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Abstract. A scattering zipper is a system obtained by concatenation of scattering events

with equal even number of incoming and out going channels. The associated scattering zipper

operator is the unitary equivalent of Jacobi matrices with matrix entries and generalizes Blatter–

Browne and Chalker–Coddington models and CMV matrices. Weyl discs are analyzed and

used to prove a bijection between the set of semi-infinite scattering zipper operators and matrix

valued probability measures on the unit circle. Sturm–Liouville oscillation theory is developed

as a tool to calculate the spectra of finite and periodic scattering zipper operators.

Mathematics Subject Classification (2010). 34B20, 34B24.

Keywords. Weyl theory, Sturm–Liouville oscillation theory, orthogonal polynomials on the

unit circle.

Contents

1 Scattering zippers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Preliminaries on scattering matrices and transfer matrices . . . . . . . . . 51

3 Solutions and transfer matrices . . . . . . . . . . . . . . . . . . . . . . . 53

4 Resolvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Weyl theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Spectral measures of semi-infinite scattering zippers . . . . . . . . . . . . 68

7 Intersection theory and oscillation theorem . . . . . . . . . . . . . . . . . 72

8 Oscillation theory for finite periodic scattering zipper . . . . . . . . . . . 74

9 Spectrum of infinite periodic scattering zippers . . . . . . . . . . . . . . . 77

A. Möbius transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B. Riesz–Herglotz representation theorem . . . . . . . . . . . . . . . . . . . 80

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



48 L. Marin and H. Schulz-Baldes

1. Scattering zippers

A scattering zipper describes consecutive scattering events with a fixed number 2L

of incoming and out-going channels each. The zipper is specified by a sequence

.Sn/nD2;:::;N of unitary scattering matrices Sn in the unitary group U.2L/ as well

as two unitaries U; V 2 U.L/ modeling the boundary scattering. The size N of the

system is supposed to be either even or infinite. Then the scattering zipper operator

acting on `2.f1; : : : ; N g;CL/ is defined as

UN D VNWN ;

where the two unitaries VN and WN are given by
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The main hypothesis on each of the scattering matrices Sn is that its upper right entry

of sizeL�L is invertible. In the notation of Section 2 below, Sn is in a subset U.2L/inv

of the unitary group. This condition assures that the scattering is effective so that UN

does not decouple into a direct sum of two or more parts. The terminology scattering

zipper is best understood by looking at Figure 1 illustrating the model. It shows the

first scattering events of a semi-infinite model N D 1 for which we also drop the

indices on U, V , and W . It is also possible to consider periodic scattering zippers,

see Section 8 below for finite operators and Section 9 for infinite ones. Furthermore,

by placing either of the boundary conditions U and V into VN , one can consider the

case of odd N, but we refrain from doing so.
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'0 '1 '2 '3 '4 '5

 0  1  2  3  4  5

V W U

S1 S3 S5
z�1S2 z�1S4 z�1S6

Figure 1. Illustration of the first scattering events as well as the boundary scattering. The

wave functions 'z D .'z
n
/n�1 and  z D . z

n
/n�1 satisfy U'z D z'z, which is equivalent

to 'z D z�1V z and  z D W 'z. The picture corresponds to Proposition 3 below. The

boundary conditions 'z

0
and  z

0
as well as S1 can be introduced for convenience, but one can

also just keep U, c.f. Section 3.

The main message of this paper is that scattering zippers are the unitary analogs

of Jacobi matrices with matrix entries. Here are the structural results supporting this

claim.

� The matrix UN is not tridiagonal, but five-diagonal. Nevertheless, solutions

of the associated eigenvalue equation can be calculated by transfer matrices

having the same symmetries as in the Jacobi case, but no further restrictions (see

Section 3).

� The matrix element of the resolvent of UN corresponding to the left boundary

site 1 has a simple expression in terms of the entries of the transfer matrix,

namely it is given by a Möbius transformation of the other boundary condition

(Theorem 1).

� These matrix elements of the resolvent lie on a Weyl surface which is a matrix

ball (Theorems 2 and 3).

� All semi-infinite scattering zipper operators U with fixed boundary condition U

are in the limit point case. Fixing an appropriate gauge for each Sn, the semi-

infinite scattering zipper operators are in bijection with their spectral measures

which are all matrix-valued probability measures on the unit circle (Theorem 4).

� The eigenvalues of the finite scattering zipper operators can be calculated using

matrix Prüfer phases by Sturm–Liouville type oscillation theory (Theorems 5

and 6). This is also an efficient tool to calculate the spectrum of infinite periodic

scattering zippers (Theorem 7).

For Jacobi matrices with matrix entries, it is well-known how to use transfer

matrices, and how to calculate the resolvents (e.g. [10], but this is classical). Weyl

surfaces are also known for Jacobi matrices (see [11] which also contains earlier

references). The reason why there is a simple bijection in Theorem 4 is that all
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semi-infinite scattering zipper operators are in the Weyl limit point case, namely the

Weyl surfaces shrink to one point in the large N limit. This is in strong contrast with

Jacobi matrices where there are limit discs which lead to all the issues related to the

moment problem (see e.g. the beautiful paper by Simon [13]), nevertheless there are

close connections between probability measures on the real line and Jacobi matrices.

Finally, oscillation theory of Jacobi matrices with matrix entries was developed in [10]

and [12], but again the scalar case is well-known.

Now let us present our personal and without doubt very restricted view on con-

nections of this work to the literature. First of all, the scattering zipper itself is a

generalization of three well-known models: both the Blatter–Browne model [2], and

the Chalker–Coddington network model [5] of the solid state physics community, as

well as the CMV matrices [4] of the mathematical literature. The Blatter–Browne

model is scalar, namelyL D 1. In the Chalker–Coddington model, the aim is to model

a higher dimensional lattice of scattering events. In terms of the scattering zipper this

means that there is supplementary structure in each of the scattering matrices Sn and

that they are infinite-dimensional and very sparsely filled. Motivated by applications

to the quantum Hall transitions, the main focus in the Chalker–Coddington model

has been on random scattering events. First rigorous works on the analysis of the

Blatter–Brown model and the Chalker–Coddington model on a strip have appeared

in [3] and [1]. On the other hand, the CMV matrices in its matricial version [7] only

consider scattering blocks of the type

Sn D
 

˛n .1 � ˛n˛�
n/

1

2

.1 � ˛�
n˛n/

1

2 �˛�
n

!

; (1)

where the ˛n verify ˛�
n˛n < 1 which is equivalent to k˛nk < 1 (here and below we

always use the operator norm). These ˛n are called the Verblunsky coefficients [7].

There is a huge literature on CMV matrices (see [14] and [7] for a long list of

references). They form a subclass of the scattering zipper models considered here. Of

course, the transfer matrix techniques also apply and have very efficiently been used

in most works on the subject. However, the Weyl discs at finiteN as presented below

seem to have been studied only in the scalar case [8]. Nevertheless, it was possible to

prove in [6] and [7] that every sequence of Verblunsky coefficients corresponds to a

unique matrix-valued measure on the unit circle (Verblunsky’s theorem). Theorem 4

extends this theorem in that it exhibits a bijection between all probability measures on

the unit circle and the semi-infinite scattering zippers with fixed boundary conditionU.

Finally, it seems that oscillation theory for CMV matrices was only developed in the

scalar case L D 1 [14], Theorem 8.3.3.

Acknowledgements. H. Schulz-Baldes wants to thank Mihai Stoiciu for introducing

him to the world of CMV matrices and for a number of discussions about oscillation

theory at a very early stage of this work. He also let us know about the reference [2].

We also acknowledge financial support of the DFG.
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2. Preliminaries on scattering matrices and transfer matrices

As explained in the introduction, the following subset of the even-dimensional unitary

group will play a role:

U.2L/inv D
°

S D
�

˛ ˇ

 ı

�

2 U.2L/ j ˇ is an invertible L � L matrix
±

: (2)

Proposition 1. In (2), equivalent to the condition that ˇ is invertible is either the

invertibility of 
 or the condition ˛�˛ < 1 or the condition ı�ı < 1. Furthermore,

one has the representation

U.2L/inv D fS.˛; U; V / 2 U.2L/ j ˛�˛ < 1 and U; V 2 U.L/g; (3)

where

S.˛; U; V / D
 

˛ .1 � ˛˛�/
1

2U

V.1 � ˛�˛/
1

2 �V˛�U

!

: (4)

Proof. The equations S�S D 1 D SS� give

˛�˛ C 
�
 D 1; ı�ı C ˇ�ˇ D 1; ı�
 C ˇ�˛ D 0; (5)

˛˛� C ˇˇ� D 1; ıı� C 

� D 1; 
˛� C ıˇ� D 0: (6)

From three of these identities the first claims can be deduced immediately. For (3),

let us first of all note that ˇˇ� D 1 � ˛˛� implies that ˇ� has a unique polar

decomposition ˇ� D U �.1�˛˛�/
1

2 with some unitaryU. Similarly, 
�
 D 1�˛�˛

shows that 
 D V.1 � ˛˛�/
1

2 for some unitary V. But then ı D �
˛�.ˇ�/�1 D
�V.1 � ˛�˛/

1

2˛�.1 � ˛˛�/�
1

2U D �V˛�U.

Recall that the Lorentz group U.L; L/ of signature .L; L/ is defined to be the set

of 2L � 2L matrices conserving the form

L D
 

1 0

0 �1

!

: (7)

The following well-known result on the passage from scattering matrices to transfer

matrices is illustrated in Figure 2.

Proposition 2. The formula

'

 

˛ ˇ


 ı

!

D
 


 � ıˇ�1˛ ıˇ�1

�ˇ�1˛ ˇ�1

!
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defines a bijection from U.2L/inv onto U.L; L/. For any vectors '; '0;  ;  0 2 C
L,

one has the equivalence

S

�

 

 0

�

D
�

'

'0

�

() '.S/

�

 

'

�

D
�

'0

 0

�

: (8)

Moreover, if �; � 0 2 C
L form an inhomogeneity, then

S

�

 

 0

�

D
�

'

'0

�

C
�

�

� 0

�

() '.S/

�

 

'

�

D
�

'0

 0

�

C
 

�ıˇ�1 1

�ˇ�1 0

!

�

�

� 0

�

: (9)

Proof. First of all, note that ' is well-defined becauseˇ is invertible. Next one readily

checks that '.S/�L'.S/ D L by using (5) and (6). Moreover, the inverse of ' is

given by

'�1

 

A B

C D

!

D
 

�D�1C D�1

A � BD�1C BD�1

!

:

Next let us check (9), which generalizes (8). The upper equation on the left hand side

is ˛ C ˇ 0 D ' C � which can be rewritten as

�ˇ�1˛ C ˇ�1' D  0 � ˇ�1�:

This is already the lower equation of the right hand side. Solving it for  0 and

replacing in the lower equation of the left hand side gives the upper equation on the

right hand side.

'

'

'  

 

 '0

'0

'0

 0

 0

 0

S
'.S/

Scatterer

(i) (ii) (iii)

Figure 2. Illustration of the scattering event described in Proposition 2. (i) is the usual

graphical representation of a scattering event with incoming amplitudes and 0 and outgoing

amplitudes ' and '0. (ii) and (iii), corresponding to the left and right hand side of eq. (8), show

different representations of the same event as they are used as building blocks in Figure 1 and

Figure 3 respectively.
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Let us conclude this section with a few comments. First of all, one readily checks

'.S.˛; U; V // D
 

V 0

0 U �

!  

.1 � ˛�˛/�
1

2 .1 � ˛�˛/�
1

2 ˛�

˛.1 � ˛�˛/�
1

2 .1 � ˛˛�/�
1

2

!

:

Comparing with (1), one way to characterize CMV matrices is therefore to say that

their individual scattering events give rise to self-adjoint transfer matrices. Of course,

this does not imply that products of such transfer matrices have the same property.

This means that CMV matrices are not specified by some symmetry given by a

combination of time-reversal, particle-hole, or sublattice symmetry, and it is not clear

to us whether there is a deeper reason to consider scattering events of the type [4]. On

the other hand, it is possible to implement all the above symmetries also in scattering

zippers, just as for Jacobi matrices with matrix entries (see [10] where only even and

odd time-reversal symmetry is dealt with). Finally, let us briefly discuss degenerate

scattering events which don’t mix all incoming and outgoing amplitudes. There are

many possibilities to do this, but only two are relevant for the boundary conditions in

the next section. In one ' only depends on (left and right in Figure 2(i) decoupled),

in the other only on  0 (top and bottom in Figure 2(i) decoupled). Let us focus on

the latter. Then there are two unitaries U and V such that ' D U 0 and '0 D V .

In this case, S and '.S/ are given by

S D
 

0 U

V 0

!

and '.S/ D
 

V 0

0 U �

!

:

3. Solutions and transfer matrices

In this section, the formal solutions'z D .'zn/n�1 for the eigenvalue equation U'z D
z'z at z 2 C will be constructed. Here all the 'zn areL�Lmatrices and the index n

runs to infinity and it is formal in the sense that 'z is typically not square integrable.

The construction of 'z is done such that the left boundary condition (at site 1) is

satisfied. For finite N, the solution 'z in general does not satisfy the right boundary

condition, namely .UN'
z/N 6D z'zN .

The following result is graphically illustrated in Figure 3.

Proposition 3. Let 'z1 D 1. Then the following assertions are equivalent:

(i) .U'z/n D z'zn and .W 'z/n D  zn for n � 1;

(ii) .W 'z/n D  zn and .V z/n D z'zn for n � 1;

(iii) for any k � 1,

�

'z
2k

 z
2k

�

D T z
2k

�

 z
2k�1

'z
2k�1

�

and

�

 z
2kC1

'z
2kC1

�

D T z
2kC1

�

'z
2k

 z
2k

�

;
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where the transfer matrices and the initial conditions are

T z
2k D '.z�1S2k/; T z

2kC1 D '.S2kC1/; and

�

 z1
'z1

�

D
�

U

1

�

:

T z

1
T z

2
T z

3
T z

4
T z

5

'0  1 '2  3 '4  5

 0 '1  2 '3  4 '5

Figure 3. The scattering zipper of Figure 1 after having transformed each scattering event by '

into a transfer matrix multiplication as done in Proposition 3.

Remark. The application ' is used here even if z is not on the unit circle so that

z�1S2l is not unitary. Of course, T z
2k

is in the group U.L; L/ only if z is on the unit

circle. Also let us point out that T z
2kC1

is actually independent of z. Moreover, one

could also use the initial condition

�

'z0
 z0

�

D
�

1

1

�

;

and add in (iii) one more equation, namely

�

 z1
'z1

�

D T z
1

�

'z0
 z0

�

; T z
1 D '.S1/; and S1 D

 

0 1

U 0

!

:

This results from the discussion at the end of Section 2.

Proof of Proposition 3. The equivalence of (i) and (ii) results immediately from U D
V W . The equivalence of (ii) and (iii) can be checked by applying (8) iteratively in

Proposition 2. More precisely, the two equations of (ii) mean that for any k � 1

S2k

�

 z
2k�1

 z
2k

�

D z

�

'z
2k�1

'z
2k

�

and S2kC1

�

'z
2k

'z
2kC1

�

D
�

 z
2k

 z
2kC1

�

:

Applying the transformation ' from Proposition 2 to both of these equations than

shows the equivalence with (iii).
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As usual, the transfer matrices can be nicely iterated. For n � k let us set

T z.n; k/ D T z
n : : : T

z
kC1;

and in order to nicely write the solutions, let us also introduce the notations

ˆz2kC1 D
 

 z
2kC1

'z
2kC1

!

and ˆz2k D
 

'z
2k

 z
2k

!

: (10)

Then the solutions are simply given by

ˆzn D T z
n ˆ

z
n�1 D T z.n; 0/ˆz0 and ˆz0 D

�

1

1

�

: (11)

4. Resolvents

As a preparation for theWeyl theory, this section calculates the entries of the resolvents

of UN .V / corresponding to the site 1 in terms of the entries of the transfer matrix

from 0 to N :

T z.N; 0/ D
 

AzN BzN

C zN Dz
N

!

:

The first object of study is the Green matrix

GzN .V / D ��
1 .UN .V / � z/�1�1;

where �n W C
L ! `2.f1; : : : ; N g;CL/ is the partial isometry onto the nth site and z

is in the open unit disc D. For self-adjoint matrices, the Green matrix has a Herglotz

property, which it is lacking in the present situation. Actually, for the unitary operator

UN .V / it is more natural to consider

F zN .V / D {��
1 .UN .V / � z/�1.UN .V /C z/�1:

One readily checks that this analytic function z 2 D 7! F zN .V / 2 Mat.L;C/ has

a positive imaginary part {.F.z/� � F.z// > 0. It also satisfies F.0/ D { 1 and

is thus a so-called Caratheodory function (up to the factor {). If one also takes the

Cayley transform of the domain D to the upper half-plane H, one has again a Herglotz

function. A little more information on this is resembled in Appendix B.

Theorem 1. The matrix C zN � VAzN is invertible and

EzN .V / D .C zN � VAzN /�1.VBzN �Dz
N /;

lies in the Siegel disc DL D fZ 2 Mat.L;C/ j Z�Z < 1g. Moreover, the resolvent

matrix F zN .V / is given by

F zN .V / D 1

{
.EzN .V /C 1/ .EzN .V / � 1/�1; (12)



56 L. Marin and H. Schulz-Baldes

and the Green matrix by

GzN .V / D 1

z
EzN .V /.1 � EzN .V //

�1: (13)

Let us note that the formulas forEzN .V / and F zN .V / can also be written using the

(inverse) matrix Möbius transformation (see Appendix A):

EzN .V / D V � W T z.N; 0/ and F zN .V / D C� �EzN .V /; (14)

where the Cayley transformation is the 2L � 2L unitary matrix defined by

C D 1p
2

 

1 �{ 1

1 { 1

!

:

Based on (14) and the results of Appendix A, one obtains further identities, e.g.

EzN .V / D T z.N; 0/�1 � V � and F zN .V / D
�

C� T z.N; 0/�1
�

� V �: (15)

For the proof of Theorem 1, one needs a number of lemmata which will also be useful

later on for other purposes.

Lemma 1. Let T z D '.z�1S/ for some S 2 Uinv.2L/ and z 2 xD, and set

T z D
 

z�1A B

C zD

!

and P z D
 

.jzj�2 � 1/A�A .. Nz/�1 � z/A�B

.z�1 � Nz/B�A .1� jzj2/.B�B C 1/

!

:

Then P z � 1�jzj2

2
and

.T z/� L T z D L C P z : (16)

Moreover, for any Z 2 SDN
L, the Möbius transformation .T z/�1 � Z is well-defined

and lies in SDN
L. Furthermore, only for z 2 D,

.T z/�1 �Z 2 DL:

Proof. With the notations of the lemma, the matrix T D '.S/ satisfies the defining

equation T �LT D L of the group U.L; L/ so that

 

A B

C D

!�

L

 

A B

C D

!

D L: (17)

Thus a direct computation using the identities contained in (17) leads to (16). Note

that alternatively P z can be expressed in terms of C and D only. It remains to show
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the positivity of P z . Let
�

'
 

�

2 C
2L be with, say, k k � k'k. Then

�

'

 

��

P z

�

'

 

�

D .jzj�2 � 1/'�A�A' C .. Nz/�1 � z/'�A�B 

C .z�1 � Nz/ �B�A' C .1 � jzj2/ �B�B C .1� jzj2/ � 

� .jzj�2 � 1/'�A�A' � 2j. Nz/�1 � zj.'�A�A'/
1

2 . �B�B /
1

2

C .1� jzj2/ �B�B C .1� jzj2/ � 

� ..jzj�2 � 1/
1

2 .'�A�A'/
1

2 � .1� jzj2/ 1

2 . �B�B /
1

2 /2 C .1� jzj2/ � 

� 1

2
.1 � jzj2/

�

'

 

���
'

 

�

;

where in the last inequality the bound k k � k'k was used. The case k k � k'k
is dealt in the same manner.

As to the last claims, let us begin by noting

.T z/�1 D L.T Nz�1

/�L D

0

@

z A� �C �

�B�
1

z
D�

1

A: (18)

Thus we need to check the invertibility of �B�Z C 1
z
D� for Z 2 SDN

L and z 2 D.

For that purpose let us use again (17) so that, in particular, D�D � B�B D 1. Thus

D�D � 0 and D is invertible. Also .BD�1/�BD�1 D 1 � .D�1/�D�1 < 1 from

which follows kBD�1k < 1. Therefore

�B�Z C 1

z
D� D 1

z
D�.1 � z .BD�1/�Z/;

is indeed invertible. Thus

.T z/�1 �Z D .zA�Z � C �/.�B�Z C z�1D�/�1

is well-defined and

.T z/�1
�

Z

1

�

D
�

.T z/�1 �Z
1

�

.�B�Z C z�1D�/: (19)
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But using (16)

�

Z

1

��

..T z/�1/�L.T z/�1
�

Z

1

�

D
�

Z

1

��

..T z/�1/�Œ.T z/�LT z � P z�.T z/�1
�

Z

1

�

<

�

Z

1

��

L

�

Z

1

�

D Z�Z � 1 � 0;

which together with (19) shows the last claim.

Corollary 1. With the positive matrix P z
2k

defined in terms of entries of T z
2k

as in

Lemma 1,

T z.N; 0/� L T z.N; 0/ D L C
N=2
X

kD1

.T z
1 /

� : : : .T z
2k�1/

� P z
2k T z

2k�1 : : :T
z
1 :

Proof. This follows by iterating Lemma 1 and using .T z
2k�1

/�L T z
2k�1

D L.

Lemma 2. Let a; b be L � L matrices and set ˆ D
�

a
b

�

. If ˆ�Lˆ < 0, then b is

invertible. On the other hand, if ˆ�Lˆ > 0, then a is invertible.

Proof. ˆ�Lˆ < 0 implies that a�a � b�b < 0. If there is a vector v such that

bv D 0, then v�a�av < 0 which is impossible and therefore b is invertible. If

a�a � b�b > 0, the same argument implies invertibility of a.

Lemma 3. Let ‰ and ˆ be two 2L � L matrices of maximal rank satisfying

‰�L‰ D 0

and either

ˆ�Lˆ > 0 or ˆ�Lˆ < 0:

Then ‰�Lˆ is invertible.

Proof. The claimed invertibility does not depend on normalization so that we may

assume that ‰�‰ D 1 and ˆ�ˆ D 1. Now the fact that ‰ is L-Lagrangian implies

‰‰� C L‰‰�L D 1:

Applying ‰� and ˆ to the left and right of this equation shows

ˆ�L‰‰�Lˆ D 1 �ˆ�‰‰�ˆ:
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Thus let us argue thatˆ�‰‰�ˆ < 1 because this then shows thatˆ�L‰‰�Lˆ and

thus also ‰�Lˆ is invertible. Now ˆ�‰‰�ˆ is given by the squares of the scalar

products of the vectors in the planes spanned by ˆ and ‰ and its eigenvalues are

thus the squares of the cosines of the principal angles between these planes. There

is an eigenvalue 1 if and only if one angle vanishes and therefore if and only if ˆ

and ‰ have a direction in common. This would mean that there are non-vanishing

vectors v; w 2 C
L such that‰v D ˆw, which is incompatible with‰�L‰ D 0 and

ˆ�Lˆ > 0 (or ˆ�Lˆ < 0).

Lemma 4. Suppose jzj < 1. Given � D .�k/kD1;:::;N with �k 2 Mat.L;C/, the

solution ' of the equation .UN � z/' D � is, for even n, given by

�

'n

 n

�

D
 

T z
n : : : T

z
1

�

1

1

�

'1 C
n=2
X

kD1

T z
n : : :T

z
2kC1

 

�z�1ı2kˇ
�1
2k

z�1 1

�ˇ�1
2k

0

!

�

�2k�1

�2k

�

!

;

(20)

where ˇ2k and ı2k are the entries of S2k and '1 has to be chosen in the unique

manner such that  N given by (20) satisfies

 N

D
�

V �

0

��
 

T z
N : : : T

z
1

�

1

1

�

'1

C
N=2
X

kD1

T z
N : : :T

z
2kC1

 

�z�1ı2kˇ
�1
2k

z�1 1

�ˇ�1
2k

0

!

�

�2k�1

�2k

�

!

:

(21)

Proof. As above, the equation .UN � z/' D � is solved using an auxiliary vector  

satisfying V D z' C � and W ' D  . This is equivalent that, for k D 1; : : : ; N
2

and respectively k D 1; : : : ; N
2

� 1,

S2k

�

 2k�1

 2k

�

D z

�

'2k�1

'2k

�

C
�

�2k�1

�2k

�

and S2kC1

�

'2k

'2kC1

�

D
�

 2k

 2kC1

�

;

(22)

together with the condition  1 D U'1 and the constraint that  N D V'N stemming

from the other boundary condition. Each of the two equations in (22) (the first one

divided by z) is transformed using Proposition 2:
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�

'2k

 2k

�

D T z
2k

�

 2k�1

'2k�1

�

C
 

�z�1ı2kˇ
�1
2k

z�1 1

�ˇ�1
2k

0

!

�

�2k�1

�2k

�

and
�

 2kC1

'2kC1

�

D T z
2kC1

�

'2k

 2k

�

:

Iterating and replacing  1 D U'1 gives, for even n,

�

'n

 n

�

D T z
n : : :T

z
1

�

1

1

�

'1 C
n=2
X

kD1

T z
n : : : T

z
2kC1

 

�z�1ı2kˇ
�1
2k

z�1 1

�ˇ�1
2k

0

!

�

�2k�1

�2k

�

;

(23)

while for odd n the entries on the left hand side are simply exchanged (cf. the def-

inition (10) of ˆzn). Now one, moreover, has to satisfy the constraint V'N D  N .

For that purpose, one takes the last equation for n D N and extracts  N which is

then set equal to V'N . This leads to equation (21) which can indeed be solved for

'1 because the matrix
�

1

0

��

T z
N : : : T

z
1

�

1

1

�

is invertible by Lemma 2. Indeed, Corollary 1 shows thatˆ D T z
N : : :T

z
1

�

1

1

�

satisfies

ˆ�Lˆ > 0 which is the hypothesis in Lemma 2.

Proof of Theorem 1. By the last claim of Lemma 1,

.T z
N�1/

�1 � ..T z
N /

�1 � V �/ D .T z
N T z

N�1/
�1 � V �

is well-defined and lies in the Siegel disc DL. Iterating this shows that

.T z
2 T z

1 /
�1 � .: : : ..T z

N T z
N�1/

�1 � V �/ : : : / D T z.N; 0/�1 � V � D V � W T z.N; 0/;

exists and lies in DL. This shows the first claim. Let us note that the invertibility

V �C zN � AzN D V �.C zN � VAzN / also follows from the identity

C zN � VAzN D �
�

V �

1

��

LT z
N : : : T

z
1

�

1

0

�

;

because ˆ D T z
N : : :T

z
1

�

1

0

�

satisfies ˆ�Lˆ > 0 as shows Corollary 1, so that Lem-

ma 3 applies.
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The Green matrix GzN .V / is the component '1 of the solution of

.UN .V / � z/' D �

with inhomogeneity �k D ı1;k1. Hence by Lemma 4

'N D
�

1

0

��

T z
N : : :T

z
1

´

�

1

1

�

GzN .V /C .T z
2 T z

1 /
�1

 

�z�1ı2ˇ
�1
2 z�1 1

�ˇ�1
2 0

!

�

1

0

�

µ

and

V'N D
�

0

1

��

T z
N : : :T

z
1

´

�

1

1

�

GzN .V /C .T z
2 T z

1 /
�1

 

�z�1ı2ˇ
�1
2 z�1 1

�ˇ�1
2 0

!

�

1

0

�

µ

:

Now as .T z
n /

�1 D L.T Nz�1

n /�L, one checks that using the identities in U.2L/inv

.T z
2 T z

1 /
�1

 

�z�1ı2ˇ
�1
2 z�1 1

�ˇ�1
2 0

!

�

1

0

�

D
�

0

z�11

�

:

Therefore the above two equations become

'N D .AzN C BzN /G
z
N .V /C z�1BzN

and

V'N D .C zN CDz
N /G

z
N .V /C z�1Dz

N :

Now these two equations have to be solved for GzN .V /. For that purpose, the invert-

ibility of

.Dz
N � VBzN /C .C zN � VAzN / D �

�

V �

1

��

LT z
N : : :T

z
1

�

1

1

�

;

is needed. It follows from Lemma 3 because
�

V �

1

�

is L-Lagrangian and because

ˆ D T z
N : : : T

z
1

�

1

1

�

satisfies ˆ�Lˆ > 0 as already argued in the proof of Lemma 4.

Therefore

GzN .V / D 1

z
..Dz

N � VBzN /C .C zN � VAzN //�1.VBzN �Dz
N /:

Now the formula for GzN .V / follows.
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Finally let us calculate F zN .V /. We start from

{ F zN .V / D .��
1 .UN � z/�1�2�

�
2 S2 �1 C �1.UN � z/�1�1��

1 S2 �1/U

C z�1.UN � z/�1�1

D .��
1 .UN � z/�1�2
2 CGN .V /˛2/U C zGzN .V /:

(24)

Let us denote

G1;2 D ��
1 .UN � z/�1�2;

thus we can calculateG1;2 using the same procedure than withGN .V /. Notably,G1;2
is the equal to the component '1 of the matrix-valued solution of .UN � z/' D �

with inhomogeneity �k D ı2;k1. Hence

'N D
�

1

0

��

T z
N : : : T

z
1

´

�

1

1

�

G1;2 C .T z
2 T z

1 /
�1

 

�z�1ı2ˇ
�1
2 z�1 1

�ˇ�1
2 0

!

�

0

1

�

µ

and

V'N D
�

0

1

��

T z
N : : : T

z
1

´

�

1

1

�

G1;2 C .T z
2 T z

1 /
�1

 

�z�1ı2ˇ
�1
2 z�1 1

�ˇ�1
2 0

!

�

0

1

�

µ

:

Using again .T z
n /

�1 D L.T Nz�1

n /�L and the identities in U.2L/inv, one checks that

.T z
2 T z

1 /
�1

 

�z�1ı2ˇ
�1
2 z�1 1

�ˇ�1
2 0

!

�

0

1

�

D
 

�U �
�1
2

�z�1˛2

�1
2

!

:

Therefore the above two equations become

'N D .AzN C BzN /G1;2 � AzNU
�
�1
2 � z�1 BzN ˛2 


�1
2

and

V'N D .C zN CDz
N /G1;2 � C zNU

� 
�1
2 � z�1Dz

N ˛2 

�1
2 :

Solving yields

G1;2 D Œ.Dz
N � VBzN /C .C zN � VAzN /�

�1

Œ.Dz
N � VBzN /.�z�1˛2


�1
2 / � .C zN � VAzN /U �
�1

2 �:

Replacing this and GN .V / in the form (13) into (24) leads to the desired formula

for F zN .V /.
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5. Weyl theory

For z 2 D, let us set

Qz
N D .T z

N : : : T
z
1 /

� L T z
N : : :T

z
1 :

We consider Qz
N as quadratic form on C

2L and are particularly interested in its

maximally isotropic subspaces, also called Lagrangian subspaces. It will shortly be

shown that the signature of Qz
N is .L; L/ so that the dimension of these Lagrangian

subspaces isL. By definition the Weyl surface is then the image of (the inverse Cayley

transform of) these subspaces under an adequate chart on the Grassmannian called

the stereographic projection. Recall that the Grassmannian GL of all L-dimensional

subspaces of C
2L can be introduced as set of equivalent classes of 2L � L matrices

of maximal rank with respect to the equivalence relation ˆ � ‰ () ˆ D ‰c for

some c 2 Gl.L;C/. The elements of GL will be denoted by Œˆ��. Let us consider

the subset G
inv

L � GL of subspaces represented by some ˆ D
�

a
b

�

with an invertible

L � L matrix b. This set is the domain of the stereographic projection

� W G
inv

L �! Mat.L;C/

defined by

�.Œˆ��/ D a b�1; ˆ D
�

a

b

�

: (25)

Definition 1. The Weyl surface is defined by

@Wz
N D �.fŒC�ˆ�� 2 GL j ˆ isotropic for Qz

N g/;

and the closed Weyl disc by

W
z
N D �.fŒC�ˆ�� 2 GL j ˆ�Qz

Nˆ � 0g/:

Of course, we have to check below that this is well-defined, namely that ŒC�ˆ��
is in the domain of � for all Lagrangian subspaces of Qz

N . Then the next aim will be

to show that the Weyl surface is the surface of a matrix ball and this will ultimately

allow to prove estimates on the dependence of GzN .V / and F zN .V / on the boundary

condition V 2 U.L/.

Proposition 4. The quadratic form Qz
k

has the following properties.

(i) Qz
2kC1

D Qz
2k

and Qz
2k

D Qz
2k�1

C.T z
1 /

� : : : .T z
2k�1

/�P z
2k

T z
2k�1

: : :T z
1 . Fur-

thermore

Qz
N D L C

N=2
X

kD1

.T z
1 /

� : : : .T z
2k�1/

� P z
2k T z

2k�1 : : : T
z
1

where P z
2k

is positive matrix given in term of entries of T z
2k

defined in Lemma 1.
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(ii) .Qz
N /

�1 D LQ Nz�1

N L.

(iii) Qz
2k
> Qz

2k�1
.

(iv) signature.Qz
N / D .L; L/.

Proof. (i) is just a reformulation of Lemma 1 and Corollary 1. (ii) results from (18).

(iii) is a consequence of (i) and P z
2k
> 0. Finally, from the definition of Qz

N , one

deduces that

signature.Qz
N / D signature.L/ D .L; L/;

which is (iv).

Proposition 5. Let EzN .V / be given as in Theorem 1. If ˆ is Lagrangian for Qz
N ,

then there is a unique unitary V and an invertible matrix b with

ˆ D
�

EzN .V /

1

�

b:

Moreover, ŒC�ˆ�� is in the domain of � .

Proof. Let ˆ D
�

a
b

�

satisfy ˆ�Qz
Nˆ D 0. This implies that ˆ�Lˆ < 0 by Propo-

sition 4(i) and thus by Lemma 2 that b is invertible. As
�

a
b

�

is isotropic if and only if
�

ab�1

1

�

b is isotropic, we may assume that b D 1. Now ˆ�Qz
Nˆ D 0 is equivalent to

.AzNa C BzN /
�.AzNaC BzN / D .C zNaCDz

N /
�.C zNa CDz

N /:

Using polar decomposition, it thus follows that there exists a unique unitary V such

that

.VAzN � C zN /a D Dz
N � VBzN :

As VAzN � C zN is invertible by Theorem 1, it follows indeed that a D EzN .V /.

Furthermore,

C�ˆ D
 

EzN .V /C 1

{.EzN .V / � 1/

!

b: (26)

By Theorem 1, EzN .V / is in the Siegel disc so that EzN .V / � 1 is invertible and

therefore ŒC�ˆ�� is in the domain of � .

Theorem 2. One has

@Wz
N D fF zN .V / j V 2 U.L/g D f{.1 C 2 z GzN .V // j V 2 U.L/g:

Proof. The first equality follows immediately from (26) and (12) in Theorem 1. The

second one then follows by combining (12) and (13).
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The next aim is to analyze the geometry of the Weyl surface. This can be done in

complete analogy with [11] if one works with the Cayley transform of the quadratic

form:

zQz
N D C�Qz

N C D { J C
N=2
X

kD1

C� T z.2k � 1; 0/� P z
2k T z.2k � 1; 0/C ; (27)

where

J D 1

{
C�L C D

 

0 �1

1 0

!

:

Definition 2. The radial and central operators are defined by

RzN D
��

1

0

��

zQz
N

�

1

0

���1

and SzN D �RzN
�

1

0

��

zQz
N

�

0

1

�

:

Proposition 6. Let z 2 D. Then RzN is well-defined, positive and decreasing in N .

Also R Nz�1

N is well-defined, but negative. Moreover:

.SzN /
� D S Nz�1

N and

�

0

1

��

zQz
N

�

0

1

�

D .SzN /
�.RzN /

�1SzN C R Nz�1

N :

Proof. All claims on RzN follow by taking the matrix element of (27) because

�

1

0

��

J

�

1

0

�

D 0

and the map r 2 .0;1/ 7! �r�1 is operator monotone. For the second claim, one

has to adapt Lemma 1 and Corollary 1 to the case jzj > 1, but then the proof is

identical. Next let us note that the Cayley transform of Proposition 4(ii) reads

J D zQ Nz�1

N J zQz
N :

Using J D
�

0
1

��

1

0

�� �
�

1

0

��

0
1

��
, this yields

J D zQ Nz�1

N

�

0

1

��

1

0

��

zQz
N � zQ Nz�1

N

�

1

0

��

0

1

��

zQz
N :

The upper left and upper right entries of this equation give

0 D � .R Nz�1

N /�1S Nz�1

N .RzN /
�1 C .R Nz�1

N /�1.SzN /
�.RzN /

�1;

� 1 D .R Nz�1

N /�1S Nz�1

N .RzN /
�1SzN � .R Nz�1

N /�1
�

0

1

��

zQz
N

�

0

1

�

:

These two equations lead to the remaining two claims.
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Theorem 3. The Weyl discs are strictly nested matrix discs, namely one has Wz
N �

W
z
N�1 and @Wz

N�1 \ W
z
NC1 D ;, as well as

@Wz
N D fSzN C .RzN /

1

2W.�R Nz�1

N /
1

2 j W 2 U.L/g:

Proof. The first claim is an immediate corollary of Proposition 4(iii). LetˆE D
�

E
1

�

be a Qz
N�Lagrangian plane. This is equivalent to

0 D
�

E C 1

{.E � 1/

��

zQz
N

�

E C 1

{.E � 1/

�

D .E C 1/�.RzN /
�1.E C 1/C { .E � 1/�.SzN /

�.RzN /
�1.E C 1/

� { .E C 1/�.RzN /
�1SzN .E � 1/

C .E � 1/�..SzN /
�.RzN /

�1SzN C R Nz�1

N /.E � 1/;

where in the second equality Definition 2 and Proposition 6 were used. Rewriting

gives

..EC1/�{ SzN .E�1//�.RzN /
�1..EC1/C{ SzN .E�1// D �.E�1/�R Nz�1

N .E�1/

By Proposition 5 and Theorem 1, E 2 DL so that E � 1 is invertible. Hence

.�{.E C 1/.E � 1/�1 � SzN /�.RzN /�1.� {.E C 1/.E � 1/�1 � SzN / D �R Nz�1

N :

Therefore there exists a unique unitary W such that

1

{
.E C 1/.E � 1/�1 D SzN C .RzN /

1

2W.�R Nz�1

N /
1

2 :

As the left hand side is precisely �.ŒC�ˆE ��/, this concludes the proof.

The following is now an immediate consequence.

Corollary 2. For any boundary condition V and z 2 D, there is a unitaryW 2 U.L/

such that

FN .V / D SzN C .RzN /
1

2W.�R Nz�1

N /
1

2 ;

and

GzN .V / D 1

2z
.1 � { SzN � { .RzN /

1

2W.�R Nz�1

N /
1

2 /:

By now the beautiful theory of Weyl discs is complete. Let us finally come to

its main analytical application, namely the control of the dependence of the Green

matrixGzN .V / and the resolvent F zN .V / (both matrix elements of the resolvent at the

boundary site 1) on the boundary condition V on the (other) boundary site N. Let us

start by noting the following.
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Corollary 3. For any V; V 0 2 U.L/,

kF zN .V / � F zN .V 0/k2 � kRzNk kR Nz�1

N k
and

kGzN .V / �GzN .V 0/k2 � 1

4 jzj2 kRzNk kR Nz�1

N k:

This becomes useful in combination with the following result.

Proposition 7. One has

maxfkRzNk ; kR Nz�1

N kg � 1

.1 � jzj2/2
8

N
:

Proof. Using (27) and the bound from Lemma 1,

�

1

0

��

zQz
N

�

1

0

�

D 1

2

N=2
X

kD1

�

1

1

��

.T z
1 /

� : : : .T z
2k�1/

�P z
2k T z

2k�1 : : : T
z
1

�

1

1

�

� 1 � jzj2
4

N=2
X

kD1

.ˆz2k�1/
�ˆz2k�1:

Now .ˆz1/
�ˆz1 D 2 1 and for k � 2

.ˆzk/
�ˆzk � .ˆzk/

� Lˆzk

D
�

1

1

��

Qz
k

�

1

1

�

�
�

1

1

��

.T z
1 /

�P z
2 T z

1

�

1

1

�

� .1� jzj2/1:

(This is rough, but sufficient for our purposes.) Therefore

�

1

0

��

zQz
N

�

1

0

�

� N

8
.1� jzj2/21;

from which the upper bound onRzN follows. Using a version of Lemma 1 for z 62 xD,

the bound on R Nz�1

N is shown similarly.
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6. Spectral measures of semi-infinite scattering zippers

Let now U be a semi-infinite scattering zipper operator associated to a sequence

.Sn/n�2 of scattering matrices Sn 2 U.2L/inv and a boundary condition U 2 U.L/.

Then it follows from Proposition 7 combined with Corollary 3 that the limit

F z D lim
N!1

F zN .V /;

exists and is independent of the choice of V. In the terminology of Weyl theory, a

semi-infinite scattering zipper operator is always in the limit point case. Moreover,

the convergence is uniform in z on compact subsets of D. Therefore, z 2 D 7! F z

is analytic. As =m.F zN .V // > 0 and F 0N .V / D { 1 it follows that also =m.F z/ > 0
and F 0 D { 1. Therefore the Riesz–Herglotz representation theorem recalled in

Appendix B can be applied to show that there is a unique matrix-valued probability

measure � on S
1 such that

F z D {

Z

S1

�.d�/
� C z

� � z
:

This measure is called the spectral measure of U. It dominates all other spectral

measure (because the range of �1 is a cyclic subspace for U). Resuming, there is a

map# that associates to every semi-infinite scattering zipper operator a matrix-valued

probability measure � D #.U/ on S
1. There is still some gauge freedom though

allowing several operators U to have the same spectral measure, as already pointed

out in [2] and [3]. This is dealt with in the following result.

Theorem 4. Let M.U / denote the set of all semi-infinite scattering zipper operators

with left boundary condition U 2 U.L/ and scattering matrices .Sn/n�2 given by

Sn D S.˛n; Un; Vn/ where k˛nk < 1 and Un; Vn 2 SU.L/. Then the map #

establishes a bijection between M.U / and the matrix-valued probability measures

on S
1.

For the proof, it remains to construct an inverse to # , namely to construct a

scattering zipper with boundary condition U from a given matrix-valued probability

measure � on S
1, such that � is again its spectral measure. Adapting the approach

in [7], this will be done by a Gram–Schmidt procedure associated an adequate scalar

product h : ; : i (with values in the L � L matrices) and an adequate basis for the

functions on S
1 (this will be given by Laurent polynomials in an adequate order as

suggested by [4]). Let us define

hf; gi D
Z

S1

g.z/�.dz/f �.z/; (28)

where f and g are matrix-valued functions. At first sight, there seems to be some-

thing wrong with this definition. Indeed, one can define another scalar product by
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exchanging f and g on the right hand side. When the Gram–Schmidt procedure be-

low is done with respect to this other scalar product, one obtains different orthonormal

polynomials, and only their so-called Szegő transformation [7] will lead to the poly-

nomials 'z and  z used in Section 3. Somewhat anticipating, already the notations

'z and  z will be chosen already now. Using (28) allows to avoid using the Szegő

transformation and also simplifies the calculations below. The product (28) is left

matrix-linear in the second argument and anti-linear in the first, namely it satisfies

for matrix valued functions f , g and h on S
1 as well as a matrix ˛ that

hf; g C ˛ hi D hf; gi C ˛hf; hi and hf C ˛ g; hi D hf; hi C hg; hi˛�:

Now two sequences 'z D .'zn/n�1 and  z D . zn /n�1 of orthonormal fami-

lies of matrix-valued Laurent polynomials in z will be constructed by the Gram–

Schmidt algorithm with respect to (28). For 'z , one orthonormalizes the sequence

f1; z�11; z11; z�21; z21; : : : g. Then 'z1 D 1 and the n-th element of the result-

ing orthonormal sequence is 'zn . Similarly,  z is obtained by orthonormalizing

fU; z1; z�11; z21; z�21; : : : g. Hence  z1 D U. The orthonormality relations read:

h'zm; 'zni D ım;n 1 and h zm;  zni D ım;n 1:

Let us note that the 'z satisfy

'z2n D �2n z
�n C p.z/ and 'z2nC1 D �2nC1 z

n C q.z/; (29)

where the leading coefficient �n are invertible matrices, p is a matrix polynomial

in the span of zn�1; : : : ; z�nC1 and q a polynomial in the span of zn�1; : : : ; z�n.

Similarly,

 z2n D Q�2n zn C Qp.z/ and  z2nC1 D Q�2nC1z
�n C Qq.z/; (30)

with invertible Q�n and polynomials Qp and Qq in the span of zn�1; : : : ; z�nC1 and

zn; : : : ; z�nC1 respectively. Now let us also define

�n D Q�n�1.�n/
�1 and Q�n D �n�1. Q�n/�1:

Lemma 5. The orthonormal polynomials 'z and  z have the following properties.

(i) There exist L � L matrices ˛12nC1; ˛
2
2nC1; ˛

3
2nC2; ˛

4
2nC2, such that

8

<

:

 z2n � �2nC1'
z
2nC1 D ˛12nC1'

z
2n;

'z2n � Q�2nC1 
z
2nC1 D ˛22nC1 

z
2n;

(31)

and
8

<

:

z�1 z2n�1 � �2n 'z2n D ˛32n '
z
2n�1;

z'z2n�1 � Q�2n  z2n D ˛42n  
z
2n�1:

(32)
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(ii) One has

˛12nC1 D .˛22nC1/
� and ˛32n D .˛42n/

�:

In the following, we will simply denote ˛12nC1 by ˛2nC1 and ˛32n by ˛2n.

(iii) There are unique unitaries Un and Vn with unit determinant such that

�n D .1 � ˛n˛�
n/

1

2Un and Q�n D .1 � ˛�
n˛n/

1

2V �
n : (33)

(iv) One has ˛�
n˛n < 1.

Proof. All four relations in (31) and (32) are dealt in the same manner, so let us focus

on the first one. By (29) and (30), z2n��2nC1'
z
2nC1 is in the span of zn�1; : : : ; z�n.

Moreover, this polynomial is orthonormal to zn�11; : : : ; z�nC11 as  z2n and 'z2nC1

are by construction. This implies that  z2n � �2nC1'
z
2nC1 is a left multiple of 'z2n.

For item (ii), let us first calculate as follows:

˛12nC1 D ˛12nC1h'z2n; 'z2ni D h'z2n; ˛12nC1'
z
2ni

D h'z2n;  z2n � �2nC1'
z
2nC1i D h'z2n;  z2ni:

On the other hand,

˛22nC1 D ˛22nC1h z2n;  z2ni D h z2n; ˛22nC1 
z
2ni

D h z2n; 'z2n � Q�2nC1 
z
2nC1i D h z2n; 'z2ni:

Thus ˛22nC1 D .˛12nC1/
�. The other equality is checked in a similar manner.

Next let us check the first identity of (33) for odd index:

1 D h z2n;  z2ni

D h�2nC1'
z
2nC1 C ˛2nC1'

z
2n; �2nC1'

z
2nC1 C ˛2nC1'

z
2ni

D h�2nC1'
z
2nC1; �2nC1'

z
2nC1i C h˛2nC1'

z
2n; ˛2nC1'

z
2ni

D �2nC1h'z2nC1; '
z
2nC1i��

2nC1 C ˛2nC1h'z2n; 'z2ni˛�
2nC1

D �2nC1�
�
2nC1 C ˛2nC1˛

�
2nC1:

Thus, there exists a unique unitary of unit determinant denoted U2nC1 such that

�2nC1 D .1 � ˛2nC1˛
�
2nC1/

1

2 U2nC1:

The other cases are dealt with in the same way. As each �n and Q�n is invertible, the

identities (33) also imply (iv).
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Proof of Theorem 4. From the density of Laurent polynomials, it follows that .'zn /n�1

and . zn/n�1 are orthonormal basis of the square integrable matrix-valued functions

on S
1 with respect to h� j j�i. Thus any L � L matrix valued function f can be

expanded as follows:

f D
1
X

nD1

hf; 'zni'zn D
1
X

nD1

hf;  zni zn : (34)

Now let us define the matrix entries of semi-infinite matrix-valued operators by

Un;m D h'zm; z'zni; Vn;m D hz'zn ;  zmi; and Wn;m D h'zm;  zni:
Then it follows from (34) that

Un;m D
D

'zm;

1
X

kD1

hz'zn ;  zk i zk
E

D
1
X

kD1

hz'zn ;  zk ih'zm;  zk i D
1
X

kD1

Vn;kWk;m:

It remains to show that V and W defined above have the same structure as their

homonyms from Section 3. For n � 1 it follows from (31) that

 z2n D ˛2nC1'
z
2n C �2nC1'

z
2nC1

and

 z2nC1 D . Q�2nC1/
�'z2n � V2nC1˛

�
2nC1U2nC1'

z
2nC1;

where the identity . Q�2nC1/
�1˛2nC1�2nC1 D V2nC1˛

�
2nC1U2nC1 was used. Recall-

ing the notation (4), it follows that
�

 z2n
 z2nC1

�

D S.˛2nC1; U2nC1; V2nC1/

�

'z2n
'z2nC1

�

:

Together with W1;1 D h'z1 ;  z1 i D U, one obtains

W D U �

M

k�1

S.˛2kC1; U2kC1; V2kC1/:

Similarly, (32) implies

z�1 z2n�1 D ˛2n'
z
2n�1 C �2n'

z
2n

and

z�1 z2n D . Q�2n/�'z2n�1 � V2n˛�
2nU2n'

z
2n:

Thus, for n � 1,
�

 z2n�1

 z2n

�

D zS.˛2n; U2n; V2n/

�

'z2n�1

'z2n

�

;

and one obtains

V D
M

k�1

S.˛2k;U2k ; V2k/:

In conclusion, U is a semi-infinite scattering zipper operator.
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7. Intersection theory and oscillation theorem

The transfer matrices allow to calculate formal solutions of UN'
z D z'z by (11).

As already pointed out in Section 3, the '-component of ˆz does not yet lead to a

matrix-valued solution of UN'
z D z'z because there is a supplementary constraint

on the two components of ˆzN . Indeed, because N is even, the last equation of

W z D 'z is V'zN D  zN . For each vector v 2 C
L satisfying W zv D 'zv one

finds an eigenvector of UN . Let us reformulate this in terms of the dimension of an

intersection of two L-dimensional subspaces of C
2L:

multiplicity of z as eigenvalue of UN D dim
�

ˆzNC
L \‰VC

L
�

; (35)

where

‰V D 1p
2

�

1

V

�

:

Now the intersection of the planesˆzNC
L and‰VC

L can be conveniently calculated

using the fact that both planes are L-Lagrangian for z 2 S
1, namely they both satisfy

ˆ�Lˆ D 0. In fact, the initial condition ˆz0 as well as ‰V are L-Lagrangian as

shows a direct calculation. As the transfer matrices T z
n for z 2 S

1 all conserve the

form L, also ˆzn is L-Lagrangian for all n. Before analyzing the intersection of two

L-Lagrangian planes, let us study the set LL � GL of Lagrangian planes, namely

those Œˆ�� 2 GL satisfying ˆ�Lˆ D 0.

Proposition 8. LL � G
inv

L and � W LL ! U.L/ is a bijection. Every Œˆ�� 2 LL has

a representation of the form ˆ D
�

U
1

�

with U 2 U.L/.

Proof. Letˆ D
�

a
b

�

be L-Lagrangian. Then ker.a/\ker.b/ D f0g because otherwise

ˆ would not be of rank L. Moreover, a�a D b�b so that both a and b are invertible.

Also U D ab�1 2 U.L/ and ˆ D
�

U
1

�

b. From this all claims follow.

Now follows a general result about the intersection of two L-Lagrangian planes.

Proposition 9. Let ˆ and ‰ be L-Lagrangian frames and set

W D �.Œˆ��/
��.Œ‰��/:

Then

dim
�

ˆC
L \ ‰C

L
�

D dim
�

Ker.ˆ�L‰/
�

D multiplicity of 1 as eigenvalue of W:

Proof. Let us begin with the inequality � of the first equality. Suppose there are two

2L�p matrices v; w of rank p such thatˆv D ‰w. Thenˆ�L‰w D ˆ�Lˆv D 0

so that the kernel ofˆ�L‰ is at least of dimensionp. Inversely, given a 2L�pmatrix
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w of rankp such thatˆ�L‰w D 0, one deduces that .Lˆ/�‰w D 0. As the column

vectors ofˆ and Lˆ are orthogonal and span C
L, it follows that the column vectors

of‰w lie in the span ofˆ, that is, there exists an 2L�p matrix v of rank p such that

‰w D ˆv. This shows the other inequality and hence proves the first equality of the

lemma. For the second, let us first note that the dimension of the kernel of ˆ�L‰

does not depend on the choice of the representatives. Choosing the representatives

ˆ D
�

�.Œˆ��/
1

�

and ‰ D
�

�.Œ‰��/
1

�

then shows the second equality.

For z 2 S
1, let us defineW z

N 2 U.L/ to be the unitary associated by Proposition 9

toˆ D ˆzN and‰ D ‰V . Taking into account the explicit form of‰V as well as (10),

one finds

W z
N D  zN .'

z
N /

�1V; (36)

These unitaries are the analogs of matrix-valued Prüfer phases and can conveniently

be calculated by iterated Möbius transformations with the transfer matrices. Now the

main facts of oscillation theory can be stated.

Theorem 5. Let N � 2 be even. For z 2 S
1, one has

multiplicity of 1 as eigenvalue of W z
N D multiplicity of z as eigenvalue of UN :

(37)

Furthermore, setting z D e{� ,

1

{
.W z

N /
�@�W

z
N > 0; (38)

so that all eigenvalues of W z
N rotate in the positive sense as a function of � 2 S

1.

Proof. The equality (37) follows immediately from (35), the definition of W z
N and

Proposition 9. Further, let us note that W z
N D  zN .'

z
N /

�1V D .. zN /
�/�1.'zN /

�V.

Thus one calculates

1

{
.W z

N /
�@�W

z
N D 1

{
V �..'zN /

�1/�Œ. zN /
�@� 

z
N � .'zN /�@�'zN �.'zN /�1V

D V �..'zN /
�1/�.ˆzN /

�.{L/.@�ˆ
z
N /.'

z
N /

�1V:

It is therefore sufficient to check the positivity of .ˆzN /
�.{L/@�ˆ

z
N . By (11) and

.T z
n /

�LT z
n D L, one now finds

.ˆzN /
�.{L/@�ˆ

z
N

D .ˆz0/
�
�

N
X

nD2

.T z
n�1 : : :T

z
1 /

� .T z
n /

�.{L/@�T
z
n .T

z
n�1 : : : T

z
1 /
�

ˆz0:

For odd n, the summands vanish because T z
n is independent of z and thus also � . We

shall now show that for every even n there is a strictly positive definite contribution.
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For that purpose, let us drop the index n on T z
n and Sn. Now T z D '. NzS/ is given

by

T z D
 

NzA B

C zD

!

;

where A, B , C , and D are the coefficients of T 1 D '.S/ 2 U.L; L/. Then one

verifies

.T z/�{L @�T
z D

 

A�A z C �D

Nz B�A D�D

!

:

It remains to check that this matrix is positive. On first sight, it is not even hermitian,

but actually the defining relations of U.L; L/ are

A�A � C �C D 1; D�D � B�B D 1; and A�B D C �D:

The last one shows that the above matrix is indeed hermitian. Now let
�

'
 

�

2 C
2L be

with, say, k k � k'k. Then

�

'

 

��
 

A�A z C �D

Nz B�A D�D

!

�

'

 

�

D '�A�A' C z'�A�B C Nz �B�A' C  �B�B C  � 

� ..'�A�A'/
1

2 � . �B�B /
1

2 /2 C  � 

� 1

2

�

'

 

���
'

 

�

;

where in the second step we used the Cauchy–Schwarz inequality. This completes

the proof.

Remark. As UN has exactlyNL eigenvalues, the rotation number of z 2 S
1 7! W z

N

is equal toNL. This can also be shown independently by calculating the Maslov index

as in [10].

8. Oscillation theory for finite periodic scattering zipper

It is possible to associate to a sequence .Sn/nD1;:::;N of scattering matrices Sn 2
U.2L/inv with N still even, a periodic scattering zipper operator U

per

N D V
per

NW
per

N by
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setting

V
per

N D

0

B

B

B

B

B

B

@

S2
S4

: : :

: : :

SN

1

C

C

C

C

C

C

A

and W
per

N D

0

B

B

B

B

B

@

ı1 
1
S3

: : :

SN�1

ˇ1 ˛1

1

C

C

C

C

C

A

;

where

S1 D
 

˛1 ˇ1


1 ı1

!

:

The aim of this section is to calculate the spectrum of U
per

N . This parallels the calcu-

lations in [12] and is useful for the calculation of the spectrum of infinite periodic

scattering zippers, as explained in Section 9. The solutions'z 2 `2.f1; : : : ; N g/˝C
L

of the eigenvalue equation U
per

N'
z D z'z can again be constructed with the trans-

fer matrices. Indeed, every eigenvector of T z.N; 0/ to the eigenvalue 1 allows to

construct a periodic eigenvector so that

multiplicity of z as eigenvalue of U
per

N

D multiplicity of 1 as eigenvalue of T z.N; 0/:

Hence one needs to find those z 2 S
1 for which 1 is eigenvalue of T z.N; 0/. By

considering the fact that the graph of T z.N; 0/ is also Lagrangian with respect to an

adequate quadratic form, this can be done by means of intersection theory in a similar

manner as in the previous section.

Several notations need to be introduced. Let us associate to T the 4L�4Lmatrix
yT D 12L ẙ T where the ẙ denotes the checker board sum given by

 

A B

C D

!

ẙ
 

A0 B 0

C 0 D0

!

D

0

B

B

B

@

A 0 B 0

0 A0 0 B 0

C 0 D 0

0 C 0 0 D0

1

C

C

C

A

: (39)

This allows to define the quadratic form yL D L ẙ L. For z 2 S
1 the matrices yT z

n

conserve the quadratic form yL. Therefore also yL-Lagrangian planes are mapped

onto yL-Lagrangian planes. By Proposition 8, the stereographic projection maps

the set L2L of yL-Lagrangian planes diffeomophically to U.2L/. Let us denote the

stereographic projection by

y� W L2L �! U.2L/:
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Proposition 10. To a given T 2 U.L; L/, let us associate the unitary

yW D y�.Œ yT y‰0��/� y�.Œy‰0��/ 2 U.2L/; (40)

where the yL-Lagrangian plane is given by the 4L � 2L matrix

y‰0 D

0

B

B

B

@

0 1

1 0

1 0

0 1

1

C

C

C

A

: (41)

Then

geometric multiplicity of 1 as eigenvalue of T

D multiplicity of 1 as eigenvalue of yW:

Proof. First of all, it can readily be checked that y‰�
0

yL y‰0 D 0. Now let us suppose

that this frame and the Lagrangian frame yT y‰0 have a non-trivial intersection. This

means that there exist vectors v; w; v0; w0 2 CL such that such y‰0
�

v
w

�

D yT y‰0
�

v0

w 0

�

.

The first and third line of this vector equality imply w D w0 and v D v0, the other

two that T
�

v
w

�

D
�

v
w

�

. This shows

geometric multiplicity of 1 as eigenvalue of T D dim. yT y‰0 C
2L \ y‰0 C

2L/:

But now Proposition 9 can be applied to calculate the right hand side and completes

the proof.

It is now natural to introduce the following yL-Lagrangian frames:

y‰zn D yT z
n

y‰zn�1 and y‰z0 D y‰0; n � 1; (42)

with y‰0 as in (41). Associated are then the unitaries

yW z
N D y�.Œy‰zN ��/� y�.Œy‰0��/:

Theorem 6. The multiplicity of z D ei� 2 S
1 as eigenvalues of U

per

N is equal to the

multiplicity of 1 as eigenvalue of yW z
N . Moreover,

1

{
. yW z

N /
� @� yW z

N > 0;

so that the eigenvalues of yW z
N rotate around the unit circle in the positive sense and

with non-vanishing speed as function of � .
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Proof. The first claim follows directly from Proposition 10. For the proof of the

second one, let us denote the upper and lower entries of y‰zN by  zC and  z�. These

are 2L� 2L matrices such that O�
�

Œy‰zn��
�

D  z�. 
z
C/

�1 D .. z�/
�1/�. zC/

�. Then

. yW z
N /

�@� yW z
N

D y�
�

Œy‰0��
��
.. zC/

�1/�Œ. zC/
�@� 

z
C � . z�/�@� z��. zC/�1y�.Œy‰0��/:

Thus it is sufficient to check positive definiteness of

{Œ. z�/
�@� 

z
� � . zC/�@� zC� D {.y‰zN /� yL@� y‰zN :

From the product rule follows that

@� y‰zN D
N
X

nD1

�

N
Y

lDnC1

yT z
l

�

.@� yT z
n /
�

n�1
Y

lD1

yT z
l

�

y‰z0 :

This implies that

{.y‰zN /� yL @� y‰zN D
N
X

nD1

.y‰z0/�
�

n�1
Y

lD1

yT z
l

��

. yT z
n /

�{ yL.@� yT z
n /
�

n�1
Y

lD1

yT z
l

�

y‰z0 :

As

. yT z
n /

�.{ yL/.@� yT z
n / D 0 y� ..T z

n /
� .{L/ @�T

z
n /;

and the matrices yT E
n do not mix first and third columns and lines with the rest, it

follows from evaluation in the state y‰0 that

.y‰zN /� { yL@� y‰zN D
N
X

nD1

�

n�1
Y

lD1

T z
l

��

..T z
n /

� .{L/@�T
z
n /
�

n�1
Y

lD1

T z
l

�

:

But positivity of .T z
n /

�.{L/@�T
z
n was already checked in the proof of Theorem 5.

This completes the proof.

9. Spectrum of infinite periodic scattering zippers

In this section, we consider a two-sided infinite scattering zipper U
per defined on

`2.Z;CL/which areN -periodic where againN is even. It is specified by a sequence

of scattering matrices Sn 2 U.2L/inv satisfying Sn D SnCN for all n 2 Z. One can

partially diagonalize such periodic operators by the Bloch–Floquet transform defined

next.
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Definition 3. The Bloch–Floquet transform

F W `2.Z/� C
L �! L2.TN /� C

N
� C

L

is defined by

.F '/n.k/ D 1
p

jTN j
X

m2Z

'nCmN e
{.nCmN/k ; n 2 0; : : : ; N � 1; k 2 TN ;

where TN D .� �
N
; �
N
� and jTN j D 2�

N
. Its inverse

F �1 W L2.TN /� C
N

� C
L �! `2.Z/� C

L

is given by

.F �1'/n D 1
p

jTN j

Z

TN

dk'nmodN .k/e
�{kn ; n 2 Z :

Proposition 11. One has the following properties.

(i) F �1 D F �, namely F is unitary.

(ii) Let T be the shift on `2.Z/ � C
L defined by T 'n D 'nC1 and let Tcyc be the

cyclic shift on CN . Then

.F TF �'/n.k/ D e�ik.Tcyc'/n.k/; n 2 Z; k 2 TN :

Proof. This follows from direct computations.

For any k 2 TN and Sj D S. j̨ ; Uj ; Vj / 2 U.2L/inv let us set

Sj .k/ D

0

@

j̨ e�{k .1 � j̨˛
�
j /

1

2Uj

e{k Vj .1 � ˛�
j j̨ /

1

2 �Vj˛�
j Uj

1

A :

Now V
per

N .k/ and W
per

N .k/ are defined as Section 8 using Sj .k/ instead of Sj and then

U
per

N .k/ D V
per

N .k/W
per

N .k/ is a finite periodic scattering zipper, the spectrum of which

can be calculated by the technique of Section 8. By the following result this allows

to calculate the spectrum of U
per.

Theorem 7. The operators V
per, W

per, and U
per are fibered after Bloch–Floquet trans-

formation, precisely

F V
perF � D

Z ˚

TN

dk V
per

N .k/;

F W
perF � D

Z ˚

TN

dkW
per

N .k/;
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and

F U
perF � D

Z ˚

TN

dkU
per

N .k/ :

Therefore,

�.Uper/ D
[

k 2 TN

�.U
per

N .k//:

Proof. By definition, for ' 2 L2.TN /� C
N

� C
L:

.F V
perF �'/n.k/ D 1

p

jTN j
X

m2Z

.V perF �'/nCmN e
{.nCmN/k :

In case n D 2j � 1, one obtains from the structure of V
per:

.F V
perF �'/2j�1.k/

D 1
p

jTN j
X

m2Z

.˛2j .F
�'/2j�1CmN

C .1 � ˛2j˛
�
2j /

1

2U2j .F
�'/2jCmN /e

{.2j�1CmN/k

D ˛2j'2j�1 C .1 � ˛2j˛�
2j /

1

2U2j e
�{k'2j :

By the same calculation for n D 2j ,

.F V
perF �'/2j .k/ D V2j .1 � ˛�

2j˛2j /
1

2 e{k'2j�1 � V2j˛
�
2jU2j'2j :

Together this shows

F V
perF � D

Z ˚

TN

dkS2.k/� S4.k/� � � � � SN .k/ D
Z ˚

TN

dkV
per

N .k/:

The second equality is proved using Proposition 11(ii) and previous computation:

F W
perF � D .F TF �/.F T �1

W
perTF �/.F T �1F �/

D
Z ˚

TN

dkTcyc.S1.k/� � � � � SN�1.k//T
�1

cyc

D
Z ˚

TN

dkW
per

N .k/:

As the product of fibered operators is fibered, this also implies the formula for U
per .
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Appendix A. Möbius transformations

This appendix resembles some basic properties of the Möbius transformation as they

are used in the main text. A lot of references to the literature can be found in [7].

The Möbius transformation (also called canonical transformation or fractional trans-

formation) is defined by

8

ˆ

ˆ

<

ˆ

ˆ

:

T � Z D .AZ C B/ .CZ CD/�1; Z 2 Mat.L � L;C/;

T D
 

A B

C D

!

2 Gl.2L;C/;
(43)

whenever the appearing inverse exists. If T is J-unitary and Z 2 HL, then T � Z
exists and is in HL (see Appendix B for the definition of the upper half-plane HL).

For T as in (43) and as long as the appearing inverse exists, the inverse Möbius

transformation is defined by

W W T D .WC � A/�1 .B �WD/ ; W 2 Mat.L � L;C/ : (44)

The Möbius transformation is a left action, namely .T T 0/ �Z D T � .T 0 �Z/ as long

as all objects are well-defined. The inverse Möbius transformation is a right action

in the sense of the following proposition, the algebraic proof of which is left to the

reader.

Proposition 12. Under the condition that all the Möbius and inverse Möbius trans-

formations as well as matrix inverses below exist, one has the following properties:

(i) W D T �Z () W W T D Z;

(ii) W W .T T 0/ D .W W T / W T 0;

(iii) W W T D T �1 �W .

Appendix B. Riesz–Herglotz representation theorem

Let HL denote the upper half plane of matrices Z 2 Mat.L;C/ such that =m.Z/ D
{.Z� �Z/ > 0. It is well-known (e.g. Section 4.5 of [14]) that the Cayley transform

maps HL via Möbius transformation to the Siegel disc DL, namely C � HL D DL.

An analytic function z 2 H1 7! G.z/ 2 HL is called a Herglotz function. Then

F.z/ D G.C� �z/ is an analytic function on the unit disc D1 having positive imaginary

part. If, moreover,F.0/ D { 1, then such a function is called a Caratheodory function.

The scalar version of the following classical theorem can be found in text books such

as [9]. The matrix version is an immediate corollary of it.
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Theorem 8 (Riesz–Herglotz representation theorem). Let F W D ! Mat.L � L;C/
be analytic satisfying =m.F.z// > 0 and F.0/ D { 1. Then there exists a unique

matrix-valued probability measure � on S
1 such that

F.z/ D {

Z

S1

�.d�/
� C z

� � z :
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[8] L. Golinskii and P. Nevai, Szegő difference equations, transfer matrices and orthogonal

polynomials on the unit circle. Comm. Math. Phys. 223 (2001), 223–259. MR 1864433

Zbl 0998.42015

[9] P. D. Lax, Functional Analysis. Pure and Applied Mathematics. John Wiley & Sons, New

York, 2002. MR 1892228 Zbl 1009.47001

[10] H. Schulz-Baldes, Rotation numbers for Jacobi matrices with matrix entries. Math. Phys.

Electon. J. 13 (2007), 40 pages. MR 2366118 Zbl 1141.15024

www.ma.utexas.edu/mpej/mpej.html#v13

[11] H. Schulz-Baldes, Geometry of Weyl theory for Jacobi matrices with matrix entries.

J. Anal. Math. 110 (2010), 129–165. MR 2753292 Zbl 1197.47047

[12] H. Schulz-Baldes, Sturm intersection theory for periodic Jacobi matrices and lin-

ear Hamiltonian systems. Linear Algebra Appl. 436 (2012), 498–515. MR 2854887

Zbl 1232.15010

[13] B. Simon, The classical moment problem as a self-adjoint finite difference operator. Adv.

Math. 137 (1998), 82–203. MR 1627806 Zbl 0910.44004

[14] B. Simon, Orthogonal polynomials on the unit circle, part 1: classical theory. American

Mathematical Society Colloquium Publications 54, Part 1. Amer. Math. Soc., Providence

(RI), 2005. MR 2105088 Zbl 1082.42020

http://www.ams.org/mathscinet-getitem?mr=2753392
http://www.emis.de/MATH-item?1210.82033
http://www.ams.org/mathscinet-getitem?mr=1962460
http://www.emis.de/MATH-item?1029.47016
http://www.ams.org/mathscinet-getitem?mr=1955452
http://www.emis.de/MATH-item?1022.42013
http://www.ams.org/mathscinet-getitem?mr=2363977
http://www.emis.de/MATH-item?1142.34014
http://www.ams.org/mathscinet-getitem?mr=2379691
http://www.emis.de/MATH-item?1193.42097
http://www.ams.org/mathscinet-getitem?mr=1864433
http://www.emis.de/MATH-item?0998.42015
http://www.ams.org/mathscinet-getitem?mr=1892228
http://www.emis.de/MATH-item?1009.47001
http://www.ams.org/mathscinet-getitem?mr=2366118
http://www.emis.de/MATH-item?1141.15024
http://www.ma.utexas.edu/mpej/mpej.html#v13
http://www.ams.org/mathscinet-getitem?mr=2753292
http://www.emis.de/MATH-item?1197.47047
http://www.ams.org/mathscinet-getitem?mr=2854887
http://www.emis.de/MATH-item?1232.15010
http://www.ams.org/mathscinet-getitem?mr=1627806
http://www.emis.de/MATH-item?0910.44004
http://www.ams.org/mathscinet-getitem?mr=2105088
http://www.emis.de/MATH-item?1082.42020


82 L. Marin and H. Schulz-Baldes

Received December 21, 2011; revised April 28, 2012

Laurent Marin, Department Mathematik, Universität Erlangen-Nürnberg, Cauerstrasse 11,

91058 Erlangen, Germany

E-mail: marin@mi.uni-erlangen.de

Hermann Schulz-Baldes, Department Mathematik, Universität Erlangen-Nürnberg,

Cauerstrasse 11, 91058 Erlangen, Germany

E-mail: schuba@mi.uni-erlangen.de

mailto:marin@mi.uni-erlangen.de
mailto:schuba@mi.uni-erlangen.de

	Scattering zippers
	Preliminaries on scattering matrices and transfer matrices
	Solutions and transfer matrices
	Resolvents
	Weyl theory
	Spectral measures of semi-infinite scattering zippers
	Intersection theory and oscillation theorem
	Oscillation theory for finite periodic scattering zipper
	Spectrum of infinite periodic scattering zippers
	A.  Möbius transformations
	B.  Riesz–Herglotz representation theorem
	References

