9. Then, for any
z 2 %.AB/ \ %.AB1/, one has the representation

dom.AB/ D ¹u 2 HWuz WD u �GB1z O�Bu 2 dom.AB1/º;

.�AB C z/u D .�AB1 C z/uz :

Moreover,
AB D xAC �

�
1B1�1 C �

�
2 O�B;

and
u 2 dom.AB/ H) B2�2u D B0 O�Bu:

3. The limiting absorption principle and the scattering matrix

Now, given the measure space .M;B; m/, we suppose that H D L2.M;B; m/ �

L2.M/. Given a measurable 'WM ! Œ1;C1/, we define the weighted L2-space

L2'.M;B; m/ � L
2
'.M/ WD ¹uWM ! C measurableW'u 2 L2.M/º:

By ' � 1,
L2'.M/ ,! L2.M/ ,! L2

'�1
.M/ ' L2'.M/�:
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From now on, h�; �i and k � k denote the scalar product and the corresponding norm
on L2.M/; h�; �i' and k � k' denote the scalar product and the corresponding norm on
L2'.M/.

Then we introduce the following hypotheses.

(H.1) AB1 is bounded from above and there exists a positive �1 � sup�.AB1/, such
that RB1z 2 B.L2'.M// for any z 2 %.AB1/ such that Re.z/ > �1.

(H.2) AB1 satisfies a Limiting Absorption Principle (LAP for short), i.e., there exists
a (eventually empty) closed set with zero Lebesgue measure e.AB1/�R such
that, for all � 2 Rne.AB1/, the limits

R
B1;˙

�
WD lim

�&0
R
B1
�˙i�

exist in B.L2'.M/;L2
'�1

.M// and the maps

z 7! RB1;˙z ;

whereRB1;˙z � R
B1
z whenever z 2 %.AB1/, are continuous on .Rne.AB1//[

C˙ to B.L2'.M/;L2
'�1

.M//.

(H.3) For any compact set K � Rne.AB1/ there exists cK > 0 such that for any
� 2 K and for any u 2 L2

'2
.M/ \ ker.RB1;C

�
�R

B1;�

�
/ one has

kR
B1;˙

�
uk � cKkuk'2 :

We split next hypothesis (H4) in two separate points.

(H4.1) AB is bounded from above.

(H4.2) The embedding h2 ,! b2 is compact and there exists a positive number �2 >
sup �.AB1/, such that GB1z 2 B.h�2; L

2
'2C�

.M// for some � > 0 and for any
z 2 %.AB1/ such that Re.z/ > �2.

Then, AB satisfies a Limiting Absorption Principle as well.

Theorem 3.1. Suppose hypotheses (H1)–(H4) hold. Then the limits

R
B;˙
�
WD lim

�&0
RB
�˙i�

exist in B.L2'.M/;L2
'�1

.M// for all �2Rne.AB/, where e.AB/ WD e.AB1/[ �p.AB/,
and e.AB/ne.AB1/ is a (possibly empty) discrete set in Rne.AB1/; the maps z 7!
R
B;˙
z , where RB;˙

z � RB
z whenever z 2 %.AB/, are continuous on .Rne.AB//[C˙ to

B.L2'.M/;L2
'�1

.M//. Moreover,

�ess.AB/ D �ess.AB1/: (3.1)
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Proof. We use [11, Theorem 3.1] (which builds on [18]). By (H1), (2.29), and (H4.2),
R
B1
z andRB

z are in B.L2'.M// and z 7!R
B1
z and z 7!RB

z are continuous since pseudo-
resolvents in B.L2'.M//; AB is bounded from above by (H4.1). Therefore, hypoth-
esis [11, (H1)] holds true. Our hypotheses (H2) and (H3) coincides with the same
ones in [11]. By (H4.2), the embedding b�2 ,! h�2 is compact. From yƒB

z 2 B.b2; b
�
2/

and (2.29), it follows that RB
z �R

B1
z 2 S1.L

2.M/;L2
'2C


.M//. Therefore, hypoth-
esis (H4) in [11] holds and the statement is a consequence of [11, Theorem 3.1].
Finally, (3.1) is an immediate consequence of Weyl’s Theorem.

Let us now assume the following hypothesis.

(H.5) The limits
G
B1;˙

�
WD lim

�&0
G
B1
�˙i�

exist in B.h�2; L
2
'�1

.M// for any � 2 Rne.AB1/ and the maps z 7! G
B1;˙
z ,

where GB1;˙z � G
B1
z if z 2 %.AB1/, are continuous on .Rne.AB1// [C˙ to

B.h�2; L
2
'�1

.M//; moreover, the linear operators GB1;˙z are injective.

Then, by [11, Lemma 3.6], one gets the following.

Lemma 3.2. Assume that (H1)–(H5) hold. Then, for any open and bounded I such
that xI � Rne.AB/, one has

sup
.�;�/2I�.0;1/

kyƒB
�˙i�kh2;h

�
2
< C1:

Moreover, for any � 2 Rne.AB/, the limits

yƒ
B;˙
�
WD lim

�&0

yƒB
�˙i� (3.2)

exist in B.h2; h
�
2/ and

R
B;˙
�
D R

B1;˙

�
CG

B1;˙

�
yƒ
B;˙
�
.G

B1;�

�
/�:

By the same reasoning as at the end of [11, proof of Theorem 5.1], one can
improve the result regarding (3.2).

Corollary 3.3. Suppose hypotheses (H1)–(H5) hold. Then the limits (3.2) exist in
B.b2;b

�
2/.

Before stating the next results, we recall the following.
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Definition 3.4. Given two self-adjoint operatorsA1 andA2 in the Hilbert space H, we
say that completeness holds for the scattering couple .A1; A2/ whenever the strong
limits

W˙.A1; A2/ WD s-lim
t!˙1

eitA1e�itA2P ac
2 ;

W˙.A2; A1/ WD s-lim
t!˙1

eitA2e�itA1P ac
1 ;

exist everywhere in H and

ran.W˙.A1; A2// D Hac
1 ; ran.W˙.A2; A1// D Hac

2 ;

W˙.A1; A1/
�
D W˙.A2; A1/;

where P ac
k

denotes the orthogonal projector onto the absolutely continuous subspace
Hac
k

of Ak . Furthermore, we say the asymptotic completeness holds for the scattering
couple .A1; A2/ whenever, beside completeness, one has

Hac
1 D .H

pp
1 /
?; Hac

2 D .H
pp
2 /
?;

where Hpp
k

denotes the pure point subspace of Ak; equivalently, whenever �sc.A1/ D

�sc.A2/ D ¿.

Our next hypothesis is the following.

(H6) completeness hold for the scattering couple .AB1 ; A/.

Theorem 3.5. Suppose that (H1)–(H6) hold. Then completeness holds for the couple
.AB; A/. Furthermore, if �sc.A/ D ¿ and

(i) the set of accumulation points of e.AB1/\ V�ess.AB1/ is discrete in V�ess.AB1/,

(ii) the boundary of �ess.AB1/ is countable,

then asymptotic completeness holds for the couple .AB; A/.

Proof. By (2.29) and by the same proof as in Lemma 2.4, one gets, for any u 2
dom.AB1/, v 2 dom.AB/,

hu;ABviL2.M/ � hAB1u; viL2.M/ D h�2u; O�Bvih2;h�2
; (3.3)

where

O�BW dom.AB/! h�2; O�B.R
B
zu/ WD

yƒB
zG

B1�
Nz u; u 2 H; z 2 %.AB/ \ %.AB1/:

Then, by hypotheses (H1)–(H5) and by [11, Theorems 2.8 and 3.8] (compare (3.3) and
Lemma 3.2 here with (2.19) and Lemma 3.6 there and notice that hypothesis (H6)
there is included in our hypothesis (H4)) one gets the completeness for the couple
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.AB; AB1/. By (H6) and the chain rule for the wave operators (see [10, Theorem 3.4,
Chapter X]), one then gets completeness for the scattering couple .AB; A/.

To conclude the proof it remains to show that �sc.AB/D¿. Let Hpp
B denote the pure

point subspace of AB and, given u 2 .Hpp
B /
?, we denote by �Bu be the corresponding

spectral measure. By our choice of u, one gets supp.�Bu/ � �cont.AB/ � �ess.AB/ D

�ess.AB1/. Let us define

eess.AB1/ WD e.AB1/ \ V�ess.AB1/;

eess.AB/ WD .e.AB1/ [ �p.AB// \ V�ess.AB1/;

and denote by e0ess.AB1/ the set of accumulation points of eess.AB1/. Since an open
set minus a discrete subset is still open, one has

V�ess.AB1/ne
0
ess.AB1/ D

[
n�1

In;

where the In’s are open intervals. Moreover, since In \ e0ess.AB1/ D ¿, then In \
eess.AB1/ is discrete in In and so Inn.In \ eess.AB1// is open. This yields

Inn.In \ eess.AB1// D
[
m�1

In;m;

where the In;m’s are open intervals. By Theorem 3.1, the set of accumulation points
of e.AB/ne.AB1/ is contained in e.AB1/; therefore In;m \ .e.AB/ne.AB1// is discrete
in In;m. As before,
In;mn.In;m \ .e.AB/ne.AB1/// is open and we get

In;mn.In;m \ .e.AB/ne.AB1/// D
[
`�1

In;m;`;

where the In;m;`’s are open intervals. Hence,

V�ess.AB1/neess.AB/ D V�ess.AB1/n.eess.AB1/ [ eess.AB/neess.AB1//

D

�[
n�1

In [ e
0
ess.AB1/

�
n.eess.AB1/ [ eess.AB/neess.AB1//

D

��[
n�1

Inneess.AB1/
�
[ .e0ess.AB1/neess.AB1//

�
n.e.AB/ne.AB1//

D

� [
n;m�1

In;m [ .e
0
ess.AB1/neess.AB1//

�
n.e.AB/ne.AB1//

D

� [
n;m�1

In;mn.e.AB/n.e.AB1//
�
[ .e0ess.AB1/neess.AB//

D

� [
n;m;`�1

In;m;`

�
[ .e0ess.AB1/neess.AB//:



A. Mantile and A. Posilicano 1074

This gives

supp.�Bu/ � �ess.AB1/ D . V�ess.AB1/neess.AB// [ @�ess.AB1/ [ eess.AB/

D

� [
n;m;`�1

In;m;`

�
[ @�ess.AB1/ [ eess.AB/ [ e

0
ess.AB1/:

By standard arguments (see e.g. [1, proof of Theorem 6.1] or [17, top of p. 178])
applied to any of the open intervals In;m;`, one gets the absolute continuity of the
spectral function � 7! �Bu.�1; �� on any compact interval in In;m;`; hence

supp..�Bu/sing/ � @�ess.AB1/ [ eess.AB/ [ e
0
ess.AB1/

D @�ess.AB1/ [ eess.AB1/ [ .eess.AB/neess.AB1// [ e
0
ess.AB1/:

By Theorem 3.1, e.AB/ne.AB1/ is discrete (hence countable) in Rne.AB1/; by (i)
and (ii), the sets e0ess.AB1/, eess.AB1/ and @�ess.AB1/ are countable. Henceforth, the
support of the singular continuous component of �Bu is contained in a countable set.
This implies supp..�Bu/sing/ D ¿. Therefore, u has a null projection onto HscB , the
singular continuous subspace of AB. This gives .Hpp

B /
? D Hac

B , where Hac
B denote the

absolutely continuous subspace of AB.

3.1. A representation formula for the scattering matrix

According to Theorem 3.5, under the assumptions there stated, the scattering operator

SB WD WC.AB; A/
�W�.AB; A/

is a well-defined unitary map. Let

F WL2.M/ac !

Z̊
�ac.A/

.L2.M/ac/� d�.�/

be a unitary map which diagonalizes the absolutely continuous component ofA, i.e., a
direct integral representation ofL2.M/ac, the absolutely continuous subspace relative
to A, with respect to the spectral measure of the absolutely continuous component
of A (see e.g. [2, Section 4.5.1]). We define the scattering matrix

SB�W .L
2.M/ac/� ! .L2.M/ac/�

by the relation (see e.g. [2, Section 9.6.2])

F SBF �u� D SB�u�:
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Now, following the same scheme as in [11], which uses the Birman–Kato invariance
principle and the Birman–Yafaev general scheme in stationary scattering theory, we
provide an explicit relation between SB

�
and ƒB;C

�
WD lim�&0ƒ

B
�Ci�

.
Given � 2 %.A/ \ %.AB/, we consider the scattering couple .RB

�; R�/ and the
strong limits

W˙.R
B
�; R�/ WD s-lim

t!˙1
eitR

B
�e�itR�P�ac ;

where P�ac is the orthogonal projector onto the absolutely continuous subspace of R�;
we prove below that such limits exist everywhere inL2.M/. Let S�B the corresponding
scattering operator

S�B WD WC.R
B
�; R�/

�W�.R
B
�; R�/:

Using the unitary operator F� which diagonalizes the absolutely continuous compo-
nent of R�, i.e., .F�u/� WD 1

�
.F u/�� 1

�
, � 6D 0 such that �� 1

�
2 �ac.A/, one defines

the scattering matrix

SB;�
�
W .L2.M/ac/�� 1

�
! .L2.M/ac/�� 1

�

corresponding to the scattering operator S�B by the relation

F�S
�
B F
�
�u

�

�
D SB;�

�
u
�

�
:

We introduce a further hypothesis (H7), which we split in four separate points.

(H7.1) A is bounded from above and satisfies a Limiting Absorption Principle: there
exists a (eventually empty) closed set e.A/ � R of zero Lebesgue measure
such that for all � 2 Rne.A/ the limits

R˙� WD lim
�&0

R�˙i�

exist in B.L2'.M/;L2
'�1

.M//.

(H7.2) G1z 2 B.h�1; L
2
'.M// for any z 2 %.A/ and the limits

G
1;˙
�
WD lim

�&0
G1�˙i� (3.4)

exist in B.h�1; L
2
'�1

.M// for any � 2 Rne.A/.

(H7.3) The limits
ƒ
B1;˙

�
WD lim

�&0
ƒ
B1;˙

�˙i�

exist in B.h1; h
�
1/ for any � 2 Rne.AB1/.
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(H7.4) The limits
�2G

1;˙
�
WD lim

�&0
�2G

1
�˙i�

exist in B.b�1;b2/ for any � 2 Rne.AB1/.

Remark 3.6. By

�2G
1
z D �2.�1R Nz/

�
D .�1.�2Rz/

�/� D .�1G
2
Nz /
�;

hypothesis (H7.4) entails the existence in B.b2; b
�
1/, for any � 2 Rne.AB1/, of the

limits
�1G

2;˙
�
WD lim

�&0
�1G

2
�˙i�:

Remark 3.7. Whenever one strengthens hypotheses (H7.2) as in (H5), then, by the
same kind of proof that leads to the existence of the limit (3.2) (see [11, Lemma 3.6]),
one gets the existence of the limits requested in hypotheses (H7.3).

Lemma 3.8. Suppose that (H1)–(H5) and (H7) hold. Then

R
B1;˙

�
D R˙� CG

1;˙
�
ƒ
B1;˙

�
.G

1;�
�
/�; (3.5)

G2z 2 B.h�2; L
2
'.M//; z 2 %.AB1/ \ %.A/I (3.6)

the limits
G
2;˙
�
WD lim

�&0
G2�˙i� (3.7)

exist in B.h�2; L
2
'�1

.M// for any � 2 Rne.AB1/ and

G
B1;˙

�
D G

2;˙
�
CG

1;˙
�
ƒ
B1;˙

�
�1G

2;˙
�
I (3.8)

the limits
ƒ
B;˙
�
WD lim

�&0
ƒB
�˙i�

exist in B.h1 ˚ b2; h
�
1 ˚ b�2/ and

ƒ
B;˙
�
D

�
ƒ
B1;˙

�
Cƒ

B1;˙

�
�1G

2;˙
�
yƒ
B;˙
�

�2G
1;˙
�

ƒ
B1;˙

�
ƒ
B1;˙

�
�1G

2;˙
�
yƒ
B;˙
�

yƒ
B;˙
�

�2G
1;˙
�

ƒ
B1;˙

�
yƒ
B;˙
�

�
(3.9)

D

�
1C

�
ƒ
B1;˙

�
0

0 yƒ
B;˙
�

��
�1G

2;˙
�
yƒ
B;˙
�

�2G
1;˙
�

�1G
2;˙
�

�2G
1;˙
�

0

���
ƒ
B1;˙

�
0

0 yƒ
B;˙
�

�
: (3.10)

Proof. The relation (3.5) is an immediate consequence of (2.22) and (H7.1)–(H7.3).
By (2.24),

G2z D G
B1
z �G

1
zƒ

B1
z �1G

2
z

and (3.6) follows from (H4.2) and (H7.2). Then, Remark 3.6, (H.5) and (H7.3)
entail (3.7) and (3.8). Finally, (3.9) and (3.10) are consequence of (2.26), (2.27),
Corollary 3.3, (H7.3), Remark 3.6 and (H7.4).
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Before stating the next results, let us notice the relations

.�R� C z/
�1
D
1

z

�
1C

1

z
R�� 1z

�
; .�RB

� C z/
�1
D
1

z

�
1C

1

z
RB
�� 1z

�
; (3.11)

Therefore, by (H7.1) and Theorem 3.1, the limits

.�R� C .�˙ i0//
�1
WD lim

�&0
.�R� C .�˙ i�//

�1; � 6D 0; � �
1

�
2 Rne.A/;

(3.12)

.�RB
� C .�˙ i0//

�1
WD lim

�&0
.�RB

� C .�˙ i�//
�1; � 6D 0; � �

1

�
2 Rne.AB/;

(3.13)

exist in B.L2'.M/;L2
'�1

.M//.

Theorem 3.9. Suppose that hypotheses (H1)–(H7) hold. Then the strong limits

W˙.R
B
�; R�/ WD s-lim

t!˙1
eitR

B
�e�itR�P�ac (3.14)

exist everywhere in L2.M/. Moreover, for any � 6D 0 such that � � 1
�
2 �ac.A/ \

.Rne.AB//, one has

SB;�
�
D 1 � 2�i L

�

�
ƒB
�.1CG

�
�.�R

B
� C .�C i0//

�1G�ƒ
B
�/.L

�

�
/�; (3.15)

where

L
�

�
W h�1 ˚ h�2 ! .L2.M/ac/�� 1

�
; L

�

�
.�1 ˚ �2/ WD

1

�
.FG�.�1 ˚ �2//�� 1

�
:

Proof. By (2.7), one has RB
� � R� D G�ƒ

B
�G
�
� and we can use [22, Theorem 40,

p. 178] (notice that the maps there denoted by G and V corresponds to our G�� and
ƒB� respectively). Let us check that the hypotheses there required are satisfied. Since
G�� 2B.L

2.M/;h1˚ h2/, the operatorG� is jR�j1=2-bounded. By (H7.2) and (3.6),
one has Gz 2 B.h�1 ˚ h�2; L

2
'.M// for any z 2 %.AB1/ \ %.A/ � Œ�1;C1/ 3 �.

Therefore, by (3.12), (3.13), (H7.1), Theorem 3.1 and (H4), the limits

lim
�&0

G��.�R� C .�˙ i�//
�1;

lim
�&0

G��.�R
B
� C .�˙ i�//

�1;

lim
�&0

G��.�R
B
� C .�˙ i�//

�1G�
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exist. Therefore, to get the thesis we need to check the validity of the remaining
hypothesis in [22, Theorem 40, p. 178]: G�� is weakly-R� smooth, i.e., by [22,
Lemma 2, p. 154],

sup
0<�<1

� kG��.�R� C .�˙ i�//
�1
k
2
L2.M/;h1˚h2

� c� < C1; a.e. �:

By (3.11), this is consequence of

sup
0<�<1

� kG��R�� 1
�
˙i�k

2
L2.M/;h1˚h2

� C� < C1; a.e. �: (3.16)

By [11, (3.16)],

�kG�˙i�k
2
h�
1
˚h�

2
;L2.M/

�
1

2
.j� � �j C �/ kG�kh�

1
˚h�

2
;L2'.M/

�
kG��i�kh�

1
˚h�

2
;L2
'�1

.M/

C kG�Ci�kh�
1
˚h�

2
;L2
'�1

.M/

�
:

Then, (3.16) follows from (3.4), (3.7), and the equality

kG��RzkL2.M/;h1˚h2
D k�R�RzkL2.M/;h1˚h2

D k�RzR�kL2.M/;h1˚h2

D kR�.�Rz/
�
kh�
1
˚h�

2
;L2.M/ � kR�kL2.M/;L2.M/kG Nzkh�

1
˚h�

2
;L2.M/:

Thus, by [22, Theorem 40, p. 178], the limits (3.14) exist everywhere in L2.M/ and
the corresponding scattering matrix is given by (3.15), where L

�

�
� WD .F �G��/� D

1
�
.FG��/�� 1

�
.

Theorem 3.10. Suppose that hypotheses (H1)–(H7) hold. Then the scattering matrix
of the couple .AB; A/ has the representation

SB� D 1 � 2�iL�ƒ
B;C
�

L��; � 2 �ac.A/ \ .Rne.AB//;

where L�W h
�
1 ˚ h�2 ! .L2.M/ac/� is the �-independent linear operator defined by

L�.�1 ˚ �2/ WD .� � �/.FG�.�1 ˚ �2//� (3.17)

and ƒB;C
�

is given in (3.9).

Proof. By Theorem 3.5, Theorem 3.9 and by Birman–Kato invariance principle (see
e.g. [2, Section II.3.3]), one has

W˙.AB; A/ D W˙.R
B
�; R�/

and so
SB D S�B :
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Thus, since .F �u/�D 1
�
.F u/�� 1

�
, one obtains (see also [22, equation (14), Section 6,

Chapter 2])
SB� D SB;�

.��C�/�1
: (3.18)

By [11, Lemma 4.2], for any z 6D 0 such that � � 1
z
2 %.AB/ \ %.A/, there holds

ƒB
�.1CG

�
�.�R

B
� C z/

�1G�ƒ
B
� / D ƒ

B
�� 1z

:

Hence, whenever z D �˙ i� and � � 1
�
2 Rne.AB/, one gets, as � # 0,

ƒB
�.1CG

�
�.�R

B
� C .�˙ i0//

�1G�ƒ
B
�/ D ƒ

B;˙
�� 1

�

:

The proof is then concluded by setting L� WD L
�

.��C�/�1
, by Theorem 3.9 and

by (3.18). The operator L� is �-independent by invariance principle (see the proof in
[11, Corollary 4.3] for an explicit check).

Remark 3.11. By (3.9),

ƒ
B;˙
�
D

h
ƒ
B1;˙
z 0
0 0

i
C zƒ

B;˙
�
;

where
zƒ
B;˙
�
WD

�
ƒ
B1;˙

�
�1G

2;˙
�
yƒ
B;˙
�

�2G
1;˙
�

ƒ
B1;˙

�
ƒ
B1;˙

�
�1G

2;˙
�
yƒ
B;˙
�

yƒ
B;˙
�

�2G
1;˙
�

ƒ
B1;˙

�
yƒ
B;˙
�

�
:

Therefore, defining
L1
��1 WD L�.�1 ˚ 0/;

one gets
SB� D SB1

�
� 2�iL�

zƒ
B;C
�

L��;

where
SB1
�
D 1 � 2�iL1

�
zƒ
B1;C

�
.L1

�/
� (3.19)

is the scattering matrix relative to the couple .AB1 ; A/. Moreover, in the case B1 D 0,
defining

L2
��2 WD L�.0˚ �2/;

one gets the following representation formula for the scattering couple .AB0;B2 ; A/
(compare with [11, Corollary 4.3]):

SB0;B2
�

D 1 � 2�iL2
�ƒ

B0;B2;C

�
.L2

�/
�:

Let us further notice that, whenever A is the free Laplacian in L2.R3/ and B1 cor-
responds to a perturbation by a regular potential as in Section 5 below, then (3.19)
gives the usual formula for the scattering matrix for a short-range potential (see, e.g.,
[21, Section 8]).
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4. Kato–Rellich perturbations and their layers potentials

4.1. Potential perturbations

In this section we suppose that the real-valued potential v is of Kato–Rellich type, i.e.,
v 2 L2.R3/C L1.R3/, equivalently,

v D v2 C v1; v2 2 L2.R3/; v1 2 L1.R3/:

We use the same symbol v to denote both the potential function and the corresponding
multiplication operator u 7! vu.

Given � � R3, open and bounded with a Lipschitz boundary � , we define the
Sobolev spaces H s.R3n�/ - H s.R3/ by

H s.R3n�/ WD H s.�/˚H s.�ex/; s � 0:

We refer to [15, Chapter 3] for the definition of the Sobolev spaces H s.R3/, H s.�/

and H s.�/. One has

H s.R3n�/ D H s.R3/; 0 � s < 1=2:

Since (see [15, Theorems 3.29 and 3.30]),

H s.O/� D H�sxO .R3/; s 2 R;

H�s
xO
.R3/ denoting the set of distributions H�s.R3/ with support in xO, one has

H s.R3n�/� D H s.�/� ˚H s.R3nx�/� D H�sx� .R3/˚H�s�c .R
3/ ,! H�s.R3/:

Let us notice that

B.H s.R3n�/;H t .R3n�/�/ ,! B.H s.R3/;H�t .R3//; s; t � 0; (4.1)

and

B.H�s.R3/;H t .R3// ,! B.H s.R3n�/�;H t .R3n�//; s; t � 0:

Lemma 4.1. We have

v 2 B.H 1Cs.R3n�/;H 1�s.R3n�/�/; �1 � s � 1: (4.2)

Proof. Given u D uin ˚ uex 2 H
2.R3n�/ one has

kv1ukL2.R3/ � kvkL1.R3/kukL2.R3/ � kvkL1.R3/kukH2.R3n�/:
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and

kv2ukL2.R3/ D kv2kL2.�/kuinkL1.�/ C kv2kL2.R3nx�/kuexkL1.R3nx�/

. kv2kL2.�/kuinkH2.�/ C kv2kL2.R3nx�/kuexkH2.R3nx�/

. kv2kL2.R3/kukH2.R3n�/:

Hence, v 2 B.H 2.R3n�/;L2.R3//. Then, for any u; v 2 H 2.R3n�/, one has

jhvu; viH2.R3n�/�;H2.R3n�/j D jhvu; viL2.R3/j

D jhu; vviL2.R3/j

� kvkH2.R3n�/;L2.R3/kukL2.R3/kvkH2.R3n�/;

and so u 7! vu extends to a map in B.L2.R3/;H 2.R3n�/�/. The proof is then con-
cluded by interpolation.

In the following, Rz denotes the resolvent of the free Laplacian, i.e.,

Rz WD .��C z/
�1
2 B.H s.R3/;H sC2.R3//; s 2 R: (4.3)

Since v is of Rellich–Kato type, one has (see, e.g., [10, Section 3, �5, Chapter V]) the
following result.

Theorem 4.2. The operator�C vWH 2.R3/�L2.R3/!L2.R3/ is self-adjoint and
semi-bounded from above. Moreover, for z 2 C sufficiently far away from .�1; 0�,

kvRzkL2.R3/;L2.R3/ < 1;

and
Rv
z WD .�.�C v/C z/�1 D Rz CRz.1 � vRz/�1vRz; (4.4)

.1 � vRz/�1 D
C1X
kD0

.vRz/k 2 B.L2.R3//: (4.5)

Remark 4.3. Let us notice that Theorem 4.2 could be obtained by Corollary 2.7 by
taking �1u WD u and B1 D v. Hence, (4.4) holds for any z in %.�C v/ \Cn.�1; 0�

and .1C vRz/�1 2 B.L2.R3// there.

Remark 4.4. By (4.3), (4.4), (4.5), (4.2) and (4.1), one hasRv
Nz 2B.L

2.R3/;H 2.R3//

and hence .Rv
Nz/
� 2 B.H�2.R3/; L2.R3//. Since .�C v/ is self-adjoint in L2.R3/,

.Rv
Nz/
�jL2.R3/ D Rv

z . Therefore, Rv
z WL

2.R3/ � H�2.R3/! L2.R3/ extends to an
operator in B.H�2.R3/; L2.R3// which, by abuse of notation, we still denote by Rv

z

and which coincides with .Rv
Nz/
�. Then, by interpolation, one gets

Rv
z 2 B.H s�1.R3/;H sC1.R3//; �1 � s � 1: (4.6)
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Remark 4.5. By (4.4),

.1 � vRz/�1v D .��C z/Rv
z.��C z/ � .��C z/:

Hence, by (4.6), .1 � vRz/�1v 2 B.H 2.R3/; L2.R3// extends to a map

ƒv
z 2 B.H sC1.R3/;H s�1.R3//; �1 � s � 1: (4.7)

With such a notation, Rv
z in (4.6) has the representation

Rv
z D Rz CRzƒ

v
zRz; ƒv

zjH
2.R3/ D .1 � vRz/�1v: (4.8)

Remark 4.6. Since

kRzvkL2.R3/;L2.R3/ D k.Rzv/
�
kL2.R3/;L2.R3/ D kvR NzkL2.R3/;L2.R3/ < 1

whenever z 2 C is sufficiently far away from .�1; 0�, one has

.1 �Rzv/�1 D
C1X
kD0

.Rzv/k 2 B.L2.R3// (4.9)

and
v.1 �Rzv/�1 2 B.L2.R3/;H�2.R3//:

Then,

..1 �Rzv/�1v/� D .v.1 �Rzv/�1/� D v..1 �Rzv/�/�1 D v.1 �R Nzv/�1

and so

B.H�2.R3/;L2.R3// 3 .Rv
z/
�
DR Nz CR Nzv.1�R Nzv/�1R Nz DRv

Nz DR Nz CR Nzƒ
v
NzR Nz :

Therefore
ƒv
zjL

2.R3/ D v.1 �Rzv/�1: (4.10)

Lemma 4.7. One has

ƒv
z 2 B.H 1Cs.R3n�/;H 1�s.R3n�/�/; �1 � s � 1: (4.11)

Proof. By Lemma 4.1 and by (4.5), one has

ƒv
z D .1C vRz/�1v 2 B.H 2.R3n�/;L2.R3//:

By Lemma 4.1, (4.9) and (4.10), ƒv
z 2 B.L2.R3/; H 2.R3n�/�/. The proof is then

concluded by interpolation.

By H 1�s.R3n�/� ,! H s�1.R3/ and (4.3) one has the following result.



Scattering theory with both regular and singular perturbations 1083

Corollary 4.8. For 0 � s � 2,

Rzƒ
v
z 2 B.H s.R3n�/; H s.R3//; (4.12)

In later proofs, we will need the estimate provided in the following fact.

Lemma 4.9. There exist c1 > 0, c2 > 0 such that, for any u� uin˚ uex 2H
1.R3n�/

and for any � > 0, there holds

jhvu; uiH1.R3n�/�;H1.R3n�/j

� c1�.kruink
2
L2.�in/

C kruexk
2
L2.�ex/

/C c2.1C �
�3/kuk2

L2.R3/: (4.13)

Proof. By H 1.�in/ex/ ,! H 3=4.�in/ex/ ,! L4.�in/ex/, by the Gagliardo–Nirenberg
inequalities (see [6] for the interior case and [8] for the exterior one)

kuinkL4.�in/
. kuinkH3=4.�in/

. kuink
3=4

H1.�in/
kuink

1=4

L2.�in/
;

kuexkL4.�ex/
. kruexk

3=4

L2.�ex/
kuexk

1=4

L2.�ex/

and, by Young’s inequality,

xy �
1

˛
.�x˛ C .˛ � 1/��1=.˛�1/ y

˛�1
˛ /; x; y; � > 0; ˛ > 1;

one gets

kuk2
L4.R3/ . �.kruink

2
L2.�in/

C kuk2
L2.�in/

C kruexk
2
L2.�ex/

/C
1

3
��3kuk2

L2.R3/:

The proof is then concluded by

jhvu; uiH1.R3n�/�;H1.R3n�/j

� kv2kL2.R3/kuk
2
L4.R3/ C kv1kL1.R3/kuk

2
L2.R3/:

Lemma 4.10. For any z 2 C sufficiently far away from .�1; 0�, one has

kvRzkH�1.R3/;H�1.R3/ < 1

and

.1 � vRz/�1 D
C1X
kD0

1

kŠ
.vRz/k 2 B.H�1.R3//:

Furthermore,
.1 � vRz/�1 2 B.H 1.R3n�/�/:
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Proof. By (4.13) and by the polarization identity, for any u and v in H 1.R3/ one has

jhvu; viH�1.R3/;H1.R3/j

�
1

4
.c1� h��u; viH�1.R3/;H1.R3/ C c2.1C �

�3/hu; viH�1.R3/;H1.R3//

which gives

kvukH�1.R3/

�
1

4
.c1� k ��ukH�1.R3/ C c2.1C �

�3/kukH�1.R3//

�
1

4
.c1� k.��C z/ukH�1.R3/ C .c1� jzj C c2.1C �

�3//kukH�1.R3//:

The proof is then concluded by taking u D Rzuı, uı 2 H�1.R3/, and by

kRzuıkH�1.R3/ D kR
1=2
1 RzuıkL2.R3/ D kRzR

1=2
1 uıkL2.R3/

� kRzkL2.R3/;L2.R3/kuıkH�1.R3/

� d�1z kuıkH�1.R3/;

where dz is the distance of z from Œ0;C1/.
Let us now recall the well-known resolvent identity in B.L2.R3//:

.1 � vRz/�1 D 1 � vRv
z : (4.14)

Since the operators in both sides of the above identity are in B.H�1.R3//, it extends
to B.H�1.R3//. By (4.6),

Rv
z 2 B.H�1.R3/;H 1.R3// ,! B.H 1.R3n�/�;H 1.R3n�//I

by (4.2),
v 2 B.H 1.R3n�/;H 1.R3n�/�/I

then
.1 � vRv

z/ 2 B.H 1.R3n�/�/:

By (4.14), this implies that 1 � vRz is a bounded bijection from H 1.R3n�/� onto
itself. Therefore, by the Inverse Mapping Theorem, .1 � vRz/�1 2 B.H 1.R3n�/�/

and (4.14) holds in B.H 1.R3n�/�/.

Remark 4.11. By Lemma 4.10,

ƒv
zjH

1.R3n�/ D .1 � vRz/�1v:
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By .1 � vRz/�1 2 B.H�1.R3// and by v 2 B.H 1.R3/;H�1.R3// one gets

.1 � vRz/�1v 2 B.H 1.R3/;H�1.R3//:

Thus, by (4.7) and (4.8),

ƒv
zjH

s.R3/ D .1 � vRz/�1v; 1 � s � 2:

By duality, similarly to Remark 4.6, .1�Rzv/�1 2 B.H 1.R3// and (4.10) improves
to

ƒv
zjH

s.R3/ D v.1 � vRz/�1; 0 � s � 1:

4.2. Boundary layer operators

We introduce the interior/exterior Dirichlet and Neumann trace operators


 in/ex
0 WH sC1=2.�in/ex/! Bs2;2.�/; s > 0;


 in/ex
1 WH sC3=2.�in/ex/! Bs2;2.�/; s > 0;

where �in � � and �ex WD �ex. The Besov-like trace spaces Bs2;2.�/ identify with
H s.�/ when jsj � k C 1 and � is of class Ck;1 (see [9]). Then, we define, for any
s > 0, the bounded linear operators


0WH
sC1=2.R3n�/! Bs2;2.�/; 
0u WD

1

2
.
 in
0 .uj�in/C 


ex
0 .uj�ex//; (4.15)


1WH
sC3=2.R3n�/! Bs2;2.�/; 
1u WD

1

2
.
 in
1 .uj�in/C 


ex
1 .uj�ex//:

The corresponding trace jump bounded operators are defined by

Œ
0�WH
sC1=2.R3n�/! Bs2;2.�/; Œ
0�u WD 


in
0 .uj�in/ � 


ex
0 .uj�ex/;

Œ
1�WH
sC3=2.R3n�/! Bs2;2.�/; Œ
1�u WD 


in
1 .uj�in/ � 


ex
1 .uj�ex/:

By [15, Lemma 4.3], the trace maps 
 in/ex
1 can be extended to the spaces

H 1
�.�in/ex/ WD ¹uin/ex 2 H

1.�in/ex/W��in/exuin/ex 2 L
2.�in/ex/º

as H�1=2.�/-valued bounded operators:


 in/ex
1 WH 1

�.�in/ex/! H�1=2.�/:

This gives the extensions of the maps 
1 and Œ
1� defined on

H 1
�.R

3
n�/ WD H 1

�.�in/˚H
1
�.�ex/

with values in H�1=2.�/.
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Then, for any z 2 Cn.�1; 0�, one defines the single and double-layer operators

SLz WD .
0R Nz/� D Rz
�0 2 B.B�s2;2.�/;H
3=2�s.R3//; s > 0; (4.16)

DLz WD .
1R Nz/� D Rz
�1 2 B.B�s2;2.�/;H
1=2�s.R3//; s > 0: (4.17)

By (4.15), one has

Sz WD 
0 SLz 2 B..H s�1=2.�/;H sC1=2.�///; �1=2 < s < 1=2:

By the mapping properties of the double-layer operator, one gets1 (see [15, Theo-
rem 6.11])

DLz 2 B.H 1=2.�/;H 1.R3n�//:

Hence, by
.�.��in ˚��ex/C z/DLz D 0;

one gets
DLz 2 B.H 1=2.�/;H 1

�.R
3
n�//:

Thus
Dz WD 
1 DLz 2 B.H 1=2.�/;H�1=2.�//:

These mapping properties can be extended to a larger range of Sobolev spaces (see
[15, Theorem 6.12 and successive remarks]):

SLz 2 B.H s�1=2.�/;H sC1.R3//; � 1=2 � s � 1=2; (4.18)

Sz 2 B.H s�1=2.�/;H sC1=2.�//; � 1=2 � s � 1=2; (4.19)

DLz 2 B.H sC1=2.�/;H sC1.R3n�//; � 1=2 � s � 1=2; (4.20)

Dz 2 B.H sC1=2.�/;H s�1=2.�//; � 1=2 � s � 1=2; (4.21)

and, whenever s � 0 in (4.18), (4.20) above, the following jump relations hold (see
[15, Theorem 6.11]):

Œ
0�SLz D 0; Œ
1�SLz D �1;

Œ
0�DLz D 1; Œ
1�DLz D 0:

1here and below we can avoid the introduction of the cutoff function � appearing in [15,
Theorems 6.11–6.13] since we are dealing with the constant coefficients strongly elliptic oper-
ator ��C z (compare [15, Theorem 6.1] with [15, equation (6.10)])
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Whenever the boundary � is of class C1;1 one gets an improvement as regards the
regularity properties of the single- and double-layer operators (see [15, Theorem 6.13
and Corollary 6.14]):

SLz 2 B.H s�1=2.�/;H sC1.R3n�//; 1=2 < s � 1; (4.22)

DLz 2 B.H sC1=2.�/;H sC1.R3n�//; 1=2 < s � 1: (4.23)

By (4.16), (4.17), and (4.12) one has the following result.

Lemma 4.12. For any z 2 %.�C v/ \ .Cn.�1; 0�/,

SLv
z WD R

v
z

�
0 D SLzCRzƒv

z SLz 2 B.B�s2;2.�/;H
3=2�s.R3//; 0 < s � 3=2;

(4.24)

DLv
z WD R

v
z

�
1 D DLzCRzƒv

z DLz 2 B.B�s2;2.�/;H
1=2�s.R3//; 0 < s � 1=2:

By (4.18), (4.20), and (4.12), one has the following result.

Lemma 4.13. We have

SLv
z 2 B.H s�1=2.�/;H sC1.R3//; �1=2 � s � 1=2; (4.25)

DLv
z 2 B.H sC1=2.�/;H sC1.R3n�//; �1=2 � s � 1=2: (4.26)

By (4.22), (4.23), and (4.12), one has

Lemma 4.14. Let � 2 C1;1. Then

SLv
z 2 B.H s�1=2.�/;H sC1.R3n�//; 1=2 < s � 1;

DLv
z 2 B.H sC1=2.�/;H sC1.R3n�//; 1=2 < s � 1: (4.27)

By either (4.24) or (4.25) one has


0 SLv
z D Sz C 
0Rzƒ

v
z SLz 2 B.H s�1=2.�/;H sC1=2.�//; �1=2 < s < 1=2:

(4.28)
Since 
0Rz D .R Nz
�0 /

� D SL�Nz , one gets the following improvement of (4.28).

Lemma 4.15. We have

S vz WD Sz C SL�Nz ƒ
v
z SLz 2 B.H s�1=2.�/;H sC1=2.�//; �1=2 � s � 1=2:

Proof. By (4.18) and duality, SL�Nz 2 B.H�1�s.R3/; H 1=2�s.�//. The proof is then
concluded by (4.19), (4.11), and (4.18).

If � 2 C1;1, then, by (4.27),


1DLv
z DDz C 
1Rzƒ

v
z DLz 2B.H sC1=2.�/;H s�1=2.�//; 1=2 < s � 1: (4.29)
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Since 
1Rz D .R Nz

�
1 /
� D DL�

Nz , one can improve (4.29) even without requiring
� 2 C1;1.

Lemma 4.16. We have

Dv
z WD Dz C DL�Nz ƒ

v
z DLz 2 B.H sC1=2.�/;H s�1=2.�//; �1=2 � s � 1=2:

Proof. By (4.20) and duality, DL�
Nz 2 B.H sC1.R3n�/�; H�s�1=2.�//. The proof is

then concluded by (4.21), (4.11), and (4.20).

In order to prove the jump relations of the double-layer operator relative to �C v
we need a technical result.

Lemma 4.17. If v 2 H 1.R3n�/�, then we have Œ
1�Rzv D 0 in H�1=2.�/ for any
z 2 Cn.�1; 0�.

Proof. At first let us notice that it suffices to show that the result holds for a single
z 2Cn.�1; 0�. Indeed, by the resolvent identityRwvDRzvC .z �w/RwRzv, one
getsRwRzv 2H 3.R3/� ker.Œ
1�/. In particular, we choose z such that ker.Sz/D¹0º
(see, e.g., Lemma (4.19) below).

Given v 2H 1.R3n�/�DH�1
x�
.R3/˚H�1�c .R

3/�H�1.R3/ and � 2 C1comp.R
3/

such that � D 1 on a compact set containing an open neighborhood of x�, let us set
u WD �Rzv. Since 
 in/ex

1 u D 
 in/ex
1 Rzv, it suffices to show that Œ
1�u D 0.

Let us define uin/ex WD �Rzvj�in/ex 2H
1.�in/ex/, fin/ex WD ..��C z/�Rzv/j�in/ex 2

H 1.�in/ex/ and gin/ex WD 

in/ex
0 uin/ex 2H

1=2.�/. Then uin/ex solves the Dirichlet bound-
ary value problems ´

.���in/ex C z/uin/ex D fin/ex;


 in/ex
0 uin/ex D gin/ex;

and so, by [15, Theorems 7.5 and 7.15] (notice that both uex and fex have a com-
pact support; in particular, the radiation condition Muex D 0 there required is here
satisfied),  in/ex WD 


in/ex
1 uin/ex 2 H

�1=2.�/ satisfy the equations

Sz in/ex D
1

2
.1CDz/gin/ex � 
0Rzv:

Since uin˚ uexD�Rzv 2H
1.R3/, one has ginDgex and so Œ
1�RzvD in � exD0

is consequence of ker.Sz/ D ¹0º.

Lemma 4.18. If s � 0 in (4.25) and (4.26), then

Œ
0�SLv
z D 0; Œ
1�SLv

z D �1; (4.30)

Œ
0�DLv
z D 1; Œ
1�DLv

z D 0: (4.31)
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Proof. Œ
0� SLv
z D 0 is consequence of ran.SLv

z/ � H
1.R3/ and, by (4.12), one gets

ran.Rzƒv
zDLz/�H 1.R3/; so Œ
0�DLv

z D Œ
0�DLzCŒ
0�Rzƒv
zDLz D Œ
0�DLz D 1.

Since

ƒv
z SLz 2 B.H s�1=2.�/;H 1�s.R3n�/�/

and

ƒv
z DLz 2 B.H sC1=2.�/;H 1�s.R3n�/�/;

by Lemma 4.17 one gets

Œ
1�SLv
z D Œ
1�SLzCŒ
1�Rzƒv

z SLz D Œ
1�SLz D �1

and
Œ
1�DLv

z D Œ
1�DLzCŒ
1�Rzƒv
z DLz D Œ
1�DLz D 0:

When v D 0, it is well known that the boundary layer operators have bounded
inverses. This property is next extended to the operators relative to �C v.

Lemma 4.19. There exist Zıv;d and Zıv;n, not empty open subsets of %.�C v/, such
that

.S vz/
�1
2 B.H 1=2.�/; H�1=2.�// for all z 2 Zıv;d ;

.Dv
z/
�1
2 B.H�1=2.�/; H 1=2.�// for all z 2 Zıv;n:

In particular, there exists �v > sup �.� C v/ such that Œ�v;C1/ � Zıv;d \ Z
ı
v;n;

furthermore, Zıv;d \ Z
ı
0;d
6D ¿, Zıv;n \ Z

ı
0;n 6D ¿, and both Zıv;d and Zıv;n can be

chosen to be symmetric with respect to the real axis.

Proof. At first, let us notice that it suffices to show that the bounded inverses exist
for any real � � �v for some �v > sup�.�C v/. Then, by the continuity of the maps
z 7! S vz and z 7! Dv

z , the bounded inverses exist in a complex open neighborhood of
Œ�v;C1/.

We proceed as in the proof of [12, Lemma 3.2]. By

.�.�C v/C �/SLv
� j�in/ex D 0;

by Green’s formula and by (4.30), one gets, for any � 2 H�1=2.�/,

0 D kr SLv
� �k

2
L2.R3/ � hvSLv

� �;SLv
� �iH�1.R3/;H1.R3/ C � kSLv

� �k
2
L2.R3/

C hŒ
1�SLv
� �; 
0 SL� �iH�1=2.�/;H1=2.�/

D kr SLv
� �k

2
L2.R3/ � hvSLv

� �;SLv
� �iH�1.R3/;H1.R3/ C � kSLv

� �k
2
L2.R3/

� h�; S v��iH�1=2.�/;H1=2.�/:
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Then, by (4.13),

h�; 
0S
v
��iH�1=2.�/;H1=2.�/

� .1 � c1�/kr SLv
� �k

2
L2.R3/ C .� � c2.1C �

�3//kSLv
� �k

2
L2.R3/:

Choosing � > 0 such that c1� < 1 and then � 2 %.�C v/ such that � > c2.1C ��3/
(this is always possible since �C v in bounded from above), one gets

h�; S v��iH�1=2.�/;H1=2.�/ & kSLv
� �k

2
H1.R3/:

By v2B.H 1.R3n�/;H 1.R3n�/�/, Green’s formula applies to a couple uin/ex;vin/ex 2

H 1.�in/ex/ with �uin/ex 2 L
2.�in/ex/,

h.�.�C v/C �/uin/ex; vin/exiH1.�in/ex/�;H1.�in/ex/

D hruin/ex;rvin/exiL2.�in/ex/

� hvuin/ex; vin/exiH1.�in/ex/�;H1.�in/ex/
C � huin/ex; vin/exiL2.�in/ex/

˙ h
 in/ex
1 uin/ex; 


in/ex
0 vin/exiH�1=2.�/;H1=2.�/: (4.32)

By ˇ̌
hvuin/ex; vin/exiH1.�in/ex/�;H1.�in/ex/

ˇ̌
. kuin/exkH1.�in/ex/

kvin/exkH1.�in/ex/
;

equation (4.32) gives

jh
 in/ex
1 uin/ex; 


in/ex
0 vin/exiH�1=2.�/;H1=2.�/j

. .kuin/exkH1.�in/ex/
C k.�.�C v/C �/uin/exkH1.�in/ex/�

/kvin/exkH1.�in/ex/
:

Since 
 in/ex
0 WH 1.�in/ex/! H 1=2.�/ is surjective, finally one gets

k
 in/ex
1 uin/exkH�1=2.�/ . kuin/exkH1.�in/ex/

C k.�.�C v/C �/uin/exkH1.�in/ex/�
:

(4.33)
Then, proceeding as in [12, Lemma 3.2] (compare (3.31) there with (4.33) here), this
yields

h�; S v��iH�1=2.�/;H1=2.�/ & k�k2
H�1=2.�/

and so .S v
�
/�1 2 B.H 1=2.�/;H�1=2.�// by the Lax–Milgram theorem.

As regardsDv
�

, the proof is almost the same. By .�.�C v/C �/DLv
�
j�in/ex D 0,

by Green’s formula and by (4.31), one gets, for any � 2 H 1=2.�/,

0 D kr DLv
� �k

2
L2.�in/

C kr DLv
� �k

2
L2.�ex/

� hvDLv
� �;DLv

� �iH1.R3n�/�;H1.R3n�/ C � kDLv
� �k

2
L2.R3/

C hDv
��; �iH�1=2.�/;H1=2.�/;
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which leads to

�hDv
��; �iH�1=2.�/;H1=2.�/ & kDLv

� �k
2
H1.R3n�/:

Then, proceeding as in [12, Lemma 3.2], by (4.33), this yields

�hDv
��; �iH�1=2.�/;H1=2.�/ & k�k2

H1=2.�/

and so .Dv
�
/�1 2 B.H�1=2.�/;H 1=2.�// by the Lax–Milgram theorem.

5. Laplacians with regular and singular perturbations

Here we apply the abstract results in Section 2, presenting various examples were the
self-adjoint operator A is the free Laplacian �WH 2.R3/ � L2.R3/! L2.R3/ and
AB1 D�C v. All over this section we consider a Kato–Rellich potential vD v2C v1
of short-range type, i.e.,

v2 2L2.R3/; supp.v2/ bounded; jv1.x/j. .1C jxj /��.1C�/; � � 1; � > 0:

(5.1)
We take

h1 D H
2.R3/ ,! b1 D H

1.R3n�/ ,! hı1 D L
2.R3/;

and, introducing the multiplication operator hxi by hxiuWx 7! .1C jxj2/1=2u.x/, we
define

�1WH
2.R3/! H 2.R3/; �1u WD hxi

�su; s � 0; (5.2)

and
B1u WD hxi

2svu; 2s < 1C �: (5.3)

Further, we take either

�2 D 
0WH
2.R3/! h2 D B

3=2
2;2 .�/ ,! b2 D H

sı.�/; 0 < sı � 1=2; (5.4)

or
�2 D 
1WH

2.R3/! h2 D H
1=2.�/ ,! b2 D H

�1=2.�/: (5.5)

Hence, by what is recalled in Section 4.2, either G2z D SLz or G2z D DLz and either

�Gz.u˚ �/ D hxi
�sRzhxi

�suC Sz�

or

�Gz.u˚ �/ D hxi
�sRzhxi

�suCDz�:
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Thus, (2.2) holds. Notice that 
�0 � and 
�1 �, whenever � 2 L2.�/, identify with the
tempered distributions which act on a test function f respectively as

.�ı�/f WD

Z
�

�.x/f .x/ d��.x/; .�ı0�/f WD

Z
�

�.x/�.x/ � rf .x/ d��.x/;

where � is the exterior normal to � . By a slight abuse of notation, in the following we
set 
�0 � � �ı� and �
�0 � ı

0
�� and so, either

��.u˚ �/ D hxi�suC �ı�

or

��.u˚ �/ D hxi�suC �ı0� :

In this framework, given a couple of linear operators B0 and B2 as in (2.3) and such
that the triple BD .B0;B1;B2/ satisfies the hypotheses in Theorem 2.1, equation (2.7)
defines a self-adjoint operator�B representing a Laplacian with a Kato–Rellich poten-
tial and a distributional one supported on � . Let us remark that, although �1 and B1
depend on the index s, the operator�B is s-independent whenever B0 and B2 are (see
the next subsections). The choice s 6D 0 is a technical trick which we use to obtain
LAP and a representation formula for the scattering couple .�B; �/; whenever one
is only interested in providing a resolvent formula for �B, then the choice s D 0 is
preferable. In particular, the resolvent formula for �B holds in the setting s D 0 for
any Kato–Rellich potential.

5.1. The Schrödinger operator

By our hypotheses on v, one has hxi2sv 2 L2.R3/CL1.R3/ and so, by Lemma 4.1,

B1 2 B.H 1.R3n�/;H 1.R3n�/�/:

Considering the weight '.x/D .1C jxj2/w=2, w 2R, we use the notation L2'.R
3/�

L2w.R
3/;H k

w.R
3/,H k

w.R
3n�/ denotes the corresponding scales of weighted Sobolev

spaces.
Since

hxiw 2 B.H 1
w0.R

3
n�/;H 1

w0�w.R
3
n�//

and, by duality,

hxiw 2 B.H 1
w0.R

3
n�/�;H 1

w0Cw.R
3
n�/�/;

one gets

hxi�w�2sB1hxi
w
D v 2 B.H 1

w.R
3
n�/;H 1

�w�2s.R
3
n�/�/: (5.6)
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Since

Rz 2 B.H�1w .R3/;H 1
w.R

3// ,! B.H 1
�w.R

3
n�/�;H 1

w.R
3
n�//; (5.7)

one has

�1G
1
z D hxi

�sRzhxi
�s
2 B.H 1

�w.R
3
n�/�;H 1

wC2s.R
3
n�//:

In particular, this gives

�1G
1
z 2 B.H 1.R3n�/�/;H 1.R3n�//:

For 0 � 2s < 1C � we define

MB1
z D 1 � B1�1G

1
z D 1 � hxi

svRzhxi�s

D hxis.1 � vRz/hxi�s 2 B.H 1.R3n�/�/:

Lemma 5.1. Let v be as in (5.1), with � D 1. Then, for s such that 0 � 2s < 1C �
and for z 2 C sufficiently far away from .�1; 0�,

.1 � vRz/�1 2 B.H 1
�s.R

3
n�/�/:

Equivalently,

.MB1
z /�1 2 B.H 1.R3n�/�/:

Proof. Here we use the same kind of arguments as in the second part of the proof of
Lemma 4.10. Thus, we start from the resolvent identity

.1 � vRz/�1 D 1 � vRv
z : (5.8)

By Lemma 4.10, such an equality holds in B.H 1.R3n�/�/. By (4.6),

Rv
z 2 B.H�1.R3/;H 1.R3// ,! B.H 1.R3n�/�;H 1.R3n�//

,! B.H 1
�s.R

3
n�/�;H 1

�s.R
3
n�//I

by (5.6),
v 2 B.H 1

�s.R
3
n�/;H 1

�s.R
3
n�/�/I

then

.1 � vRv
z/ 2 B.H 1

�s.R
3
n�/�/:

Analogously,

.1 � vRz/ 2 B.H 1
�s.R

3
n�/�/:

By (5.8), this implies that 1 � vRz is a bounded bijection from H 1
�s.R

3n�/� onto
itself. Therefore, by the Inverse Mapping Theorem, .1 � vRz/�1 2 B.H 1

�s.R
3n�/�/

and (4.14) holds in B.H 1
�s.R

3n�/�/.
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Choosing B D .1; B1; 0/, and whenever ZB1 6D ¿, by Corollary 2.7 the operator
�B1 WD �.1;B1;0/ is defined according to the relation

RB1z WD .��B1 C z/
�1
D Rz CRzhxi

�s.MB1
z /�1B1hxi

�sRz;

where z 2 ZB1 D %.�B1/ \ .Cn.�1; 0�/. By Lemma 5.1, ZB1 6D ¿ and by the
relation

ƒB1z D .M
B1
z /�1B1 D hxi

s.1 � vRz/�1hxisv D hxisƒv
zhxi

s; (5.9)

one has
ƒB1z 2 B.H 1.R3n�/;H 1.R3n�/�/: (5.10)

Therefore, Theorem 4.2 (see also Remark 4.3) yields

Rv
z D .�.�C v/C z/�1 D Rz CRzƒv

zRz D .��B1 C z/
�1

for z 2 %.�C v/\Cn.�1; 0�. The above relation shows that�B1 coincides with the
Schrödinger operator �C v provided by the Kato–Rellich theorem. This also shows
that �B1 is s-independent. Nevertheless, the operator ƒB1z depends on the choice of
s and the relations (5.9) and (5.10) with s 6D 0 are key objects in our analysis of LAP
and scattering theory in the general case.

5.2. Asymptotic completeness and scattering matrix

Before discussing the validity of our assumptions, we provide the following general
results on the scattering couple .�B; �/.

Theorem 5.2. Assume (5.1) with � D 1 and let �1, �2 and B1 be defined as in
(5.2)–(5.5). If B is such that (H1)–(H6) hold, then the scattering couple .�B; �/ is
asymptotically complete.

Proof. By hypothesis (5.1) with � D 1, it is well known that for�B1 D�C v one has
�ess.�B1/D .�1; 0�; moreover, by [1, Theorem 3.1], �p.�B1/\ .�1; 0/ is discrete
in .�1; 0/. Hence, by [1, Theorem 4.2], e.�B1/ \ .�1; 0/ is countable with ¹0º as
the eventual set of accumulations points. Therefore, by Theorem 3.5, �sc.�B/ D ¿
and .�B; �/ is asymptotically complete.

In the framework of this section, Theorem 3.10 rephrases as follows.

Theorem 5.3. Assume (5.1) with � D 1 and let �1, �2 and B1 be defined as in
(5.2)–(5.5). If B is such that (H1)–(H7) hold, then the scattering matrix of the cou-
ple .�B; �/ has the representation

SB� D 1 � 2�i L�ƒ
B;C
�

L��; � 2 .�1; 0� \ .Rne.�B//;
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where
ƒ
B;˙
�
D lim
�&0

ƒB
�˙i�;

the limit existing in B.H 1
s .R

3n�/˚H t .�/;H 1
s .R

3n�/� ˚H�t .�//,

ƒB
z WD

�
ƒv
zCƒ

v
zG

2
z
yƒB
z.G

2
Nz
/�ƒv

z ƒ
v
zG

2
z
yƒB
z

yƒB
z.G

2
Nz
/�ƒv

z
yƒB
z I

�
D

�
1C

h
ƒv
z 0

0 yƒB
z

i�
G2z
yƒB
z.G

2
Nz
/� G2z

.G2
Nz
/� 0

�� h
ƒv
z 0

0 yƒB
z

i
and

L�WH 1
s .R

3
n�/� ˚H�t .�/! .L2.M/ac/�; L�.u˚ �/ WD

j�j
1
4

2
1
2

.L1�uC L2��/;

with
G2z D SLz; t D sı; whenever �2 D 
0,

G2z D DLz; t D
1

2
; whenever �2 D 
1,

L1�u.�/ WD Ou.j�j
1=2�/; L2��.�/ WD

1

.2�/
3
2

h�2.�u
�

�
/; �iH t .�/;H�t .�/:

Here Ou denotes the Fourier transform of u and u�
�
.x/ WD ei j�j

1
2 ��x is the plane wave

with direction � in the 2-dimensional unitary sphere S2 � R3 and wavenumber j�j
1
2 ;

� 2 C1comp.R
3/ is such that �j� D 1.

Proof. Taking into account the definition in (3.17), let us set

L�.u˚ �/ WD �L�.hxi
su˚ �/ D �.� � �/.FG�.hxi

su˚ �//�

D � .� � �/.FR��
�
1 hxi

suC FR��
�
2 �//�:

The unitary map F WL2.R3/!
R ˚
.�1;0/

L2.S2/ d� � L2..�1; 0/IL2.S2// diago-
nalizing A D � is given by

.F u/�.�/ WD �
j�j

1
4

2
1
2

Ou.j�j1=2�/:

Therefore, by .� � �/bR�f .j�j1=2�/ D � Of .j�j1=2�/, one gets

.� � �/.FR��
�
1 hxi

su/�.�/ D �
j�j

1
4

2
1
2

Ou.j�j1=2�/:

This gives L1
�

. As regards L2
�

, the computation was given in [11, Theorem 5.1].
The results aboutƒB

z are direct consequences of the definition of L�, Theorem 3.10
and relations (2.26), (2.27), (5.9).
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Remark 5.4. Let us notice that, whenever u 2 L2w.R
3/, w > 3=2,

L1�u.�/ D
1

.2�/
3
2

hu
�

�
; uiL2�w.R3/;L2w.R3/

and so L1
�

and L2
�

have a similar structure.

5.3. Checking the conditions (H1)–(H7)

Next we discuss the validity of (H1)–(H7) in our framework. In particular, we show
that (H1), (H2), (H4.2)–(H7) hold with the choice � D 1 in (5.1), without the need
to specify the operators B0 and B2. We prove (H3) with � D 2, while the validity of
(H4.1), i.e., the semi-boundedness of AB, will be checked case by case in the analysis
of each model.

As in the previous subsections we use the weight '.x/ D .1 C jxj2/w=2,
w 2 R; the notation for the corresponding weighted spaces are L2w.R

3/, H k
w.R

3/,
and H k

w.R
3n�/. From now on, the parameter s in the definitions (5.2) and (5.3) is

restricted to the range
1 < 2s < 1C �: (5.11)

Be aware that in the following proofs the index s labeling the weighted spaces fulfills
the bounds (5.11).

Lemma 5.5. Let v be short-range as in (5.1), with �D 1. Then hypotheses (H1), (H2),
(H6), (H7.1), (H7.2), (H7.3) hold true.

Proof. By [17, Lemma 1, p. 170], Rz D .�� C z/�1 2 B.L2s .R
3// for any z 2

Cn.�1; 0�. Therefore, by the resolvent identity Rv
z D Rz.1 � vR

v
z/, z 2 %.�C v/,

and byRv
z 2B.L

2
s .R

3/;H 2.R3//, hypothesis (H1) is consequence of vD v2C v1 2
B.H 2.R3/; L2s .R

3//. Since v2 has a compact support, v2 2 B.H 2.R3/; L2s .R
3// by

Lemma 4.1. As regards v1, one has

kv1uk2L2s .R3/ D
Z

R3

jv1uj2.1C jxj2/s dx

� c

Z
R3

.1C jxj/�2.1C�/.1C jx2j/sjuj2 dx

� ckuk2
L2.R3/:

By [1, Theorem 4.1], LAP holds for A D �; hence (H7.1) is satisfied. By the short-
range hypothesis on v and by [1, Theorem 4.2], LAP holds for AB1 � �C v as well
and, by [1, Theorems 6.1 and 7.1] asymptotic completeness holds for the scattering
couple .�B1 ; A/ � .�C v; �/. Hence, hypotheses (H1), (H2) and (H6) are verified.
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By Rz 2 B.L2�s.R
3/;H 2

�s.R
3//, one gets

G1�z D hxi
�sRz 2 B.L2�s.R

3/;H 2.R3//

and so, by duality, G1z 2 B.H�2.R3/; L2s .R
3//; moreover, by a similar duality argu-

ment and by R˙
�
2 B.L2s .R

3/;H 2
�s.R

3//, one gets G1;˙
�
2 B.H�2.R3/; L2�s.R

3//.
Thus, hypothesis (H7.2) holds.

By (5.9) and (5.10), we have that hypothesis (H7.3) is equivalent to the existence
in B.H 2

�s.R
3/; H�2s .R3// of lim�&0 ƒ

v
�˙i�

D lim�&0.1 � vR�˙i�/�1v. By (5.1),
v 2 B.H 2

�s.R
3/; L2s .R

3//. Then, lim�&0.1 � vR�˙i�/�1 exists in B.L2s .R
3// (see

[17, proof of Theorem XIII.33, p. 177]) and so (H7.3) holds.

Lemma 5.6. Let v be short-range as in (5.1), with � D 2. Then hypothesis (H3) holds
true.

Proof. The proof is the same as the one for [14, Lemma 4.5], once one proves that

vRv;˙
�
2 B.L22s.R

3//: (5.12)

Since Rv;˙
�
2 B.L22s.R

3/;H 2
�2s.R

3//, (5.12) is consequence of

v D v2 C v1 2 B.H 2
�2s.R

3/; L22s.R
3//: (5.13)

Lemma 4.1 entails v2 2 B.H 2.R3/;L2.R3// and so, since v2 has a compact support,
one gets that v2 satisfies (5.13). As regards v1, one has, by 1 < 2s < 1C �,

kv1uk2L2
2s
.R3/
D

Z
R3

jv1uj2.1C jxj2/2sdx

� c

Z
R3

.1C jxj/�4.1C�/.1C jxj2/4sjuj2.1C jxj2/�2sdx

� c kuk2
L2
�2s

.R3/
� c kuk2

H2
�2s

.R3/

and so v1 satisfies (5.13) as well.

Lemma 5.7. Let v be short-range as in (5.1), with � D 1 and let �2 be either as in
(5.4) or as in (5.5). Then hypotheses (H4.2), (H5), and (H7.4) hold true.

Proof. By the continuity of z 7! R˙z as a B.H�1s .R3/; H 1
�s.R

3//-valued map, one
gets the continuity of z 7! G

1;˙
z D R˙z hxi

�s as a B.H�1.R3/; H 1
�s.R

3//-valued
map. Hence, given �2C1comp.R

3/ such that �D 1 on a compact set containing an open
neighborhood of x�, one gets the continuity of z 7! �R˙z hxi

�s as a B.H 1.R3n�/�;

H 1.R3//-valued map. Therefore, z 7! 
0G
1;˙
z D 
0R

˙
z hxi

�s D 
0�R
˙
z hxi

�s is con-
tinuous as a B.H 1.R3n�/�;H 1=2.�//-valued map. The continuity of z 7! 
1G

1;˙
z D



A. Mantile and A. Posilicano 1098


1R
˙
z hxi

�s D 
1�R
˙
z hxi

�s as a B.H 1.R3n�/�; H�1=2.�//-valued map follows in
an analogous way using the same reasoning as in the proof of Lemma 4.17. In con-
clusion, hypothesis (H7.4) holds true.

Since � is compact, the embeddings h2 ,! b2, where h2 and b2 are as in (5.4)
and (5.5), are compact by standard results on Sobolev embeddings.

Since v 2 B.L2
�.2sC�/

.R3/; L2
1C��.2sC�/

.R3// and .1C vRz/�1 2 B.L2.R3//,
by taking � D 1C � � 2s > 0, one gets ƒv

z 2 B.L2
�.2sC�/

.R3/; L2.R3//. Hence, by
the resolvent formula (4.8) and by Rz 2 B.L2

�.2sC�/
.R3/; H 2

�.2sC�/
.R3//, one gets

Rv
z 2 B.L2

�.2sC�/
.R3/;H 2

�.2sC�/
.R3//. This entails


0R
B1
z D 
0R

v
z D 
0�R

v
z 2 B.L2

�.2sC
/.R
3/; B22;2.�//

and

1R

B1
z D 
1R

v
z D 
1�R

v
z 2 B.L2

�.2sC�/.R
3/;H 1=2.�//:

Then, by duality, one gets GB1z 2 B.h�2; L
2
2sC�.R

3//. This shows that (H4.2) holds.
By [1, Theorem 4.2], the map

.Rne.AB1// [C˙ 3 z 7! RB1;˙z D Rv;˙
z 2 B.L2s .R

3/;H 2
�s.R

3//

is continuous. Hence,

z 7! 
0R
B1;˙
z D 
0R

v;˙
z D 
0�R

v;˙
z

and

z 7! 
1R
B1;˙
z D 
1R

v;˙
z D 
1�R

v;˙
z

are continuous as B.L2s .R
3/; B

3=2
2;2 .�//-valued and B.L2s .R

3/; H 1=2.�//-valued
maps respectively. Then, by duality, we have that z 7! GB1;˙ is continuous on
.Rne.AB1// [C˙ as a B.h�2; L

2
�s.R

3//-valued map. Since 
0WH 2.R2/! B
3=2
2;2 .�/

and 
1WH 2.R2/! H 1=2.�/ are surjective, GB1;˙z 2 B.h�2; L
2
�s.R

3// is the adjoint
of a surjective map and hence is injective. Thus, we proved that (H5) holds.

6. Applications

6.1. Short-range potentials and semi-transparent boundary conditions of
ı� -type

Here we take

h2 D B
3=2
2;2 .�/ ,! b2 D b2;2 D H

sı.�/ ,! hı2 D L
2.�/; 0 < sı < 1=2;

�2 D 
0WH
2.R3/! B

3=2
2;2 .�/; B0 D 1; B2 D ˛;
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where
˛ 2 B.H sı.�/;H�sı.�//; ˛� D ˛:

Let us notice (see [14, Remark 2.6]) that in the case ˛ is the multiplication operator
associated to a real-valued function ˛, then ˛ 2 Lp.�/, p > 2, fulfills our hypothesis.

For any z 2 Cn.�1; 0�, one has

M B
z D 1 �

h
hxi2sv 0
0 ˛

ih
hxi�sRzhxi

�s hxi�sRz

�
0


0Rzhxi
�s 
0Rz


�
0

i
D
�
hxis 0
0 1

�
M v;˛
z

�
hxi�s 0
0 1

�
;

M v;˛
z WD

h
1�vRz �vSLz
�˛ SL�

Nz
1�˛Sz

i
:

By the mapping properties provided in Sections 4.1 and 4.2, by (5.6) and (5.7) with
w D �s, one gets

M v;˛
z 2 B.H 1

�s.R
3
n�/� ˚H�sı.�//:

According to [11, Lemma 5.8], for any z 2 Cn..�1; 0�[ �˛/, where �˛ � .0;C1/
is discrete in .0;C1/, one has

.MB0;B2
z /�1 D .M ˛

z /
�1
WD .1 � ˛Sz/

�1
2 B.H�sı.�//:

Thus

ZB0;B2 D Z˛ WD ¹z 2 Cn.�1; 0�W .M ˛
w/
�1
2 B.H�sı.�//; w D z; Nzº

� Cn..�1; 0� [ �˛/

and

ƒB0;B2z D .MB0;B2
z /�1B2 D ƒ

˛
z WD .1 � ˛Sz/

�1˛ 2 B.H sı.�/;H�sı.�//:

By [14, Corollary 2.4], for any z 2 %.� C v/n�v;˛ , where �v;˛ � %.� C v/ \ R is
discrete in %.�C v/ \R,

. yM B
z /
�1
D . yM v;˛

z /�1 WD .1 � ˛S vz/
�1
2 B.H�sı.�//:

Thus

yZB D yZv;˛ WD ¹z 2 %.�C v/W . yM v;˛
w /�1 2 B.H�sı.�//; w D z; Nzº

� %.�C v/n�v;˛

and

yƒB
z D .

yM B
z /
�1B2 D yƒ

v;˛
z WD .1 � ˛S

v
z/
�1˛ 2 B.H sı.�/;H�sı.�//:
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Hence,

ƒB
z D

�
hxis 0
0 1

�
.M v;˛

z /�1
�
hxi�s 0
0 1

�h
hxi2sv 0
0 ˛

i
D
�
hxis 0
0 1

�
ƒB
z

�
hxis 0
0 1

�
;

where, by Theorem 5.3,

ƒB
z D ƒ

v;˛
z WD

�
ƒv
zCƒ

v
z SLz yƒ

v;˛
z SL�

Nz
ƒv
z ƒ

v
z SLz yƒ

v;˛
z

yƒ
v;˛
z SL�

Nz
ƒv
z

yƒ
v;˛
z

�
D

h
ƒv
z 0

0 yƒ
v;˛
z

i �
1C

h
SLz yƒ

v;˛
z SL�

Nz
SLz

SL�
Nz

0

i� h
ƒv
z 0

0 yƒ
v;˛
z

i
:

One has

ƒv;˛
z 2 B.H 1

�s.R
3
n�/˚H sı.�/;H 1

�s.R
3
n�/� ˚H�sı.�//:

By Theorems 2.1 and 2.9, there follows

Rv;˛
z D Rz C ŒRzhxi

�s SLz �
�
hxis 0
0 1

�
ƒv;˛
z

�
hxis 0
0 1

�h
hxi2svhxi�sRz

˛ SL�
Nz

i
(6.1)

D Rz C ŒRz SLz �
h
ƒv
z 0

0 yƒ
v;˛
z

i �
1C

h
SLz yƒ

v;˛
z SL�

Nz
SLz

SL�
Nz

0

i� h
ƒv
z 0

0 yƒ
v;˛
z

ih
Rz
SL�
Nz

i
(6.2)

D Rv
z C SLv

z
yƒv;˛
z SLv

Nz
�: (6.3)

is the resolvent of a self-adjoint operator �v;ı;˛; (6.1) holds for any z 2 %.�v;ı;˛/ \

Cn.�1; 0�, both (6.2) and (6.3) hold for any z 2 %.�v;ı;˛/ \ %.�C v/.
By Theorem 2.6,

�v;ı;˛u D �uC vuC .˛
0u/ı� :

By (6.3) and by the mapping properties of SLv
z , one has

dom.�v;ı;˛/ � H 3=2�sı.R3/:

Moreover, by Rv
zu 2 H

2.R3/, so that Œ
1�Rv
zu D 0, and by (4.30), one gets

Œ
1�R
v;˛
z u D �yƒv;˛

z SLv
Nz
�u D � O�B.R

v;˛
z u/:

Hence, by Theorem 2.11,

u 2 dom.�v;ı;˛/ H) ˛
0uC Œ
1�u D 0:

Since yZv;˛ contains a positive half-line,�v;ı;˛ is bounded from above and hypothesis
(H4.1) holds. The scattering couple .�v;ı;˛; �/ is asymptotically complete and the
corresponding scattering matrix is given by

Sv;˛
�
D 1 � 2�i L�ƒ

v;˛;C
�

L��; � 2 .�1; 0�n.��p .�C v/ [ ��p .�
v;ı;˛//;
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where L� is given in Theorem 5.3 andƒv;˛;C
�

WD lim�&0ƒ
v;˛
�Ci�

. This latter limit exists
by Lemma 3.8; in particular, by (3.10),

ƒv;˛;C
D

�
1C

�
.1�vRC

�
/�1v 0

0 .1�˛S
v;C
�

/�1˛

��
SLC
�
.1�˛S

v;C
�

/�1˛.SL�
�
/� SLC

�

.SL�
�
/� 0

��
�

�
.1�vRC

�
/�1v 0

0 .1�˛S
v;C
�

/�1˛

�
;

where

R˙� WD lim
�&0

R�˙i�; SL˙� WD lim
�&0

SL�˙i�; S
v;˙
�
WD lim

�&0

0 SLv

�˙i� :

6.2. Short-range potentials and Dirichlet boundary conditions

Here we take

h2 D B
3=2
2;2 .�/ ,! b2 D H

1=2.�/ ,! hı2 D L
2.�/ ,! b2;2 D b�2 D H

�1=2.�/;

�2 D 
0WH
2.R3/! B

3=2
2;2 .�/; B0 D 0; B2 D 1:

For any z 2 Cn.�1; 0�, one has

M B
z D

�
1 0
0 0

�
�

h
hxi2sv 0
0 1

ih
hxi�sRzhxi

�s hxi�sRz

�
0


0Rzhxi
�s 
0Rz


�
0

i
D
�
hxis 0
0 1

�
M v;d
z

�
hxis 0
0 1

�
;

M v;d
z WD

h
1�vRz �vSLz
�SL�

Nz
�Sz

i
:

By the mapping properties provided in Sections 4.1 and 4.2, by (5.6) and (5.7) with
w D �s, one gets

M v;d
z 2 B.H 1

�s.R
3
n�/� ˚H�1=2.�/;H 1

�s.R
3
n�/� ˚H 1=2.�//:

By Lemma 4.19 with v D 0, for any z 2 Zı
0;d
6D ¿,

.MB0;B2
z /�1 D ƒB0;B2z D .M d

z /
�1
D ƒdz WD �S

�1
z 2 B.H 1=2.�/;H�1=2.�//:

Thus,

ZB0;B2 D Zd WD ¹z 2 Cn.�1; 0�W .M d
z /
�1
2 B.H 1=2.�/;H�1=2.�//º � Zı0;d :

By Lemma 4.19 again, for any z 2 Zıv;d 6D ¿,

. yMB0;B2
z /�1 D .yƒB0;B2z /�1 D . yM v;d

z /�1

D yƒv;d
z WD �.S

v
z/
�1
2 B.H 1=2.�/;H�1=2.�//:
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Thus,

yZB D yZv;d WD ¹z 2 %.�C v/W . yM v;d
z /�1 2 B.H 1=2.�/;H�1=2.�//º � Zıv;d :

Hence,

ƒB
z D

�
hxis 0
0 1

�
.M v;d

z /�1
�
hxi�s 0
0 1

�h
hxi2sv 0
0 1

i
D
�
hxis 0
0 1

�
ƒB
z

�
hxis 0
0 1

�
;

where, by Theorem 5.3,

ƒB
z D ƒ

v;d
z WD

h
ƒv
z�ƒ

v
z SLz.Svz/

�1 SL�
Nz
ƒv
z �ƒ

v
z SLz.Svz/

�1

�.Svz/
�1 SL�

Nz
ƒv
z �.Svz/

�1

i
D

h
ƒv
z 0

0 �.Svz/
�1

i �
1C

h
�SLz.Svz/

�1 SL�
Nz

SLz
SL�
Nz

0

i� h
ƒv
z 0

0 �.Svz/
�1

i
:

One has

ƒv;d
z 2 B.H 1

�s.R
3
n�/˚H 1=2.�/;H 1

�s.R
3
n�/� ˚H�1=2.�//:

By Theorems 2.1 and 2.9, there follows that

Rv;d
z D Rz C ŒRzhxi

�s SLz �
�
hxis 0
0 1

�
ƒv;d
z

�
hxis 0
0 1

�h
hxi2svhxi�sRz

SL�
Nz

i
(6.4)

D Rz C ŒRz SLz �
h
ƒv
z 0

0 �.Svz/
�1

i �
1C

h
�SLz.Svz/

�1 SL�
Nz

SLz
SL�
Nz

0

i�
�

h
ƒv
z 0

0 �.Svz/
�1

ih
Rz
SL�
Nz

i
(6.5)

D Rv
z � SLv.S vz/

�1SLv
Nz
� (6.6)

is the resolvent of a self-adjoint operator �v;d ; (6.4) holds for any z 2 %.�v;d / \

Cn.�1; 0�, both (6.5) and (6.6) hold for any z 2 %.�v;d / \ %.�C v/. By (6.3) and
by the mapping properties of SLv

z , one has

dom.�v;d / � H 1.R3/:

By Theorem 2.11 and by Œ
1�u D � O�Bu, for any u 2 dom.�v;d /, one gets

�v;d u D �uC vu � .Œ
1�u/ı�

and
u 2 dom.�v;d / H) 
0u D 0:

Therefore, dom.�v;d / � H 1
0 .�in/˚H

1
0 .�ex/. Since yZv;˛ contains a positive half-

line, �v;d is bounded from above and hypothesis (H4.1) holds. The scattering couple
.�v;d ;�/ is asymptotically complete and the corresponding scattering matrix is given
by

Sv;d
�
D 1 � 2�i L�ƒ

v;d;C
�

L��; � 2 .�1; 0�n.��p .�C v/ [ ��p .�
v;d //;
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where L� is given in Theorem 5.3 andƒv;d;C
�

WD lim�&0ƒ
v;d
�Ci�

. This latter limit exists
by Lemma 3.8; in particular, by (3.10),

ƒv;d;C
D

�
1C

�
.1�vRC

�
/�1v 0

0 �.S
v;C
�

/�1

��
�SLC

�
.S

v;C
�

/�1.SL�
�
/� SLC

�

.SL�
�
/� 0

��
�

�
.1�vRC

�
/�1v 0

0 �.S
v;C
�

/�1

�
;

where

R˙� WD lim
�&0

R�˙i�; SL˙� WD lim
�&0

SL�˙i�; S
v;˙
�
WD lim

�&0

0 SLv

�˙i� :

6.3. Short-range potentials and Neumann boundary conditions

Here we take

h2 D b�2 D b2;2 D H
1=2.�/ ,! hı2 D L

2.�/ ,! b2 D h�2 D b�2;2 D H
�1=2.�/;

�2 D 
1WH
2.R3/! H 1=2.�/; B0 D 0; B2 D 1:

For any z 2 Cn.�1; 0�, one has

M B
z D

�
1 0
0 0

�
�

h
hxi2sv 0
0 1

ih
hxi�sRzhxi

�s hxi�sRz

�
1


1Rzhxi
�s 
1Rz


�
0

i
D
�
hxis 0
0 1

�
M v;n
z

�
hxis 0
0 1

�
;

M v;n
z WD

h
1�vRz �vDLz
�DL�

Nz
�Dz

i
:

By the mapping properties provided in Sections 4.1 and 4.2, by (5.6) and (5.7) with
w D �s, one gets

M v;n
z 2 B.H 1

�s.R
3
n�/� ˚H 1=2.�/;H 1

�s.R
3
n�/� ˚H�1=2.�//:

By Lemma 4.19 with v D 0, for any z 2 Zı0;n 6D ¿,

.MB0;B2
z /�1 D ƒB0;B2z D .M n

z /
�1
D ƒnz WD �D

�1
z 2 B.H�1=2.�/;H 1=2.�//:

Thus,

ZB0;B2 D Zn WD ¹z 2 Cn.�1; 0�W .M n
z /
�1
2 B.H�1=2.�/;H 1=2.�//º � Zı0;n:

By Lemma 4.19 again, for any z 2 Zıv;n 6D ¿,

. yMB0;B2
z /�1 D .yƒB0;B2z /�1 D . yM v;n

z /�1

D yƒv;n
z WD �.D

v
z/
�1
2 B.H�1=2.�/;H 1=2.�//:
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Thus,

yZB D yZn WD ¹z 2 %.�C v/W . yM v;n
z /�1 2 B.H�1=2.�/;H 1=2.�//º � Zıv;n:

Hence,

ƒB
z D

�
hxis 0
0 1

�
.M v;n

z /�1
�
hxi�s 0
0 1

�h
hxi2sv 0
0 1

i
D
�
hxis 0
0 1

�
ƒB
z

�
hxis 0
0 1

�
;

where, by Theorem 5.3,

ƒB
z D ƒ

v;n
z WD

h
ƒv
z�ƒ

v
z DLz.Dv

z/
�1 DL�

Nz
ƒv
z �ƒ

v
z DLz.Dv

z/
�1

�.Dv
z/
�1 DL�

Nz
ƒv
z �.Dv

z/
�1

i
D

h
ƒv
z 0

0 �.Dv
z/
�1

i �
1C

h
�DLz.Dv

z/
�1 DL�

Nz
DLz

DL�
Nz

0

i� h
ƒv
z 0

0 �.Dv
z/
�1

i
:

One has

ƒv;n
z 2 B.H 1

�s.R
3
n�/˚H�1=2.�/;H 1

�s.R
3
n�/� ˚H 1=2.�//:

By Theorems 2.1 and 2.9, there follows that

Rv;n
z D Rz C ŒRzhxi

�s DLz �
�
hxis 0
0 1

�
ƒv;n
z

�
hxis 0
0 1

�h
hxi2svhxi�sRz

DL�
Nz

i
(6.7)

D Rz C ŒRz DLz �
h
ƒv
z 0

0 �.Dv
z/
�1

i �
1C

h
�DLz.Dv

z/
�1 DL�

Nz
DLz

DL�
Nz

0

i�
�

h
ƒv
z 0

0 �.Dv
z/
�1

ih
Rz

DL�
Nz

i
(6.8)

D Rv
z � DLv

z.D
v
z/
�1DLv

Nz
� (6.9)

is the resolvent of a self-adjoint operator �v;n; (6.7) holds for any z 2 %.�v;n/ \

Cn.�1; 0�, both (6.8) and (6.9) hold for any z 2 %.�v;n/ \ %.�C v/. By (6.3) and
by the mapping properties of DLv

z , one has

dom.�v;n/ � H 1.R3n�/:

By Theorem 2.11 and by Œ
0�u D O�Bu for any u 2 dom.�v;n/, one gets

�v;n u D �uC vuC .Œ
0�u/ı0�

and
u 2 dom.�v;n/ H) 
1u D 0:

Since yZv;n contains a positive half-line, �v;n is bounded from above and hypothe-
sis (H4.1) holds. The scattering couple .�v;n; �/ is asymptotically complete and the
corresponding scattering matrix is given by

Sv;n
�
D 1 � 2�i L�ƒ

v;n;C
�

L��; � 2 .�1; 0�n.��p .�C v/ [ ��p .�
v;n//;
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where L� is given in Theorem 5.3 andƒv;n;C
�

WD lim�&0ƒ
v;n
�Ci�

. This latter limit exists
by Lemma 3.8; in particular, by (3.10),

ƒv;n;C
D

�
1C

�
.1�vRC

�
/�1v 0

0 �.D
v;C
�

/�1

��
�DLC

�
.D

v;C
�

/�1.DL�
�
/� DLC

�

.DL�
�
/� 0

��
�

�
.1�vRC

�
/�1v 0

0 �.D
v;C
�

/�1

�
;

where

R˙� WD lim
�&0

R�˙i�; DL˙� WD lim
�&0

DL�˙i�; D
v;˙
�
WD lim

�&0

1 DLv

�˙i� :

6.4. Short-range potentials and semi-transparent boundary conditions of
ı0

�
-type

Here we take

h2 D b�2 D b2;2 D H
1=2.�/ ,! hı2 D L

2.�/ ,! b2 D h�2 D b�2;2 D H
�1=2.�/;

�2 D 
1WH
2.R3/! H 1=2.�/; B0 D �; B2 D 1;

where
� 2 B.H sı.�/;H�sı.�//; 0 < sı < 1=2; �� D �:

Let us notice (see [14, Remark 2.6]) that in the case � is the multiplication operator
associated to a real-valued function � , then � 2 Lp.�/, p > 2, fulfills our hypoth-
esis. Let us also remark that B.H sı.�/; H�sı.�// � B.H 1=2.�/; H�1=2.�// D

B.b�2;b
�
2;2/.

For any z 2 Cn.�1; 0�, one has

M B
z D

�
1 0
0 �

�
�

h
hxi2sv 0
0 1

ih
hxi�sRzhxi

�s hxi�sRz

�
1


1Rzhxi
�s 
1Rz


�
1

i
D
�
hxis 0
0 1

�
M v;�
z

�
hxi�s 0
0 1

�
;

M v;�
z WD

h
1�vRz �vDLz
�DL�

Nz
��Dz

i
:

By the mapping properties provided in Sections 4.1 and 4.2, by (5.6) and (5.7) with
w D �s, one gets

M v;�
z 2 B.H 1

�s.R
3
n�/� ˚H 1=2.�/;H 1

�s.R
3
n�/� ˚H�1=2.�//:

Lemma 6.1. Let Zıv;n 6D ¿ be given as in Lemma 4.19. Then,

.1 � �.Dv
z/
�1/�1 2 B.H�1=2.�// for all z 2 yZıv;n WD Z

ı
v;n \CnR:
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Proof. We follow the same the arguments as in the proof of [11, Lemma 5.4]. Since,
by the compact embedding H�sı.�/ ,! H�1=2.�/, �.Dv

z/
�1 2 B.H�1=2.�// is

compact, by the Fredholm alternative, 1 � �.Dv
z/
�1 has a bounded inverse if and

only if it has trivial kernel. Let ' 2 H�1=2.�/ be such that Dv
z' D �'; using the

self-adjointness of � , we get
.Dv

z �D
v
Nz/' D 0:

By the resolvent identity,
Im.z/
1Rv

NzR
v
z

�
1 ' D 0:

This gives
kRv

z

�
1 'kL2.R3/ D 0:

Since .Rv
z

�
1 /
� D 
1R

v
Nz 2 B.L2.R3/; H 1=2.�// is surjective, the range of Rv

z

�
1 is

closed by the closed range theorem and, by [10, Theorem 5.2, p. 231],

kRv
z

�
1 'kL2.R3/ & k'kH�1=2.�/:

Thus, ker.1 � �.Dv
z/
�1/ D ¹0º and the proof is done.

According to Lemma 6.1 with v D 0, for any z 2 yZı0;n 6D ¿,

.MB0;B2
z /�1 D .M �

z /
�1
D ƒ�z WD .� �Dz/

�1

D �D�1z .1 � �D�1z /�1 2 B.H�1=2.�/;H�1=2.�//:

Thus,

ZB0;B2 D Z� WD ¹z 2 Cn.�1; 0�; .M �
z /
�1
2 B.H�1=2.�/;H�1=2.�//º � yZı0;n:

According to Lemma 6.1 again, for any z 2 yZıv;n 6D ¿,

. yMB0;B2
z /�1 D . yM v;�

z /�1 D yƒv;�
z WD .� �D

v
z/
�1

D �.Dv
z/
�1.1 � �.Dv

z/
�1/�1 2 B.H�1=2.�/;H�1=2.�//:

Thus

yZB D yZv;� WD ¹z 2 %.�C v/W . yM v;�
z /�1 2 B.H�1=2.�/;H�1=2.�//º � yZıv;n:

Hence,

ƒB
z D

�
hxis 0
0 1

�
.M v;�

z /�1
�
hxi�s 0
0 1

��
hxi2sv 0
0 1

�
D
�
hxis 0
0 1

�
ƒB
z

�
hxis 0
0 1

�
;
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where, by Theorem 5.3,

ƒB
z D ƒ

v;�
z WD

�
ƒ
v;�
z ƒv

zCƒ
v
z DLz yƒ

v;�
z DL�

Nz
ƒv
z ƒ

v
z DLz yƒ

v;�
z

yƒ
v;�
z DL�

Nz
ƒv
z

yƒ
v;�
z

�
D

h
ƒv
z 0

0 yƒ
v;�
z

i�
1C

�
DLz yƒ

v;�
z DL�

Nz
DLz

DL�
Nz

0

�� h
ƒv
z 0

0 yƒ
v;�
z

i
:

One has

ƒv;�
z 2 B.H 1

�s.R
3
n�/˚H�1=2.�/;H 1

�s.R
3
n�/� ˚H 1=2.�//:

By Theorems 2.1 and 2.9, there follows that

Rv;�
z D Rz C ŒRzhxi

�s DLz �
�
hxis 0
0 1

�
ƒv;�
z

�
hxis 0
0 1

�h
hxi2svhxi�sRz

DL�
Nz

i
(6.10)

D Rz C ŒRz DLz �
h
ƒv
z 0

0 yƒ
v;�
z

i�
1C

�
DLz yƒ

v;�
z DL�

Nz
DLz

DL�
Nz

0

�� h
ƒv
z 0

0 yƒ
v;�
z

ih
Rz

DL�
Nz

i
(6.11)

D Rv
z C DLv

z
yƒv;�
z DLv

Nz
�: (6.12)

is the resolvent of a self-adjoint operator�v;ı0;� ; (6.10) holds for any z 2 %.�v;ı0;� /\

Cn.�1; 0�, both (6.11) and (6.12) hold for any z 2 %.�v;ı0;� / \ %.�C v/. By (6.3)
and by the mapping properties of DLv

z , one has

dom.�v;ı0;� / � H 1.R3n�/:

By Rv
zu 2 H

2.R3/, so that Œ
1�Rv
zu D 0, and by (4.31), one gets

Œ
0�R
v;�
z u D yƒv;�

z DLv
Nz
�u D O�B.R

v;�
z u/:

Hence, by Theorem 2.11,

�v;ı0;�u D �uC vuC .Œ
0�u/ı0�

and
u 2 dom.�v;ı0;� / H) 
1u D �Œ
0�u:

Proceeding as in [11, Section 5.5] (see the proof of Theorem 5.15 there), �v;ı0;�

is bounded from above and so hypothesis (H4.1) holds. The scattering couple
.�v;ı0;� ; �/ is asymptotically complete and the corresponding scattering matrix is
given by

Sv;�
�
D 1 � 2�i L�ƒ

v;�;C
�

L��; � 2 .�1; 0�n.��p .�C v/ [ ��p .�
v;ı0;� //;
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where L� is given in Theorem 5.3 andƒv;�;C
�
WD lim�&0ƒ

v;�
�Ci�

. This latter limit exists
by Lemma 3.8; in particular, by (3.10),

ƒv;�;C
D

�
1C

�
.1�vRC

�
/�1v 0

0 .��D
v;C
�

/�1

��
DLC
�
.��D

v;C
�

/�1˛.DL�
�
/� DLC

�

.DL�
�
/� 0

��
�

�
.1�vRC

�
/�1v 0

0 .��D
v;C
�

/�1˛

�
;

where

R˙� WD lim
�&0

R�˙i�; DL˙� WD lim
�&0

SL�˙i�; D
v;˙
�
WD lim

�&0

0 DLv

�˙i� :
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