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Sharp spectral stability for a class
of singularly perturbed pseudo-differential operators

Horia D. Cornean and Radu Purice

Abstract. Let a.x; �/ be a real Hörmander symbol of the type S0
0;0
.Rd � Rd /, let F be a

smooth function with all its derivatives globally bounded, and let Kı be the self-adjoint Weyl
quantization of the perturbed symbols a.x C F.ıx/; �/, where jıj � 1. First, we prove that
the Hausdorff distance between the spectra of Kı and K0 is bounded by

p
jıj, and we give

examples where spectral gaps of this magnitude can open when ı ¤ 0. Second, we show that
the distance between the spectral edges of Kı and K0 (and also the edges of the inner spectral
gaps, as long as they remain open at ı D 0) are of order jıj, and give a precise dependence on
the width of the spectral gaps.

1. Introduction and main results

Let a.x; �/ be a real Hörmander symbol [14] of class S00;0.R
d � Rd /, i.e., a smooth

function on R2d satisfying the estimate

sup
x;�2Rd

jD˛
xD

ˇ

�
aj <1; for all ˛; ˇ 2 Nd : (1.1)

For jıj � 1 let aı.x; �/ D a.
p
1C ıx;

p
1C ı�/ 2 R. It belongs to the same class.

We denote by Hı D Opw.aı/ the self-adjoint operator generated by the Weyl quan-
tization, which means that

h ;Hı�i WD .2�/
�d

Z
Rd

d�

Z
R2d

dx0 dxei��.x�x
0/aı..x C x

0/=2; �/ N .x/�.x0/;

where  ;� 2 S.Rd / and h�; �i denotes the usual scalar product in L2.Rd / (considered
to be anti-linear in the first variable). The operator Hı has a distribution kernel that
can be written as the oscillatory integral

Hı.u; v/ WD .2�/
�d

Z
Rd

aı.u; �/e
i��vd�; u D .x C x0/=2; v D x � x0: (1.2)
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In [11], Gröchenig et al. proved that the spectral edges of the spectrum �.Hı/

are Lipschitz at ı D 0. The problem is non-trivial because the map ı 7! Hı is not
necessarily differentiable in the operator norm topology, which can already be seen
at the level of the symbol: a should have some extra linear decay in both x and � in
order to make sure that Hı �H0 has a norm of order ı, which would imply that the
Hausdorff distance between the spectra ofHı andH0 is Lipschitz continuous at zero.

Nevertheless, the authors of [11] show that such a strong decay is far from nec-
essary if one is only interested in the spectral edges. Actually they even consider
more general operators corresponding to symbols of Sjöstrand type, operators which
belong to certain weighted modulation spaces; see [10] and references therein for an
introduction to the subject.

A similar phenomenon appears in the case of long range magnetic perturbations
[2, 4–6, 8, 9]. In fact, the two problems are very much related, see Section 3.2 of the
current manuscript for more details.

1.1. A more general perturbation

In this manuscript we are interested in a more general perturbation of the symbol,
where the dilation treated in [11] becomes just a particular case. In order to achieve
that, we have to “rotate” the operators Hı in the following way.

Lemma 1.1. Denote by Uı the unitary transformation in L2.Rd / given by

.Uıf /.x/ D .1C ı/
�d=4f ..1C ı/�1=2x/; for all f 2 L2.Rd /:

Then U �
ı
HıUı equals the Weyl quantization of the symbol a.x C ıx; �/, and is iso-

spectral with Hı .

This result is straightforward and we will omit its proof. The advantage of working
with symbols shifted only in x is that we can identify a larger class of perturbations,
where the same spectral results as proved in [11] hold true. More precisely, instead of
x C ıx we will consider x C F.ıx/ where F satisfies the following assumptions.

Hypothesis 1.2. Let F 2 ŒC1.Rd /�d be a smooth real vector-valued function with
all its derivatives of all order uniformly bounded (thus F can grow linearly at infinity).
Given any real symbol a 2 S00;0.R

d �Rd / as in (1.1) and ı 2 R, let Kı be the Weyl
quantization of the symbol aŒF �ı.x; �/ WD a.x C F.ıx/; �/, i.e.,Kı DOpw.aŒF �ı/.
Also, the distribution kernel ofKı (defined as in (1.2)) is denoted by Kı . If F.x/D x,
then Kı and Hı are unitarily equivalent and isospectral.

We will only work with symbols of class S00;0.R
d � Rd / (included in the Sjös-

trand class of symbols considered in [11]) since they are more suitable for the less
symmetric perturbation which we consider.
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1.2. The main results

We start by recalling the definition of the Hausdorff distance between any two com-
pact sets M;N � R:

dh.M;N / D max¹ sup
�2M

dist.�;N /; sup
�2N

dist.�;M/º:

Our first main result gives a sharp upper bound on how much the spectra can
“move” as sets.

Theorem 1.3. Consider the notation introduced in Hypothesis 1.2. Then there exists
C > 0 such that

dh.�.Kı/; �.K0// � C
p
jıj

for all jıj � 1. This bound is sharp, in the sense that one can construct aK0 such that
0 2 �.K0/ while the spectrum of Kı develops gaps of order

p
jıj near zero.

The next straightforward corollary spells out in a detailed way how the interior
non-trivial gaps in the spectrum of K0 may vary with ı.

Corollary 1.4. Assume that K0 has an open spectral gap .�0; �0/ with �0; �0 2
�.K0/. Then there exists a constant C > 0 (the same as in Theorem 1.3), independent
on the spectral gap, such that for all jıj < .�0 � �0/

2=.4C 2/ the interval Œ�0 C
C
p
jıj; �0 � C

p
jıj� is non-empty and belongs to the resolvent set of Kı . Moreover,

both intervals Œ�0 � C
p
jıj; �0 C C

p
jıj� and Œ�0 � C

p
jıj; �0 C C

p
jıj� have a

non-empty intersection with �.Kı/ for all jıj < .�0 � �0/2=.4C 2/.

The next main result states that the spectral edges ofKı have a Lipschitz variation
at ı D 0.

Theorem 1.5. Let EC.ı/ WD sup�.Kı/ and E�.ı/ WD inf�.Kı/. There exists C > 0

such that jE˙.ı/ �E˙.0/j � C jıj, for all jıj � 1.

The next corollary describes the variation of the edges of those interior gaps which
remain open at ı D 0, and gives a precise control with respect to the width of the
spectral gap.

Corollary 1.6. Consider the same setting and the same notation as in Corollary 1.4.
Let jıj< .�0 � �0/2=.4C 2/. Since .�0C �0/=2 is in the resolvent set ofKı , and both
sets �.Kı/\ .�1; .�0C �0/=2/ and �.Kı/\ ..�0C �0/=2;1/ are non-empty, we
may define

�ı WD sup.�.Kı/ \ .�1; .�0 C �0/=2//;

�ı WD inf.�.Kı/ \ ..�0 C �0/=2;1//:



H. D. Cornean and R. Purice 1132

Then there exists a constant zC > 0, independent of �0 � �0, and some 0 < ı1 <

.�0 � �0/
2=.4C 2/ such that

max¹j�ı � �0j; j�ı � �0jº �
zC jıj

�0 � �0
; for all jıj � ı1:

Remark 1.7. Corollary 1.6 is stronger than Corollary 1.4 only when
p
jıj is much

smaller than the width of the gap�0 � �0. An important point is that the constant C in
Corollary 1.4 is independent of the gap, while the Lipschitz constant in Corollary 1.6
is inverse proportional with the width of the gap at ı D 0. This is compatible with
Theorem 1.3: when jıj increases and becomes of order .�0 � �0/2, the gap might
even close.

Remark 1.8. When F.x/ D x, the results of Theorem 1.5 and Corollary 1.6 are also
obtained in [11]. On the other hand, the results of Theorem 1.3 and Corollary 1.4 are
new. We note that if one is only interested in proving Lipschitz behavior of the inner
gap edges �ı and �ı , one does not need the explicit estimate in our Theorem 1.3, but
only some a priori knowledge of their continuity, as in [11].

2. Technical preliminaries

2.1. Known facts about the Hausdorff distance between spectra

The following lemma is well known but also very important, hence we prove it for
completeness, see also [9].

Lemma 2.1. Let A and B be self-adjoint and bounded. Let EC.A/ D sup �.A/,
E�.A/ D inf �.A/, and E˙.B/ denotes the same for B . Then

jE˙.A/ �E˙.B/j � dh.�.A/; �.B// � kA � Bk:

Proof. Let us prove the first inequality but only for “EC”. Let us assume, without loss
of generality, that EC.A/ � EC.B/. Then

0 � EC.B/ �EC.A/ D dist.EC.B/; �.A//

� sup
�2�.B/

dist.�; �.A// � dh.�.A/; �.B//:

Now, let us prove the second inequality. Let z 62 �.A/. We have

B � z1 D .1C .B � A/.A � z1/�1/.A � z1/:

If dist.z; �.A// > kA � Bk, then

k.B � A/.A � z1/�1k < 1
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and z 62 �.B/. This means that the spectrum of B is located within a neighborhood
of width kA � Bk of the spectrum of A. The same conclusion holds for A replaced
with B .

Another useful inequality is the following.

Lemma 2.2. Let A;B;C;D be bounded self-adjoint operators. Then

jE˙.A/ �E˙.D/j � kA � Bk C jE˙.B/ �E˙.C /j C kC �Dk: (2.1)

Proof. Direct application of the triangle inequality and of Lemma 2.1.

2.2. Reduction to compact support in the second variable of the distribution
kernel

We refer to Hypothesis 1.2 for the notation involving Kı and Kı .

Lemma 2.3. Let 0 � f � 1 be smooth and compactly supported, with f .x/ D 1 in
a neighborhood of 0. Let zKı be the operator with the integral kernel zKı.u; v/ WD

f .
p
jıjv/Kı.u; v/. Then the symbol QaŒF �ı of zKı obeys (1.1) uniformly in jıj � 1 and

kKı � zKık D O.ı1/:

Proof. We may assume ı � 0. Denote by Of the Fourier transform of f . The symbol
of zKı is a convolution,

QaŒF �ı.x; �/ D .2�/
�d=2

Z
Rd

a.x C F.ıx/; � � � 0/
Of .� 0=
p
ı/

ıd=2
d� 0;

while the symbol of Kı � zKı is

.2�/�d=2
Z

Rd

.a.x C F.ıx/; �/ � a.x C F.ıx/; � � � 0//
Of .� 0=
p
ı/

ıd=2
d� 0;

where we used that f .0/ D 1. Using the integral Taylor formula we have

a.x C F.ıx/; �/ � a.x C F.ıx/; � � � 0/

D

1Z
0

dr
d

dr
a.x C F.ıx/; � � � 0 C r� 0/

D .� 0 � r�/a.x C F.ıx/; �/ �

1Z
0

drr.� 0 � r�/
2a.x C F.ıx/; � � � 0 C r� 0/
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D

N�1X
jD0

.�1/j

j Š
.� 0 � r�/

jC1a.x C F.ıx/; �/

C
.�r/N

NŠ

1Z
0

dr.� 0 � r�/
NC1a.x C F.ıx/; � � � 0 C r� 0/

for every N � 1. Using that all the partial derivatives of f at zero equal zero, we may
write the symbol of Kı � zKı as

.2�/�d=2
1Z
0

dr
.�r/N

NŠ

Z
Rd

.� 0 � r�/
NC1a.x C F.ıx/; � � � 0 C r� 0/

Of .� 0=
p
ı/

ıd=2
d� 0;

for all N � 1. After a change of variables, this symbol reads as

ı.NC1/=2.2�/�d=2

�

1Z
0

dr
.�r/N

NŠ

Z
Rd

.� 0 � r�/
NC1a.x C F.ıx/; � �

p
ı� 0 C r

p
ı� 0/ Of .� 0/d� 0;

for all N � 1.
This symbol obeys (1.1) where the supremum is bounded by CN;˛;ˇ ı.NC1/=2 for

allN . An application of the Calderón–Vaillancourt Theorem [3] finishes the proof.

2.3. A localization result

Let 0 � g � 1 be smooth with compact support such thatX

2Zd

g2.x � 
/ D 1; for all x 2 Rd : (2.2)

Let 0 � Qg � 1 be any other compactly supported function and define gı;
 .x/ WD
g.
p
jıjx � 
/ and Qgı;
 .x/ WD Qg.

p
jıjx � 
/.

Lemma 2.4. Let T WD ¹T
º
2Zd be any family of bounded operators onL2.Rd / and
let jjjT jjj D sup
2Zd kT
k. We define

� Qg.T / WD
X

2Zd

Qgı;
T
gı;
 :

Then there exists a constant C independent of jıj � 1 such that

k� Qg.T /k � C jjjT jjj
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Proof. Given 
 2Zd , we denote by V
 the set of all 
 0 2Zd with the property that the
support of Qgı;
 0 has a non-empty overlap with the support of Qgı;
 , including 
 0 D 
 .
Denote by � 2 N n ¹0º the cardinal of V
 ; it is clearly independent of 
 and ı. For
 2 L2.Rd /,

k� Qg.T / k
2

D

X

2Zd

X

 02V


h Qgı;
T
gı;
 ; Qgı;
 0T
gı;
 0 i �
� C 1

2

X

2Zd

kT
gı;
 k
2

� jjjT jjj2
� C 1

2

X

2Zd

Z
Rd

g2.
p
jıjx � 
/j .x/j2dx D jjjT jjj2

� C 1

2
k k2;

where in the last equality we used (2.2).

3. Proof of Theorem 1.3

For simplicity, let 0 � ı � 1. From Lemma 2.3 and Lemma 2.1, we infer that the
Hausdorff distance between the spectra ofKı and zKı is of order ı1. Let us define the
operator VKı through its integral kernel given by VKı.u; v/ D f .

p
ıv/K0.u; v/. Then

with the same proof as in Lemma 2.3 one can show that k VKı �K0kDO.ı1/, and the
same is true for the Hausdorff distance between their spectra. Therefore, according
to the second inequality in (2.1), it is enough to prove that the Hausdorff distance
between the spectra of zKı and VKı is of order

p
ı.

Let �˛ be the unitary operator induced by the translation with�˛, i.e., .�˛ /.x/D
 .x � ˛/; we use the notations introduced in Lemma 2.4 and work with �g , i.e., with
Qg D g. We shall prove the following statement.

Proposition 3.1. Let z 2 C be in the resolvent set of VKı defined above. Let us define

T
 .z/ D ��F.
p
ı
/
. VKı � z1/�1�

F.
p
ı
/

the associated family T .z/ WD ¹T
 .z/º
2Zd as in Lemma 2.4 and the “remainder
operator”

Rı.z/ WD . zKı � z1/�g.T .z// � 1:

Then there exists a constant C such that for all 0 � ı � 1 we have

kRı.z/k � C

p
ı

dist.z; �. VKı//
: (3.1)

In particular, this implies that the spectrum of zKı belongs to a neighborhood of width
C
p
ı of the spectrum of VKı .
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3.1. Proof of Proposition 3.1

Here we use some of the ideas employed in [1]. We need to investigate the opera-
tor zKıgı;
 and compare it with gı;
��F.

p
ı
/
VKı�F.

p
ı
/

. If they were equal to each
other, then Rı.z/ would equal zero. In fact, there are two contributions to Rı.z/: one
coming from replacing zKıgı;
 with �

�F.
p
ı
/
VKı�F.

p
ı
/
gı;
 , and the other one com-

ing from the commutator Œ�
�F.
p
ı
/
VKı�F.

p
ı
/
; gı;
 �.

Lemma 3.2. There exists a constant C > 0 such that

k zKıgı;
 � ��F.
p
ı
/
VKı�F.

p
ı
/
gı;
k � C

p
ı; for all 
 2 Zd :

Proof. The distribution kernel of the operator

Lı;
 WD zKıgı;
 � ��F.
p
ı
/
VKı�F.

p
ı
/
gı;


from the statement of the Lemma is given by

f .
p
ıv/.K0.uC F.ıu/; v/ �K0.uC F.

p
ı
/; v//g.

p
ı.u � v=2/ � 
/:

Let us denote
hy.x/ WD f .x/g.�x=2C y/:

We see that hy is identically zero if jyj is large enough. We may find some smooth
and compactly supported function 0 � Qh � 1 such that

hy.x/ Qh.y/ D hy.x/; for all x; y 2 Rd :

The role of y is played by
p
ıu� 
 , which means that the quantity j

p
ıu� 
 j remains

uniformly bounded in both ı and 
 due to the presence of Qh.
Denote by r1a.x; �/ the partial gradient of a.x; �/ with respect to the spatial

variables x. Then by denoting

˛ı;
 .u; �/

WD a.uC F.ıu/; �/ � a.uC F.
p
ı
/; �/

D .F.ıu/ � F.
p
ı
// �

1Z
0

drr1a.uC F.
p
ı
/C rŒF.ıu/ � F.

p
ı
/�; �/;

the symbol of our operator Lı;
 is

bı;
 .u; �/ WD .2�/
�d=2 Qh.

p
ıu � 
/

Z
Rd

˛ı;
 .u; � � �
0/
Ohp
ıt�


.� 0=
p
ı/

ıd=2
d� 0:
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An important observation is that the function

Qh.
p
ıu � 
/.F.ıu/ � F.

p
ı
//

is uniformly bounded by
p
ı together with all its derivatives. Thus, all the seminorms

of the above symbol will have (at least) a factor
p
ı, uniformly in 
 and we are done

after an application of Calderón–Vaillancourt.

Lemma 3.3. There exists a constant C > 0 such that

kŒgı;
 ; ��F.
p
ı
/
VKı�F.

p
ı
/
�k � C

p
ı; for all 
 2 Zd :

Proof. The distribution kernel of the above commutator is

f .
p
ıv/K0.uC F.

p
ı
/; v/.g.

p
ı.uC v=2/ � 
/ � g.

p
ı.u � v=2/ � 
//

which equals

p
ı2�1

1=2Z
�1=2

drf .
p
ıv/K0.uC F.

p
ı
/; v/v � rg.

p
ıu � 
 C r

p
ıv=2/:

The v appearing in the factor v � rg has to be coupled with K0, in the sense that
when we write the symbol of the commutator as a convolution, by using integration
by parts, the factor K0.uC F.

p
ı
/; v/v becomes r�a.uC F.

p
ı
/; � � � 0/ in the

convolution. It turns out that again, all the seminorms of the commutator symbol will
be of order

p
ı uniformly in 
 .

We are now ready to complete the proof of Proposition 3.1. Let � � Rd be a ball
which contains the set

¹x 2 Rd j dist.x; supp.g// � 1º

and let us denote by Qg the indicator function of �.

Remark 3.4. Due to our choice of f with support in the unit ball, the presence of
f .
p
ıv/ in the distribution kernels of both zKı and VKı implies that

zKıgı;
 D Qgı;
 zKıgı;
 ; (3.2a)

�
�F.
p
ı
/
VKı�F.

p
ı
/
gı;
 D Qgı;
��F.

p
ı
/
VKı�F.

p
ı
/
gı;
 : (3.2b)

Now, let ¹M
 .z/º
2Zd be a family M.z/ of operators given by

M
 .z/ D . zKı � ��F.
p
ı
/
VKı�F.

p
ı
/
/gı;
T
 .z/�Œgı;
 ; ��F.

p
ı
/
VKı�F.

p
ı
/
�T
 .z/:
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A short computation using also (3.2) shows that

Rı.z/ D � Qg.M.z//;

hence an application of Lemma 2.4 with T replaced by M finishes the proof of (3.1).
Now, let us investigate the spectral consequences. If z 2 C is in the resolvent set

of VKı , we have the identity

. zKı � z1/�g.T .z// D 1CRı.z/:

Now, if we also impose that dist.z; �. VKı// > C
p
ı, then kRı.z/k < 1 and . zKı � z1/

is invertible, thus z cannot belong to the spectrum of �. zKı/. Thus, if � 2 �. zKı/, then
dist.z; �. VKı// � C

p
ı. This ends the proof of Proposition 3.1.

3.2. Concluding the proof of Theorem 1.3

We have seen in Proposition 3.1 that if z 2 C is at a distance larger than a constant
times

p
ı from the spectrum of VKı , then z is also in the resolvent set of zKı . Exactly

the same type of proof can be used when we swap the roles of a.x C F.ıx/; �/ and
a.x; �/, namely by putting

Qa.x; �/ WD a.x C F.ıx/; �/

and

Qaı.x; �/ WD Qa.x � F.ıx/; �/:

Thus, this proves that the Hausdorff distance between �. VKı/ and �. zKı/ goes like
p
ı.

This bound cannot be made better in general. Let d D 2 and let

aı.x; �/ D cos.�1/C cos.�2 C .1C ı/x1/:

Through Weyl quantization, this symbol generates an operator which is isospectral
with the Hofstadter model, in the Landau gauge, with a constant magnetic field b D
1C ı. It is known [12, 13] that Op.a0/ corresponds to the “half-flux case,” and the
operator has an absolutely continuous gap-less spectrum which contains the origin.
If ı ¤ 0 is small, then the spectrum of Op.aı/ develops gaps near zero of width
p
ı. A recent detailed analysis regarding the magnetic perturbations of “Dirac cones”

which produce gaps of order
p
ı may be found in [7].
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4. Proof of Theorem 1.5

We only prove the theorem for EC and 0 � ı � 1. Due to (2.1), it is enough to prove
the statement for the pair of operators zKı and VKı , where as before, zKı corresponds to
the integral kernel f .

p
ıv/K0.uC F.ıu/; v/, while VKı corresponds to the integral

kernel f .
p
ıv/K0.u; v/.

Lemma 4.1. Let ı > 0. For every  2 L2.Rd / we define

‰ı.x; y/ WD
� ı
4�

�d=4
e�ı

jx�yj2

8  .x/:

Then ‰ı 2 L2.R2d / and k‰ıkL2.R2d / D k kL2.Rd /.

Proof. Direct computation.

Lemma 4.2. Let x; y; z 2 Rd . Then

2�1jx C y=2 � zj2 C 2�1jx � y=2 � zj2 � y2=4 D jx � zj2:

Proof. Direct computation (the parallelogram identity).

For  2 S.Rd / we notice that we have the following identity:

h ; zKı i D

Z
R2d

du dv N .uC v=2/f .
p
ıv/K0.uC F.ıu/; v/ .u � v=2/

D

Z
Rd

dy

Z
R2d

du dv N .uC v=2/f .
p
ıv/K0.uC F.ıu/; v/

�

� ı
4�

�d=2
e�ı

ju�yj2

4  .u � v=2/;

where we used that the y-integral of the heat kernel equals 1.
The next lemma is very important, and says that we may replace F.ıu/ with

F.ıy/, making only an error of order ı.

Lemma 4.3. There exists C > 0 such that

h ; zKı i �

Z
Rd

dy

Z
R2d

dudv N .uC v=2/f .
p
ıv/K0.uC F.ıy/; v/

�

� ı
4�

�d=2
e�ı

ju�yj2

4  .u � v=2/C Cık k2; 0 < ı � 1:
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Proof. Let us consider the following distribution kernel:Z
Rd

dyf .
p
ıv/.K0.uC F.ıy/; v/ �K0.uC F.ıu/; v//

� ı
4�

�d=2
e�ı

ju�yj2

4 :

Denoting by r1 the partial gradient with respect to the “u 2 Rd” variables, we can
write the above distribution kernel asZ

Rd

dyf .
p
ıv/.F.ıy/ � F.ıu// � r1K0.uC F.ıu/; v/

� ı
4�

�d=2
e�ı

ju�yj2

4

C

Z
Rd

dy

1Z
0

dr.1 � r/..F.ıy/ � F.ıu// � r1/
2

� f .
p
ıv/K0.uC F.ıu/C r.F.ıy/ � F.ıu//; v/

� ı
4�

�d=2
e�ı

ju�yj2

4 :

From our Hypothesis 1.2, we have jF.ıy/ � F.ıu/j � Cıju � yj, hence both above
kernels correspond to S00;0 symbols due to the fact that the growth in ju � yj is con-
trolled by the Gaussian factor.

Moreover, in the second kernel we can couple one power of ı with the quadratic
term jy � uj2 and thus we can bound this second kernel by a constant times ı and
conclude that all the seminorms of its associated symbol will be of order ı.

For the first kernel, we use the Taylor expansion

F.ıy/ � F.ıu/ D ırF.ıu/ � .y � u/CO.ı2jy � uj2/:

The remarkable fact is that the linear term vanishes identically after integration in y.
The quadratic term can be dealt with as we did with the second kernel concluding that
it will generate an operator with norm of order ı.

Using the notation from Lemmas 4.1 and 4.2, the inequality from Lemma 4.3
reads as

h ; zKı i �

Z
Rd

dy

Z
R2d

dudv‰ı.uC v=2; y/f .
p
ıv/e

ıv2

16 K0.uC F.ıy/; v/

�‰ı.u � v=2; y/C Cık k
2: (4.1)

Another crucial observation is that the operator with the integral kernel given by

f .
p
ıv/e

ıv2

16 K0.uC F.ıy/; v/; for all y 2 Rd ;
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appearing in (4.1), is unitarily equivalent, by a conjugation with �F.ıy/, with the oper-
ator denoted from now on by Mı given by the distribution kernel

Mı.u; v/ D f .
p
ıv/e

ıv2

16 K0.u; v/:

These operators have the same spectrum, for all y 2 Rd , thus from (4.1) and Lemma
4.1 we have

h ; zKı i � EC.Mı/k k
2
C Cık k2: (4.2)

Finally, we see that the operator Mı �
VKı has the integral kernel

.ı=16/

1Z
0

drf .
p
ıv/e

rıv2

16 v2K0.u; v/:

The factor v2 multiplied by K0 will generate (by the usual integration by parts pro-
cedure for oscillatory integrals) some second order derivatives in � of the symbol
a.x; �/, while the Gaussian is just a smooth function depending on

p
ıv, which on

the support of f remains bounded. Hence, the operatorMı �
VKı has a norm bounded

by ı, which together with (4.2) implies

h ; zKı i � EC. VKı/k k
2
C Cık k2;

i.e.,EC. zKı/�EC. VKı/CCı. The inequality where zKı and VKı exchange places can
be proved in a similar way.

5. Proof of Corollaries 1.4 and 1.6

Corollary 1.4 is just a direct consequence of the definition of the Hausdorff distance.
For Corollary 1.6, we use a similar trick with the one used in [11]. Let


0 D .2�0 C �0/=3

and let us define

Tı WD .Kı � 
01/
2
D K2ı � 2
0Kı C 


2
01: (5.1)

Let us assume for the moment thatE˙.Tı/ are Lipschitz at ı D 0, a fact which we
will prove later. If ı � 0 is small enough, then by using the spectral theorem, the fact
that 
0 is closer to �0 than to �0, and the a priori estimate from Theorem 1.3 which
says that j�ı � �0j � C

p
ı, we have that

E�.Tı/ D .�ı � 
0/
2:
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The Lipschitzianity of E�.Tı/ implies the existence of a constant C1 > 0 such that

j.�ı � 
0/
2
� .�0 � 
0/

2
j � C1ı; for all 0 � ı < ı0:

Writing
.�ı � 
0/

2
� .�0 � 
0/

2
D .�ı � �0/.�ı C �0 � 2
0/

we have some small enough ı1 < ı0 such that

j�ı � �0j �
C1ı

j�ı C �0 � 2
0j
�

C1ı


0 � �0
D

3C1ı

�0 � �0
; for all 0 � ı < ı1

and we are done.
The only thing which remains to be proved is that E˙.Tı/ are Lipschitz at ı D 0.

We start with a lemma.

Lemma 5.1. Given B DOpw.b/ with b 2 S00;0.R
2d /, we denote by Mı.B/ the Weyl

quantization of the perturbed symbol b.x C F.ıx/; �/. If a 2 S00;0.R
2d / then Kı D

Mı.K0/ and
kMı.K

2
0 / �K

2
ı k � Cı:

Proof. Denote by � the indicator function of the unit hypercube � WD Œ�1=2; 1=2�d .
The operator Kı can be seen as an operator in

L

2Zd L

2.�/ given by the operator
valued matrix

A
;
 0.ı/.
N
x;
N
x0/ WD H0..

N
x C
N
x0 C 
 C 
 0/=2C F.ı.

N
x C
N
x0/=2C ı.
 C 
 0/=2/;

N
x C 
 �

N
x0 � 
 0/;

where .
N
x;
N
x0/ 2 � �� and .
; 
 0/ 2 Zd � Zd .

Due to the strong localization of H0 with respect to v D x � x0, one can prove
that for every N � 1 there exists CN > 0 such that

kA
;
 0.ı/kL2.�/ � CN h
 � 

0
i
�N :

For .
N
x;
N
x0/ 2 � �� let us define

zA
;
 0.ı/.
N
x;
N
x0/ WD H0..

N
x C
N
x0 C 
 C 
 0/=2C F.ı.
 C 
 0/=2/;

N
x C 
 �

N
x0 � 
 0/:

Using a Taylor expansion for F together with the strong localization of H0 in the
v variable, one may also show that for every N � 1 there exists CN > 0 such that

kA
;
 0.ı/ � zA
;
 0.ı/kL2.�/ � CN ıh
 � 

0
i
�N :

Up to a use of the Schur test in
L

2Zd L

2.�/, we get that

Kı �
X


;
 02Zd

�.� C 
/ zA
;
 0.ı/�.� C 

0/ D O.ı/:
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Thus, up to an error of order ı in operator norm, we have that K2
ı

is given byX

;
 02Zd

X

 002Zd

�.� C 
/ zA
;
 00.ı/ zA
 00;
 0.ı/�.� C 

0/:

By replacing F.ı.
 C 
 00/=2/ and F.ı.
 00 C 
 0/=2/ with F.ı.
 C 
 0/=2/, we pro-
duce an error of the type

ıh
 0 � 
 00ih
 � 
 00i;

that is controlled by the strong off-diagonal decay in both j
 � 
 00j and j
 00 � 
 0j
induced by K0. Hence, K2

ı
is up to an error of order ı given by the operator valued

matrix:

B
;
 0.ı/.
N
x;
N
x0/ WD .Integral kernel ofK20 /..

N
x C
N
x0 C 
 C 
 0/=2C F.ı.
 C 
 0/=2/;

N
x C 
 �

N
x0 � 
 0/:

Finally, by again using a Taylor expansion and a Schur test, one shows that this oper-
ator and Mı.K

2
0 / differ from each other by something of order ı in the operator

topology, and the proof is finished.

Going back to (5.1), we notice that Lemma 5.1 implies that modulo an error of
order ı we can replace Tb by

Mı.K
2
0 / � 2
0Mı.K0/C 


2
01 DMı.K

2
0 � 2
0K0 C 


2
01/;

which is the same type asKı and thus the Lipschitzianity of E�.Tb/ will follow from
Theorem 1.5.
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