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Scattering theory with both regular and singular perturbations

Andrea Mantile and Andrea Posilicano

Abstract. We provide an asymptotic completeness criterion and a representation formula for
the scattering matrix of the scattering couple (Ag, A), where both A and Ag are self-adjoint
operator and Ag formally corresponds to adding to A two terms, one regular and the other
singular. In particular, our abstract results apply to the couple (Ag, A), where A is the free self-
adjoint Laplacian in L?(R3) and Ag is a self-adjoint operator in a class of Laplacians with both
a regular perturbation, given by a short-range potential, and a singular one describing boundary
conditions (like Dirichlet, Neumann and semi-transparent § and §’ ones) at the boundary of an
open, bounded Lipschitz domain. The results hinge upon a limiting absorption principle for Ag
and a Krein-like formula for the resolvent difference (—Ag + z) ™' — (—A + z)~! which puts
on an equal footing the regular (here, in the case of the Laplacian, a Kato—Rellich potential
suffices) and the singular perturbations.

1. Introduction

The mathematical scattering theory for short-range potential is a well-developed sub-
ject; the existence and completeness of the wave operators can be obtained by two
essentially different approaches: the trace-class method and the smooth method (see,
e.g., [21]). An important object defined in terms of the wave operators is the scattering
operator and, even more important from the point of view of its physical applications,
the scattering matrix, which is its reduction to a multiplication operator in the spectral
representation of the self-adjoint free Laplacian.

The scattering problem for singular perturbations of self-adjoint operators, which
is outside the original scope of these methods, is connected with scattering from
obstacles with impenetrable or semi-transparent boundary conditions (see, e.g., [3,
4,11-14]). On this side, a general scheme has been developed in [11] by combining
the construction in [16] with an abstract version of the Limiting Absorption Principle
(simply LAP in the following) due to W. Renger (see [18]) and a variant of the smooth
method due to M. Schechter (see [19]). In particular, the results in [1 1] apply to obsta-
cle scattering with a large class of interface conditions on Lipschitz hypersurfaces in
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any dimension. Let us recall that in [4] boundary triple theory and properties of the
associated operator-valued Weyl functions were used to obtain a similar representa-
tion of the scattering matrix for singularly coupled self-adjoint extensions. It is worth
to remark that, while the approach in [11] avoids any trace-class condition, these are
needed in [4] and so the applications there are limited to the case of smooth obstacles
in two dimensions.

The target of the present paper is to provide a general framework for the scat-
tering with both potential type and singular perturbations. Since our concern is the
scattering theory with respect to the free Laplacian, we regard the regular and the sin-
gular parts of the perturbation as a single object; this constitutes the main novelty of
our approach. In particular, we give an abstract resolvent formula, generalizing the
one in [16], which puts on an equal footing the two components of the perturbation.
Such a representation is a key ingredient in the derivation of LAP which leads then
to the main results of the first part: the asymptotic completeness and an explicit for-
mula for the scattering matrix. These results rely on a certain number of assumptions
whose validity is carefully analyzed in the second part where we consider the spe-
cific case of a short range potential plus a distributional term, supported on a closed
surface and describing self-adjoint interface conditions. In this way, we obtain new
representation formulae for the scattering matrix which are expected to be relevant in
different physical applications involving wave propagation in inhomogeneous media
with impenetrable or semi-transparent obstacles.

Here, in more details, the contents of the paper. In Section 2, following the scheme
proposed in [16], we provide an abstract resolvent formula for a perturbation Ag of
the self-adjoint A by a linear combination of the adjoint of two bounded trace-like
maps 71:dom(A4) — b and 1: dom(A4) — §,; while the kernel of 1, is required to be
dense, so 7 plays the role of a singular perturbation, no further hypothesis is required
for 71 and in applications that allows ;" to represent a regular perturbation by a short-
range potential. In Section 2.3, by block operator matrices and the Schur complement,
we re-write the obtained resolvent formula in terms of the resolvent of the operator
corresponding to the non-singular part of the perturbations; that plays an important
role in the subsequent part regarding LAP and the scattering theory.

In Section 3, following the scheme proposed in [13] and further generalized
in [11], at first we provide, under suitable hypothesis, a Limiting Absorption Prin-
ciple for Ag (see Theorem 3.1) and then an asymptotic completeness criterion for the
scattering couple (Ag, A) (see Theorem 3.5). Then, by a combination of LAP with
stationary scattering theory in the Birman—Yafaev scheme and the invariance princi-
ple, we obtain a representation formula for the scattering matrix of the couple (Ag, A)
(see Theorem 3.10). Whenever A is the free Laplacian in L?(R?), such a formula con-
tains, as subcases, both the usual formula for the perturbation given by a short-range
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potential as given, e.g., in [21] and the formula for the case of a singular perturbation
describing self-adjoint boundary conditions on a hypersurface as given in [11].

In Section 4, in order to apply our abstract results to the case in which A is the
free 3D Laplacian and the regular part represents a perturbation by a potential, we
give various regularity results for the boundary layer operators associated to A + v,
where v is a potential of Kato—Rellich type.

In Sections 5 and 6, we present various applications, where the free Laplacian
is perturbed both by a regular term, given by a short range potential v decaying as
|x|7(+€)_and by a singular one describing either separating boundary conditions
(as Dirichlet and Neumann ones) or semi-transparent (as § and §'-type ones). In order
to satisfy all our hypotheses, we need k = 2. However, all our hypotheses but a single
one (see Lemma 5.6) hold with « = 1; we conjecture that the requirement k = 2
is merely of technical nature and that our results are true for a short range potential
decaying as |x|~(1*€)_ Finally, let us remark that whenever one is only interested in
the construction of the operators and not in the scattering theory, then it is sufficient
to assume that v is a Kato—Rellich potential (see Section 5.1).

Schrodinger operators with a Kato—Rellich potential plus a §-like perturbation
with a p-summable strength (p > 2) have been already considered in [14], while for
a different construction with a bounded potential and a §- or a §'-like perturbation
with bounded strength we refer to [3]. None of such references considered the scat-
tering matrix (however, [14] provided a limiting absorption principle). Whenever the
singular part of the perturbations is absent, our framework extends from compactly
supported potentials in one dimension to short range potentials in three dimensions
the kind of results provided in [5, Section 5].

Let us notice that, building on the results in [1, 11], the abstract models introduced
in Section 2 and the related scattering theory presented in Section 3 apply to pertur-
bations of the Laplacian in R”, n > 2, with a suitable short-range potential plus a
singular term supported on a bounded hypersurface of codimension one.

1.1. Some notation and definition

We introduce the following notation.

* || - lx denotes the norm on the complex Banach space X; in case X is a Hilbert
space, (-, -)x denotes the (conjugate-linear with respect to the first argument)
scalar product.

* (-, -)x= x denotes the duality (assumed to be conjugate-linear with respect to the
first argument) between the dual couple (X*, X).

e L*:dom(L*) CY* — X* denotes the dual of the densely defined linear operator
L:dom(L) € X — Y in a Hilbert spaces setting L* denotes the adjoint operator.
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0(A) and 0 (A) denote the resolvent set and the spectrum of the self-adjoint opera-
tor A; 0p(A), Oess(A), 0pp(A), Ocont(A), 0ac(A), 0i.(A), denote the point, discrete,
essential, pure point, continuous, absolutely continuous and singular continuous
spectra.

B(X,Y), B(X) = B(X, X), denote the Banach space of bounded linear operator
on the Banach space X to the Banach space Y'; || - || x,y denotes the corresponding
norm.

G0 (X, Y) denotes the space of compact operators on X to Y.

X < Y means that X is continuously embedded into Y.

Q = Q;, C R3 denotes an open and bounded subset with a Lipschitz boundary T';
Qe := R3\Q.

H*(2) and H®(2¢) denote the scales of Sobolev spaces.

HYR\T) := HY(Q) & H*(Qex).

|x| denotes the norm of x € R”. (x) denotes the function x — (1 + |x|?)!/2.
L2 (R3), w € R, denotes the set of complex-valued functions f such that (x)¥ f €
L?(R3).

HE (R3\T):= H(Q) & HS (Qex), where H3 (Q2ex) denotes the weighted Sobolev

space relative to the weight (x)™.

yiMex and yiVexX denote the interior/exterior Dirichlet and Neumann traces on the

boundary T.

vo 1= 35 + ¥ v = 30" + 7).

[vol := vg' — ¥ il := yy" — 7"

SL; and DL, denote the single- and double-layer operators.
S, :=yoSL;, D; := y; DL;.

D C R is said to be discrete in the open set £ O D whenever the (possibly empty)
set of its accumulations point is contained in R\ £; D is said to be discrete when-
ever £ = R.

13 denotes the open part of the set D C R; dD denotes its boundary; D~ :=
D N (—o00,0].

Given x > 0 and y > 0, x < y means that there exists ¢ > O such that x < c y.
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2. An abstract Krein-type resolvent formula

2.1. The resolvent formula

Let A:dom(A) € H — H be a self-adjoint operator in the Hilbert space H. We denote
by R, := (—A + z)7!, z € o(A), its resolvent; one has R, € B(H, Hy), where Hy is
the Hilbert space given by dom(A) equipped with the scalar product

(u)n, = (A% + D)V 2u, (42 + 1)V 20),.
Let
b > b = b, k=12,

be auxiliary Hilbert spaces with dense continuous embedding; we do not identify by
with its dual §7 (however, we use hr = b;*) and we work with the b;-b; duality
(-, -)5;:,5 . defined in terms of the scalar product of the intermediate Hilbert space by .
The scalar product and hence the duality are supposed to be conjugate linear with

respect to the first variable; notice that (¢, ¢>[)ks[)1t = (¢, (p)g* B
ko
Given the bounded linear maps

Te:Ha — b, k=1,2,

such that
ker(t;) is dense in H and ran(z;) is dense in b, 2.1)

we introduce the bounded operators
T:H4 = h1 P by, tu:= 11U D 02U,

and
G hi @b >H, G;:=(Rz)", z€o(A).

We further suppose that there exist reflexive Banach spaces by, k = 1, 2, with dense
continuous embeddings hx < by (hence by < §), such that ran(G,|b] @ b3) is
contained in the domain of definition of some (supposed to exist) (b; & b,)-valued
extension of t (which we denote by the same symbol) in such a way that

1G,|b] ® b5 € B(b] @ b3, b; & by). 2.2)
Given these hypotheses, we set B = (By, B1, B2), with
By € B(b3,b3,), By € B(by,b]), By e B(by,b3,), 2.3)
where b, » is a reflexive Banach space,

By = B¥, BoB} = BB}, (2.4)
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and introduce the map
Zs3z> A2 e B(by @by, bf @b3), AS:=MEH'(Bi® By, (25
where

Zy:={z € 0(A):(My)~" € B(b] @ b3,.b] & b3), w = z,7} (2.6)
M? := (1@ By) — (B1 @ B2)7G; € B(b] & b3, b} & b3 ,).

Theorem 2.1. Suppose hypotheses (2.1), (2.2), (2.3), and (2.4) hold and that Zy
defined in (2.6) is not empty. Then, defined A% as in (2.5),

RE:= R, + G,A%G%, z¢€Zs, 2.7
is the resolvent of a self-adjoint operator Ag and Zg = 0(Ag) N o(A).
Proof. By (2.4), one gets

((1 ® Bo) — (B1 @ B2)tG:)(B1 & B3)
= (B1 ® B>2)((1 ® By) — tGz(B1 @ By))
= (B1 @ B2)((1 ® By) — (B1 @ B»)1G,)™.

This entails, by the definitions (2.5) and (2.6),
(AD)* = AL 2.8)
By the resolvent identity, there follows

(1 ® Bo) — (B1 ® B2)tG;) — (1 ® Bo) — (B1 & B2)1Gy)
= (B1 ® By)1(Gy — G;) = (z—w)(B1 & B2)TRy G,
= (z —w)(B1 ® B2)G3G,

which entails

((1® Bo) — (B1 ® B2)tGw) ™' — (1 ® By) — (B & B2)7G;) ™!
= (z —w)((1 ® Bo) — (B1 ® B2)tGy) ' (B1 ® B2)G5G,
x (1@ Bo) — (B1 ® B2)G,)™",

and hence
ABw — Ag =(z— w)Af'UG;f)GZAE. 2.9)

By (2.8) and (2.9),

(R®*=RE, RE=RE + (w—z2)RERE
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(see [16, p. 113]). Hence, R? is the resolvent of a self-adjoint operator whenever it is
injective (see, e.g., [20, Theorems 4.10 and 4.19]). By (2.7),

(B1 ® B2)TR} = (B @ By)(1 + 1G;AL)G}

= ((B1 ® B») + (B1 @ B»)tG,A%)G}

= ((B1 @ B2) + (1 ® Bo) — (1 & Bo) — (B1 & B1)1G,))AL)G?

= (1@ Bo)ASGE.
Thus, if RZu = 0 then

0®0=(1® Bo)AZGiu = (AZGFu)1 ® Bo(AZGZu),
By
G:(¢1 ® ¢2) = Gl¢1 + G242,  G¥ := (uR2)™,
there follows
0= R%u = R,u + GLH(A G}u); + G2(AEGIu)s = R,u + GZ(A2GZu),. (2.10)
Since the denseness of ker(z,) implies
ran(G2) N dom(4) = {0}

(see [16, Remark 2.9]), the relation (2.10) gives GZ(A8GZu), = 0. Thus, R8u = 0
compels R,u = 0 and hence u = 0.

Finally, the equality Zg = 0(Ag) N @(A) is consequence of [7, Theorem 2.19 and
Remark 2.20]. ]

Remark 2.2. Looking at the previous proof, one notices that Theorem 2.1 holds with-
out requiring the denseness of ran(t;); that hypothesis comes into play in later results.

Remark 2.3. By (2.7),if u € dom(A4g), then u = uy + G;(¢1 D ¢p>) for some ug € Hy
and ¢ @ ¢, € b} @ bJ; hence, by (2.2),

t:dom(Ag) — by @ bs.

2.2. An additive representation

At first, let us introduce the Hilbert space H} defined as the completion of H endowed
with the scalar product

(o vx = (A2 + D)7V, (4% + )7 20).

Notice that R, extends to a bounded bijective map (which we denote by the same sym-
bol) on H} onto H. The linear operator A, being a densely defined bounded operator
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on H to H}, extends to a bounded operator A:H— H given by its closure. Moreover,
denoting by (-, -) H ny the pairing obtained by extending the scalar product in H, since
A is self-adjoint and since dom(A) is dense in H,

(u, Av)y = (/Tu,v)H;»; U €H, v E Hy.

sHa»
Further, we define 7*: hT @ b — H} by
<T*¢v“>Hjl,HA = (¢,TU)5T@53,51@52, u €EHy, ¢ €h] ®YH5.

Obviously, T*(¢1 ® ¢2) = 1{$1 + 75, $2, where 7;7: hr — H}, k = 1,2, are defined
in the same way as 7*.

Let us notice that R;:H} — H is the adjoint, with respect the pairing (-, '>pr” Ui
R;:H4 — H and it is the inverse of (—/T—{— z):H — HY; therefore
G, = R,t". (2.11)

Lemma 2.4. Let Ag:dom(Ag) C H — H be the self-adjoint operator provided in The-
orem 2.1 and define, for any u € H and z € o(Ag) N 0(A),

ps:dom(Ag) — by @63,  ps(Riu) := (7] & DAGIu, (2.12)

where 11 denotes the orthogonal projection onto the subspace ran(ty). Then, the def-
inition of pg is well posed, i.e.,

R} uy = R, uy = (] ® DAL G uy = (n] @ DAL, GLus
and

(u, Agv)y = (Au, v)y + (Tu’va)hler)z,f)T@[)Z’ u € dom(A4), v € dom(4s).
(2.13)

Proof. Letv = R3u = v; + G;A%tv;, where v; := R;u (hence tv; = G}u). Then
(u, Agv)y — (Au, v)y
=—(u, (=4 + 2)v)y + ((—A4 + 2u, v)y
= —u, (A + 2)v ) + (=4 + Du,v; + G, ATV, )y
= ((—A + 2D)u, G, AStv,)y = (T”’AS”Z)fn@bz,b’f@b’z‘
={(m & I)T”’AEWZ)hl@f)z,bf@bz = (tu, (77 ® I)AETUZ)bleabz’bT@b;.

Suppose now that R® U1 = REzuz. Then, by the above identities, one gets, for any
u € dom(A),

<‘E*(7Ti'< @ 1)(A51 G;lul - ASZG; u2)1u)H:§,HA = 0

2
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Hence,
(] @ DAL G uy — (nf @ )AL, GZ uy) = 0.

2
However, ker(t*) Nran((rf @ 1)) = {0} since 7{ @ 1 is the projector onto the sub-
space orthogonal to ker(z™). ]

The next lemma provides a sort of abstract boundary conditions holding for the
elements in dom(A4g).

Lemma 2.5. Let Ag be the self-adjoint operator in Theorem 2.1. Then, for any z €
0(Ag) N o(A), one has the representation

dom(Ag) = {u € H:u,; :=u — G,pgu € dom(A)},

(—Ag + 2)u = (—A + 2)u;.
Moreover,

u € dom(4g) = (nyB1 ® B2)tu = (1 ® Bo)psu.

Proof. Since G, = R,t* (see (2.11) below) and 7y @ 1 is the projection onto the
orthogonal to ker(t*), one has G, = G, (nr{ @ 1). Hence, u € dom(A4g) if and only
ifu =R,v+ G;(n] ® 1)A2G¥v = R.v + G pgu. Therefore,

dom(Ag) = {u € H:u = u; + Gzpgu, u; € dom(A4)}.
Moreover, given any u € dom(A), u = REv, one has
(—A+2)u; = (A +2)Rv = (—Ag + 2)R3v = (—Ag + 2)u.
Finally, given v = R%v € dom(A4s), one has
(7yB1 @ By)tu = (n{ @ 1)(B1 & B2)tREv
= (7'[i|< (&%) 1)((31 (&) Bz)GQU + (B] (&) Bz)‘EGz((l (&) Bo)
— (B1 @ B3)tG:) (B & By)Gzv)

= (7 ® 1)(1 ® Bo)AG:zv

= (1@ Bo)(mry ® DALGzv

= (1 & Bo)psu. [

Now, we provide an additive representation of the self-adjoint Ag in Theorem 2.1.

Theorem 2.6. Let Ag: dom(Ag) € H — H be the self-adjoint operator appearing in
Theorem 2.1. Then

Ag=A+ ¥ pg,
where pg is defined in (2.12). In particular, if By € B(b3 5, b3), then

Ag = A+ 7Byt + tz*Bo_le‘Cz.
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Proof. By (2.13), for any u € dom(Ag) and v € Hy,

(ABM?U>HZ,HA = (Agu,v)y = (u, Av)y + (pBu’Tv>bT®b;sf)l®I)2

= (Au + T PBUL V) iy -
By Lemma 2.5 and by {7} = (m111)* = 17,

t*pg = (7 B111 ® Bo_lBlrz) =1/ Bit1 + r;BO_IBzrz.

2.3. An alternative resolvent formula

At first, let us notice that hypothesis (2.2), can be re-written as
1G5 by € B(bE, b)), j k=12, GX:=(uR:*

Moreover,

B 2
B _ M. Bi71G:
Mz - (l & BO) + (Bl ® Bz)TGZ - |:Bz‘52GZ1 MzBO’Bz]

where
MB1:=1-Bit;G!, MPBoB2.— B, B,1,G2.

1066

Then, supposing all the inverse operators appearing in the next formula exist, by the

inversion formula for block operator matrices, one gets

By._ Bi,_ _ By._ By,_ _
(MB)—l — [(Mz 1) 1+(Mz l) 1311103(05) IBZTZGZI(MZ 1) 1 (M 1) 1Bltl G;(CZB) ! }
z k]

(€31 ByrGL (M)~ (co~!

where C2 denotes the second Schur complement, i.e.,

CP:= MPoB2 — B0, GL(MP) ' Bt G2
= MPoP(1 — (MPoP) 7 By, GH(MPY) T By G2)
= M1~ AP G AR G2,
AB = (1-BiniGH7B,,
AZoP2 = (By — By1aG2) ™' By

(2.14)

(2.15)
(2.16)

Regarding the well-posedness of (2.14), taking into account the definition of C2, one

has

Zs = {z € 0(A): (ME)™" € B(b] ® b3 ,.b ®b3), w =z,7} D Zs,
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where

23 ={z€Zp, NZp,B,:
(1 —ABoB2g,GLABI,G2)7! € B(bY), w =z, 2}, (2.17)
Zp, =14z €0(A): (1 - BiiGL) ' € B(b}), w =z,z}, (2.18)
ZBo.B, = 1{z € 0(A): (Bo — Bo12G) ™' € B(b3,.b3), w=2z.Z}.  (2.19

Therefore, supposing that Z g 1s not empty, for any z € Z g, by (2.7) and by

(CE)71B, = xBAB0:B2 3B .— (1 — ABo:B2g, GIABI 7 G2)7Y,

one has
B B Bg.B B B Bo.B
AB — (MB)_I[BI 0 ] — zl+AzlflG322AZO 2'52G21A2l AzlflchgAzo 2
z z 0 B zepfo-Ba,gip B zepBo-B2
Therefore,
B B Bg.B B B Bg.B
RB — RZ + [Gl Gz] A21+Azlflg§§gl\zo 2B"52G21A2l AZITIGEEEIB}ZO 2 Gzi*
z z
z BEAZO T2 5GlAL ! DEAZO T2 G:*
(2.20)

In particular, taking B = (1, By, 0), one gets, forany z € Z B>

1%
GE

2%
GE

REt = RUBLO) = R, 4 [61 G2][ 47" 0][

0 } =R, + GIABiGH (21

while, taking B = (By, 0, B>), one gets, forany z € Zp, p,,

0o 0 Gl*
T LR I
z z

= R, + G2ABo-B2G2*,
Therefore, by Theorem 2.1 with B = (1, By, 0), one gets the following result.

Corollary 2.7. Let 1y € B(Hg, 1) be such that t; GZ1 |b} € B(bT,by) and let By €
B(by, bY) be self-adjoint; suppose that Zg, defined in (2.18) is not empty. Then

RBV = R, + GIABIGY*, 7€ Zp,, (2.22)

where Af‘ is defined in (2.15), is the resolvent of a self-adjoint operator Ag, and
Zp, = o(4p,) Ne(A).

By Theorem 2.1 with B = (By, 0, B,), one gets the following result.
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Corollary 2.8. Let vp € B(Ha, b2) satisfy (2.1) be such that 11G}|b3 € B(b3, by)
and let By € B(b3, b3 ,), By € B(by, b3 ;) be such that BoBy = By Bg; suppose
that Zp,, B, defined in (2.19) is not empty. Then

RfO’BZ =R, + G?Afo’BzGZZ*, z € Zpy B, (2.23)

where AfO’Bz is defined in (2.16), is the resolvent of a self-adjoint operator Ap,, B,
and Zp,,B, = 0(ABy,B,) N 0(A).
Supposing Z 8 # @, by (2.20), by (2.21) and by the relations
GP = (R = (uR: + nGIAE GI)* (2.24)
= G2+ GIABi1,G?

B — 4 REY = R, + GIABI G (2.25)
= G + p,GIABIGl*

U% = By — B,1oGB' = By — By, G2 + 1,GAB 1 1,G2
= MPBoB2 4 By1,GIABI1,G?
= MPoB2(1  ABo-Big,GIABI7,G2)

A% = (ME)™'By = (Bo — Bo12G21) ™! By = B8 A B0

one gets
B B ~ B B ~
AB — Azl+AzlflG§Agf2GgAzl AzlfngAg (2 26)
z A8, G Afl AB;
B 238 1 2 B
=(1+ A 0 111Gz A G, 1162 A 0 (2 27)
- 0 A8 G} 0 0 AB | )
z z z

Therefore,

B B N B B N
RE =R, + [G! Gz][Az‘+AzlnG§A3rzG;Azl A2111G3A5:||:G;*i|
z 4 -4 z

RerGIaZ Ae G#*
AP1GI AP 1 G2 R% G AP Gl 4 AP 1 G2 A2 G2
A2 Gl AP1Glx 1 RE G2

1A B 1% 1AB 2XB 1A B 1% 1A B 2 XN B 2%

=R, + GABIGI* + GIABI1,G2AB,GIABIG* + GIABI 1, G2ABG2
+ G2AB 0, GIAB I GI* + GZABGH

_ B BB By*
= RP' 4 GBI ABGE™, (2.28)

=&+m@{

This also entails, by [7, Theorem 2.19 and Remark 2.20], that if 4 B # O, then V4 g =
Zg = 0(Ag) N o(Ap,). Summing up, one has the following result.
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Theorem 2.9. Assume that hypotheses (2.2), (2.3), and (2.4) hold and that Z g defined
in (2.17) is not empty. Then, for any z € o(Ag) N 0(Ap,), the resolvent RZ in (2.7)
has the representation (2.28) and

RE=RE + GBIRBGE™, 2 co(4s) No(Ap,)), (2.29)
where RE', G2V and A are defined in (2.22), (2.24), and (2.15).

Remark 2.10. Let us notice that the resolvent formula (2.29) is of the same kind of
the one in (2.23), whenever one replaces A with Ap, .

Let us now introduce the map
ps: dom(Ag) — b3,  Pe(Riu) := KEG?*”-
By the definition of pg in (2.12) and by (2.25), (2.26), one obtains the relation
pgU = 7 Bitiu @ pgu.

Then, by using the same kind of arguments as in the proofs of Lemma 2.5 and Theo-
rem 2.6, one gets the following.

Theorem 2.11. Let Ag be the self-adjoint operator in Theorem 2.9. Then, for any
z € 9(Ag) N 0(AB, ), one has the representation

dom(Ag) = {u e H:u; :=u — GZBIﬁBu € dom(A4p,)},

(=Ap + 2)u = (—Ap, + 2)u;.

Moreover,
1 * * A
Ap = A+ 1 Bit1 + 5 s,

and
u € dom(Ag) = Ba1ou = Bopgu.

3. The limiting absorption principle and the scattering matrix

Now, given the measure space (M, B, m), we suppose that H = L%(M, 8, m) =
L?(M). Given a measurable ¢: M — [1, +00), we define the weighted L2-space

2 — 72 ey . 2
Ly(M,8,m) = L,(M):={u:M — C measurable: pu € L“(M)}.

Byg=>1,
Ly (M) — L*(M) — Lj,_l (M) ~ L3 (M)*.
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From now on, (-,-) and || - || denote the scalar product and the corresponding norm
on L?(M); (-,-), and | - ||, denote the scalar product and the corresponding norm on
2
LZ(M).
Then we introduce the following hypotheses.

(H.1) Ap, is bounded from above and there exists a positive A; > supo (Ap, ), such
that R2! B(Lé(M)) for any z € o(Ap,) such that Re(z) > A;.

(H.2) Ap, satisfies a Limiting Absorption Principle (LAP for short), i.e., there exists
a (eventually empty) closed set with zero Lebesgue measure e(Apg,) C R such
that, for all A € R\e(A4p, ), the limits

RPVF = lim RJL
e\0

exist in B(LZ (M), L;,l (M)) and the maps
Z Rf"i,
where Rf"i = Rfl whenever z € o(Ap, ), are continuous on (R\e(A4p,)) U
Cs 10 B(L2(M). L2, (M)).
(H.3) For any compact set K C R\e(A4p,) there exists cx > 0 such that for any
A € K and for any u € L<202 (M)n kelr(R)]'?l’+ - Rfl’_) one has

B+
IR ull < ckllully2.

We split next hypothesis (H4) in two separate points.
(H4.1) Ag is bounded from above.

(H4.2) The embedding b, < b, is compact and there exists a positive number A, >
supo(Ap, ), such that Gf‘ € B(b3. L32+n(M)) for some 1 > 0 and for any
z € 0(AB,) such that Re(z) > A,.

Then, Ag satisfies a Limiting Absorption Principle as well.
Theorem 3.1. Suppose hypotheses (H1)—(H4) hold. Then the limits

R®* .= lim R%
A 61\3(1) Atie
exist in B(L; (M), Lz,l (M)) for all A € R\e(Ag), where e(Ag) :=e(Ap,) Uop(A4s),
and e(Ag)\e(Ap,) is a (possibly empty) discrete set in R\e(Ap,), the maps z —
R%E where RB* = R® whenever z € o(Ag), are continuous on (R\e(Ag)) U Cy to
B(Lé (M), Li_l (M)). Moreover,

Gess(AB) = o—ess(ABl)- (31)
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Proof. We use [11, Theorem 3.1] (which builds on [18]). By (H1), (2.29), and (H4.2),
RB1 and RB arein 3(L§, (M))and z+—> RZV and z RS are continuous since pseudo-
resolvents in %(Lg, (M)); Ag is bounded from above by (H4.1). Therefore, hypoth-
esis [11, (H1)] holds true. Our hypotheses (H2) and (H3) coincides with the same
ones in [11]. By (H4.2), the embedding b3 < b is compact. From KE € B(bz, b3)
and (2.29), it follows that R® — Rfl € Goo(L?(M), Lizﬂ, (M)). Therefore, hypoth-
esis (H4) in [11] holds and the statement is a consequence of [11, Theorem 3.1].
Finally, (3.1) is an immediate consequence of Weyl’s Theorem. ]

Let us now assume the following hypothesis.

(H.5) The limits

B+ . B
G; """ :=1lim G; .,
A €N Atie

exist in B(h3, Lif‘ (M)) for any A € R\e(Ap,) and the maps z — Gf"i,

where G21% = GBrif 7 € 0(AB, ), are continuous on (R\e(A4p,)) U C4 to
B(bh3. Li” (M)); moreover, the linear operators G * are injective.

Then, by [11, Lemma 3.6], one gets the following.
Lemma 3.2. Assume that (H1)-(HS) hold. Then, for any open and bounded I such
that I C R\e(Ag), one has

sup  [IAGLiclly, 5 < +oo.
(.)€l x(0,1)

Moreover, for any A € R\e(Ag), the limits

et
AYE = tim Al 32)

exist in B(h2, H3) and
B,% By,* By, £ 1B+ B, F
R)™ =RV + G "TAT(GyT) .
By the same reasoning as at the end of [11, proof of Theorem 5.1], one can
improve the result regarding (3.2).

Corollary 3.3. Suppose hypotheses (H1)—(HS) hold. Then the limits (3.2) exist in
B(b2, b3).

Before stating the next results, we recall the following.
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Definition 3.4. Given two self-adjoint operators A; and A, in the Hilbert space H, we
say that completeness holds for the scattering couple (A1, A») whenever the strong
limits
Wi(Ap, Ay) = s-lim e/'41e71142 pac,
t—>+o0
Wi(Ay, Ay) = s-lim e/'42¢=1141 pac,

t—*+o0

exist everywhere in H and
ran(Wi (A1, A2)) = HY*, ran(Wx (A2, 41)) = HY,

Wi(Ar, A1)* = Wi(Az, Ay),

where P/ denotes the orthogonal projector onto the absolutely continuous subspace
Hi of Ag. Furthermore, we say the asymptotic completeness holds for the scattering
couple (A1, A2) whenever, beside completeness, one has

Heic — (HII)P)J_’ ch — (ng)l,
where Hip denotes the pure point subspace of Ay; equivalently, whenever oy.(A1) =
0c(42) = @.
Our next hypothesis is the following.
(H6) completeness hold for the scattering couple (Ap,, 4).

Theorem 3.5. Suppose that (H1)—(H6) hold. Then completeness holds for the couple
(Ag, A). Furthermore, if 65.(A) = @ and

(1)  the set of accumulation points of e(Ap,) N Gess (Ap,) is discrete in Gess (4B,),
(ii)  the boundary of 0. (AB, ) is countable,

then asymptotic completeness holds for the couple (Ag, A).

Proof. By (2.29) and by the same proof as in Lemma 2.4, one gets, for any u €
dom(A4p, ), v € dom(A4g),

(u, Agv)12(pr) — (AB U V) 2(ar) = <T2u,ﬁgv>bz’5;, (3.3)
where
pe:dom(Ag) — b3, Pa(REu) := ASGP"™u, u €H, z € o(As) No(Ap,).

Then, by hypotheses (H1)-(HS) and by [11, Theorems 2.8 and 3.8] (compare (3.3) and
Lemma 3.2 here with (2.19) and Lemma 3.6 there and notice that hypothesis (H6)
there is included in our hypothesis (H4)) one gets the completeness for the couple
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(Ag, Ap,). By (H6) and the chain rule for the wave operators (see [10, Theorem 3.4,
Chapter X]), one then gets completeness for the scattering couple (Ag, A).

To conclude the proof it remains to show that 0. (4g) = @. Let ng denote the pure
point subspace of Ag and, given u € (ng)J-, we denote by p2 be the corresponding
spectral measure. By our choice of u, one gets supp(8) € 0coni(As) C Oess(Ap) =
Oess(Ap, ). Let us define

eess(ABl) = e(ABl) N 8—ess(ABl)7
eess(AB) = (e(ABl) ) Op(AB)) N 8ess(ABl)7

and denote by e.(Ap,) the set of accumulation points of e.(Ap, ). Since an open
set minus a discrete subset is still open, one has

Oo'ess(ABl)\eéss(ABl) = U I,

n>1

where the 7,,’s are open intervals. Moreover, since I, N el (Ap,) = @, then I, N
eess(Ap, ) is discrete in I, and so I, \ (I, N ecss(AB,)) is open. This yields

In\(ln N eess(ABl)) = Uln,m,
m>1

where the I, ;,’s are open intervals. By Theorem 3.1, the set of accumulation points
of e(Ag)\e(Ap,) is contained in e(Ap, ); therefore I, ,, N (e(Ag)\e(Ap,)) is discrete
in I, ;. As before,

Inn\(Inm N (€(A)\e(A,))) is open and we get

In,m\(ln,m N (e(AB)\e(ABl))) = U In,m,b

>1

where the I, ,, ¢’s are open intervals. Hence,

8ess(AB1)\eess(AB) = cOTess(ABl)\(eess(ABl) U eess(AB)\eess(ABl))
= (U1 U el(A8))\(ens(AB,) U ees(4) \ees(45,)

n>1

n>1

U T\ (A)\(e(45,) ) U (el (4,)\ess(45))

n,m>1

(
<n,m>1
(
(

= U In,m,ﬁ) U (eéss(ABl)\eeSS(AB))'

n,m,{>1
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This gives

SUPP(MLBJ - O—ess(ABl) = (8ess(ABl)\eess(AB)) U 8Uess(ABl) U eess(AB)
= ( U In,m,@) U aaess(ABJ U eess(Ag) U eéss(ABl)-

n,m>1

By standard arguments (see e.g. [1, proof of Theorem 6.1] or [17, top of p. 178])
applied to any of the open intervals I, ,, ¢, one gets the absolute continuity of the
spectral function A — > (—o0, A] on any compact interval in I, ,, ¢; hence

Supp((“g)sing) - ao—ess(AB1) U €ess(Ap) U eéss(ABl)
= aaess(ABl) U eess(ABl) U (eess(AB)\eess(ABl)) ) eéSS(ABl)-

By Theorem 3.1, e(Ag)\e(Ap,) is discrete (hence countable) in R\e(Ap,); by (i)
and (ii), the sets e/ (AB,), €ess(AB,) and doess(Ap,) are countable. Henceforth, the
support of the singular continuous component of u2 is contained in a countable set.
This implies supp((¢)sing) = @. Therefore, u has a null projection onto HE¢, the
singular continuous subspace of Ag. This gives (H5")L = H, where HX denote the
absolutely continuous subspace of Ag. |

3.1. A representation formula for the scattering matrix

According to Theorem 3.5, under the assumptions there stated, the scattering operator
Sp = W+ (ABv A)* wW_ (AB’ A)

is a well-defined unitary map. Let

(&)
Fi L2 (M), — / (L2(M)ao)3, dn(})
0ac(4)

be a unitary map which diagonalizes the absolutely continuous component of A4, i.e., a
direct integral representation of L?(M ),., the absolutely continuous subspace relative
to A, with respect to the spectral measure of the absolutely continuous component
of A (see e.g. [2, Section 4.5.1]). We define the scattering matrix

Si: (Lz(M)ac)A - (LZ(M)ac)A
by the relation (see e.g. [2, Section 9.6.2])

FSgF*u; = S)Bku)t.
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Now, following the same scheme as in [11], which uses the Birman—Kato invariance
principle and the Birman—Yafaev general scheme in stationary scattering theory, we
provide an explicit relation between S% and Ai’+ = limeo A tier

Given u € o(A) N o(Ag), we consider the scattering couple (Rl'i, R,,) and the
strong limits

Wi(R®. R,) := s-lim ¢'"Rue=i"Rupit
t—+o0

where P/ is the orthogonal projector onto the absolutely continuous subspace of R ws
we prove below that such limits exist everywhere in L2(M). Let S the corresponding

scattering operator
= W4(RS, R,)*W_(RS, R,).

Using the unitary operator F, which diagonalizes the absolutely continuous compo-
nent of R, 1i.e., (F,u)) := %(Fu)u_%, A # O such that yu — % € 0,.(A), one defines
the scattering matrix

3 (LA (M)ae), g — (L2(M)a),, 1
corresponding to the scattering operator Sl by the relation
© Iz
F Sy Ful = =s> Sl
We introduce a further hypothesis (H7), which we split in four separate points.

(H7.1) A is bounded from above and satisfies a Limiting Absorption Principle: there
exists a (eventually empty) closed set e(A4) C R of zero Lebesgue measure
such that for all A € R\e(A) the limits

R¥ = lim R4
A 6{% Atie
exist in B(LZ (M), L;_I(M)).
(H7.2) G} € B(h}, L, (M)) for any z € o(A) and the limits

Gy = 1im G}, (3.4)
eN\o0
exist in B(H¥, L;_l (M)) for any A € R\e(A).

(H7.3) The limits

AP = tim ARy
e\0

existin B(hy, hT) forany A € R\e(4p,).
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(H7.4) The limits
nG* = Jim 2G4
exist in B(b], by) forany A € R\e(A4p,).
Remark 3.6. By
06, = n(tR:)* = (1(R)")* = (G,

hypothesis (H7.4) entails the existence in B(b,, b]), for any A € R\e(A4p,), of the
limits
2,+ . : 2
TlGA = E%TIG}»:HG'
Remark 3.7. Whenever one strengthens hypotheses (H7.2) as in (HS), then, by the

same kind of proof that leads to the existence of the limit (3.2) (see [1 1, Lemma 3.6]),
one gets the existence of the limits requested in hypotheses (H7.3).

Lemma 3.8. Suppose that (H1)-(HS) and (H7) hold. Then

RPVF = RE+ GPEADH (6T, (3.5)
G2 e B(b3.L3(M)). z€o(Ap)No(A); (3.6)
the limits
2,+ . .
Gy o= 611\1:(1) Gy 3.7

exist in B(h3, Li_] (M)) for any A € R\e(Ap,) and
GyVF =Gyt 4+ GEA T G (3.8)

the limits
A% = lim A%,
A 61\% Aie
exist in B(hy @ by, hT @ b3) and

AB,:i: —

s 3.9)

~B. % 1.+, B1.£ ~B.*
AyT Gy A Ay

. Afl,i o rlGi'ilA\i'irzGi’i r1G§’i Afli 0
=\t fok Lt I AR
0 Ay Gy’ 0 0 A%

Proof. The relation (3.5) is an immediate consequence of (2.22) and (H7.1)—(H7.3).
By (2.24),

Bt Bt 2dRet o1k, Bt \BrE 24 ted
|:AA FA TGP ERSE G EAT T AT G2 ERS }

G2 =GB —GIABI1,G?

and (3.6) follows from (H4.2) and (H7.2). Then, Remark 3.6, (H.5) and (H7.3)
entail (3.7) and (3.8). Finally, (3.9) and (3.10) are consequence of (2.26), (2.27),
Corollary 3.3, (H7.3), Remark 3.6 and (H7.4). ]
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Before stating the next results, let us notice the relations

1 1 1 1
_ -1 _ 1 Z —RB 1=z —R®
(=R, +2) _z(1+zR“—%>’ (=R}, +2) z(1+zRu—%)’ (3.11)

Therefore, by (H7.1) and Theorem 3.1, the limits
1
(=R, + (A £i0) ' := 11{11(—1%# +Axie), A#£0, pu— 7€ R\e(4),
€N0
(3.12)
1
(—R% + (A £i0)"" :=lim(—R}, + A £ie))™", A #0, u—— €R\e(4p),
e\0 A
(3.13)
existin B(LZ (M), L(20_1 (M)).
Theorem 3.9. Suppose that hypotheses (H1)—(H7) hold. Then the strong limits
Wi(R®,R,) := s-lim ¢'"Rig=i"Ru prt (3.14)
t—+o0
exist everywhere in L?>(M). Moreover, for any A # 0 such that |1 — % € 0,c(A) N
(R\e(Ag)), one has
SYM =1—2mi LYAS (1 + G (—RD + (A +i0) "G AR ) (E)*, (3.15)
where
1
L4507 @ b3 — (LZ(M)ac)M_%s 25 (p1 @ ¢2) = X(FG“(% © ¢$2)),-1-

Proof. By (2.7), one has Rz - R, = GMASG; and we can use [22, Theorem 4/,
p. 178] (notice that the maps there denoted by G and V' corresponds to our G; and
A ﬁ respectively). Let us check that the hypotheses there required are satisfied. Since
G € B(L*(M),h1 @ D), the operator G, is |R,.|'/?-bounded. By (H7.2) and (3.6),
one has G, € B(h] @ b3, L;(M)) for any z € o(Ap,) N o(A) D [A1, +00) 3 p.
Therefore, by (3.12), (3.13), (H7.1), Theorem 3.1 and (H4), the limits

. * . 1
lim GJi(—Ry + (i),
. 3 B . —1
lim GJi(—Rj, + (i),

. . w—1
el{r(l) GL(—R}, + (A £ie)7'G,
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exist. Therefore, to get the thesis we need to check the validity of the remaining
hypothesis in [22, Theorem 4', p. 178]: G: is weakly-R,, smooth, i.e., by [22,
Lemma 2, p. 154],

sup € [|GL(=Ry + (A £ie))”

O<e<l1

12
||L2(M),51€B52 <cp < 400, ae. A

By (3.11), this is consequence of

sup € |G, R

0<e<l1

By [11, (3.16)],

2
M—%iieHLz(M),blGBbz <C) < +o0, ae. A (3.16)

€||G)Liie||§>lk@f,;,L2(M)
< %(Iu —Al+e) IIGuIIBT@b;,Lg(M)(IIGA—ie||fﬁeaf);,L;_1 (M)
+ ||G)L+ie||51‘e>h;,Li_l(M))‘
Then, (3.16) follows from (3.4), (3.7), and the equality
1GLR=NL20).6 00, = ITRuR 200y 5,05, = TRz RullL2an) 1, 00,
= |Ru(TR:) llgr@pz.200) = IRull2any. 2000 G2 503,22 (a0) -

Thus, by [22, Theorem 4/, p. 178], the limits (3.14) exist everywhere in L?(M) and
the corresponding scattering matrix is given by (3.15), where $g¢ = (FrGud)s =

T(FGug),_1. n

Theorem 3.10. Suppose that hypotheses (H1)-(H7) hold. Then the scattering matrix
of the couple (Ag, A) has the representation

SE=1-2miuAST LY. A€ 0u(4) N (R\e(4p)),
where £:9F @ b5 — (L2(M)ac);. is the pi-independent linear operator defined by
Li(P1 © ¢2) := (u = A)(FG(d1 © ¢2))a (3.17)
and Ai’+ is given in (3.9).

Proof. By Theorem 3.5, Theorem 3.9 and by Birman—Kato invariance principle (see
e.g. [2, Section 11.3.3]), one has

W:i:(ABr A) = W:l:(R;B,L’ RM)

and so
Sg = Sh.
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Thus, since (F*u)) = %(F u) j—1-one obtains (see also [22, equation (14), Section 6,
Chapter 2])

B _ B
S =S -1 (3.18)

By [11, Lemma 4.2], for any z # 0 such that u — % € 0(Ag) N po(A), there holds
A1+ Gi(—R +2)7'GuAl) = Ai_%.
Hence, whenever z = A i€ and u — % € R\e(Ag), one gets, as € | 0,

AB(1+GA(—RE + (A £i0)7'G,A%) = Ai’i .

1
" -x

The proof is then concluded by setting &£, := é(i’(L_k -1 by Theorem 3.9 and
by (3.18). The operator £ is p-independent by invariance principle (see the proof in

[11, Corollary 4.3] for an explicit check). [ ]

Remark 3.11. By (3.9),

Byt =
AS* = [Az‘ 0] + A%E,
0 0

where B+ B+ , B.E
- 1 2,+£48B.% 1.+ 1 1- 2. +48.+
At . [ A2 TG TR TG AT AT T G EALE |
A AsEnGl AL AsE
Therefore, defining
1, .
£301:=Li(¢190),

one gets
S =P —2mi L, AT ],

where
SPl=1-2mi L AT (D) (3.19)

is the scattering matrix relative to the couple (A4p,, A). Moreover, in the case B; = 0,
defining
L3d2 = L,0® ¢2),

one gets the following representation formula for the scattering couple (Ap,,p,, A)
(compare with [11, Corollary 4.3]):

sp0% =1 —2mi L3 AT (£2) .

Let us further notice that, whenever A is the free Laplacian in L?(R3) and B, cor-
responds to a perturbation by a regular potential as in Section 5 below, then (3.19)
gives the usual formula for the scattering matrix for a short-range potential (see, e.g.,
[21, Section 8]).
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4. Kato—Rellich perturbations and their layers potentials

4.1. Potential perturbations

In this section we suppose that the real-valued potential v is of Kato—Rellich type, i.e.,
v € L2(R3) + L% (R3), equivalently,

V=V 4+ Ve, V2 L*R?), vy € L¥(R3).

We use the same symbol v to denote both the potential function and the corresponding
multiplication operator u > vu.

Given Q C R3, open and bounded with a Lipschitz boundary I', we define the
Sobolev spaces H*(R3\I") <= H*(R?) by

HYR3\T) 1= H(Q) ® H*(Qey), 5> 0.

We refer to [15, Chapter 3] for the definition of the Sobolev spaces H*(R?), H*(Q2)
and H*(T"). One has

HS(R3\I') = H'R?), 0<s<1/2.
Since (see [15, Theorems 3.29 and 3.30]),
HY0)* = H3*(R%), seR,
H o S(R?) denoting the set of distributions H ~*(R3) with support in @, one has
HYR\T)* = HY(Q)* @ H'(R*\Q)* = HJ'(R®) @ Hy!(R?) — H*(R?).

Let us notice that

B(HNR\I), H'(R}\T)*) < B(H(R?), H'(R?)), s.t>0, .1
and

B(H™*(R®), H'(R%)) = B(H*(R’\DI)*, H'(R*\I)), 5,1 >0.
Lemma 4.1. We have
ve B(H™@®R3N\D), HI®R3I\N)*), —-1<s<1. 4.2)

Proof. Given u = uij, ® Ue, € H*(R3\I') one has

Voot 2R3y = IVIlLoom3y el 2R3y < IIVIILoo @3y 1]l 2R3\ 1)
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and

vaullp2@wsy = Ivallp2(@)lltinllLoo@) + VallL2@m3\&) 1¥ex | Loo r3\&)
S vallzz @) luinll g2 @) + V2l 2@3vg) luex | 2 3\&)

< Ivall 23y el g2 w3\ ry-
Hence, v € B(H?(R3\I'), L?2(R?)). Then, for any u, v € H?(R3\T"), one has
|<VM, v)Hz(R3\F)*,H2(R3\F)| = |(vu, v)LZ(R3)|
= [(u,vv)L2®3)l
< IVllz2@®3\ry, .23y 1l 2@®3) IV | 22®3\ 1)

and so u +> vu extends to a map in B(L2(R?), H?(R3\I")*). The proof is then con-
cluded by interpolation. ]

In the following, R, denotes the resolvent of the free Laplacian, i.e.,
R, = (—A +2)7' e B(H*(R?), H'*2(R?), seR. (4.3)

Since v is of Rellich—-Kato type, one has (see, e.g., [10, Section 3, §5, Chapter V]) the
following result.

Theorem 4.2. The operator A +v: H*>(R?) C L?(R3) — L?(R3) is self-adjoint and
semi-bounded from above. Moreover, for z € C sufficiently far away from (—o0, 0],

[VRz | 12r3),L2r3) < 1

and
R!:=(—(A+v) +2)7" = R, + R,(1—vR,)" VR, (4.4)

+o00
(1-vR:)™' =) (vR.)* € B(L*R?)). (4.5)
k=0

Remark 4.3. Let us notice that Theorem 4.2 could be obtained by Corollary 2.7 by
taking Tyu := u and B; = v. Hence, (4.4) holds for any z in o(A + v) N C\(—o0, 0]
and (1 + vR,)™! € B(L?(R?)) there.

Remark 4.4. By (4.3), (4.4), (4.5), (4.2) and (4.1), one has RY € B(L2(R3), H2(R?))
and hence (RY)* € B(H 2(R?), L*>(R?)). Since (A + v) is self-adjoint in L2(R?),
(RY)*|L*(R?) = R!. Therefore, R%: L>(R3) C H %(R3) — L?*(R?) extends to an
operator in B(H ~2(R?), L?(R3)) which, by abuse of notation, we still denote by RY
and which coincides with (R%)*. Then, by interpolation, one gets

R! € B(H'(R?), HST'(R?)), —-1<s<1. (4.6)
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Remark 4.5. By (4.4),

(1—=VR;) " 'v=(-A+2)RU~A+2) — (=A +2).
Hence, by (4.6), (1 —vR,)"'v e B(H?*(R?), L?>(R?)) extends to a map

AL e B(HSTHR?), HS'(R?), —-1<s<1. 4.7

With such a notation, R}, in (4.6) has the representation

R! = R, + R,ALR,, AL H?*R?* =(1-vR,) 'V (4.8)
Remark 4.6. Since

IRV L2@®3),2@®3) = I(R2V)* | L2®3),12®3) = IVRz ]| 2R3, L2R3) < ]

whenever z € C is sufficiently far away from (—oo, 0], one has

(1-Rv)™" = +ZO° (R:v)* € B(L2(R?)) (4.9)
k=0
and
v(l — R,v)"! e B(L2(R?), H2(R?Y)).
Then,
(1= R)™'W)* = (v(1 = Rv)™H* = v((1 = R:v)) " =v(1 = Rzv) ™!
and so

B(H2(R?), L*(R?)) > (RY)* = Rz + Rzv(1 — Rzv) 'Rz = R, = Rz + Rz ALR:.

Therefore
AYIL*(R?) = v(1 — R,v) L. (4.10)

Lemma 4.7. One has
AL € B(H'S(RI\D), H'S(R)\T)*), —1<s<1. 4.11)
Proof. By Lemma 4.1 and by (4.5), one has
AL = (1 +VvR;) 'v e B(H*(R3\I), L*(R?)).

By Lemma 4.1, (4.9) and (4.10), AY € B(L2(R3), H?(R3\TI')*). The proof is then
concluded by interpolation. ]

By H'™S(R3\I')* < H*"1(R3) and (4.3) one has the following result.
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Corollary 4.8. For0 <s <2,
R} € B(HS(R\I'), HY(R?)), (4.12)
In later proofs, we will need the estimate provided in the following fact.

Lemma 4.9. There exist ¢y > 0, ¢ > 0 such that, for any u = uy, ® ue € H'(R3\I')
and for any € > 0, there holds

[(vit, u) g1 3\ry*, 1 @3\ D)
= Cle(Hvuin“iz(Qm) + ”V”eXHiZ(QEX)) + (1 + 6_3)“””i2(]R3)' (4.13)

Proof. By H'(Qinex) = H>*(Qinex) — L*(Qinex), by the Gagliardo—Nirenberg
inequalities (see [6] for the interior case and [8] for the exterior one)

) ) ) 3/4 ) 1/4
”um”L“(Qin) S ||u1n||H3/4(Qin) < ”um”Hl(Qin)”um”Lz(Qin)’

3/4 1/4
luexllza@uy S 1 VUl el ot
and, by Young’s inequality,

a—1
o

1
xy < —(ex® + (@—De V@D 5y x ye>0 a>1,
o
one gets
I _
12 3y S €UVRIZ 200 + 1012 20y + 1 Vs B2 ) + 5 € 12 sy
The proof is then concluded by

[{(vr, u) g1 r3\ry*, 11 (R3\D) |

< IvallL2@3) 1117 4 g3y + IVooll Loo @) 1117 2 g3y =
Lemma 4.10. For any z € C sufficiently far away from (—o0, 0], one has

IVR: | -1 3y, -1 ®3) <1

and
+o0 1 .
(1=vR:)™' =} = (R:)* € BIHT'(RY).
k=0
Furthermore,

(1—vR,)" ! e B(HYR3\IN)*).
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Proof. By (4.13) and by the polarization identity, for any u and v in H!(R?) one has
(v, v) g1 ®3), 51 (R
1 _
= 4 lae (—Au, V) g-1®3) g1 ®3) + 21+ €72) (U, v) g-1®3), 51 (®3))

which gives

Vil g—1 (r3)
1 _
< Z(CIE | — Aullg—1m3) + c2(1 + € ) |ull g-1®3))
1 _
< 1(016 I(—=A + 2)ull -1 ®3) + (cr€ |z] + c2(1 + € Dl g-1 ®3)-

The proof is then concluded by taking u = R,uo, uo € H'(R?), and by

1/2 1/2
IRl -1 @3y = IRY? Rottoll 2@y = 1Rz Ry ol L2 w3y

< Rzl L2®3y,L2®3) 4o ll -1 (m3)

—1
<d; |[uollg-1w3),

where d is the distance of z from [0, +00).
Let us now recall the well-known resolvent identity in B(L?(R3)):

(1—-vR;)™'=1-vR'. (4.14)

Since the operators in both sides of the above identity are in B(H ~1(R?)), it extends
to B(H~1(R3)). By (4.6),

R} € B(HT'(R?), H'(R?)) — B(H'(R*\I)", H'(R*\I));

by (4.2),
ve B(H'(R3\I), H' (R*\I)*);

then
(1 —VvRY) € B(H'(R3\I')*).

By (4.14), this implies that 1 — vR, is a bounded bijection from H'(R3\I')* onto
itself. Therefore, by the Inverse Mapping Theorem, (1 — vR,)™' € B(H(R3\I")*)
and (4.14) holds in B(H '(R3\T")*). n

Remark 4.11. By Lemma 4.10,

AL HY(R3\T) = (1 -vR,) V.
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By (1 —vR;)"! € B(H!(R?)) and by v € B(H'(R3), H~1(R?)) one gets
(1-vR,) 've B(H'(R?), H ' (R?)).
Thus, by (4.7) and (4.8),
AL HS(R*) = (1—-VvR,)" v, 1<s<2.
By duality, similarly to Remark 4.6, (1 — R;v)~! € B(H'(R?)) and (4.10) improves
to
A HSR?) =v(1—VvR,)™', 0<s<l.
4.2. Boundary layer operators
We introduce the interior/exterior Dirichlet and Neumann trace operators
yoves: HSF2(Qiex) — B3 (D), s> 0,
YV HS 32 (Qinen) — B3 (). 5> 0,

where i, = 2 and Qex := Qex. The Besov-like trace spaces B ,(I") identify with
H*(T') when |s| < k + 1 and T is of class €51 (see [9]). Then, we define, for any
s > 0, the bounded linear operators

1 .
yor HUTI2RIND) — B3 5(D), you i= (v (4] Qi) + 15 (|Qe0)). (4.15)

1 .
yit HUPPRID) — B3 5(0), yiuei= o (7 (i) + 17 (] 20)).
The corresponding trace jump bounded operators are defined by

vol: H*F2R3\E) — B3, (D). [yolu := yg'(|Sn) — ¥5* (| Qex).
1l P32 @ROD) — B3, (D). [yalu = 1 (] Qin) — ¥ (| Q).
By [15, Lemma 4.3], the trace maps yi“/ % can be extended to the spaces
HA(Qivex) 1= {Uinjex € H' (Qinex): Ay Uinsex € L2 (Qinvex)}
as H~'/2(I")-valued bounded operators:
V" HA Qune) — H™V2(T).
This gives the extensions of the maps y; and [y;] defined on

Hé(R:)’\F) = Hé(gm) @ Hi(Qex)

with values in H~/2(T").
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Then, for any z € C\(—o0, 0], one defines the single and double-layer operators
SL; := (yoRz)* = R.y5 € B(B;5(I), H¥* ™ (R?), 5> 0, (4.16)
DL; := (y1Rz)* = Ry} € B(B35(I). H'/?(R?)), s> 0. (4.17)
By (4.15), one has
S, :=yoSL, € B(H*V2(I), H*TV2(I"))), —1/2<s<1/2.

By the mapping properties of the double-layer operator, one gets' (see [15, Theo-
rem 6.11])
DL, € B(H"?(I'), H' (R3\I)).

Hence, by

(—(Agq, ® Aq,) +z)DL; =0,
one gets

DL, € B(HY2(I'), H}(R?\I)).
Thus

D, :=y, DL, € B(HY*("), H~V*(I")).

These mapping properties can be extended to a larger range of Sobolev spaces (see
[15, Theorem 6.12 and successive remarks]):

SL, € B(H*V*(I'), H* 1 (R?)), —1/2<s<1/2, (4.18)
S, € B(H"V2(T), HTV/2(I)), —1/2<s<1/2, (4.19)
DL, € B(HTV2(T), H*Y (R3\I")), —1/2<s<1/2, (4.20)
D, € B(HYV2(T), H~V*(IN)), —1/2<s<1/2, (4.21)

and, whenever s > 0 in (4.18), (4.20) above, the following jump relations hold (see
[15, Theorem 6.11]):

[YolSL; = 0. [y1]SL; = —1,
[yo]DL; =1, [y1]DL; = 0.

'here and below we can avoid the introduction of the cutoff function y appearing in [15,
Theorems 6.11-6.13] since we are dealing with the constant coefficients strongly elliptic oper-
ator —A + z (compare [15, Theorem 6.1] with [15, equation (6.10)])
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Whenever the boundary I is of class €!:! one gets an improvement as regards the
regularity properties of the single- and double-layer operators (see [15, Theorem 6.13
and Corollary 6.14]):

SL, € B(H* V2(I'), HSTY(R3\TI")), 1/2<s <1, (4.22)
DL, € B(HTV2(I), H*Y (R3\IN)), 1/2<s<1. (4.23)
By (4.16), (4.17), and (4.12) one has the following result.

Lemma 4.12. For any z € o(A + v) N (C\(—o0, 0]),

SL! := RYyy = SL; +R; A% SL; € B(B;5(I). H¥*7*(R?), 0<s<3/2,
(4.24)

DL! := R!y; =DL; +R;A.DL; € B(B;5(I'), H'/>**(R?), 0<s<1/2.
By (4.18), (4.20), and (4.12), one has the following result.
Lemma 4.13. We have
SL! € B(H*~Y2(I), HST1(R3)), —1/2<s5s<1/2, (4.25)
DL! € B(H*tV2(I'), HSTY(R3\I")), —1/2<s5<1/2. (4.26)
By (4.22), (4.23), and (4.12), one has
Lemma 4.14. Let T € €11, Then
SL! € B(H*™V2(I), H*TI(R3\I), 1/2<s<1,
DL! € B(H*tV2(), H*TY(R3\I')), 1/2<s<1. 4.27)
By either (4.24) or (4.25) one has

YoSLY = S, + yoR,AY SL, € B(H* V2(T), HSYV2(T)), —1/2<s<1/2.
(4.28)
Since yoR; = (Rzyy)* = SLZ, one gets the following improvement of (4.28).

Lemma 4.15. We have
SY:=8, 4+ SLEAYSL, € B(H* V2(I), H*tV/2(I")), —1/2<s<1/2.

Proof. By (4.18) and duality, SLY € B(H~175(R3), H'/275(I")). The proof is then
concluded by (4.19), (4.11), and (4.18). ]

If T € €L, then, by (4.27),

y1DLY = D, + y R, A DL, € B(H*tV2(T), H*~V2(I")), 1/2<s<1. (4.29)
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Since y1R; = (Rzy{)* = DL}, one can improve (4.29) even without requiring
reehl

Lemma 4.16. We have
D! := D, +DL}A'DL, € B(H**Y2(I'), H*~V/2(I')), —1/2<s<1/2.

Proof. By (4.20) and duality, DL € B(H*t!(R3\I")*, H~5~Y2(T")). The proof is
then concluded by (4.21), (4.11), and (4.20). ]

In order to prove the jump relations of the double-layer operator relative to A + v
we need a technical result.

Lemma 4.17. If v € H (R3\I')*, then we have [y1]R;v = 0 in H~Y2(T") for any
z € C\(—00,0].

Proof. At first let us notice that it suffices to show that the result holds for a single
z € C\(—o00,0]. Indeed, by the resolvent identity R, v = R,v + (z — w)Ry R, v, one
gets Ry R,v € H3(R?) C ker([y1]). In particular, we choose z such that ker(S,) = {0}
(see, e.g., Lemma (4.19) below).

Givenv € H'(R3\IN)* = HS_;I(R3) ® Hg!(R?) € H™'(R?) and y € €35, (R?)
such that y = 1 on a compact set containing an open neighborhood of Q, let us set
u ;= yR,v. Since y"*u = y["*R,v, it suffices to show that [y;]lu = 0.
Let us define iyex := YRz0|Qinex € H' (Qinjex): finex := (= A + 2) YRz 0)|Qinvex €
H' (Qinjex) and Zinjex := YV uipjex € H'/2(T). Then uipex solves the Dirichlet bound-
ary value problems

in/ex

(_AQin/ex + Z)uin/ex = ﬁn/ex»
Yo  Uiniex = &infex,

and so, by [15, Theorems 7.5 and 7.15] (notice that both u., and fi have a com-
pact support; in particular, the radiation condition Mu, = O there required is here
satisfied), Yinex 1= yi“’exuin/ex e HY 2(T) satisfy the equations

1
Sz Vinfex = E (I + D;)gintex — YoR: .

Since Ui, @ uex = yR;v € H'(R?), one has gi, = gex and 50 [y1] R v =i — Yex =0
is consequence of ker(S;) = {0}. [
Lemma 4.18. Ifs > 0in (4.25) and (4.26), then

[vo] SL; =0, [y1]SL; = —1, (4.30)
[yo] DL, = 1, [;1]DLY = 0. 4.31)
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Proof. [yo] SL}, = 0 is consequence of ran(SL}) € H'(R?) and, by (4.12), one gets
ran(R;A7;DL;) C HI(RB’); so [yo] DL] = [yo] DL; +[yo] Rz A} DL, = [yo] DL, = 1.
Since
AYSL, € B(H"V2(I'), H'™*(R3\I")*)
and
ALDL, € B(H**V2(I'), H'=*(R3\I)"),

by Lemma 4.17 one gets
[y1]SL; = [1]SLz +[n]R: A SL; = [y1]SL; = —1

and
[y1]DL; = [y1]DL; +[y1]R;A; DL, = [y1]DL; = 0. "

When v = 0, it is well known that the boundary layer operators have bounded
inverses. This property is next extended to the operators relative to A + v.

Lemma 4.19. There exist Z; ; and Z;,, not empty open subsets of 0(A + v), such
that

SsH~'e B(HY>(T), HVY2(T')) forallz € Z\‘,”d,

(DY)~ 'e B(HYV*(T), HV2()) forallz € VA
In particular, there exists A, > sup (A + v) such that [A,, +00) C Z° , N Z; ;

v,n’
Sfurthermore, Z\id N Zg’d #* g, Zvc’,n N Z(‘)’,n % @, and both Z:’d and Z;’,
chosen to be symmetric with respect to the real axis.

. can be

Proof. At first, let us notice that it suffices to show that the bounded inverses exist
for any real A > A, for some A, > sup o (A + v). Then, by the continuity of the maps
z +— §; and z — D}, the bounded inverses exist in a complex open neighborhood of
[Ay, +00).

We proceed as in the proof of [12, Lemma 3.2]. By

(—=(A +Vv) + 1) SL} |Qiwex =0,
by Green’s formula and by (4.30), one gets, for any ¢ € H~1/2(T"),
_ v 2 v v \ 2
0= ||V SL)L ¢||L2(]R3) - (V SL)L ?, SL,{ ¢)H—1(R3),H1 (R3) + A ” SL)L ¢”L2(]R3)

+ ([¥1] SL} ¢, vo SLi @) —1/2(r) m1/2(1y
= |V SL} ¢ll72@3) — (vSL} ¢, SL} @) -1 @301 ®3) + A I SLY 61723

— (. S3 P -1/2(r), 51721
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Then, by (4.13),

(@, VoS30 —1/2(ry, H1/2(1)
> (1 —c1€)||VSLy ¢||iz<R3) + (A —c2(1+€7?)) SLY ¢||22(R3)-

Choosing € > 0 such that c;e < 1 and then A € o(A + v) such that A > ¢, (1 + €73)
(this is always possible since A + v in bounded from above), one gets

(@, S5 g—1/2y.m1/2@y 2 I SLY @121 ®R3)"

Byve B(H'(R3\I'), H!(R3\I")*), Green’s formula applies to a couple U;pex, Vinjex €
Hl(Qin/ex) with Auin/ex € Lz(Qin/ex)’

{(=(A + V) + Dthinex: Vinex) 1 ( Q) *, H ! (Qunver)
= (Vuin/ex’ Vvin/ex>L2(Qin/eX)
- (Vuin/e)(a Uin/ex)Hl (Qinex) ™, H 1 (Qinsex) + A <uin/ex, vin/ex)LZ(Qin/ex)

+ (V" Uingex, V(i)n/exvin/ex>H—l/2(1")’H1/2(1")~ (4.32)

By

| (Vitinsex Vinsex) H 1 (@uuen)* H 1 (@i | S [ ¥tinsex | 1 (@i [ Vinvex | 1 (@)

equation (4.32) gives

in/ in/
[y Uinexs Vo' exUirllex>H—1/2(I‘),H1/2(1")|

S (”uin/ex”Hl(Qin/cx) + ”(_(A + V) + )’)uin/CXHHl(Qin/cx)*)||vin/ex||Hl(Qin/cx)‘

Since yg¥*: HY (Qinex) = H 1/2(T) is surjective, finally one gets
P Uivex L zr-172(0y S Mtiwex |1 (@i + 1(=(A 4+ V) 4+ Mttimex | 11 (400 -

(4.33)
Then, proceeding as in [12, Lemma 3.2] (compare (3.31) there with (4.33) here), this
yields

ly

(@, S3P)—1/2(0), H1/2(1) R ||¢||12'-I—1/2(F)

and so (S})~! € B(HY*(I"), H~'/2(I")) by the Lax-Milgram theorem.
As regards D}, the proof is almost the same. By (—(A + v) + 1) DL} [Qnex = 0,
by Green’s formula and by (4.31), one gets, for any ¢ € H'/?(I'),

— (vDL} ¢, DL} ) g1 r3\ry*, 11 r3\1) + 4 | DL}, ¢||22(R3)

+ (D3¢, ) —1/2(ry, H1/2(1)>
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which leads to

_(Di¢ﬂ¢>H*1/2(F),H1/2(I‘) 2 ” DLX ¢”12‘11(]R3\F)'

Then, proceeding as in [12, Lemma 3.2], by (4.33), this yields
—(D3¢. P -1/2ry. H1/2(r) 2 ||¢||12L11/z(1~)

and so (D})~! € B(H~Y/2(T'), H'/*(I")) by the Lax-Milgram theorem. n

5. Laplacians with regular and singular perturbations

Here we apply the abstract results in Section 2, presenting various examples were the
self-adjoint operator A is the free Laplacian A: H?(R?) C L?(R?) — L?(R3?) and
Ap, = A + v. All over this section we consider a Kato—Rellich potential v = v, + v
of short-range type, i.e.,

v € L2(R3), supp(vz) bounded, |veo(x)| < (14 |x|) 70+ x>1, e>0.
5.1)
We take
b = H*(R?) < b; = H'(R3*\I') = b5 = L2(R?),

and, introducing the multiplication operator (x) by (x)u: x — (1 + |x]|?)"/2u(x), we
define
1 H2R?) - HXR?), tu:=(x)"u, s>0, (5.2)

and

Biu = (x)*vu, 2s <1+e. (5.3)

Further, we take either
0 = yo: HA(R?) — by = ByZ(T) => by = H®(I), 0<so<1/2, (54)

or
=yt H2R?) > by = H'*(T) = by = H™'(I). (55)
Hence, by what is recalled in Section 4.2, either GZ = SL;, or G2 = DL, and either
TG, (u @ @) = (x) Rz (x) " u+ S:¢
or
G, (u® @) = (x) " R (x)*u+ D;¢.
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Thus, (2.2) holds. Notice that y;¢ and y;¢, whenever ¢ € L?(T'), identify with the
tempered distributions which act on a test function f respectively as

@5r) f = [ $() f(x) dor(x),  (@80) f = [ (W (x) -V £(x) dor(x),
I I

where v is the exterior normal to I'. By a slight abuse of notation, in the following we
set yo¢ = ¢dr and ¢y = 81-¢ and so, either

™" (u @ ¢) = (x)u + ¢dr
or

U@ ¢) = (x)"u + $or.

In this framework, given a couple of linear operators By and B as in (2.3) and such
that the triple B = (By, B1, B) satisfies the hypotheses in Theorem 2.1, equation (2.7)
defines a self-adjoint operator A representing a Laplacian with a Kato—Rellich poten-
tial and a distributional one supported on I'. Let us remark that, although t; and B;
depend on the index s, the operator Ag is s-independent whenever By and B are (see
the next subsections). The choice s # 0 is a technical trick which we use to obtain
LAP and a representation formula for the scattering couple (Ag, A); whenever one
is only interested in providing a resolvent formula for Ag, then the choice s = 0 is
preferable. In particular, the resolvent formula for Ag holds in the setting s = 0 for
any Kato—Rellich potential.

5.1. The Schrodinger operator

By our hypotheses on v, one has (x)?*v € L?(R3) 4+ L% (R?) and so, by Lemma 4.1,
By € B(H'(R3\TI), HY(R3\I")*).

Considering the weight ¢(x) = (14 |x|?)*/2, w € R, we use the notation L2 (R?) =
L2 (R3); H Iﬁ (R3), H{f) (R3\TI") denotes the corresponding scales of weighted Sobolev
spaces.

Since

(x)" € B(H,y (R\T), Hyy/_,, (R*\I'))
and, by duality,
()" € BCHY RA\D)* HY, y, (ROD)),
one gets

()7 Bi(x)” = v € B(Hy (RP\T), HL,, 5 (R\T)"). (5.6)
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Since
R; € B(H,'(R?), H, (R?)) = B(H.,(R*\I)*, H, (R*\I)), (5.7)
one has
1Gl = (x) R (x)™ € B(HL,(RO\D)*, H} , (R3\D)).
In particular, this gives
011Gl e B(H'(R3\I')*), H(R3\I)).
For 0 < 2s < 1 + € we define
MB1 =1-Bi11G! =1— (x)’vR,(x)™*
= (x)°(1 = vR;)(x)™* € B(H'(R*\I)).

Lemma 5.1. Let v be as in (5.1), with k = 1. Then, for s such that 0 <2s <1+ €
and for z € C sufficiently far away from (—o0, 0],

(1—vR;)™ ' e B(H! (R*\T)*).
Equivalently,
(M7)™ e B(H'(R’\I)").

Proof. Here we use the same kind of arguments as in the second part of the proof of
Lemma 4.10. Thus, we start from the resolvent identity

(1—-vR;)"'=1-vR'. (5.8)
By Lemma 4.10, such an equality holds in B(H '(R3\I')*). By (4.6),

R} € B(HT'(R?), H(R?)) — B(H'(R*\DI)*, H'(R°\I'))
— B(HLR\D)*, HL(RP\I));

by (5.6),
ve BHLRN\D), H! (R3\)*);
then
(1—vRY) € B(H! ,(R*\T")*).
Analogously,

(1—VvR;) € B(H! (R’\I)*).

By (5.8), this implies that 1 — VR, is a bounded bijection from H! (R3\T)* onto
itself. Therefore, by the Inverse Mapping Theorem, (1 —vR;)™! € B(H! (R3\T)*)
and (4.14) holds in B(HL (R\I)*). .
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Choosing B = (1, By, 0), and whenever Zp, # &, by Corollary 2.7 the operator
ApB, := A(,B,,0) is defined according to the relation

RBV .= (—Ap, +2)7V = R, + R (x)S(ME)™1 B, (x)°R;,

where z € Zp, = 0(Ap,) N (C\(—o00,0]). By Lemma 5.1, Zp, # & and by the
relation

ABU = (MB)TIB) = (x)5(1 —vR,) T {(x)Sv = (x) AL (x)*, (5.9)

one has
AB e B(HY(R3\I), H'(R3\I")*). (5.10)

Therefore, Theorem 4.2 (see also Remark 4.3) yields
R =(—(A+Vv)+2) ' =R, + R,A'R, = (—Ap, +2)"

for z € o(A +v) N C\(—o0, 0]. The above relation shows that Ap, coincides with the
Schrodinger operator A 4 v provided by the Kato—Rellich theorem. This also shows
that Ap, is s-independent. Nevertheless, the operator Afl depends on the choice of
s and the relations (5.9) and (5.10) with s # 0 are key objects in our analysis of LAP
and scattering theory in the general case.

5.2. Asymptotic completeness and scattering matrix

Before discussing the validity of our assumptions, we provide the following general
results on the scattering couple (Ag, A).

Theorem 5.2. Assume (5.1) with k = 1 and let t1, 1o and By be defined as in
(5.2)—(5.5). If B is such that (H1)~(H6) hold, then the scattering couple (Ag, A) is
asymptotically complete.

Proof. By hypothesis (5.1) with « = 1, it is well known that for A, = A + v one has
Ocss (A, ) = (—00,0]; moreover, by [1, Theorem 3.1], 0,(Ap, ) N (=00, 0) is discrete
in (—o0, 0). Hence, by [1, Theorem 4.2], e(Ap,) N (—o0, 0) is countable with {0} as
the eventual set of accumulations points. Therefore, by Theorem 3.5, 0. (Ag) = @
and (Ag, A) is asymptotically complete. ]

In the framework of this section, Theorem 3.10 rephrases as follows.

Theorem 5.3. Assume (5.1) with k = 1 and let t1, 15 and By be defined as in
(5.2)—(5.5). If B is such that (H1)—(H7) hold, then the scattering matrix of the cou-
ple (Ag, A) has the representation

S8 =1-2mi LAYTLE, A€ (—00,0]N (R\e(A)),
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where

+ . B
A%* = lim A%, .,
A N0 Atie

the limit existing in B(H}(R3\T') & H'(T'), H}(R*\I')* & H(I")),

ze AE(G2)* AL A%,

(4 [Ar 07| G2A%GH G2 [ \[AL 0
= (1+[7% 2] @* o [ ]

AB [AHA;G%KE(G_%)*A; A;G%Kg}

and

A3

Ly: HSI(R3\1")* D H—t(l") — (LZ(M)ac)A, Lia(u ® ¢) := i—l(Liu + Liq’)),

with
G? =SL;, t=s5,, whenevert, = Yy,

1
G? = DLZ9 1 = 5’ Whenever 2= Vl’

L) = a(A"%e), L) = 1 = (12 (0u). ) oy, (-
(2n)2

L
Here 1i denotes the Fourier transform of u and ui(x) = el M2EX s the plane wave

with direction & in the 2-dimensional unitary sphere S* C R* and wavenumber |)t|%;
€ Cc%Omp(R3) is such that x|T = 1.

Proof. Taking into account the definition in (3.17), let us set

Liu @ ¢) == —La((x)’u & ¢) = —(10 — D(FGL((x)'u & ¢))a
= — (= V) (FRut{ (x)*u + FR, 13 $))).

The unitary map F: L?(R3) — f(ejm,o) L?(S?)dA = L*((—o0, 0); L?(S?)) diago-
nalizing A = A is given by

A=

A
(Fua (&) = —'25 a(ALY28).

Therefore, by (1 — A)RTL\f(|A|1/2§) = —f(|k|1/2§), one gets

1
x ZAEIN
(b = M (FRu i (x)*u)i(§) = _z_l”('”l/zg)'
2
This gives L/ll. As regards L2, the computation was given in [1 1, Theorem 5.1].
The results about AE are direct consequences of the definition of L, Theorem 3.10
and relations (2.26), (2.27), (5.9). n
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Remark 5.4. Let us notice that, whenever u € L2 (R3), w > 3/2,

Liu(§) = m (ui, U2, (R3),L2(R3)

and so Li and Li have a similar structure.

5.3. Checking the conditions (H1)—(H7)

Next we discuss the validity of (H1)—(H7) in our framework. In particular, we show
that (H1), (H2), (H4.2)-(H7) hold with the choice x = 1 in (5.1), without the need
to specify the operators By and B,. We prove (H3) with x = 2, while the validity of
(H4.1), i.e., the semi-boundedness of Ag, will be checked case by case in the analysis
of each model.

As in the previous subsections we use the weight ¢(x) = (1 + |x[*)*/2,
w € R; the notation for the corresponding weighted spaces are L2 (R?), HK(R?),
and H,’; (R3\T"). From now on, the parameter s in the definitions (5.2) and (5.3) is
restricted to the range

I <2s <1+4e. (5.11)

Be aware that in the following proofs the index s labeling the weighted spaces fulfills
the bounds (5.11).

Lemma 58.5. Letv be short-range as in (5.1), with k = 1. Then hypotheses (H1), (H2),
(Ho), (H7.1), (H7.2), (H7.3) hold true.

Proof. By [17, Lemma 1, p. 170], R; = (—A + z)~! € B(L2(R?)) for any z €
C\ (=00, 0]. Therefore, by the resolvent identity R}, = R,(1 —VR}), z € o(A + v),
and by R! € B(L2(R3), H?(R?)), hypothesis (H1) is consequence of v = v, + Voo €
B(H?(R3), L2(R3)). Since v, has a compact support, v, € B(H?*(R?), L2(R?)) by
Lemma 4.1. As regards Vo, One has

ot 2 g5y = [ st (1 -+ 1) d
R3
< e [+ 12O 4 2 P d
R3
2

= C||M||L2(R3).
By [1, Theorem 4.1], LAP holds for A = A; hence (H7.1) is satisfied. By the short-
range hypothesis on v and by [1, Theorem 4.2], LAP holds for Az, = A + v as well

and, by [1, Theorems 6.1 and 7.1] asymptotic completeness holds for the scattering
couple (Ap,, A) = (A + v, A). Hence, hypotheses (H1), (H2) and (H6) are verified.
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By R, € B(L2,(R?), H2,(R?)), one gets
G;* = (x)°R: € B(L2,(R%), H*(R%)

and so, by duality, G} € B(H 2(R3), L2(R?)); moreover, by a similar duality argu-
ment and by Rf € B(LA(R3), H2,(R?)), one gets Gi’i € B(H2(R?), L2 (R?)).
Thus, hypothesis (H7.2) holds.

By (5.9) and (5.10), we have that hypothesis (H7.3) is equivalent to the existence
in B(H2,(R?), H7?(R?)) of limeng AY ;. = limeno(1 — VR 4i¢)"'v. By (5.1),
v e B(H2,(R?), L2(R?)). Then, limen0(1 — VR 4;¢) ! exists in B(L2(R?)) (see
[17, proof of Theorem XIII.33, p. 177]) and so (H7.3) holds. |

Lemma 5.6. Let v be short-range as in (5.1), with k = 2. Then hypothesis (H3) holds
true.

Proof. The proof is the same as the one for [14, Lemma 4.5], once one proves that
VRYT € B(L3,(R). (5.12)
. v,+ 2 3 2 3 :
Since R;™ € B(L3,(R?), HZ, (R”)), (5.12) is consequence of
V=Vy + Voo € B(H%,(R?), L2, (R?)). (5.13)

Lemma 4.1 entails v, € B(H?(R?), L?(IR?)) and so, since v, has a compact support,
one gets that v, satisfies (5.13). As regards v, one has, by 1 <25 < 1 + ¢,

Ioct25 oy = [ It + 2
R3

< e [+ LD 1P 1+ () o
R3
2 2
S c ||u||L2—2s(R3) S c ||u||H32S(]R3)
and S0 Vo satisfies (5.13) as well. ]

Lemma 5.7. Let v be short-range as in (5.1), with k = 1 and let 1, be either as in
(5.4) or as in (5.5). Then hypotheses (H4.2), (HS), and (H7.4) hold true.

Proof. By the continuity of z — R as a B(H; ' (R3), H! (R?))-valued map, one
gets the continuity of z > G2 = RE(x)™5 as a B(H 1 (R?), H! (R3))-valued
map. Hence, given y € € (R?) such that y = 1 on a compact set containing an open
neighborhood of ©, one gets the continuity of z > yRE (x)™5 as a B(H ' (R3\I')*,
H'(R?))-valued map. Therefore, z — yoG+= = yo RE (x)™ = yo yRE (x) ™ is con-
tinuous as a B(H L (R3\I")*, H/2(T"))-valued map. The continuity of z > y; G2+ =



A. Mantile and A. Posilicano 1098

ViRE(x)™ = y1 xRE(x)™% as a B(H ' (R3\I")*, H~1/2(T"))-valued map follows in
an analogous way using the same reasoning as in the proof of Lemma 4.17. In con-
clusion, hypothesis (H7.4) holds true.

Since I is compact, the embeddings b, < b,, where f), and b, are as in (5.4)
and (5.5), are compact by standard results on Sobolev embeddings.

Since v € B(L2(25+n)(R3) L2+E (2s+n)(R3)) and (1 +vR,)™! € B(L?(R?)),
by taking n = 1 + € —2s > 0, one gets A} € B(L2(2S+n)(R3), L?(R3)). Hence, by
the resolvent formula (4.8) and by R, € B(L? )(R ), Hf(2S+n)(R3)), one gets
R, € B(L?

—(2s+n

(2s+n)(R3), H3(2S+n)(R )). This entails

YoRZ' = yoR. = yoxR} € B(L2 5, ) (R?), B} ,(I))

and
VRPN = iR, = yixRY € B(L? 5,y (R®), H'/Z(T)).

Then, by duality, one gets G2! € B(b3, L3, (R)). This shows that (H4.2) holds.
By [1, Theorem 4.2], the map

(R\e(4p,)) UCx 3 z > RBvE = RY* € B(L2(R?), H2,(R?))
is continuous. Hence,
z > yoREVE = yoRY™ = yoxRy*
and

z > Y REVE =y RYF =y RY*

are continuous as B(L2(R?), B3/2 (T'))-valued and B(L2(R3), H'/2(T"))-valued
maps respectively. Then, by duahty, we have that z > GB1% is continuous on
(R\e(Ap,)) U Cy as a B(h3, L2 (R3))-valued map. Since yo: H?(R?) — B3/2(1")
and y: H2(R?) — HY2(T) are surjective, GZ1'F € B(b3, L*,(R?)) is the adjoint
of a surjective map and hence is injective. Thus, we proved that (H5) holds. ]

6. Applications

6.1. Short-range potentials and semi-transparent boundary conditions of
dr-type

Here we take
b2 = By7(T) <> by = by = H*®(T) <> b3 = L2(I), 0 <so < 1/2,

© =y H* R — By7(), Bo=1 By =a,
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where
a € B(H*(T),H*T)), a*=a.

Let us notice (see [14, Remark 2.6]) that in the case « is the multiplication operator
associated to a real-valued function «, then o« € L?(TI"), p > 2, fulfills our hypothesis.
For any z € C\(—o0, 0], one has

B 1| )2 0][(X>""Rz(xr“' (x)*‘YRzV(T]
MZ ! [ 0 « yoRz(x)™S yoR:z y(’;

= [ M)

v, . | 1=vRz —vSL;
MZ = [—aSL;f 1—asS; |-

By the mapping properties provided in Sections 4.1 and 4.2, by (5.6) and (5.7) with
w = —s, one gets
M € B(H! (R*\I)* @ H*(IN)).

According to [11, Lemma 5.8], for any z € C\((—o0, 0] U 0y), where o4 C (0, +00)
is discrete in (0, +00), one has

(MPoB2)™h = (M)~ = (1 —aS:) ™" € B(H (D).
Thus

ZBy.B, = Zao :={z € C\(—00,0: (M2)™! € B(H™*°(T')), w = z,Z}
2 C\((—00,0] U oq)

and
ABoB2 = (M Bo-B2)"1 B, = A% := (1 —aS.) ' € B(H* (), H*(T)).

By [14, Corollary 2.4], for any z € o0(A + v)\0y,«, Where 0,4 C 0(A +v) N R is
discrete in o(A +v) N R,

(ME)™' = (M) = (1—aSY) ™" e BLH(I)).
Thus

Zo=Zyo =1{z € 0(A+Vv): (M%) € BH™ (")), w = z,z}
2 0(A +V)\ove

and

A8 = (MB)™'By = AV := (1 —aS)) 'a € B(H*(T), H*(I)).
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Hence,

AT = [ Y1a T [0 Q1[0 o = 9 §1A2 4 9.

where, by Theorem 5.3,

A® = AV = [AHA% SL: A%SLY AL A SL M]
z z

AL¥SLE AY N

_[AL o SL; AL SLY SL. AL 0
=% s ] (1] L= o DI ]
One has
A% € B(H! (R3\T) @ H*(T"), H:,(R3\I")* @ H~(I)).

By Theorems 2.1 and 2.9, there follows

s v s 2sy, SR,
RE® = Ry + R0 sez (19 9JAR[ B 0] @7 | ©.1)
AL O SL; A% SLE SL. AL 0 R:
A A [ty | e EA
= R! + SLY A%SLL*. (6.3)

is the resolvent of a self-adjoint operator A%%¢; (6.1) holds for any z € o(A%%%) N
C\(—00, 0], both (6.2) and (6.3) hold for any z € o(AY%%) N o(A + v).
By Theorem 2.6,

A5y = Au + vu + (ayou)dr.
By (6.3) and by the mapping properties of SL, one has
dom(AY3%) € H¥/275 (R3).
Moreover, by Ru € H?(R3), so that [y;]R%u = 0, and by (4.30), one gets
IR u = —AL*SLL u = —pa(Ry%u).
Hence, by Theorem 2.11,
u € dom(A"%*) = ayou + [y1]u = 0.

Since Z,,a contains a positive half-line, A%-%¢ is bounded from above and hypothesis
(H4.1) holds. The scattering couple (A%%%, A) is asymptotically complete and the
corresponding scattering matrix is given by

Y =1-2mi LAA}""’*LI, A € (—00,0\ (0, (A +v) U op_(A"’S’“)),
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where L, is given in Theorem 5.3 and A‘)’C“’Jr = limao Aii ;- This latter limit exists
by Lemma 3.8; in particular, by (3.10),

Avet — (14 (a—vRH v 0 SLF (1—aSe )~ la(sLy)* sLf
0 (1—-asy )l (SL)* 0

% (l—vR)T)flv 0
0 (1-aSyH e |’
where

+._ 1 +._ 1 s E s
Ry = él{r(l)R;Liie, SLy = ell{r(l)SL;Liie, ST = Eh\r‘%yoSL‘iiis.

6.2. Short-range potentials and Dirichlet boundary conditions
Here we take
by = By7(I) <> by = HY?(T) <> b3 = L2(T) <> by = b = H~/2(),

© = yo: HA(R?) — By(I), By=0, B,=1.

For any z € C\(—o0, 0], one has

5107 [ (0250 ][ ) SR(x)= <x>—SRzyg]
Mz =[55] [(X)O ' 1][ YoRz(x)™5  yoRzy§
— S0 ,d 50
- [(J;)) 1]M; [(J;)) 1]’

vd .__ | 1-vRz —vSL;
Mz = I:_SL; -S; ]

By the mapping properties provided in Sections 4.1 and 4.2, by (5.6) and (5.7) with
w = —s, one gets

My e B(HL (R3\D)* @ H~V2(T), H! (R*\I")* @ H'/?(I")).
By Lemma 4.19 with v = 0, for any z € Z&d #* O,
(MBo-B2y=1 — pBo.B2 — (pqdy=t = Ad .= _§71 e B(HV2(I'), H~V/2(I)).
Thus,
ZBy.8, = Za :=1{z € C\(—00,0: (M{)™" e B(H'>(), H>(T)} 2 Z; 4.
By Lemma 4.19 again, forany z € Z? ;, # &,

(MFoB) ™t = (AfoP2)7t = (M)~
= Av = —(s)7 e B(HY2(D), H7V2(I)).
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A= [t [ I e ] = [ 1Ay )

where, by Theorem 5.3,

AB — Avd . [ AzTAZ SLz(SY)~!SLY AL —ALSLz(S%)~!
z— Tz —(SY)TISLE AL —(sH~1

[ 0 [ DY )
One has
AV e B(HY (R3\I) ® HY2(I'), H!,(R3\I")* @ H~V2(I")).
By Theorems 2.1 and 2.9, there follows that

R;’d = R, + [R:{x)~* SL: ][ (x)s ?]A\é,d[(x)s 0][ (x)zsv(x)*SRz] (6.4)

0 0 1 SLE
B AL 0 —SLz(S¥)"1SLE sL;
=R, + [R: SLZ][ o _(SZ)—I](l—FI: SL 0 ])
AL 0 R:
X[ 0 —(sH~! ][SL] ©

is the resolvent of a self-adjoint operator A%¢; (6.4) holds for any z € o(A%%) N
C\(—00, 0], both (6.5) and (6.6) hold for any z € o(A%?) N o(A + v). By (6.3) and
by the mapping properties of SL}, one has

dom(A%?) € H'(R?).
By Theorem 2.11 and by [y1]u = —pgu, for any u € dom(A%?), one gets
A"y = Au +vu — ([y1]u)dr

and
u € dom(A%?) = you = 0.

Therefore, dom(A%?) C HJ (Qin) ® H (Q2ex)- Since Zv,a contains a positive half-
line, A““ is bounded from above and hypothesis (H4.1) holds. The scattering couple
(A“4, A) is asymptotically complete and the corresponding scattering matrix is given
by

sp? = 1-2mi LAYYTLLL A € (—00,01\(0, (A +v) Uo, (A%?)),
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where L, is given in Theorem 5.3 and A\)'Cd’Jr =limgo A‘)’Li ;¢ This latter limit exists
by Lemma 3.8; in particular, by (3.10),

vd,+ _ a—vRH™v 0 —sLi syt sLy
A - (1 + |: 0 —(syH! (SL)* 0

(l—vR)T)_lv 0
X _(qv-ty—-1 |
0 sy
where

RE := lim Ry4;., SLE := limSLj4;., ST := limyoSLY, . .
2 N Atie A 0 Atie 2 6\07/0 Atie

6.3. Short-range potentials and Neumann boundary conditions

Here we take
by = b} = byp = HY2(I) = §3 = L2(I') = by = b} = b}, = H~V/2(I),
=y H*R?* - HY* (), By=0, B,=1.

For any z € C\(—o00, 0], one has

25y () 7TTRx) T (x) TS Ry
me=[a81-[ e ]

z 0 1 YiR(x)™5  y1Rzy§
=[5 gh )

1-vR- —vDL:
M" = |:—DVL”§ b. ]
By the mapping properties provided in Sections 4.1 and 4.2, by (5.6) and (5.7) with
w = —s, one gets

M e B(H (R3\I')* @ HY2(I'), H,(R3\D)* & H~V2(T")).
By Lemma 4.19 withv = 0, forany z € Zg , # &,
(MBo-B2y=t — ABo.B2 — (yymy=1 = A" .= _p-1 e B(HV2(I'), HV*(I)).
Thus,
ZBo,B, = Zn = {z € C\(~00,0]: (M!)™" € B(HVX('), H'/*(I))} 2 Zg,,.
By Lemma 4.19 again, for any z € Z7, # &,

(MPoB2)~1 = (ABo-B2)~! = (Mym) ™!
= A" = —(DY)™' € B(H™Y2(T"), H'*(I)).
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AL = [0 g doaen [ A g e ] = 1 RIASLY 8
where, by Theorem 5.3,

AB — Awn . [ ALAYDL:(DH)”IDLE AL —ALDL-(DY)”!
2= %z 7 —(DY)~' DL A ~(Dy)~!

Ay 0 —DL.(D%)~! DL} DL, AY 0
= [ 0 —(D;r‘](l +[ DLz 0 D[ 0 —<D;>—‘]'
One has
A" e B(HI (R3\T) @ H™V2(I), H! (R3\D)* @ H'/2(I")).

By Theorems 2.1 and 2.9, there follows that

A\ —S s v, S 2SV _SRZ
RYM = R 4 [Rofo DLZ][():)) 0]AL"[ 1) (1)][<x> D(f) ] 6.7)
= R; + [R: DLZ][ : (DV)‘ ] <1 * [_DLZ(I;E;_lDLg DEZD
AY 0 R
X[ 0 —(D;)”][DL’E] o
— Ry —DLL(DY)'DLY* ©2

is the resolvent of a self-adjoint operator A¥"; (6.7) holds for any z € o(AY") N
C\ (=00, 0], both (6.8) and (6.9) hold for any z € o(A"") N (A + v). By (6.3) and
by the mapping properties of DL?, one has

dom(A"") € HY(R3\IN).
By Theorem 2.11 and by [yg]u = pgu for any u € dom(AY-"), one gets
A" u = Au + vu + ([yolu)ép

and
u € dom(A"") = yu =0.

Since Z,,,, contains a positive half-line, A" is bounded from above and hypothe-
sis (H4.1) holds. The scattering couple (AY"", A) is asymptotically complete and the
corresponding scattering matrix is given by

SY" =1-2mi LAY A€ (—00,0\(0; (A +v) Uo, (A™")).
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where L, is given in Theorem 5.3 and A)’C"’JF = limao Aii ;- This latter limit exists
by Lemma 3.8; in particular, by (3.10),

At — (14 (1—vR )~ 0 -pLf (DY~ (oLy)* pLb
0 —(pyH~! (OL;)* 0

% (l—vR;’L—)_lv 0
0 —(oyH-t |

where

RE :=lim Ry4;.. DLT:=limDL;4;.., D"%:=1limy,DL!.. .
A N0 Atie A N0 Atie A 6\0)/1 Atie

6.4. Short-range potentials and semi-transparent boundary conditions of
31 -type

Here we take
by = b} =byp = H'*(I) & h3 = L*(T) & by = b} = b}, = H~'/>(I),

=y H*R? — H'/2(T), Bo=06, By=1,

where
0 € B(H*T),H M), 0<so<1/2, 6*=0.

Let us notice (see [14, Remark 2.6]) that in the case 6 is the multiplication operator
associated to a real-valued function 6, then 6 € L?(T"), p > 2, fulfills our hypoth-
esis. Let us also remark that B(H*(T"), H=5°(I')) € B(HY*(I"), H~Y2(I")) =
B(b3,65,)-

For any z € C\(—o0, 0], one has

0] _ [(x)ZSV 0][(x)—-“RZ(x)—-“ (X)_“'Rzyl*]
o 1 1Rz (x)™* iRz yy

6 ._ | 1-vR; —vDL;
M= [ ],

By the mapping properties provided in Sections 4.1 and 4.2, by (5.6) and (5.7) with
w = —s, one gets

My e B(HY,(R3\I)* @ HV2(I'), H,(R*\D")* @ H~V2(T")).
Lemma 6.1. Let Z7, # & be given as in Lemma 4.19. Then,

(1—-6DH™H ™ e B(HVAT)) foralze Z, = Z;, NC\R.
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Proof. We follow the same the arguments as in the proof of [11, Lemma 5.4]. Since,
by the compact embedding H (") < H~Y2(I'), 6(DY)~! € B(H~Y2(")) is
compact, by the Fredholm alternative, 1 — 6(DY)~! has a bounded inverse if and
only if it has trivial kernel. Let ¢ € H~'/2(I") be such that D¢ = O¢; using the
self-adjointness of 6, we get

(D7 —Dz)p =0.

By the resolvent identity,
Im(z)y1 RERY v 9 = 0.

z
This gives
IRy @llL2ws) = 0.
Since (RLy})* = y1RY € B(L2(R3), H'/2(T")) is surjective, the range of RYy; is

V4 V4

closed by the closed range theorem and, by [10, Theorem 5.2, p. 231],
IR vy elle®sy 2 lellg—1/2ar)-
Thus, ker(1 — 0(D})~!) = {0} and the proof is done. [
According to Lemma 6.1 with v = 0, for any z € 28,1 #* @,

(MPF2) ! = (M) = AZ = (6= D2)™"
=-D;'(1-6D;H e B(HTV2(T), H~V2(IN)).

Thus,
Zpo,3, = Zg :={z € C\(=00,0], (M{)™' e B(H™'>(1), H~'>(")} 2 Z3,,.
According to Lemma 6.1 again, for any z € Z‘,’ 7D,

(Mo~ = (%) = Ay = (6 - DY)
=—(D)' A -6(DH™H e B(HVAT), HVA(T)).
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where, by Theorem 5.3,

AB — AWO = [ ALOAL+AY DL ALY DLE AY AYDL: ALY ]
z zZ °

Av.0 Av.0
A7 DL AY A%

_[ar o DL: A% DLY DL. AL 0
_[OK;’G](1+[ DL} 0})[0?\;’9]'
One has
AV e B(H! (R3\TI') @ H~V2(I"), H! (R3\I")* @ H'?(I)).

By Theorems 2.1 and 2.9, there follows that

iy K} , s 2s SR
RE? = Re + (Rt pr ][ 07 OJALO 0 0] 007 % | (6.10)
AL 0 DL: A% DLE DL. Az 0 R:
:RZ""[RZDLZ][O K;ﬂ](l—i_[ DL 0 ])[0 IA\E’G][DL;]
6.11)
v v Av,0 v
= R + DL! A%*DLY*. (6.12)

is the resolvent of a self-adjoint operator A9 (6.10) holds for any z € o(A¥9)
C\(—o00, 0], both (6.11) and (6.12) hold for any z € o(A*%" %) N o(A + v). By (6.3)
and by the mapping properties of DL, one has

dom(AY*?)y € HY(R3\TI).
By R'u € H?(R3), so that [y;]Ru = 0, and by (4.31), one gets
[0l Ry%u = AYDLL u = pa(Ry%u).
Hence, by Theorem 2.11,
A0 = Au 4+ vu + ([yolu)8)

and
u € dom(A“Y0) = yu = Olyolu.

Proceeding as in [11, Section 5.5] (see the proof of Theorem 5.15 there), N
is bounded from above and so hypothesis (H4.1) holds. The scattering couple
(A%3"-9 A) is asymptotically complete and the corresponding scattering matrix is
given by

sf =127 LAYPTLL, A€ (—o0, 0\(0, (A +v) Ua, (AV5"9)),
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where L is given in Theorem 5.3 and AX’Q’JF = limgo A\ii ;- This latter limit exists
by Lemma 3.8; in particular, by (3.10),

Ave+ — (14 (1—vRH™ v 0 DL (6—Dy )~ la(dbLy)* DL}
0 (6-Dy )1 (DL;)* 0

% (l—ij:)_lv 0
0 0-Dy ) a |’

where

R := lim Rj4;.. DL¥ :=limSLjs,.., D"F :=limy,DL'. . .
2 oo Atie A 00 Atie A 6\‘0)/0 Atie
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