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Exponential moments for disk counting statistics
at the hard edge of random normal matrices

Yacin Ameur, Christophe Charlier, Joakim Cronvall, and Jonatan Lenells

Abstract. We consider the multivariate moment generating function of the disk counting statis-
tics of a model Mittag-Leffler ensemble in the presence of a hard wall. Let n be the number of
points. We focus on two regimes: (a) the “hard edge regime” where all disk boundaries are at
a distance of order % from the hard wall, and (b) the “semi-hard edge regime” where all disk
boundaries are at a distance of order ﬁ from the hard wall. As n — +o00, we prove that the
moment generating function enjoys asymptotics of the form

C 2
exp(Cln 4+ Colnn 4+ C3 + —‘:z + (9(11_%)) for the hard edge,

7

C Inn)*
exp(Cln + Co/n + C3 + 7% +(9((n:)

In both cases, we determine the constants Cy, . .., C4 explicitly. We also derive precise asymp-

)) for the semi-hard edge.

totic formulas for all joint cumulants of the disk counting function, and establish several central
limit theorems. Surprisingly, and in contrast to the “bulk”, “soft edge”, and “semi-hard edge”
regimes, the second and higher order cumulants of the disk counting function in the “hard edge”
regime are proportional to n and not to /7.
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1. Introduction and statement of results

1.1. Hard wall constraints in random matrix theory

In this work we study random normal matrix eigenvalues on subsets of the plane
which are obtained by imposing a hard wall constraint. These eigenvalues can also be
seen as repelling Coulomb gas particles at the inverse temperature 8 = 2. While we
shall soon specialize to a class of Mittag-Leffler ensembles, it is convenient to start
out from a broader perspective.

Thus, we fix an arbitrary lower semi-continuous function Q¢: C — R U {+o00}.
Along with Q¢ we fix a suitable closed subset C of C and consider the modification
(“external potential”):

06) = {Qo(z) ifzecC,

+0o0 otherwise.

The external potential is assumed to be finite on some set of positive capacity and to
satisfy the basic growth constraint

Q(z) —In|z|*> > 400 asz — oo. (1.1)

Observe that Q may satisfy the growth condition (1.1) even if Q¢ fails to do so.
In particular, this is the case if Q¢ is a constant, or if Q¢ is an Elbau-Felder potential
[13,42,52,59]:

0o(z) = —(|z|2 2Re(f1z + -+ + 13.2%)).

Another basic class of hard walls is obtained by taking C = R, which leads to the
Hermitian random matrix theory.

Given a confining potential Q, we associate Coulomb gas ensembles in the fol-
lowing way (as mentioned, we will only consider the inverse temperature § = 2). We
consider configurations of n points {z; }}’zl C C. The total energy, or Hamiltonian of
the configuration, is defined by

H,,:Zln +nZQ(z,
jjl;kl

and the associated Boltzmann—Gibbs measure on C” is

1 _py - 2
dPnzze "Ud zj,
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where d?z is the two-dimensional Lebesgue measure. The Coulomb gas ensemble (or
“system”) {z; _7:1 corresponding to the external potential Q is a configuration picked
randomly with respect to this measure.

To a first order approximation, the system tends to follow Frostman’s equilibrium
measure . associated to the potential Q. This is the unique minimizer of the weighted
logarithmic energy functional

Ig[v] = // In |Z—1w| dv(z)dv(w) —|—/Q(z) dv(z)
C2 C

among all compactly supported Borel probability measures on C. The support of
w is called the droplet and is denoted S = S[Q]. If the potential is C2-smooth in
a neighborhood of S, then the equilibrium measure is absolutely continuous with
respect to the two-dimensional Lebesgue measure d?z and takes the form (see [68])

dn) = - A0()xs() d*z, (1.2)

where y s is the indicator function of S and A is the standard Laplacian.

It is known that the system {z;}| tends to condensate on the droplet under quite
general conditions [6,24,41,51,54,55, 66], in the sense that as n — oo the empirical
measures % Z;-’Zl 8, converge weakly to i in probability.

Consider now a smooth confining potential Q¢ on the plane whose droplet is Sp.
A case of some interest is obtained by placing the hard wall exactly along the edge
of the droplet, i.e., we take C = Sy, where the equilibrium measure is still absolutely
continuous and of the form (1.2). In this case, we obtain a so-called local droplet
with a soft/hard edge. Such droplets have been studied in for example [12, 51, 59]
and references therein. While the equilibrium measure is unchanged, the soft/hard
edge produces some statistical effects near the edge. Interestingly, the concept of
local droplets permits us to define some new and non-trivial ensembles, such as the
“deltoid” — a droplet with three maximal cusps which arises for the cubic potential
|z|> + ¢ Re(z3) for a certain critical value of the constant c, see e.g. [18].

However, the main case of interest for the present investigation is that of a hard
wall in the bulk of the droplet. To study this case, we choose an external potential
Qy giving rise to a well-defined droplet Sy and a closed subset C C Int Sy, and we
modify Qg to a potential Q by defining it as 400 outside C. This has an effect even
at the level of the equilibrium measure. Indeed, if the potential Qg is C?-smooth in a
neighborhood of Sy, then this effect is given by a balayage process which we briefly
recall.

Let o be the equilibrium measure with respect to the potential Q, given in (1.2)
(with “S” and “Q” replaced by “Sy” and “Q¢”). Assuming some regularity of the
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boundary dC, the equilibrium measure pj corresponding to the potential Q is then
given by the formula (see [68, Theorem I1.5.12])

Mn = o+ xc + Bal(po|so\c,9C), (1.3)

where Bal(jo]s,\c. dC) is the balayage of jio|s,\c onto the boundary dC. The for-
mula (1.3) expresses the fact that the portion io|s,\c is swept onto the boundary dC
according to the balayage operation, which preserves (up to a constant) the exterior
logarithmic potential in the exterior of the droplet Sy. See [68, Sections I1.4 and I1.5]
as well as [35, 53, 70] for more details about the balayage.

The balayage part of (1.3) is a density on the curve dC, so this part is singular
with respect to the two-dimensional Lebesgue measure. We think of this balayage as
a first approximation of the density for the particles which would have occupied the
forbidden region outside of C, were it not for the hard wall. On a statistical level,
in the generic case where AQ(z) > 0 for all z € dC, the particles which are swept
out of the forbidden region are expected to occupy a very narrow interface about the
boundary dC of width of order 1/n. We call this interface the “hard edge regime.”
The width 1/n is substantially smaller than the two-dimensional microscopic scale
1/+/n. We shall find below that on a 1/./n-scale from dC, we obtain a transitional
regime between hard edge and bulk statistics, which we call “semi-hard edge regime.”
The three regimes (bulk, semi-hard edge, and hard edge) each gives rise to different
kinds of statistical behavior, which we study below for a class of radially symmetric
potentials.

We remark that point-processes {z;}| of the above type can be identified with
the eigenvalues of an n x n random normal matrix M, picked randomly according
to the probability measure proportional to e " 2(M) g M where “tr” is the trace and
dM is the measure on the set of n x n normal matrices induced by the flat Euclidian
metric of C"*" [32,42,63]. (Note that this makes precise the identification between
eigenvalues and § = 2 Coulomb gas processes mentioned above.)

The process {z; }'| can be thought of as a conditional process where the eigenvalue
process associated with Qg is conditioned on the event that none of the eigenvalues
fall outside of the closed set C. If C C Int S, we are conditioning on a rare event.

We mention in passing that for other conditional point processes, such as the zeros
of Gaussian analytic functions conditioned on a hole event, the situation is drastically
different because of the presence of a forbidden region around the singular part of the
equilibrium measure [49, 65].

Remark 1.1. Hard wall ensembles from Hermitian random matrix theory have been
well studied in the literature, see for example [27,30,36,37,40,47,62]; see also [34]
for a soft/hard edge. We remark that imposing a hard wall in the interior of a one-
dimensional droplet has a well-known global effect on the equilibrium measure, in
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contrast to (1.3) which just alters the measure locally at the edge. However, this
apparent contradiction is quickly dispelled if we note that a one-dimensional droplet
consists of only edge and no interior (regarded as a subset of C).

1.2. Mittag-Leffler ensembles with a hard wall constraint

For what follows, we will restrict our attention to radially symmetric potentials of the
form

2
Qo(z) = |z —7“111 2], (1.4)

where b > 0 and o > —1 are fixed parameters. The unconstrained model Mittag-
Leffler ensemble is a configuration {; }{ picked randomly with respect to the follow-
ing joint probability density function:

IIMk—gFIIM|M'ﬂ%W t.....ty €C, (1.5)

1<j<k<n

n'zZ,

where Z,, is the normalization constant. It is well known that the droplet S¢ corre-
sponding to the potential (1.4) is the disk of radius b=25 centered at 0; the density is
given according to (1.2) by
h2
die(z) = —|Z|2b_2d22.

Remark 1.2. The logarithmic and power-like singularities of (1.4) at the origin are
not strong enough to affect the equilibrium measure. The term “Mittag-Leffler poten-
tial” is from [ 10] and refers to a much broader class of potentials having similar kinds
of singularities at the origin. The motivation for the terminology is that, under some
conditions, the local statistics near the origin can be described by a two-parametric
Mittag-Leffler function [13].

We now fix a parameter p with 0 < p < b=25 and place a hard wall outside the
circle |z| = p. More precisely, we consider the probability density

[lzx -z |21_[e n0G)  z,...,zy €C, (1.6)

1<j<k<n

n'Z

where Z,, is the normalizing partition function and

_[1zPP =2z if 2 =,
0(z) = (1.7)

if |z] > p.
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This gives the hard-wall Mittag-Leffler process {z;}, conditioned on the forbidden
region {|z| > p}. For brevity, we shall in the sequel refer to {z;}/ corresponding to
the potential (1.7) as the restricted Mittag-Leffler process.

The equilibrium measure wy corresponding to the potential (1.7) can be easily
computed using standard balayage techniques [68] (see also [35, Section 4.1] or [70]
for details) and is given by

/’Lh(dzz) = /Lreg(dzz) + /Lsing(dzz)»

freg(d?2) = 2b2r2b—1dr§, [hsing (d?2) 1= cpsp(r)drg, (1.8)
where z = ret?, r > 0,0 € (—m, ] and
b2
cpi= /2b2r2b_1dr =1—hp?t. (1.9)
o

Standard arguments [6,51,54] show that the empirical measures ,ll > 6, , converge
weakly in probability to uy as n — oo.

Clearly, the restricted Mittag-Leffler process is an example of a rotation invariant
ensemble, i.e., the joint probability density function (1.6) remains unchanged if all z;
are multiplied by the same unimodular constant ¢’#, 8 € R.

In this work we focus on the case p < b_ﬁ, which means that we are studying a
hard wall in the bulk of the droplet Sy. The case of a soft/hard edge, i.e., p = b=25
could be included as well, but would require a somewhat different (and much simpler)
analysis. We shall therefore omit this case.

Coulomb gas ensembles in the presence of a hard wall have previously been con-
sidered in the literature, but so far the focus has been on large gap probabilities (or
partition functions) [1,3-5, 29, 46,48, 50, 53] and on the local statistics [64, 70, 77].
We refer to [11,12,23,51,59,69] for studies of local droplets and local statistics near
soft/hard edges.

In recent years, a lot of works dealing with the counting statistics of two-dimen-
sional point processes have appeared [2,25,28,31,43,45,57,58,60,72,73], see also
[71] for an earlier work. A common feature of these works is that they all deal exclu-
sively with either “the bulk regime” or with “the soft edge regime.”

In this paper we study disk counting statistics of (1.6) near the hard edge {|z| = p}.
To be specific, let N(y) := #{z;: |z;| < y} be the random variable that counts the
number of points of (1.6) in the disk of radius y centered at 0. Our main result is
a precise asymptotic formula as n — +oo for the multivariate moment generating
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Figure 1. Illustration of the point processes corresponding to (1.5) (first row) and (1.6) (second
row) with n = 4096, p = %b_z%, a = 0 and the indicated values of b. In each plot, the red
circleis {z € C:|z| = b~ }. A narrow interface about the hard wall |z| = p, of width roughly
1/n, accommodates the roughly c,n particles swept out from the forbidden region. The semi-
hard regime of width roughly 1/.4/7 is transitional between the hard edge and the bulk.

function (MGF)
m
]E[l_[e“f N('ﬂ] (1.10)
=1
where m € N is arbitrary (but fixed), uy,...,u, € R, and the radii rq, ..., 1y, are

merging at a critical speed. We consider several regimes:

* hard edge,

¢ 1
0<r < - <rpm, rgzp(l——l)%, > >tm>0; (111
n

* semi-hard edge,

V254 \ 25

O<ri < <ry, I= (——)Zb, S>>, >0 1.12
1 m 14 1Y Pb«/ﬁ 1 m ( )
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* bulk,

V2s¢\ 25

0<rf<--<rp rgzr(l—{—m)zb, 5 <--- <3, €R, (1.13)

with r < pin (1.13).
We emphasize that s, # 01in (1.12).

We shall prove that, as n — 400, the joint MGF E[[ ]/, "/ NU/)] enjoys asymp-
totic expansions of the form

C
exp(Cln + Cylnn + C3 + «/_4— + O(n_%)) for the hard edge, (1.14)
n
C Inn)*
exp(Cln + Co/n + C3 + 71 + (9(( nn) )) for the semi-hard edge, (1.15)
n
C Inn)?
exp(Cln + Co/n +Cs + il + (9(( nn) )) for the bulk. (1.16)
Jn n
For each of these three regimes, we determine Cj, ..., C4 explicitly.

As can be seen from (1.14)—(1.16), the counting statistics in the hard edge regime
are drastically different from the counting statistics in the bulk and semi-hard edge
regimes (and also very different from the counting statistics in the soft edge regime
[28,31]). Indeed, at the hard edge the subleading term is proportional to In#n, while
in all other regimes it is proportional to /7. Furthermore, in the hard edge regime,
the leading coefficient C; will be shown to depend on the parameters u1,...,u,, ina
highly non-trivial non-linear way.

As we show below, the above asymptotic expansions have several interesting con-
sequences; for example, Var[N(r;)] < n in the hard edge regime, while Var[N(r;)] <
J/n in the three other regimes (actually, a similar statement also holds for the higher
order cumulants, as can be seen by comparing Corollary 1.5 with Corollary 1.8 and
[31, Corollary 1.5]). This indicates that the counting statistics near a hard edge are
considerably wilder than near a soft edge, in the bulk or near a semi-hard edge. From
a technical point of view, we also found the hard edge regime to be significantly
harder to analyze than the three other regimes. For example, our control of the error
term in (1.14) is less precise than in (1.15) and (1.16).

In contrast to earlier works on smooth and non-smooth linear statistics in the soft
edge and bulk regime, the leading coefficient C; in the hard edge regime is not given
by the integral of the test function (in our case Z;":l Uj X(0,r;)(2)) against the equilib-
rium measure [y, and in fact it depends in a non-linear way on the parameters u;. In
a sense this behavior becomes less surprising if we recall that we are not considering
fixed test functions, but rather increasing sequences corresponding to characteristic
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functions of expanding disks, and it is known due to Seo [70] that the 1-point func-
tion varies rather dramatically in the hard edge regime. On the other hand, the fact
that the relationship becomes non-linear might be less clear on this intuitive level. See
also Remark 1.4 below for more about this.

The transition from the hard edge regime to the bulk regime is very subtle. The
semi-hard edge regime lies in between, i.e., it is genuinely different from the hard
edge and the bulk regimes. To the best of our knowledge, it seems that this regime
has been unnoticed (or at least unexplored) in the literature so far.! Our results for
this regime can be seen as a first step towards understanding the hard-edge-to-bulk
transition. However, the fact that the subleading terms in the hard edge and semi-
hard edge regimes are of different orders indicates that there is still (at least) one
intermediate regime where a critical transition takes place. We will return to this issue
in a follow-up work.

As corollaries of our various results on the generating function (1.10), we also
provide central limit theorems for the joint fluctuations of N(ry), ..., N(r,,), and pre-
cise asymptotic formulas for all cumulants of these random variables (both at the
hard edge and at the semi-hard edge). Our results for the hard edge and semi-hard
edge regimes seem to be new, even for m = 1. Our results about the bulk regime
are less novel. Indeed, in this regime the asymptotics of the MGF have been inves-
tigated in various settings [25, 28, 31, 45, 57]: see [25, Proposition 8.1] for second
order asymptotics of the one-point MGF of counting statistics of general domains in
Ginibre-type ensembles; see [57] for second order asymptotics of the one-point MGF
of the disk counting statistics of rotation-invariant ensembles with a general potential;
see [45] for third order asymptotics for the one-point MGF of disk counting statis-
tics of Ginibre-type ensembles; and see [28, 31] for fourth order asymptotics for the
m-point MGF of disk counting statistics in the Mittag-Leffler ensemble (1.5). Both
the bulk and the soft edge regimes were investigated in [28, 31]; however in [28] the
radii of the disks were taken fixed, while in [31] all radii were assumed to merge at
the critical speed ~ %ﬁ (in this critical regime one observes non-trivial correlations
in the disk counting statistics). As it turns out, the bulk statistics of (1.5) and (1.6)
are identical up to exponentially small errors (in other words, the points in the bulk
almost do not feel the hard wall). Our formulas for the bulk regime (1.13) are in fact
identical to the corresponding formulas in [31] (the proof is also almost identical, we
only have to handle some additional exponentially small error terms). We have nev-
ertheless decided to include a very short section in this paper on the bulk regime for

'In a different but somewhat related context, namely in the study of the statistics of the
largest modulus of the complex Ginibre ensemble, a new intermediate regime was also recently
discovered in [56].
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completeness. We also point out that for C2-smooth test functions f on the plane, the
asymptotic normality of fluctuations was worked out quite generally in [9], for poten-
tials having a connected droplet. In this case the asymptotic variance of fluctuations
is given by a Dirichlet norm ;& [ |V /5 (2)|?> d%z, where /% equals f in S and is the
bounded harmonic extension of f'|s outside of §.

The presentation of our results is organized as follows: Section 1.3 treats the hard
edge regime, Section 1.4 the semi-hard edge regime, and Section 1.5 the bulk regime.

1.3. Results for the hard edge regime

Letry,....rmbeasin (1.11),let7 := (t1,...,tm) besuchthatt; > --- > 1, > 0, let
U= (ug,...,uy) € R™, and define
- bp?b Ti(x; 1 To(x; 7,1
flii = —(—22 4 &)l X Tl )
x — bp? b7 1+ To(x:t, 1)  2b 1+ To(x:t, i)
“ Pl 2b
Tj(xili) =Y wpt]e” s T j> 0, (1.18)
{=1
Q(ﬁ) =1 4 T()(prb;;,ﬁ) — €u1+"'+um,
where
eUettum _ pepitetum if g oy
wg = wg(il) = { e¥m — | if £ = m,
1 ifl=m+1.
Recall that the complementary error function is defined by
[e.e]
erfe(r) = — / e dx (1.19)
=7 . .
t

Throughout the paper In(-) denotes the principal branch of the logarithm and
Ds(zo) ={z € C:|z — z¢| <}
denotes an open disk of radius § centered at zg € C.

Theorem 1.3 (Merging radii at the hard edge). Let m € N>g, b > 0, p € (0, b_z%),
tp > >ty >0, and a > —1 be fixed parameters, and for n € Nx, define
Iy

rg:p(l—;)zlb, C=1,....m. (1.20)
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For any fixed x1, ..., xm € R, there exists § > 0 such that

- N(r;)
o[l

C
= exp(Cln + Cylnn + Cs + 7‘% + O(n_%)) asn — +0oo (1.21)

uniformly foruy; € Dg(x1),...,um € D§(Xm), where {C; = C; (ﬁ)}?=1 are given by
m 1
€= b3y /ln(l 4 To(x: 7, ii))do,
Jj=1 bp2b
bp? Ty (bp?bi11)  bp?P ULty

C, = . ,
2 2 Q(ii) 2 etrttum

1 1 -

- bp?PTy(bp?P: 1 1)
7, _ d
*/ i + Sga
bpzb
b T1(bp?b: 1, 10) 1n( bp? )
Q(u) V27 (1 = bp2b)/’
o T2(bp?Pi0, 1) Ti(bp?Ps0i) o Ti(bp?Ps 1, ﬁ)z)
Qi) Qi) p QG@? /)

Cy = V2Ibp? (,o

and the real number I € R is given by

+o00

2
ye 1
I= /{m _ X(o,m)(y)[y2 + 5]}dy ~ —0.81367. (1.22)
In particular, since E[H;-’l:l e*i N0 depends analytically on uy, ..., uy, € C and
is strictly positive for uy, ..., u, € R, the asymptotic formula (1.21) together with

Cauchy’s formula shows that

okt . ok | ﬁ NN |~ (Con+ Colnn + Cs + %)} =0 ?)
Jj=1

asn — +oo, (1.23)

foranyky,....kym € N,anduy, ..., uy € R.
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Remark 1.4. The leading coefficient in the asymptotics of moment generating func-
tions of linear statistics with respect to a fixed, bounded continuous test function g is
of course given by the integral of g against the relevant equilibrium measure. How-
ever, in the hard edge regime of Theorem 1.3, we rather use a sequence g = g,
of test-functions, given in terms of characteristic functions of expanding disks of
radii (1.20) by g, (2) = 372, uj X(0.r;)(2)-

A direct computation using (1.2) shows that, as n — +o0,

Ty

m m
Z”j /2b2r2b_1dr = bp?? Zuj + o(1),
j=1

0 J=1
gn(x)dpp(x) = v
m m
Zuj /2b2r2b_1dr +Umc, = prbZ uj + umcp, +o0(1),
=1 j=1

where the first line reads for #,, > 0 and the second one for f,, = 0, and where ¢, is
given by (1.9).

Since bp?? Y7L uj # Cy # bp*® Y7 uj + umc,, we see that in the hard edge
regime, even the leading coefficient C; cannot straightforwardly be obtained from
the equilibrium measure, which might be surprising at first sight. What is even more
surprising is that C; is not even linear in u1, . . ., U4, (this contrasts with all previously
studied regimes, and also with the semi-hard edge regime).

For j€ (N™) 2o :={7 = (J1,..., jm) € N: j1 + -+ jm > 1}, the joint cumulant

K7 = Kj(rl, eo s tmin,b,a) of N(r1), ..., N(ry,) is defined by

_ e aJ u1 N(r1)+-+um N(r,
K7 = Kjyoorj = 05 INE[e*t NV mNEm]|

-

u=0’
where 97 := 93} ... 93 . In particular,

E[N(r)] = k1(r),
Var[N(r)] = k2(r) = kq,1(r, 1),
Cov[N(r1),N(r2)] = ka,1)(r1,72).

Recall from (1.2)=(1.9) that ¢, = 1 — bp?? = [ pgne(d?z), i.e. ¢, is the density of
particles accumulating near the hard-edge as n — 4-o0. It turns out that the asymp-
totics of E[N(r¢)] and Cov(N(r¢), N(r)), which are obtained in Corollary 1.5 below,
are more elegantly described in terms of c,, as well as the new parameter

Sg = %(1 — bp??)
_ ol NPy . ot -1
- 7(1 _ (;) ) =252 2=+ 007, (1.24)
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Corollary 1.5 (Hard edge). Letm € Nog, b >0, pe (0,b725), € (N")sg, a > —1,

and ty > -+ >ty > 0 be fixed. Define s1, ..., Sy as in (1.24). For n € N, define
{redye, by (1.20).

(@) The joint cumulant k7 satisfies

K5 = 0LC1l;_gn + 9,Cal;_gInn
; 07 Cyl._s 3
J u u=0 —2
+81'ZC3|12=6+T+(9(” 5), n— +oo,

where C1,...,Cq are as in Theorem 1.3. In particular, forany 1 <{ <k <m,
E[N(r¢)] = b1(se)n + c1(se) Inn + di(se)
+ el(Sg)n_% + O(n_%),
Var[N(r¢)] = b1y (s¢, se)n + ¢,y (se, 5¢) Inn + da,1y(se, s¢)
+eq(se.s0n™2 + O~ 3),
Cov(N(r¢), N(rk)) = b(1,1)(se. si)n + c1,1)(se. k) Inn + da,1)(se. Sk)
+ e (se,5K)n 72 + O(n3)

as n — +o0o, where

1 —e™5¢
bi(se)) =1—cp+cp—,
S¢
1—c,bsy
ci1(se) = — £,
cp 2
1—e™S¢  1—cybsg, /b(1—cp)
1(s¢) 2 T cp 2 ! 2mc?

1
S / e (yep(bsey +2a) + (1 = ¢p)b(2 + 5¢y))
=S¢

2¢py
0 2(1 —c,)b
_ ( C,U) d ,
2¢py
1— 1—
e1(se) =\/§Ibp_b—c'05e( 050 — 1),
Cp Cp
and, forl <k,
1 —e5¢ 1 —e 55
b , = — , 1.25
a,1) (8¢, 8k) = ¢p 5 c Sc o8 (1.25)
1 —cpbsg

C S¢, S = B
,1)(5¢. 5k) o 2
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e St(l —e Sk 1—c¢,bs b(l—c
da,y(Se. %) = ( ) - Pk n(M)

2 cp 2 2mc?

1
1 1 -

/—bsk i
y

0

+ sge SU( -

o+ 27)

0

— e setsi)y (( p+ ay) (s¢ + sx)

+ l’z—y(y r = )6t +sb)fdy,

2 1—c 1-—
ey (se, k) = V21Ibp bc—pSk<1 -

c
P (2s¢ + Sk)>.
P P

(b) Asn — 400, the random variable (N1, . .., Ny), where

Ny = N0 ZhaGson o,y (1.26)

VbanGse,son’

convergences in distribution to a multivariate normal random variable of
mean (0, ..., 0) whose covariance matrix X is defined by

ba,1)(s¢, Sk)
Vb, (e, s0)ba,1y (ks Sk)

where by 1) is given by (1.25).

1<{l<k<m,

Yo =2 =

Remark 1.6. Corollary 1.5 is stated for ¢t > -+ > f,,, > 0. It is important for Corol-
lary 1.5(b) that #,, > 0; note however that Corollary 1.5 (a) in fact also holds for
t; > -+ >t > 0. In the case when t,,, = 0 = s, one finds b1 (s,,) = n and ¢1(sy,) =
dy(sm) = e1(sm) = 0, which is consistent with the fact that N(r,,) = n with proba-
bility 1.

The central limit theorem of Corollary 1.5 (b), even though it only uses b (s) and
b, 1)(s, 5), is a non-trivial result because to determine just the leading term C; in
Theorem 1.3 one already needs quite subtle asymptotics of the incomplete gamma
function.

Proof of Corollary 1.5. Assertion (a) follows from (1.23) and the expressions for the

C; given in Theorem 1.3. By Lévy’s continuity theorem, assertion (b) will follow if

we can show that the characteristic function E[e’ Y= ve Ne] converges pointwise to
=3 Xlk=1%Ze KV for every vg € R™ as n — +oo. Letting

ivg

uz = —7
Vba,1(se.se)n
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(1.26) and (1.21) show that
E[ei Py UNVZ] — E[BZ?’:l ug N(rz)]e—ZZLl ueby(se)n
_ oCL@n+Ca@) I+ C3 () +O (™) = L7y ugduy Cily_gn
as n — +oo for any fixed vy € R™. Since Cj|;,_5 = 0 for j = 1,2,3 and uy =
O (n~1/2), we obtain

Efef Xt1veNe] — o3 Xl k=1 ueurdugduy Cily_gn+O(ulPn+i| nn+il+n~1/2)

1 ~—m ivg ivg 1
. ejzz,k=1 N IR Jb(lJ)(Xk“‘,k)b(l,1)(Smin(€,k)asmax(f,k))"f'@ o)

1 m
s e 2 Xlk=1VeZL AV

as n — +o0o, which proves (b). ]

Let us analyze the leading coefficient b(; 1)(s, s) of Var[N(r)], where

£\ 25 ¢
= (1= —) d 5= Le
r p( p, and s bcp
By (1.25),
1—e* 1—e 25
ba,(s,s) =cp P (1.27)

Note that b(1,1)(0,0) := lims—0o_ b(1,1)(s,s) = 0, which, as mentioned in Remark 1.6,
is consistent with the fact that N(p) = n with probability 1. On the other hand,
ba,y(s,s) = ;—? + O(e™*) as s > +o0. Itis therefore interesting to investigate where
the maximum of b(; 1)(s, s) is achieved. It is possible to compute the unique maxi-
mum of s — b(y,1)(s, s) explicitly in terms of the Lambert function W_; (x), which
for —% < x < 0 is defined as the unique solution to

W_i(x)e"19) = x W_;(x) < —1.

Indeed, taking the derivative of (1.27) yields
A ses) = =2 (1 —e=5) (1 — (1 + 25)e=). 5> 0
75 DS, 742 ) )

and a direct inspection shows that %b(ljl)(s, s) = 0if and only if s = s,, where

50 = —(W_l(%) + %) ~ 1.2564.
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Furthermore,
—2W_i(57) — 1
b1y (s 54) = Wy & 0.20363c,.
W)

As p decreases, the hard wall gets stronger (in the sense that the mass c, of ising
increases), and we observe that b(; 1)(s«, Sx) increases. The graphs of b;(s) and
b,1)(s, s) are displayed in Figure 2 for certain values of p and b.

0.8
0.6
0.4

0.2

2 4 6 8 10 12 14

Figure 2. The coefficients s > by (s) (blue) and s — by 1)(s, s) (orange) for p = 0.6~ 25
and b = 1—0 The orange dot has coordinates (s, b(1,1) (S, 5%)).

1.4. Results for the semi-hard edge

Theorem 1.7 (Merging radii at the semi-hard edge). Let m € N>g, b > 0, p € (0,
b_ﬁ), $1 > >3, >0, and o > —1 be fixed parameters, and for n € N+, define

«/Ege o5
m:po————), C=1,....m. (1.28)
pb/n
For any fixed x1, ..., Xm € R, there exists § > 0 such that

m
IE[ 1_[ e N(’j)]
j=1
Cy

= exp(Cln + Cz«/ﬁ—l- C3 + T + (9(

uniformly for uy € Dg(x1),...,Um € Ds(xm), where

m
C: = prquj,

j=1

(Inn)*
n

)) asn — +oo
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+o00

C2 = V2" [ (ho0) = tcomin () Yo ; ).
AR ji=1
| m 400 m
C3 = —(5 + a) D ouj+b /(4y(ho(y) ~ X(~00,0) () Zuj) + «/ihl(y))dy,
i=1 A ji=1
400 m
€= b~ [ {627 (ho0) = tcoman) Yo7) + 4y () + V2 ()]
AN j=1
where
_ g1(») _ &0 1rg1(»))?2
ho() = Inlgo(). () = ha() = 25— o (S
and
go(y) =1+ iwew,

erfc(y)

- m /3 ) eV’ erfc(y + s¢)
§1(y) = ZT {(Sy _l)erfc(y) erfc(y)
= e~ +se)?

—(5y% + sy + 2%% — I)W},
m
@ (y) = Z {lgf[SOy +70p4s; + y3(6252 — 73) + y2s,(5052 — 33)
- 2 4 2 4 e~O+s0?
— Y3+ 1852 — 165%) + 5,(3 — 2252 + 894)]W
. 2(1 = 592)(50% + yse — 1 +282) ¢ =050’
o erfc(y) erfc(y)
y(3 + 7392 —50y%) e erfe(y + s¢)
184/ erfc(y) erfc(y)
2(1 —5y2)? ( )2erfc(y + Sg)}
9 erfc(y) erfc(y)
In particular, since E[]_[;"zl e*i NUD] depends analytically on uy, ..., um € C and
is strictly positive for uy, ..., u, € R, the asymptotic formula (1.31) together with

Cauchy’s formula shows that

k1 ak”’{lnE[ﬁe"jN(’j ] (C 1+ Con/ii + Cs + C4)} _(9((lnn)4)
up Tt Cum i 1 2 3 \/— = .

asn — +oo, forany ky,....ky, € Nanduy, ..., u, € R.




Y. Ameur, C. Charlier, J. Cronvall, and J. Lenells 858

The proof of the following corollary is similar to that of Corollary 1.5 and is
omitted.

Corollary 1.8 (Semi-hard edge). Letm € N+, b > 0, p € (0, b_ﬁ), 7 € (N™).,
a>—l,andsy > -+ > sy > 0 be fixed. For n € Nx, define {r¢};._, by (1.28).

(@) The joint cumulant k7 satisfies

e forj=1,

Kj’ = 83C1|a=6l’l + 8{7C2|1;=6«/ﬁ + 81§C3|ﬁ=() + 8{7C4|17=6

=

+o(,
© forj# L

1
f

asn — +oo, where Cy,...,Cy4 are as in Theorem 1.7.

(lnn)“)’

K7 = 0LCaly_g/n + 85C3;_g + 9 C4| -

+0(

In particular, forany 1 < <k <m,
1
E[N(r¢)] = b1 (s¢)n + c1(s¢)v/n + di(s¢) + e1(s¢)n 2
+ O((Inn)*n™Y),
_1
Var[N(rg)] = c1,1)(5¢.50)vn + da,1y (e, 5¢) + e,1)(s¢.5¢)n™ 2
+ O((nn)*n™1,
_1
Cov(N(rg),N(rg)) = ca,ny(s¢. $1)v/n + da,1y (¢, 5k) + e, (5¢, 5x)n~ 2
+ O((Inn)*n1)
as n — +oo, where

bi(s¢) = bPZb,

400
(s0) = Vb [ (o2 () .

£
di(sg) = + a + 2b/ er zgc(;)w) - X(—oo,O)(y))

52 —1 e’ erfc(y + s¢)
37 erfe(y) erfe(y)
1—5y2 — ysy — 282 =0 F50°
3T erfc(y) }
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bp~® / 1
ei(sy) = Mdy,
N0 =5 ) e M

—o0
where
M = 1087 y? erfe(y)? erfc(y + s¢)
+ \/;erfc(y)ze_(wrs‘f)2 (257(25y* — 11) + 257y (31y* — 33)
+ 5¢(70y* — 57y* + 3) + 165}y + 8
+ y(50y* — 193y2 + 21))
+erfe(y)(—e ™ VT y(50y* — 193y2 + 21) erfe(y + s¢)
— 4O+ (502 _ 1)(s4y 4 257 + 5y2 — 1))
+ 4e_2y2(1 —5y%)2erfe(y + s¢) — 108n)((_oo,0)(y)y2 erfc(y)3,

and, forl <k,
ca,n(se. sk)
o0
_ ﬁbpb/ erfc(y + s¢)(erfe(y) —erfe(y + ) dy. (129)
erfc(y)?
—00
w o
d 5 e CM d )
(1,1)(96 Sk) 3ﬁ erfc(y)3 14y
—0Q
+oo
bo~b —(y+s0)?=(r+si)?
p ¢ Mz dy,

e1,1)(se, 9%) = 9Von erfe(y)?
—%
where
M = erfe(y)2(6/y erfe(y + 5¢) — e O (s 4 257 4+ 537 — 1))
+ erfc(y)(e_(y“’f)2 erfe(y + sk)(sey + 257 + 592 — 1)
— 6«/myerfe(y + s¢) erfe(y + si)
+ (e_y2 + e_(y+gk)2) erfc(y + s¢)(5y% — 1)
+ e t=0)? erfc(y + s¢)sk 23k + )
+ 2e_y2(1 — 5y erfe(y + s¢) erfe(y + si)
and
M = —erfe(y)2 Mot + /7 erfe(y)3e @507 M, 5 + 2erfe(y) Mo 3
—12(1 - 5y2)2e2(5‘3+5k)y+55+5% erfc(y + s¢) erfc(y + sp),
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with

Mo,y = /merfe(y + 5¢)
x (108y/7y2 erfe(y + sy )e2 Gty tsi+si+2y
+ (50y* — 193y2 + 21)ye 0307 (e5k Ex+20) 4 1)
+ gke(erg‘f)2 (6251 y> + (SOsi —57)y? + 25 (85,2c —33)y
+ 8s — 2257 + 70y* + 3))
+ VeV (253 (25y% — 11) + 252y (31y* — 33)
+ 5¢(70y* — 57y% + 3) + 165}y
+ 857 + y(50y* — 193y? + 21)) erfc(y + s¢)
+ d(sey + 257 + 597 — 1)((5y* — 1)e=cEx12)
+ 5k Q23 + ) + 52— 1),
My = 108\/;)126(y+54)2 erfc(y + s¢) + 252(25)}2 —11)
+ 257y (31y% — 33) + 54(70y* — 57y% + 3)
+ 1657y + 85 + y(50y* — 193y2 + 21),
My 3 i=4(5y% — 1)eSc G2 (g, y 4 252 4 5y2 — D) erfe(y + ¢)
+ G2 erfe(y 4 5¢)
x (VT (50y* — 193y2 4 21)e @)% erfe(y + )
+2(1 = 5y%)2 (3 K+ 4 2) 4 ey (Sy° — 1) (2% + ).

(b) Asn — 400, the random variable (N1, . .., Ny ), where

_ N(r) = (i (s0)n + e1(50) /)
\/0(1,1)(96596)”1/4 ’

convergences in distribution to a multivariate normal random variable of

‘NZ: K=1,...,m,

mean (0, . ..,0) whose covariance matrix % is defined by

g =1,
c1,1)(%¢, 5k)
Vean e soea, sk sk)

Yoo =2 = 1<l<k<m,

s s

where c(1,1) is given by (1.29).

1.5. Results for the bulk

It turns out that the points in the bulk only feel the hard wall via exponentially small
corrections. Consequently, the formulas for the bulk regime presented in our next
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theorem are identical to the corresponding formulas for the case without a hard edge
presented in [31]. Moreover, the proof is almost identical to the proof of the analogous
theorem in [31] and is therefore omitted (the only difference between the proofs is that
a number of exponentially small error terms stemming from the hard wall appear in
the proof of Theorem 1.9).

Theorem 1.9 (Merging radii in the bulk). Let m € N>, b > 0, r € (0, b_ﬁ),
$1 < -+ < S, and o > —1 be fixed parameters, and, for n € N+, define

V2N
rbﬁ) L t=1.....m.

For any fixed x1, ..., xm € R, there exists § > 0 such that
m
E[ 1_[ euj N(rj)]
i=1

C Inn)?
- exp(Cln + Ca/n + Cs + 7‘;_ + (9((nnn)

uniformly for uy € Dg(x1),...,Um € Ds(xpy,), where

m
2b
Ci =br Zuj,
j=1

ry = r(l + (1.30)

)) asn — +oo  (1.31)

+o00
C, = ﬁbrb/(lnﬂl(z;ﬁ,g) + In Hr(t:u, 8))dt,
0
1 = I
C3 = _<§ +a> > uy+ 4b/’(1ﬂ3€1(f;’773) —In (151, 5))d1
Jj=1 0
+o00
N ﬁb/ﬁl(z;a,g)dt,
—00
+00
6+/2b O = 2
C, = \/b_ /tz(lnjfl(t;u,g)+ln3€2(f§“v5))dt
"
0

61(t:i1,3)?

+ 9 (t;u,3))dt,
7 2 ( ))

b +00
+ 5 [(mwis
r
—00
where

I (1:i1.3) = 1+ ) — exp[Zuj]erfc(t—sg),

(=1 j=t+1
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_ -1
o o “e —1
Hao(t;u,s):=1 +ZeTexp[— uj]erfc(t + s¢),
=1 j=1
and
G1(t;u,s)
1 " - —(t=20% 1 — 282 4 15, — 512
:FZ(e"e—l)exp[ Z uj]e ¢ 3 ¢ ,
1(t;u,s) — g V2
Gy(t:u,3)
m e~ (t— sz)z
u
351(’ Z(e o CXP[ —Xu:rluj] 18427
where

Mz = 501> — 70t*s, — 13(73 — 6257) + 1%5,(33 — 50s7) — (3 + 1857 — 16s7)
—50(3 — 2257 + 8s)).
In particular, since ]E[]_[;-"zl e N0 depends analytically on uy, ..., Uy € C

and is strictly positive for uy, ..., u, € R, the asymptotic formula (1.31) together
with Cauchy’s formula shows that

aﬁi...aﬁ’;{lnE[Jﬁ[leujN(r,] (C1n+C2\/_+C3+54_)} (9((111:)2),

asn — +oo, foranyky,... .k, € N,anduy, ..., uy € R,

Remark 1.10. In the above expressions for C,, C3, Cy, the functions #, #» appear
inside logarithms. It was proved in [31, Lemma 1.1] that one has J#;(¢;u,3) > 0
and J,(;u,3) > 0forallt € R, 4 = (ug,...,uy,) € R™and 51 < --+ < &;,. This
ensures that C,, C3, C4 are well defined and real valued for u = (uy,...,uy,) € R™,
Sp <0 < S

In a similar way as in Sections 1.3 and 1.4, one could derive from Theorem 1.9
asymptotic formulas for the joint cumulants of N(r;), ..., N(ry,) in the bulk regime.

For example, with r¢ as in (1.30), i.e. r; = r(1 + ﬁs“)% with s, € R, we have

b—1-2a
2

(Inn)?
n

E[N(ro)] = br2n + v/2brbs;/n + + (9(

), asn — +o0.

(1.32)

We do not write down the formulas for the other cumulants as they are identical to the
corresponding formulas in [31, Corollary 1.5].
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It is interesting to compare (1.32) with the corresponding formula for the semi-
hard edge regime of Corollary 1.8. To ease the comparison, it is convenient to replace

1
s¢ by —sy in (1.12), i.e., here we take ry = ,o(l + fjf»l)z” with s; < 0. Then it

follows from Corollary 1.8 that
E[N(rg)] = bp*2n + c1(—s¢)v/n + di(—s¢) + O(n_%), asn — +oo. (1.33)

Furthermore, by a long but direct analysis, we obtain as s; — —oo that
b—1-2a

c1(=s0) = V2bpPsg + O, di(—s) = ————
for a small but fixed ¢ > 0. Recall that the asymptotic formula (1.33) is proved for
fixed s; < 0. However, if we formally replace c¢1(—s¢) by ~/2bp?sy and d;(—s;) by
b=122¢ iy (1.33), then the terms of order 4/n and 1 in (1.32) and (1.34) are identical.
Thus, the above computation suggests that (i) the asymptotic formula (1.33) probably
holds as n — +o00 and simultaneously as s; — —oo at a sufficiently slow speed, and

£ O, (1.34)

(i) that the transition between the semi-hard edge regime and the bulk regime does
not contain an intermediate regime.

Outline of proof. Relying on the determinantal structure of (1.6), we can rewrite
]E[ ]_[2"=1 et NW)] as a ratio of two determinants using e.g. [76, Lemma 2.1] or [28,
Lemma 1.9] (see also [22]),

m n
1
E[HWNW)] IbA // [Tlzk =2 ? [Tw)d?z
=1 e o lsi<ksn j=1
1 ) n—1
= —det (/fokw(z) dzz)
Zn o \J jike=0
1 n—-1 P
=z [T [t au (135)
where
2 2b ~ et ifx < re,
w(z) =z w(z)), o) :=]] . (1.36)
1 U1 if x > ry.
For x < p, let us write
ml elettum _ pUet1+tum if p m,
o(x) =Y ol (x), wpi= e 1 if £ =m,
=t 1 ife=m+1,

(1.37)
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where 7,11 := p. Note also that Q := e¥1 T T¥m = ;'n=+11 w;. By (1.36)-(1.37),

o
/u2j+1w(u)du
0 re

o m
; 1y 2b ; a1y 2b
=/u2]+1u2ae nu du+§ :wg/M21+1u2ae nu=? 1.
0 =1 9

tlte  — itita
) s
n— J+l+a 4 =~ J+l+a
Y (7’( y " )+€Z‘”W(T’”rf )
=1

where y(a, z) is the incomplete gamma function

z

y(a,z) = /t"_le—tdl.

0
Hence,
n—1 A
Q2m)" l_[/u2/+1w(u)du
j=00
B - Jtoa o - Jta o
=n n b—nl—[(y( b ,np )+Zwm/< b Ny ))
An expression for Z,, in terms of y can be found by setting w; = - - - = w,, = 0 above:

_n2 _1t2a, 0" 1 Jjt+a 2b
Z, =n"2n" 2 b—nl_[y( —.np )

m ita
In&, = Zln(l + Z‘UZ%) (1.38)

where &, := E[[]j, "¢ NC0)]. The above formula is the starting point of the proofs
of Theorems 1.3, 1.7 and 1.9. We infer from (1.38) that, to obtain the large n asymp-
totics of &,, we need the asymptotics of y(a, z) as a, z tend to +o0 at various relative
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speeds. The uniform asymptotics of y are actually well known, and we recall them in
Appendix A.

The approach considered here shows similarities with [21,28,29,31]. The large n
behavior of y (L5, np??) depends crucially on whether 25% <« np??, 3% ~ np??
or % > np2b . Hence, for the proofs of both Theorem 1.3 and Theorem 1.7, we will

split the sum in (1.38) into four parts,
In&, = So+ S1 + S2 + 53,

where Sy, ..., S3 are defined in (2.4)—(2.5). The sum Sy involves a large but fixed
number of j’s; the sum §; corresponds to those j’s that are “large” and for which
j% <« np?P; and the sum S5 involves the j’s for which j% > np2P. For both
theorems, the most delicate sum is S,: this sum involves the j-terms in (1.38) for
which j% ~n p2b , and therefore critical transitions occur in the asymptotic behavior
of the functions {y (3%, nr2?)}  and y(2£%,np??) when performing the sum S5.
For the two novel regimes considered in this work, namely the hard edge regime
(1.11) and the semi-hard edge regime (1.12), the proofs require precise Riemann sum
approximations for functions with singularities (the singularities are more difficult
to handle in the hard edge regime). In comparison, the bulk regime of Theorem 1.9
(whose proof is omitted here as it is essentially identical to [31]) is simpler as the
corresponding Riemann sum approximations involve more well-behaved functions.

Related works. By (1.35)—(1.36), we have &, = D, /Z, where D, is an n X n
determinant with a rotation-invariant weight supported on C and with m merging
discontinuities: for Theorem 1.3, the discontinuities are merging near the hard edge
at speed 1/n; for Theorem 1.7, the discontinuities are merging near the hard edge at
speed 1/./n; and for Theorem 1.9, the discontinuities are merging in the bulk at speed
1/,

The problem of determining asymptotics of structured determinants with discon-
tinuities has a long history. When the weight is supported on the unit circle or on
the real line, this problem was studied by many authors, including Lenard, Fisher,
Hartwig, Widom, Basor, Boéttcher, Silbermann, Ehrhardt, Deift, Its, and Krasovsky,
see e.g. [16,26,39] for some historical background, [27, 30,36, 37,62] for structured
determinants with discontinuities near a hard edge, and [33,44] for merging disconti-
nuities in the bulk.

A central theme in normal random matrix theories concerns the asymptotic dis-
tribution of linear statistics Y | f(z;) where f is a given test-function on the plane.
The analytical situation depends crucially on whether or not f belongs to the Sobolev
class W12, since this is believed to be the right condition under which we obtain a
well-defined limiting normal distribution (say, after subtracting the expectation). This
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is rigorously verified in the Ginibre case in [67] and if the test-function is C2-smooth
for more general ensembles in [9]. However, the class W !-2 excludes certain natural
test-functions, or the logarithm /,(w) = In |z — w| (or close relatives like Green’s
functions) which is used in connection with the Gaussian free field, and characteristic
functions y g (z) which define counting statistics.

The works [25, 28, 31, 45, 57] were already mentioned earlier in the introduc-
tion and deal with determinants with discontinuities in dimension two. Determinants
corresponding to the logarithmic test-function /,, for some special ensembles, have
attracted considerable attention in recent years [20, 21, 38, 76], see also e.g. [13-15,
17,61].

2. Proof of Theorem 1.3

In this section, the r;’s are as in (1.11). Our proof strategy follows [21,28,29,31].

Let us define

bn ,02b bn pzb
_ = —o, = —o, 2.1
J [1+8 a-‘ J+ Ll—s aJ 2D
where ¢ > 0 is independent of n. We assume that ¢ is sufficiently small such that
b 2b
P, 2.2)
l1—¢

so that, recalling the formula (1.38) for In &,, we can write

In&, = So+ S; + 52 + 83, 2.3)
where
ﬂ 2b) J——1 Jjto
AT y(&5= nr} by
ln(H— a)g b L ) S = In({ 14 )
U=t EED (0 wier s
2.4)
Jjto 2b J+oc 2b
13% pr Jnr
-3 1n(1+2w4 i)y g Zm(wzm s rUamnr)y
Jj=Jj— T )0 ) J=j++1 »np )
2.5)
In the above, M’ > 0 is an integer independent of n. For j = 1,...,n and k =
1,...,m, we also define a; := %, and

bnr 2 —1—=1Ink )
Ajk = : = —1 X e 2.6
k=g Njk = Ak )\/ G =17 (2.6a)
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2b 2(Aj — 1 —1InA;
2 = 2P nj = ()L,-—1)\/ 4 niy). (2.6b)

j+a’ (A —1)2

With this notation, the summand in (2.4)—(2.5) can be rewritten as

ln(l + Z r(a;.a; M))
(=1

y(a],a,/\ )

The notation 7; and 7; & in (2.4)—(2.5) is introduced in the same spirit as the notation

n of Lemma A 2. Recall also that Q := e¥1+~Fum = Y1 H 1 ¢

Lemma 2.1. For any x1,...,Xy € R, there exists 6 > 0 such that
So=MInQ+0OE™“"), asn— +oo,
uniformly for u1 € Dg(x1), ..., um € Ds(Xm,).

Proof. We infer from (2.4) and Lemma A.1 that

m+1 M’
Zln( Z +(9(e_”’)]) = Zan + 0™ "), asn — +oo.
i=1 (=1 j=1
In the above, the error terms before the second equality are independent of uy, . . ., Uy,
so the claim follows. u

Lemma 2.2. The constant M’ can be chosen sufficiently large such that the following
holds. For any x1,...,Xm € R, there exists § > 0 such that

Si=(-—M —1)InQ + O(e™"),
as n — +oo uniformly for uy € Dg(x1),...,Um € Dg(xm).

Proof. According to (2.4) and (2.6), we have

Sl=j_il< £ o el
j=M'+1 (=1 )/(a]’a]/\)

Thereisad > Osuchthat A; > 1+ dandAj = A;(1 —1¢/n) > 14§ forall j €
{M"+1,...,j_—1}and £ € {1,...,m}. Hence, by Lemma A.2 (i) we can choose
M’ such that

2
j——1 m e

_ Zln(l-i-z Zl-{-@(e 2n2 ))’

i=M’+1 (=1 14O !

)
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where the error terms are uniform with respect to j and £. The functions j +— q; 17]2.
and j — a; 77]2 ¢ are decreasing, because

2
- lnlj,g < 0.

2
dj(ajn}) =—71Ink; <0, d;(an;,) = A

b

Moreover, we have a;_n7 > 2cn and hence a;_n7 , = a;_n; + O(1) > cn forall
sufficiently large n for some ¢ > 0. It follows that

j——1 m j——1
1+ 0" —en
Zln(1+2 elw(e_m)) Zln(1+zw)+o(@ )
j=M'+1 =M'+1
from which the desired conclusion follows. [

To obtain the large n asymptotics of S3, we will rely on the following lemma.

Lemma 2.3 (Adapted from [29, Lemma 3.4]). Let A = A(n),a9 = ao(n), B = B(n),
bo = bo(n) be bounded functions of n € {1,2, ...}, such that

a, := An+a9 and b, := Bn+ by

are integers. Assume also that B — A is positive and remains bounded away from O.
Let f be a function independent of n, which is Cz([min{"#, A}, max{lil—”, B})) for all
ne{l,2,...}. Then as n — 400, we have

b .
" ~ (1 2ag) f(A) + (1 + 2bo) £(B)
()= / Fed + !
() + mpa(f) | R (f7)
+(9( ; +j§ e LA g )

where, for a given function g continuous on [min{%", A}, max{%”, B}],

Maa@ = max gl
x€[min{ L, A},max{*,4}]

mg,(g) = ,max o [g(x)],
x€[min{=}, B} max{=*,B}]

and for j € {ap,....by — 1}, m; ,(g) 1= Max, i/ i+1) lg(x)].

Following the approach of [28,29], we define

b 2b b 2b b 2b b 2b
95:1’8) = (_np —a)— ol eme = | —( e —a).
l—e¢ l—¢ I+e I+e
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Lemma 2.4. For any x1,...,Xy € R, there exists 6 > 0 such that
1 1
1 b 2b
S3 :n/fl(x) dx + / f(x)dx + (a + 95[!,6) _ E)fl(lp_g)
bpzb bplh
1—e I—e

£ AW +O0T,
as n — +oo uniformly for uy € Dg(x1),...,um € Ds(x,), where
J1(x) :=In(1 + To(x))
and f and T; are defined in (1.17) and (1.18).

Proof. Recall thata;, A;, Aj¢, n; and n; ¢ are defined in (2.6). By (2.5), we have

Zz qoeylaj.ajrje)
y(aj.a;jr;)

n
=) In(1 + X;). where X; := 2.7)

J=j++1

For j > ji+landk € {l,...,m},1 =24, and 1 — A; are positive and bounded
away from 0. Hence, using Lemma A .4 (ii), we obtain

- 77
Yoy o £l k= os(wfﬁ’/z{)) +0(3r) + Oz 55t

Xj == ]
“J 2
Sk (3))
{0 kk+1/z +0(37) + O z5m))
]

L4 1+104;,0+47 , _s/2

mo ¢ (g T e ns e T OeT)
=) o— TSR .28

=1 Sl e S SR i i 0 W -5/2

€ (Aj—lm"' 12(1,-_1)31 27 + O(n=>/?))

where the above O-terms are uniform for j € {j+ + 1,...,n}. Let x := j/n. As
n — 400 we have

b2b
X € [lp +0m™Y, 1] aj =%+(9(1),

uniformly for j + 1 < j <n.Thus, multiplying both the numerator and denominator
on the right-hand side of (2.8) by al/z(k — 1), we get

m a;:
X; = nge_Tj(”/z}@_”Jz')Yj,@, 2.9)
=1
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where
-1 14104, 0+42 , 4 s
- ﬁ—(lj_l)wa +O0@®m™7)
= 1+104; +42 ’
1—(A; — 1)—m__1); ; + O(n2)
and where the above O-terms are uniform for j € {j + 1,...,n}. Using that a; =
%, we get

a; 2b, 2
e_Tj(n!Z,f_njz) = ea] ln(l_*)'f'aj nx+ut£ —=e (x_bPZb)<1 _ te xz_z 2”“_ + (g(i))’
n

n2
bp?b (1 _aH+x n alo + xty) O(L))
X xn x2n2

Ajg =

Js

n3
=" 2 o),

uniformly for j+ + 1 < j < n. Substituting these expansions into the expression for
Yj¢ in (2.9), a calculation gives In(1 + X;) = fi(j/n) + %f(j/n) +0O(n7?) as
n — oo uniformly for j4 + 1 < j < n. In view of (2.7), we thus have

Z <f1< ) + %f(%) FOM). asn - +oo

J=i++
The claim then follows after a computation using Lemma 2.3 (with A = pr_2 j ,dg =
1—0{—94(_"’8),B=1andb0=0). [ ]

We now focus on S5. Let M := nTo. We split S5 in three pieces as follows:

Sy =81 452 458 (2.10)
where
(v) V(aj,a] ]E)
Sy In( 1 =1,2,3,
AX:H( +Z (a],ajk)> v

JiAjely
and where

M M M

11=|:1—8,1—E>, 12=[1 \/_14-7] I3=(l+ﬁ,1—|—8:|

@2.11)

From (2.10), we see that the large n asymptotics of {Sév)}v=l,2,3 involve the asymp-
totics of y(a,z) whena — +00, z — +oo withA = 2 € [1 — &, 1 + ¢]. These sums
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can also be rewritten using

g——1 g+ J+
JiAjely  j=j- JiAjelr, j=g-— JiAjely j=g4++1
where g_ := ff””jf —a]and gy = i’"”ff — o |. Let us also define
U U
Q(n,M) . bnpzb B bnpzb bnpzb
N =g_— | o) = | e " 7 o)
+ + + 2L
2b 2b 2b
oMy . ( bnp _ (bnp bnp
- '_(1_M_a)_g+_(1_M_a)_tl_ﬂ_aJ'
Vn NG Vn

Clearly, §-M) GJ(F"’M) € [0, 1). Note that the individual sums Sél), Sz(z), S2(3) depend
on M, although S, = Sél) + Séz) + 52(3) is independent of M. Below, we will first
obtain large n asymptotics of Sél), Sz(z), SZ(S). After adding the asymptotic formulas
of Sz(l), Sz(z), 52(3), we will find that all M -dependent terms cancel, as they must. For
this reason, below we will not replace M by n'/1 until the last step of the proof. The
reason why we choose M = n'/1° is technical. In the various asymptotlc formulas
below, there will be different types of error terms, such as @ (MT) (9( T ™), etc., and
in the last step of the proof we will find that M = /10 is the choice that produces

the best control over the total error.
Lemma 2.5. Forany x1,..., Xy € R, there exists § > 0 such that
S = (bp?Pn — j_ — bMp? i + bM2p*? — o + 0M) — pM3p% =3 ) InQ
+OM*n™h,
as n — +oo uniformly for uy € Dg(x1),...,Um € Ds(xm).
Proof. Recall thata;, Aj, Ajx,nj, 1)k are defined in (2.6). By (2.10), we have

s = Zln(1+2 r(4;.a; ”))
(=1

[ e ain)

IfA; € I3, then A; > 1 + fand)tjg =A;(1- ) > 1 +%+(9(n_1). So, there
exists a constant ¢ > 0 such that

= M JE < —cm S oM JEL <—em
C—, —MNji|= <—-—cM, nig>=c—, —-Njg./= <-—cM,
=m TV e = e T
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for all sufficiently large n, £ € {1,...,m} and j € {j:A; € I3}. By Lemma A .4 (i),

n2

m _4ime g——1
140 2
ajns
JiAj€l3 =1 1 +(9(€_ jzj) j=Jj-

= (g-—j)InQ 4 O™ M)

as n — +o00. Since

bn 2b
g_—j_:( P —(X>+9£n’M)—]_

M
1+ n
_ prbn - bMprﬁ+ szpzb —q + M) —bM?’prn_%
+OM*nh
as n — +o00, the desired conclusion follows. [
Lemma 2.6. For any x1,...,Xy € R, there exists 6 > 0 such that
M wy DI
SV =p¥n 4+ DM /n + Dslnn + DM 4 Z5
Jn
M* 1 1 Jn
o b+ 370)
+ n + JnM + M®o + M1l
as n — +oo uniformly for uy € Dg(x1),...,um € Ds(x;,), where
bp2b
1—¢
o = [ Awax
bp2b
M
DM = —bp? f1(bp** )M,
bp?T (bp??)

Diy=——
T T 2(1 4 To(bp?h))

D(n,t‘?,M) _ b 2bM2< b 2b bp2b / b 2b
&M = =0 M (f160™) + T ™))

bp?T, (bp??) £
1+ To(bp2?) (M(l —g))

bo2b
1—¢

b T, (bp)
+ [{reos SNy

bp2h

1 (n,M) 2b
+(a—5+0+ ) f1(bo%)



Disk counting statistics at the hard edge of random normal matrices 873

(5o ()

bT:(bp??) —5bT;(bp?P)
M2(1 4+ To(bp?t)) 2020 M4(1 + To(bp??))’
(n,M) 3, 2b 2b 2b o1 2by . (BP*0)?
DY = — Mbp? (fi(Bp™) + bo™ £ (bp?") +

! (bp™))
’ 1 n
+ MbPbel (prb)(O[ _ 5 + 9_('_ ,M))

N M((b +a)p?PTi(bp??)  bp*PTa(bp??) | bp*PTi(Bp?)? )
1+ To(bp??) 2(1 + To(bp2?)) (14 To(bp?b))2/)”

where f1 and f are as in the statement of Lemma 2.4.

Proof. We have

25_1 a)gy(a,,aj ]Z)
y(aj,ajA;)

s = Zln(l—l—X) where X; :=
Jj=g++1

2.12)

Since A; € [1 —e 11— %) forgy +1<j<jyandA;j,=24,(1— %), we can apply
Lemma A .4 (i) to find, for each N > 0,

07 S A
ZZ;lwﬁ € i TR S 4 0( k) + O( )

X; =

S A
e 277 JE {ZN 1 (2{11(1/2)) + (9( N+l/2) + (9(_(ajn_,2~)lN+l/2)}
(2.13)

Let x := j/n. For all sufficiently large n we have nj < A; — 1,7 nj ¢ < ;0 — 1 <
Aj —1,and

b 2b 2b
xe [ T B
-7
uniformly for g+ + 1 < j < j4. Thus, multiplying both the numerator and denom-
inator on the right-hand side of (2.13) by —a}/ *(A; — 1) and using that S(go(1)) =

—ﬁ,we find

m a;
X; = e Wy, (2.14)

—+ 0 —1)] a; = % +O(1),

2More precisely, this means that 77; and A; — 1 are of the same order in the sense that there
exist constants ¢y, c2 > 0 such that c; < 7;/(A; — 1) < c3 for all sufficiently large n and all

g+ +1=j=Jj+
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. /{\J,T—_l —1) ZN 1 S(wk(jlj .0) + (9((,1(%_11)2)}\])'
’ (BT VD Wiy S((pk](/l Dy @((n(x_,-—ll)Z)N)
Using thata; = X ”b+ ¢ we can expand the exponential as n — +00:
e~ 4 F (% ,—n?) _ o% In(1—"£)+a; nxii
— e 2 (x— bp2b)(1 _ tﬁzx;# + (g(niz)) (2.15)

uniformly for g4+ + 1 < j < ji. On the other hand, as n — 400,

b= (1= T o))
2b 2
b= (5 s o)

uniformly for g4+ + 1 < j < ji. Substituting these expansions into the expression
for Y; ¢ in (2.14) with N = 6, a calculation gives

prbtg 2b3p4btg 1

N ( 10b5p6bte
n(x — bp2b) nz(x — bp2b)3 n2(x —

bpzb)z) " n3(x — bp2b)s

Yjo=

9t agmye) + )+ i)
(2.16)

uniformly for g+ + 1 < j < j;. The asymptotic formulas (2.15) and (2.16) imply
that

PTi(x)p?  xTa(x)  oTi(x) | 20°Ti(0)p*"  106°T(x)p®

X; =To(x) —

n(x — bp2b) 2bn bn n2(x — bp2b)>  n3(x — bp2b)s
(9 1 1 1 1
+ (nz(x _ bpzb)z + n3(x _ bpzb)4 + n4(x _ bpzb)7 + ns(x _ bpzb)12>‘
(2.17)

If A, B > 1, then

J+ | J+ 1
> (9(—>=0(/ dj)
A(x _ hp2b\B A(; _ hp2b\B
gt A —bp7) o" (j/n = bp*)
J+/n

1
We=ro

g4/n
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-t )

1
=0 (nA—(B-H)/ZMB—l )
so substitution of (2.17) into (2.12) yields

J+ 3 4b
S _ 26307, (x)
2 j=§+1<fl(x)+ O TG P

1 —10b° p® T (x) )+(9( 1 1 1 \/ﬁ)'

n3 (1 4 To(x))(x — bp2b)5 Mﬁ+M3ﬁ+W+ M1

(2.18)

Employing Lemma 2.3 with

A=

bzb bzb
1% _0_(:1,M)’ B — 0 ’

, do=1—« b =—a—9(”’€),
1— 0 1—¢ 0 +

Sl=

and using that / ®) (4) = O(n&+D/2p=k+D) for k > 0, we get

e 2b
2b
Zfl(x) —n/fl(x) dx + (a—3 +93,M>>f1( b )
j=g++1 1- N
—%
2b
+ (% —a—60"9) 1 (f"’j) + 0™,
- Z fx)= [ fx)dx+0
] g++1 / (M[)
“W
1 & 25307, (x)
2].:;“ (1 4 To(x))(x — bp?b)3
bp2b

_ b3 4bT](x) 1
-2/ e o 0 GEg)

T
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i —10b5p%T, (x)
3 — hp2b)s
w3 e T Tol0)(x — bp?)
b02b
I—¢
1 —1055p% T, (x) 1
= dx + O(———). 2.19
7l e TR O SR
b
L
N

The large n behavior of the integrals in (2.19) can be determined as follows. Let us
write

b 2b b 2b liz
/fl (x)dx=n / filx)dx —n / fi(x) dx. (2.20)

Using the integration by parts formula

(x — )

fﬁ(x)dx—((x—A)f()— CoA i+ S A )

(X_ m
—/ 3 (x) dx
A

with -
b
A=bp** and B ="
=0
in the second integral in (2.20), and then expanding as n — 400, we obtain
bpzb o 2b
[ filw)dx =n [ Sr@)dx —bp? £1(bp™ )M i
bo2 bpzb
71_M
N

M2bp?t ( f1(bp™) + Tf{aopzb))
3 2b\2
— Mn prb (fl (bp2b) + bp2bf1/(bp2b) + (bp6 ) 1//(bp2b))

v 4
+o(50)
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where we have used that
B 4 3
n / (x_?) 7(x)dx = O(n(B — A" = O(M*/n).
] !

Similar calculations using that

N
k

0@ = (=) T
for j, k > 0 give

prb bIDZb
—&

lf_gf(xwx: / {00+ b2 T (bp™) | ax

(1 + To(bp??))(x — bp??)

bpM bp2b
-7 PTG | bpTip?) | e
2(1 + To(bp2?b)) 1+ To(bp?b) — M(1—¢)
M {(b +a)p*Ti(bp?")  bp*PTa(bp*?)
NG 1+ To(bp??) 2(1 4 To(bp??))
bp*?T1 (bp?")? } (M_2 )
(1 4 To(bp??))? .
Furthermore,
prb

1 26347, (x)
nJ (14 To(x))(x —bp2b)3
2b

bp
SV 2
_ l/( 203 p*b T (bp??) N @( 1 )) i
—on ) N1+ To(bp2b)) (x — bp2b)3 (x — bp?P)?
b
e
n

_ bTi(bp?) 1
= i+ oo O Gigs)

and a similar calculation yields

prb
1T —1065050T, (x) _5bT, (hp??) 1
= | Trmoe = = ey O Gre)

Substituting the above expansions into (2.19), the claim follows from (2.18). ]
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Fork e {l,...,m}and j € {j:A; € [} ={g—,...,8g+}, we define M, :=
Vn(Ajr —1) and M; := /n(A; — 1). For the large n asymptotics of 52(2) we will
need the following lemma.

Lemma 2.7 (Taken from [29, Lemma 3.11]). Let h € C3(R). As n — +00, we have

M M

< 2b 2b 1 (n,M)
‘Zh(Mj) = bp / h(t)dt/n —2bp /th(r) dt + (E — Q0 )h(M)
J=8~ -M -M

1 am
+ (5 — 00" (=)
M

1
—3b2b/t2htdt
+—=[ 30 [ 0
M

N ( 1 oM @pnM) _ 1)>h’(M)

nt 2 bp?b
. oM M) 1)>h'(—M>]
12 2 bp?b
1 &+
+0( 575 DU+ 1M )it () + (14 MDY ()
j=g—+1

(1 + | M )i () + 380 () )

where,forl; eCR)and j e {g_+1,...,g4+}, we define

(k) ;= max  |h(x)].
x€[M;,M;_]
Lemma 2.8. For any x1,...,Xy € R, there exists 6 > 0 such that
(M) 4 14
@ _ (M) o | Es M= M
S, =E,)"/n+E, +7+0(7+n—2),

ESM™ = 2pp%" M In(1 + To(bp*?)).

EM = In(1 4 To(bp?*) (1 — 60M) — 640 +bp2b/h1(f) dt,
-M

1
EM = 2662 M3 n(1 + To(bp?)) + (5 = 04 )y (1)
M

+ (% - efr’”M)>h1(—M) + bp?b /(hz(t) —2thy (1)) dt,
-M
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as n — o0 uniformly for uy € Dg(x1),...,Uum € Ds(xy), where hy, hy are given
by

Y T
hi(x) = — liTl((bPZb)) N e 2.21)

o(bp 2 erfc(—ﬁ)
1.2 .2h

hy(x)? 1 e 2% f b O 3p 3 2b

ha(x) = — + — -3 Ti(b
>(x) T T T 2WICC(_M){(;) x =207 i (bp)
V2
4—10pbx2 —3x2p?
— T ) + T () s
V2 erfc(—ﬁ)

Proof. Using (2.10) and Lemma A.2, we obtain

m o Serfe(—nje/%) — Ra; (nje)
sPO=Y w1+ — ) e
—
jihjel =1 gerfe(—n; V ) — Ra; ()
For j e {j:A; € I}, we have
M bnp?? M
1——5/\j=L_1+—,
Jn J+a N
-M < M; <M, and
Ik teM;
Mj’kzMj_ﬁ_ n], k = 1,...,m.
Furthermore, as n — 400 we have
M;  M?+3t,  TM} — 12t M,
M= T T 3 T 36n3
T3M} —45M 21 + 18017
B 540n2
5 3 42 6
N 1331M7 — 552M Pt — 1080M;1; N (9(1 + M )
12960n5/2 n3
) \/ai/z M;pb . (SM? + 610)p”  pPM;(53M? + 121¢)
—njerfa; )2 = — _
PV V2 6321 724/2n
PP (270M Pty + 144TM} + 72017)
2160~/2n3/2
M;p® (5352M 71, + 32183M} 4 432017 (1 + M].6>
51840+/2n2 ns/2
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uniformly for j € {j:A; € I}. Hence, by (A.1), as n — +o00 we have

M2p2b
e 2
Ra; (nje) = ﬁ«/\’u (2.23)
where
—1 M;(3+ 10M?p? + 121,p?)
M4 = —
3pb/n 36pbn
+ W(45p4b(6M2t( +TMP + 417) + 20?0 (22M7F — 451))
—5p%P(5M? + 6M;10)* —2)
+ M(—@“b(ls%wu + 1967M} + 135017)
38880n2
+450%P (SM? + 6t¢) (42M Pty + 4TM} + 2417)
— 36072 (29M? + 45t) — 10M7p%* (SM? + 61,)® — 243)
+0O((1+ M}*n~3)
and

% CI'fC(—?’]j,g \/%)

szp2h
Do ( prj) e” 7 pP(5SM? —61p)
= —€eric\ — —
2 V2 621 /1
M2 p2b
e~ 2 M;p
oW (53M2 + 121 — 25M} p** — 60M? 197" — 3617 p*?)
Mz 2b Mz 2b
e= 2 Ps(M;. 1) T PuMt) _MER 14 M
1372 +- 2 (" ) )
(2.24)

uniformly for j € {j:A; € I,}, where Pg(M;, ;) and P11(M;,t;) are polynomials
in M; of order 8 and 11, respectively. If #, = 0, then A;, = A; and n; ¢ = n;; hence
analogous expansions of R (7;) and % erfc(—n; \/m) can be obtained by setting
ty = 01in (2.23) and (2.24). Substituting the above asymptotics into (2.22), we obtain

1+§:w(%erf(:( 77]6\/7) Ra,(njf)
(=1 erfc(— 771\/>) Ra; (1))

: M; M; M; 1+ |M;|'3
22( 1)+g3( ,)+g4( 1)+gs( ,)+0( +|5/2J| )
n

Jn n n3/2 n?

= g1(M;) +
(2.25)
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as n — +o0o, where

g1(x) =1+ To(hp??),
e 2P 20T, (bp??)

g2(x) = —
N2 erfc(—%)
—1x —Lx2p? T 2b
g3(x) = —— ” ¢ 1(bp )(4—10x2p2b)

3427 erfe(— %){ V27 erfe(— f)

+ Tibp?) Gxo? - 5x7p™) — 3p™ xTa(bp™)}.

The functions g4 and g5 can also be computed explicitly, but we do not write them
down. The functions g; (x), j =2,...,5, have exponential decay as x — +o00. Also,
since

e_%xzpzb pbx
=240k, asx - —oo, (2.26)
V2r erfc(—%) 2

g22(x) = O(x) as x — —oo. It appears at first sight that g3(x) = O (x*) as x — —c0.
However, a direct computation using (2.26) shows that some cancellations occur and
in fact g3(x) = @(x?) as x — —oo. Similarly, the exact expressions for g4 and gs
suggest at first sight that g4(x) = O(x7) and gs(x) = O(x'?) as x — —o0, but here
too, cancellations occur and in fact we have g4(x) = O(x3) and gs(x) = O(x*) as
x — —oo. Thus, after a computation using (2.25), we obtain

g+
h(M))  ha(M))
S = Y- {in(1 + To(bp) + 1f/ﬁ’)+ 2
J=8—
L+ M2 1+ M2
+O(—m+ i )|

asn — +oo, where h; = g»/g1 and hy = —h?/2 + g3/g1. Note that

L+ M2 1+ |M;|83 M4 M
2(9( 3 + ns/zj ):(9(7—1- P ) asn — +oo.

j=g-
Using Lemma 2.7, we find the claim. [

Let us define

+oo

= /{\/;%fj;(y) - X(o,+oo)(y)[y + ﬁ]} dy, (2.27)
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+o00

h= /1 % ~ oWy + 2~ 1]V ay. 228)
oo _y2

L= /1 (m)2 — Koo M + 11 dy, (2:29)
oo 2

- [ {(\%Z—rfyc(y))2 TROL) FaR S G | IS CE )

and recall that I is defined in (1.22).

Lemma 2.9. The constant M’ can be chosen sufficiently large such that the following

holds. For any x1,...,Xm € R, there exists § > 0 such that
C
Sy = —j InQ+CEOn+Cylnn+ " 4 =2
Jn
Jn 1 1 M* M
+O(gm et T o )
as n — 400 uniformly for uy € Dg(x1),...,um € Ds(xm), where C, is as in the
statement of Theorem 1.3 and
bp2b
1—¢
c® =pp?*nQ + / fi(x) dx,
bp2h
pp2b
1—¢
1 bp?P T (bp??) 1 bp?®
(n,e) _ 1Y 1L0p L pme) 4
C! _ZlnSZ—i-/{f(x)—I-—Q(x_bpzb)}dx—l—(z o— 0" )f(l_)
bp2h
2b 2b b 2b
— e Tibp™) Iy + S Ti(bp™)(In2 = 2b In(p))
T1(bp*?) | 4y €
——q bp ln(—l_g),
2b 2b 2b b 2b
N To(b —5T1(b 10+/2bp” T1 (b
Gy = Vbt " 2(6p*) = ST (0p™) V2bp 1(bp*)
Q 3 Q
T1(b Ty (bp?? 103/2bpb Ty (bp??
 Vabp? 1(,0)( bl(p))I3_ V2bp 1) |
Q 3pb Q 3 Q

and f1 and f are as in the statement of Lemma 2.4.
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Proof. By combining Lemmas 2.5, 2.6, and 2.8, we have

(M)
C,
S, = —j- an—l—C()n—{—Cz\/_—{—Czlnn—l-C(neM)—l- «/_
n
Jn 1 1 M+ M
0 S e T — . - _>?
+ (M11+M5+ﬁM+ n + n2
as n — +oo uniformly for u; € Dg(x1),..., Uy € Dgs(xy), where Cl(e) is as in the

statement, and
= —bMp**mQ + D™ + EM),
oM = M2 p? — o + 60 M)InQ + DM 1 EPM,
C(n M) bM3 ZbIHQ + D(n M) —I—E(M)

Using that
f1(bp?®) = In(1 + To(bp??)) = n 2,

we readily verify that C, = 0. Furthermore, by rearranging the terms and using

FT1(bp*)

/ b 2b — ,
fl( IO ) 1+T0(bp2b)
we obtain
1 ~
cy = J g+ G
b02b
1—e
b 2b-|- b 2b
n {f( ) P ;( p=") ' }
(1 4+ To(bp??)) (x — bp2?)
bpzb
1 b 2b
Ly g b
+ 2 ot )fl(l—s)’
where

M
CEM) = pp?b / hi(t) dt
—-M

T (b 2b b 4b
1(bp™) (Mz P _bpzbln(
1 + To(bp2b) 2

ey, b, 9y
M(1 —¢) M2 2p2bMm4 )"
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Using the definition (2.21) of &; and a change of variables, we rewrite 53(8’M)

g
>

o)

e’

V erfe(y)

~ T1(bp*®
C?EE,M) — _przb 1( p )

1 + To(bp2?)

,—"5

Mp

y 3y
—X(o,+oo)(y)[Y+2(1 + y2) +4(1 + y6)]}dy

ﬁ

S

M p

T1(bp?b) { 2b/ y 3y
— - 2p d
RENTYEIS J (r+ 21+ 2 +4(1+y6)) Y

S

bp*P b —5b
M? bp** In M
+ 2+,0 n +M +2p2bM4
_ Tl(bpzb) ,02b n €
1 + To(bp2?) 1—¢
The reason for the above rewriting stems from the following asymptotics:
2
e Yy 3y -7
|y + + ] =0 , asy — +oo,
e L A Taye) 00w

which implies

Mph

—y2
f{m - )((0,+oo)(J’)[y + 20 _T_ 12) + 4(13jy6)]}dy
Mszb

o0

= L _ y 3y 6
__/{ﬁerfc(y) X(°’+°°)(y)[y + 2(1 + »2) + 41+ ys)]}dy +O(M™)

o0

y2
= i{m - X(o,+oo)(J’)[y + 2(1+y2)]}dy _ 4L\/§ O,

as n — +oo. Furthermore, using a primitive and then expanding yields

b

y 3y
(y toa+y) Taas y6))dy

g

0

_2b,02b

O\E

S

bp** b —5b

2 2b

+ M2+ bp® In M + +2p2b Z
bp

) asn — 4o0.
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It follows from the above and some further simplifications that

C('”M) C("€)+(9(M %) asn — 400,

where C_,f"’s) is as in the statement. Similar (but longer) computation, using among
other things that

%Tl(bpzb)>2 . (—1)*Ta(bp?®)

" 2by
(™) = —(—5 -,

show that C, (n,M) can be rewritten as
clmM) — oMy L M) o o) 4 oM | o) | o), 2.31)
where
 M2p2b
(M) _ _ 20°T1(bp??) (1 _ e(n,M)) e #
! Q 2 2 erfc(—Mszb)
M2,2b
M) _ 2p”T1(bp2b)<1 _e(n,M))( e 2 B Mpb)
2 - + Mob ’
Q 2 \/Znerfc(%) 2
f bp®
M0 = 8 5Ty (0?) + P Ta(Bp??))
e 2+ 3]}
+ dy,
{ N — X©,400) (V)| Y y
Mpb
10+/2bp? 3077 2
o) _ 10V2b07 ) / [ y___] d
4 30 ) Jrmetic(y) — X0+t S5 5 } Y,
M/J
/2
b 2b
M) pT1(bp?") (2 5, T1(bp??)
= Joapot L (2 2b LF )
s =" =3 (3 g )
Mpb
V2 —-y? 2
€ 2
Ay 1]l
{( ﬁerfc(y)) x(o,+oo)(y)[y y
_MpP
V2
M b
10\/_b T1(b 2b) e -y2 2 3
M) _ o T1 P y [ 4, 2 ]}
— +y2=2lay.
6 3 nerfc(y)) X0,+00) V)| Y +y 1l

ﬁ
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