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On Zd -odometers associated to integer matrices

Sergei Merenkov and Maria Sabitova

Abstract. We extend the results by Giordano, Putnam, and Skau (2019) on characterization of con-
jugacy, isomorphism, and continuous orbit equivalence of Zd -odometers to dimensions d > 2. We
then apply these extensions to the case of odometers defined by matrices with integer coefficients.

1. Introduction

In this note, we first supply an argument that extends the main result of the paper “Zd -
odometers and cohomology” by Giordano, Putnam, and Skau [1, Theorem 1.5 (1)–(3)]
to dimensions greater than 2. More precisely, the proofs of conjugacy, isomorphism, and
continuous orbit equivalence characterizations of [1, Theorem 1.5] are based on [1, Theo-
rem 4.4], the only result in that paper where the dimension restriction d D 1;2 is important.
Our Proposition 2.3 below lifts this restriction and therefore leads to the characterizations
in arbitrary dimension d � 1. In turn, our proof of Proposition 2.3 uses Lemma 2.1 that
made the relevant computations of the image of the first cohomology group under a nat-
ural map simple and possible in higher dimensions. In the last section, we apply these
results along with the earlier results by the second author [4] in the setting of odometers
defined by matrices with integer coefficients. Below, we use the notations and terminology
from [1, 3, 4] and refer to these papers for more details.

If d 2 N and G is a subgroup of Zd , the group Zd acts on Zd=G by

�kG.l CG/ D k C l CG; k; l 2 Zd : (1.1)

Let G D ¹G1; G2; : : : º be a decreasing sequence of subgroups of Zd of finite index, i.e.,

Zd D G1 � G2 � � � � ; ŒZd W Gn� <1; n 2 N:

For n 2 N and Zd � Gn � GnC1, let qnWZd=GnC1 ! Zd=Gn denote the quotient map
qn.k CGnC1/ D k CGn, k 2 Zd .

Definition 1.1. Let G D ¹G1; G2; : : : º be as above, and let XG denote the inverse limit
system

Zd=G1
q1
 �� Zd=G2

q2
 �� � � � :
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A Zd -odometer is a pair .XG ; �G /, where �G is the natural action of Zd on XG induced
by �kGn , k 2 Zd , n 2 N. The natural projection from XG to Zd=Gn is denoted by �n.

If Gn ¤ GnC1 for infinitely many n 2 N, then XG is a Cantor set and �G is a minimal
action of Zd on it, which is free if and only if

T1
nD1 Gn D ¹0º. The action �G is also

isometric in the metric dG given by

dG .x; y/ D sup
°
0;
1

n

ˇ̌̌
�n.x/ ¤ �n.y/

±
; x; y 2 XG :

Moreover, XG supports a unique �G -invariant probability measure �G such that

�G .�
�1
n .k CGn// D

1

ŒZd W Gn�
; n 2 N; k 2 Zd :

In [1], the authors proposed a system equivalent to .XG ; �G / in the sense of con-
jugacy defined below, using Pontryagin duality. Namely, let H be a subgroup of Qd so
that H contains Zd . Let YH D 1H=Zd be the Pontryagin dual of the quotient. Here, the
groups H and H=Zd are endowed with the discrete topology, and hence YH is compact.
Let Td D Rd=Zd denote the d -torus, and let �WH=Zd ! Td be the map induced by the
inclusion Qd ,!Rd , i.e., �..r1; : : : ; rd /CZd /D .e2�ir1 ; : : : ; e2�ird /, .r1; : : : ; rd / 2H .
Identifying the Pontryagin dual of Td with Zd , we have the dual map y�WZd ! YH . Then
the action  H of Zd on YH is defined via

 kH .x/ D x C y�.k/; k 2 Zd ; x 2 YH :

The action .YH ;  H / is free if and only if H is dense in Qd .

Definition 1.2. Let X , Y be topological spaces, let G be a group, and let �,  be actions
of G on X , Y , respectively, by homeomorphisms. The actions .X; �/ and .Y; / of G are
said to be conjugate if there exists a homeomorphism hWX ! Y such that

h ı �g D  g ı h

for all g 2 G. In this case, we refer to h as a conjugacy between the two actions.

If H is an increasing union of finite index extensions Hn of Zd , n 2 N, then, up to
conjugacy, .YH ;  H / is the inverse limit of

.YH1 ;  H1/
bi1
 �� .YH2 ;  H2/

bi2
 �� � � � ; (1.2)

where inWHn=Zd ! HnC1=Zd is the inclusion, n 2 N. The correspondence between
Zd -odometers and Zd -actions .YH ;  H /, up to conjugacy, is established by realizing
.YH ;  H / as an inverse limit (1.2) and by passing to dual lattices; see [1, Theorems 2.5
and 2.6]. Here, if K is a lattice in Rd , its dual lattice K� is

K� D ¹x 2 Rd j hk; xi 2 Z for all k 2 Kº:
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We now consider odometers associated to integer matrices. For a non-singular d � d
matrix A with integer coefficients, A 2 Md .Z/, define

GA D ¹A
�kx j x 2 Zd ; k 2 Zº; Zd � GA � Qd :

One can readily check thatGA is a subgroup of Qd . Applying the process described above
to the group H D GA, we get an associated Zd -odometer YGA , defined up to conjugacy.
In [3], the second author classified groups GA in the 2-dimensional case and applied the
results to 2-dimensional odometers YGA using [1, Theorem 1.5]. In [4], the second author
studied the question of when GA, GB are isomorphic as abstract groups for non-singular
A;B 2Md .Z/ for an arbitrary d . We combine the results from [4] with the results of this
paper to analyze when YGA , YGB are equivalent with respect to conjugacy, isomorphism,
continuous orbit equivalence, and orbit equivalence.

2. Conjugacy and isomorphism

In what follows, Md .Z/ denotes the ring of d � d matrices with integer coefficients,
and GLd .Z/ denotes the group of non-singular matrices A 2 Md .Z/ with detA D ˙1.
Proposition 2.3 below extends [1, Theorem 4.4] to higher dimensions and its proof re-
quires the following lemma.

Lemma 2.1. Let d 2 N and let G be a subgroup of Zd of finite index. Then for each
i D 1; : : : ; d , there exists a free basis B D ¹f1; : : : ; fd º of G such that fi D aiei , where
ai 2 N and ei is the i -th vector of the standard basis of Zd . Equivalently, for any non-
singular M 2 Md .Z/ and each i D 1; : : : ; d , there exists P.i/ 2 GLd .Z/ such that the
i -th column of MP.i/ is aiei for some ai 2 N.

Proof. Since G is a subgroup of Zd of finite index, G is a free group of rank d . Thus, the
columns of M form a basis of G. We first prove the following.

Lemma 2.2. For any j there exists a basis g1; : : : ; gd of G such that the j -th component
Œgl �j of gl is zero for any l D 2; : : : ; d and Œg1�j D aj , aj 2 N. Equivalently, the j -th
row of the matrix .g1 g2 : : : gd / (we write coordinates of each gi as a column) is
.aj 0 : : : 0/.

Proof. Let g1; : : : ; gd be an arbitrary basis of G, and let

M D .g1 g2 : : : gd / D .gik/;

M 2 Md .Z/ is non-singular. Note that there exists at least one non-zero element in the
j -th row of M since detM ¤ 0. Assume there are two non-zero elements in the j -th row
of M . Without loss of generality (we can interchange columns of M ), gj1 ¤ 0, gj2 ¤ 0.
By multiplying g1, g2 by �1 if necessary, we can assume gj1 > 0, gj2 > 0. If gj1 D gj2,
then g01; : : : ; g

0
d

is a new basis of G with g02 D g2 � g1, g0
l
D gl , l ¤ 2, and Œg02�j D 0.
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If gj1 ¤ gj2, then without loss of generality, we can assume gj1 > gj2. Let a1 D gj1,
a2 D gj2, and a1 D a2kC a3, for some k;a3 2 Z, 0� a3 < a2. Then g01; : : : ; g

0
d

is a new
basis of G with g01 D g2, g02 D g1 � kg2, g0

l
D gl , l ¤ 1; 2, and Œg01�j D a2, Œg02�j D a3,

0 � a3 < a2 < a1. Continuing this way, we get a sequence 0 � � � � < ah < � � � < a3 <

a2 < a1 of non-negative integer numbers, which in finitely many steps has to reach zero
(this is essentially the Euclidean algorithm). This shows that there exists a basis g01; : : : ;g

0
d

ofG such that Œg02�j D 0. Repeating the process for any other g0s , g
0
t with s ¤ t , Œg0s�j ¤ 0,

Œg0t �j ¤ 0, we conclude that there exists a basis g001 ; : : : ; g
00
d

of G such that Œg001 �j 2 N,
Œg0
l
�j D 0 for any l ¤ 1.

We now use induction on d to prove Lemma 2.1. Let d D 1. Then e1 D 1, G D aZ
for some a > 0, f1 D ae1, and the claim follows. Let d > 1. We consider two cases: i > 1
and i D 1. Let i > 1. By Lemma 2.2 applied to j D 1, there exists a basis g1; : : : ; gd ofG
such that

M D
�
g1 : : : gd

�
D

�
a1 0

� M 0

�
; a1 2 N; M 0 2 Md�1.Z/; detM 0 ¤ 0:

By induction on d , there exists S 2 GLd�1.Z/ such that the .i � 1/-st column of M 0S is
be0i�1, where b 2 N and e0i�1 is the .i � 1/-st vector of the standard basis of Zd�1. Let

P D

�
1 0

0 S

�
2 GLd .Z/:

Then the i -th column of MP is bei , and the claim follows for i > 1.
Let i D 1. By Lemma 2.2 applied to j D d , there exists a basis g1; : : : ; gd of G such

that

M D
�
gd : : : g1

�
D

�
M 00 �

0 ad

�
; ad 2 N; M 00 2 Md�1.Z/; detM 00 ¤ 0:

As in the case i > 1, we apply the induction on d toM 00. Thus, there exists S 0 2GLd�1.Z/
such that the 1-st column of M 00S 0 is b0e01, where b0 2 N and e01 is the 1-st vector of the
standard basis of Zd�1. Let

P 0 D

�
S 0 0

0 1

�
2 GLd .Z/:

Then the 1-st column of MP 0 is b0e1, and the claim follows in the case i D 1 as well.
This completes the proof of Lemma 2.1.

For a system .X; �/, where X is a topological space and � is an action of Zd on X by
homeomorphisms, the first cohomology group H 1.X; �/ is defined as follows. A 1-cocy-
cle � is a continuous function � WX � Zd ! Z such that

�.x;mC n/ D �.x;m/C �.�m.x/; n/; x 2 X; m; n 2 Zd :
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A 1-cocycle � is a coboundary if and only if there exists a continuous function hWX ! Z
such that

�.x; n/ D h.�n.x// � h.x/; x 2 X; n 2 Zd :

Let Z1.X; �/ and B1.X; �/ denote the groups of 1-cocycles and coboundaries, respec-
tively, and let H 1.X; �/ D Z1.X; �/=B1.X; �/ be the first cohomology group.

We now recall the definition of the map �1�, where� is an invariant probability measure
on a Zd -action .X; �/. If � is a 1-cocycle, �1�.�/ 2 Hom.Zd ;R/ is given by

�1�.�/.n/ D

Z
X

�.x; n/ d�.x/; n 2 Zd :

Since �1�.�/ D 0 if � is a coboundary, �1� passes to a well-defined group homomorphism

�1�W H
1.X; �/! Hom.Zd ;R/: (2.1)

The space Hom.Zd ;R/ is identified with Rd via the map that takes ˛ 2 Hom.Zd ;R/ to
.˛.e1/; : : : ; ˛.ed // 2 Rd .

We also denote by B1�.X; �/ the group of 1-cocycles �.x; n/ 2 Z1.X; �/ such that

�1�.�/ D 0;

and by H 1
�.X; �/ the group Z1.X; �/=B1�.X; �/. The group H 1

�.X; �/ is a quotient of
H 1.X; �/. By definition of B1�.X; �/, the map �1� factors through the quotient H 1

�.X; �/,
and, by abuse of notation, we denote the resulting map also by �1�:

�1�W H
1
�.X; �/! Hom.Zd ;R/: (2.2)

Proposition 2.3. Let d 2 N, and let H be a dense subgroup of Qd such that Zd � H .
Let � be the unique invariant probability measure for Zd -action .YH ; H /. Then the map

�1�W H
1
�.YH ;  H /! H

given by (2.2) is an isomorphism.

Proof. We supplement the proof of [1, Theorem 4.4] with Lemma 2.1 above. This allows
to simplify computations and also extends [1, Theorem 4.4] to an arbitrary dimension.

It is immediate from the definitions above that �1� is an injective group homomor-
phism. We write H D

S
n2N Hn, the union of an increasing sequence of finite index

extensions Hn of Zd . Let Gn D H�n be the dual lattice. Then G D ¹G1; G2; : : : º is
a decreasing sequence of finite index subgroups of Zd such that .YH ;  H / and .XG ; �G /

are conjugate.
The group H 1.YH ;  H / is the direct limit of the sequence H 1.Zd=Gn; �Gn/, where

�Gn is the natural action of Zd on Zd=Gn given by (1.1), n 2 N. Therefore, if Œ� � 2
H 1
�.YH ;  H /, then � is a cocycle in Z1.Zd=Gn; �Gn/ for some n. We can write

�1�.�/ D ŒZ
d
W Gn�

�1
X
k2F

.�.k CGn; e1/; : : : ; �.k CGn; ed //;
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where F is a fundamental domain for Gn. Since �.k CGn; ei / 2 Z for any i D 1; : : : ; d ,
we have �1�.�/ 2 Hn and hence �1�.�/ 2 H .

Clearly, to show that �1�WH
1
�.YH ; H /!H given by (2.2) is surjective, it is enough to

show that �1�WH
1.YH ; H /!H given by (2.1) is surjective. Let h 2H . Then h 2Hn for

some n 2N. We show that there exists Œ� � 2H 1.YH ; H / such that �1�.�/D h. According
to [1, Lemma 4.2], for each � 2 Z1.Zd=Gn; �Gn/, the map ˛.�/ given by

˛.�/.g/ D �.Gn; g/; g 2 Gn;

induces an isomorphism ˛WH 1.Zd=Gn; �Gn/! Hom.Gn;Z/. The group Hom.Gn;Z/
is identified with Hn via the canonical inner product h� ; �i on Rd , and thus there exists
� 2 Z1.Zd=Gn; �Gn/ with ˛.�/ D h� ; hi.

It remains to show �1�.�/ D h, i.e.,X
k2F

�.k CGn; ei / D ŒZ
d
W Gn�hei ; hi for each i D 1; : : : ; d: (2.3)

For each fixed i D 1; : : : ; d , we apply Lemma 2.1 to find a basis B D ¹f1; : : : ; fd º

for Gn such that fi D aei , where a 2 N. We choose a fundamental domain F for Gn in
equation (2.3) to consist of elements from Zd inside a parallelepiped in Rd determined
by the basis B. Namely,

F D ¹t1f1 C � � � C tdfd j 0 � t1; : : : ; td < 1º \ Zd :

The map � is defined by

�.k1 CGn; k2 C g/ D hg
0; hi

for k1; k2 2 F , g 2 Gn, where g0 2 Gn is the unique element such that k1 C k2 C g D
k0 C g0 and k0 2 F . One can check that so defined � is a 1-cocycle. To compute the left-
hand side of (2.3), we choose k1 D k 2 F , k2 D ei , and g D 0. Note that k2 2 F because
of our choice of F . If k 2 F is such that k C ei is also in F , then g0 D 0, and thus the
term �.k CGn; ei / does not contribute anything to the sum in (2.3).

Now assume k 2 F is such that k C ei is not in F . Let Fi denote the set of all
such k. In this case, g0 D fi because k0 D k C ei � fi 2 F . Indeed, let Pk;i consist
of all elements n 2 F such that for each j D 1; : : : ; d , j ¤ i , the j -th component of n
coincides with the j -th component of k. Since F is a parallelepiped with side fi D aei ,
a 2N, the i -th coordinates of elements n 2Pk;i form a sequence of a consecutive integers
m;mC 1; : : : ; mC a � 1. Now, by the choice of k, its i -th component is mC a � 1. For
j D 1; : : : ; d , j ¤ i , the j -th component of k0 equals the j -th component of k. The i -th
component of k0 equals m, and thus k0 2 Pk;i � F .

We conclude that �.k C Gn; ei / D hfi ; hi D ahei ; hi for each k 2 Fi . The number
of elements k in Fi equals the number of elements in the projection Pi of F to Zd�1

obtained from Zd by omitting the i -th coordinate. Indeed, by omitting the i -th coordinate
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of k 2 Fi � F , we get an element in Pi . Conversely, for any ki 2 Pi , the i -th coordinates
of all elements in F that project to ki form a sequence m;mC 1; : : : ;mC a � 1, since F
is a parallelepiped with side fi D aei , a 2N. The element k that projects to ki and whose
i -th coordinate is mC a � 1 is in Fi . The projection Pi is itself a parallelepiped in Zd�1.
Let b denote the number of elements in Pi , which is the same as the number of elements
in Fi . We therefore concludeX

k2F

�.k CGn; ei / D
X
k2Fi

�.k CGn; ei / D abhei ; hi:

Note that ab is the number of elements in F , which is equal to ŒZd W Gn�. Thus, (2.3)
holds.

A characterization of a Zd -action .YH ; H / up to conjugacy now follows from Propo-
sition 2.3 and the following elementary lemma.

Lemma 2.4. Let d 2 N. If Zd -actions .YH1 ;  H1/ and .YH2 ;  H2/ are conjugate, then

�1�1.H
1
�1
.YH1 ;  H1// D �

1
�2
.H 1

�2
.YH2 ;  H2//;

where �1, �2 are the unique probability measures for .YH1 ;  H1/; .YH2 ;  H2/, respec-
tively.

Proof. Let h be a conjugacy from .YH1 ;  H1/ to .YH2 ;  H2/. It induces an isomorphism

h�W H 1
�2
.YH2 ;  H2/! H 1

�1
.YH1 ;  H1/

given by h�.Œ��/ D Œh�.�/�, where h�.�.y; n// D �.h.x/; n/, y D h.x/, x 2 YH1 . The
invariance of �1 and uniqueness of �2 imply h�.�1/ D �2, where h�.�1/ denotes the
push-forward measure of �1 under h. Therefore, for Œ�.y; n/� 2 H 1

�2
.YH2 ;  H2/, one has

�1�2.�/.n/ D

Z
YH2

�.y; n/ d�2 D

Z
YH2

�.y; n/ dh�.�1/

D

Z
YH1

�.h.x/; n/ d�1 D �
1
�1
.h�.�//.n/:

Corollary 2.5. Let H1, H2 be dense subgroups of Qd such that Zd � H1, Zd � H2.
Two Zd -actions .YH1 ;  H1/ and .YH2 ;  H2/ are conjugate if and only if H1 D H2.

Proof. IfH1 DH2, then the conjugacy is trivial. Assume .YH1 ;  H1/ and .YH2 ;  H2/ are
conjugate. By Proposition 2.3,

�1�1.H
1
�1
.YH1 ;  H1// D H1; �1�2.H

1
�2
.YH2 ;  H2// D H2;

where �1 and �2 are the unique invariant probability measures for the actions .YH1 ; H1/
and .YH2 ;  H2/, respectively. By Lemma 2.4, we have H1 D H2.
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Definition 2.6. Let .X; �/ be an action of a group G, and let .Y;  / be an action of
a group H . An isomorphism between the actions is a pair .h; ˛/, where hWX ! Y is
a homeomorphism and ˛WG ! H is a group isomorphism, such that

h ı �g D  ˛.g/ ı h:

If such a pair .h; ˛/ exists, then .X; �/ and .Y;  / are said to be isomorphic.

Proposition 2.7. Let d1; d2 2 N, and let H1 (resp. H2) be a dense subgroup of Qd1

(resp. Qd2 ) that contains Zd1 (resp. Zd2 ). A Zd1 -action .YH1 ;  H1/ is isomorphic to
a Zd2 -action .YH2 ;  H2/ if and only if d1 D d2, the common value being denoted by d ,
and there exists A 2 GLd .Z/ such that AH1 D H2.

Proof. If d D d1 D d2 and AH1 D H2 for some A 2 GLd .Z/, then .YAH1 ;  AH1/ is
trivially conjugate to .YH2 ;  H2/. Moreover, the actions .YAH1 ;  AH1/ and .YH1 ;  H1/
are isomorphic via the automorphism of Zd defined by A (see [1, Proposition 2.8]).

Conversely, assume .YH1 ;  H1/ and .YH2 ;  H2/ are isomorphic. The existence of
a group isomorphism ˛WH1!H2 implies d1 D d2. Indeed, di is the rank ofHi , i D 1; 2,
and a group isomorphism preserves the rank. We denote the common value of d1, d2
by d . By [1, Proposition 2.8], there is A 2 GLd .Z/ such that .YAH1 ;  AH1/ is conjugate
to .YH2 ;  H2/. We now apply Corollary 2.5 to conclude AH1 D H2.

3. Continuous orbit equivalence

Definition 3.1. An action .X; �/ of a group G and an action .Y;  / of another group G0

are said to be orbit equivalent if there exists a homeomorphism hWX ! Y such that for
each x 2 X one has

h.¹�g.x/ j g 2 Gº/ D ¹ g
0

.h.x// j g0 2 G0º: (3.1)

In [1], the authors characterize orbit equivalence of Zd -action .YH ;  H /, where H is
a dense subgroup of Qd containing Zd , using superindex JH W Zd K. The superindex is
defined as

JH W Zd K D ¹ŒH 0 W Zd � j Zd � H 0 � H; ŒH 0 W Zd � <1º:

Theorem 3.2 ([1, Corollary 5.5]). Let d; d 0 2 N, let H be a dense subgroup of Qd that
contains Zd , and let H 0 be a dense subgroup of Qd 0 that contains Zd

0

. The Zd -action
.YH ;  H / and the Zd

0

-action .YH 0 ;  H 0/ are orbit equivalent if and only if

JH W Zd K D JH 0 W Zd
0

K:

Let .X;�/ be an action of a groupG, and let .Y; / be an action of a groupG0. Assume
that .X; �/ and .Y;  / are orbit equivalent. By definition, there exists a homeomorphism
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hWX ! Y satisfying (3.1). If the actions .X; �/, .Y;  / are free, then there exist unique
maps ˛WX �G ! G0 and ˇWY �G0 ! G such that

h.�g.x// D  ˛.x;g/.h.x//

for all x 2 X , g 2 G, and also

h�1. g
0

.y// D �ˇ.y;g
0/.h�1.y//

for all y 2 Y , g0 2 G0. The maps ˛, ˇ are called orbit cocycles.

Definition 3.3. Let .X; �/ and .Y;  / be free actions of groups G and G0, respectively,
such that .X; �/ and .Y;  / are orbit equivalent. Then the actions .X; �/ and .Y;  / are
called continuously orbit equivalent if there is a homeomorphism hWX ! Y such that the
associated orbit cocycles ˛ and ˇ are continuous in the corresponding product topologies.

Proposition 3.4. Let d1; d2 2 N, let .YH1 ;  H1/ be a free Zd1 -action, and let .YH2 ;  H2/
be a free Zd2 -action. Then .YH1 ;  H1/ and .YH2 ;  H2/ are continuously orbit equivalent
if and only if d D d1 D d2 and there existsA 2GLd .Q/ with detAD˙1 andAH1 DH2.

Proof. Here GLd .Q/ denotes the group of non-singular d � d matrices with rational
coefficients. The proof follows the lines of the proof of [1, Theorem 5.7], where one uses
Proposition 2.7 in place of [1, Corollary 5.1].

Remark 3.5. Investigation of continuous orbit equivalence in the general setting was car-
ried out in [2]. In particular, conditions on when continuous orbit equivalence implies
isomorphic equivalence were given in that paper.

4. Odometers defined by matrices

In this section, we generalize the results in [3] on Z2-odometers defined by matrices
with integer coefficients to the d -dimensional case, d > 2. For convenience, we first put
together the results from previous sections in one theorem. To simplify notation, we denote
a Zd -action .YH ;  H / defined above for a subgroup H of Qd containing Zd by YH .

Theorem 4.1. Let d 2 N, and letH1,H2 be dense subgroups of Qd such that Zd �H1,
Zd � H2. Then

(1) Zd -actions YH1 , YH2 are conjugate if and only if H1 D H2.

(2) Zd -actions YH1 , YH2 are isomorphic if and only if there is T 2 GLd .Z/ such that
TH1 D H2.

(3) Zd -actions YH1 , YH2 are continuously orbit equivalent if and only if there is T 2
GLd .Q/ such that detT D ˙1 and TH1 D H2.

(4) Assume H1, H2 are dense in Qd . Then Zd -actions YH1 , YH2 are orbit equivalent
if and only if JH1 W Zd K D JH2 W Zd K.
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Proof. This is the content of Corollary 2.5, Proposition 2.7, Theorem 3.2, and Proposi-
tion 3.4 above.

Recall that for a non-singular d � d matrix A with integer coefficients, A 2 Md .Z/,

GA D ¹A
�kx j x 2 Zd ; k 2 Zº; Zd � GA � Qd :

One can check that GA is a subgroup of Qd . For simplicity, we denote YGA by YA. Note
that GA is naturally isomorphic to the inductive limit of the system .Zd ; fj /j2N , where
each fj WZd ! Zd is given by multiplication by A, fj .x/ D Ax, x 2 Zd , j 2 N.

We start with a characterization of dense groups GA in Qd . Let hA 2 ZŒt � be the
characteristic polynomial of A, and let hA D h1h2 � � � hs , where h1; h2; : : : ; hs 2 ZŒt � are
non-constant and irreducible.

Lemma 4.2 ([4, Lemma 8.1]). The group GA is dense in Qd if and only if hi .0/ ¤ ˙1
for all i 2 ¹1; 2; : : : ; sº.

Next, we describe orbit equivalent odometers.

Lemma 4.3 ([4, Lemma 8.2]). LetA;B2Md .Z/ be non-singular such thatGA (resp.GB )
is dense in Qd . Then Zd -actions YA, YB are orbit equivalent if and only if detA, detB
have the same prime divisors (in Z).

The next lemma is a special (simple) case when all the equivalences hold at the same
time.

Lemma 4.4. Let A;B 2Md .Z/ be non-singular such that GA (resp. GB ) is dense in Qd .
Assume that for any prime p 2 N that divides detA we have

hA � t
d .modp/:

Then the following are equivalent:

(1) Zd -actions YA, YB are conjugate;

(2) Zd -actions YA, YB are isomorphic;

(3) Zd -actions YA, YB are continuously orbit equivalent;

(4) detA, detB have the same prime divisors, and for any prime p 2 N that divides
detB , we have

hB � t
d .modp/:

Proof. Follows from Theorem 4.1 and [3, Lemma 3.10].

Let
detA D aps11 p

s2
2 � � �p

sl
l

be the prime-power factorization of detA, where p1; p2; : : : ; pl 2 N are distinct primes,
a D ˙1, and s1; s2; : : : ; sl 2 N. Let

P D P .A/ D ¹p1; p2; : : : ; plº:
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If P D ;, equivalently, detAD˙1, thenGA D Zd and YA is trivial. Moreover, for a non-
singular B 2 Md .Z/, we know that TGA D GB for some T 2 GLd .Q/ if and only if
detB D ˙1 and hence GB D Zd [3, Lemma 3.2 (i)].

In what follows, we assume P ¤ ;. Denote

P 0 D P 0.A/ D ¹p 2 P ; hA 6� t
d .modp/º;

where hA 2 ZŒt � denotes the characteristic polynomial of A. The case P 0 D ; is settled
in Lemma 4.4, so in what follows we assume P 0 ¤ ;. Finally, for a prime p 2 N let
tp D tp.A/ denote the multiplicity of zero in the reduction of the characteristic polynomial
of A modulo p, 0 � tp � d . Thus, in our notation tp ¤ d if and only if p 2 P 0.

Even though the results in [4] apply to isomorphisms between groups GA, GB for
arbitrary non-singular A;B 2 Md .Q/, to avoid making this paper too technical, we only
consider a generic case when the characteristic polynomials of A, B are irreducible.
An interested reader could use [4] together with Theorem 4.1 to treat other cases. Another
additional assumption we make is the condition that there exists p 2 P 0 such that the
greatest common divisor .tp; d / of tp and d is 1. It seems that this condition provides
the right setting for the generalization of the 2-dimensional case to higher dimensions.
In particular, in the 2-dimensional case, if hA is irreducible and TGA D GB for some
T 2 GLd .Q/, then hB is irreducible and T takes an eigenvector of A to an eigenvector
of B [3]. It turns out these facts remain true under the assumption .tp; d /D 1 and not true
in general, e.g., all tp D 2 and d D 4 [4].

Let xQ denote a fixed algebraic closure of Q. Recall that xQ consists of algebraic
numbers, roots of non-zero polynomials in one variable with rational coefficients. The
eigenvalues of a matrix A with integer coefficients are algebraic numbers since they are
roots of the characteristic polynomial of A. Let A; B 2 Md .Z/ be non-singular, and let
�1; : : : ; �d 2 xQ (resp. �1; : : : ; �d 2 xQ) denote eigenvalues of A (resp. B). Assume
there exists T 2 GLd .Q/ that satisfies TGA D GB . Suppose further that the character-
istic polynomial hA 2 ZŒt � of A is irreducible and there exists a prime p 2 P .A/ such that
.tp.A/; d/ D 1. The following facts follow from [4, Proposition 5.7]. Namely, hB 2 ZŒt �
is irreducible. Moreover (up to rearrangement of eigenvalues),

Q.�1/ D Q.�1/ and �1, �1 have the same prime divisors in the ring of integers. (4.1)

In particular, the splitting fields of hA, hB coincide. Furthermore, both A and B are diago-
nalizable (over xQ) and there exist M;N 2 GLd .xQ/ such that

A DM

0B@�1 � � � 0
:::

: : :
:::

0 � � � �d

1CAM�1; B D N

0B@�1 � � � 0
:::

: : :
:::

0 � � � �d

1CAN�1; (4.2)

and T DNM�1. If Zd -actions YA, YB are conjugate (or isomorphic, or continuously orbit
equivalent), then by Theorem 4.1, we have T D Id , the identity matrix (or T 2GLd .Z/, or
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detT D˙1, respectively) and, hence,M DN (orNM�1 2GLd .Z/, or detNM�1D˙1,
respectively). This proves the following lemma.

Lemma 4.5. Let A;B 2Md .Z/ be non-singular such that GA (resp. GB ) is dense in Qd .
Assume the characteristic polynomial hA 2 ZŒt � of A is irreducible and .tp; d / D 1 for
some prime p 2 P .

(i) If Zd -actions YA, YB are conjugate, then (4.1) holds, there existM;N 2GLd .xQ/
such that (4.2) holds, and M D N .

(ii) If Zd -actions YA, YB are isomorphic, then (4.1) holds, there exist M; N 2
GLd .xQ/ such that (4.2) holds, and NM�1 2 GLd .Z/.

(iii) If Zd -actions YA, YB are continuously orbit equivalent, then (4.1) holds, there
exist M;N 2 GLd .xQ/ such that (4.2) holds, and detNM�1 D ˙1.

As in the 2-dimensional case, the conditions in Lemma 4.5 are also sufficient in the
cases of conjugacy and isomorphism.

Lemma 4.6. Let A;B 2Md .Z/ be non-singular such that GA (resp. GB ) is dense in Qd .
Assume hA 2 ZŒt � is irreducible and .tp; d / D 1 for some prime p 2 P .

(i) If (4.1) holds and there exists M 2 GLd .xQ/ such that (4.2) holds for N D M ,
then Zd -actions YA, YB are conjugate.

(ii) If (4.1) holds, there existM;N 2 GLd .xQ/ such that NM�1 2 GLd .Z/ and (4.2)
holds, then Zd -actions YA, YB are isomorphic.

Proof. First, (ii) follows easily from (i) as in the proof of [3, Lemma 8.10]. We repeat the
argument for the sake of completeness. Assume (i) holds, letX D NM�1 2 GLd .Z/, and
assume (4.1) and (4.2) hold. Then XM D N and

XGA D GXAX�1 D GNƒN�1 D GB ; ƒ D

0B@�1 � � � 0
:::

: : :
:::

0 � � � �d

1CA :
Here,XAX�1 DNƒN�1 2Md .Z/, sinceX 2 GLd .Z/. Also,GNƒN�1 DGB by (i) and
Theorem 4.1. Thus, Zd -actions YA, YB are isomorphic by Theorem 4.1.

We now prove (i). Assume (4.1), (4.2) hold andN DM . Since hA is irreducible, (4.1)
implies that hB is also irreducible. Indeed, hB is irreducible if and only if ŒQ.�1/ WQ�D d .
From (4.2) with N DM , we see that A, B share the same eigenvector u 2 xQd such that
Au D �1u, Bu D �1u. Since hA is irreducible, the Galois group G D Gal.xQ=Q/ acts
transitively on the eigenvalues of A, i.e., there exist �2; : : : ; �d 2G such that �i D �i .�1/,
�1 D id, 1 � i � d . Since A, B have integer coefficients, by applying �i to Au D �1u,
Bu D �1u, we conclude that �i .u/ is an eigenvector of A (resp. B) corresponding to �i
(resp. �i .�1/), 1 � i � d , and �1.�1/; : : : ; �d .�1/ are all (distinct) eigenvalues of B . By
abuse of notation, let �i D �i .�i /, 1 � i � d . Moreover, it follows from (4.1) that hA, hB
share the same splitting field K and for each i , 1 � i � d , �i , �i have the same prime
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ideal divisors in the ring of integers OK of K. Therefore, P D P .A/ D P .B/, P 0 D

P 0.A/ D P 0.B/, and tp D tp.A/ D tp.B/ for any prime p 2 N. In [4], we discuss the
characteristic ¹ p̨ij ºp;i;j of a group GA with respect to a free basis ¹f1; : : : ; fd º of Zd ,
where p 2 P 0.A/, p̨ij 2 Zp , 1 � i � tp.A/, tp.A/C 1 � j � d . The system

�.A/ D ¹f1; : : : ; fd ; p̨ij j p; i; j º

determines all generators of GA over Z [4, Lemma 3.5]. Furthermore, we show that �.A/

can be calculated from eigenvectors ofA corresponding to eigenvalues divisible by a prime
ideal of OK that divides p, p 2 P 0 [4, Remark 4.4]. Since for each i , 1 � i � d , �i , �i
have the same prime ideal divisors and A, B share the same eigenvectors corresponding
to �i , �i , respectively, we see that GA, GB share the same set of generators. Therefore,
GA D GB .

Remark 4.7. It follows from its proof that in Lemma 4.6 (i), instead of (4.2) withN DM ,
it is enough to assume that A, B share the same eigenvector u 2 xQd such that Au D �1u,
Bu D �1u.

It is well known (it follows from the Latimer–MacDuffee–Taussky theorem) that for
a fixed monic irreducible polynomial h2ZŒt � of degree d , there are finitely many GLd .Z/-
conjugacy classes ŒA� of A 2 Md .Z/ with characteristic polynomial h. Let n D n.h/

denote the number of conjugacy classes. Also, for S 2 GLd .Z/ we have

SGA D GSAS�1 :

As was discussed above, we know that if there exists tp with .tp; d / D 1, A;B 2 Md .Z/
share the same irreducible characteristic polynomial and

TGA D GB

for some T 2 GLd .Q/, then TAT �1 D B [4]. This implies that there are exactly n iso-
morphism classes ŒYA�isom of odometers YA, where A 2Md .Z/ has characteristic polyno-
mial h, and there are less or equal than n continuously orbit equivalent classes ŒYA�cont:orb

of odometers YA, where A 2 Md .Z/ has characteristic polynomial h.

Remark 4.8. Note that M D N implies A, B commute. However, AB D BA does not
imply conjugacy, since the ordering of eigenvalues matters. For example,

GA ¤ GB for A D
�
3 0

0 5

�
; B D

�
5 0

0 3

�
:

Remark 4.9. We know from the 2-dimensional case that for odometers YA defined by
A2Md .Z/, continuous orbit equivalence is more subtle than conjugacy and isomorphism.
Even in the 2-dimensional case, general sufficient conditions for Z2-actions YA, YB to be
continuously orbit equivalent under the conditions of Lemma 4.5 become rather technical.
However, in each particular example, it is possible to resolve the question using Theo-
rem 4.1 and the results in [3, 4].
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Example 4.10. In this example, d D 3 and A;B; C 2 M3.Z/ have the same irreducible
characteristic polynomial h.t/ D t3 � 39t � 91,

A D

0@ 0 1 0

0 0 1

91 39 0

1A ; B D

0@ 7 0 0

5 1 0

�24 �4 1

1A ; C D

0@49 0 0

33 1 0

4 �4 1

1A :
Since detAD detB D detC , by Lemma 4.3, Zd -actions YA, YB , YC are orbit equivalent.
All threeA,B , and C are conjugate to each other in GL3.Q/. Moreover,A is a companion
matrix ofB and C . The three matrices above give (all) three equivalence classes of integer
matrices with characteristic polynomial h up to conjugation by elements in GL3.Z/, i.e.,
any matrix in M3.Z/with characteristic polynomial h is GL3.Z/-conjugate toA,B , or C ,
and any two matrices out of A, B , and C are not GL3.Z/-conjugate to each other (this
can be verified using [5, 6]). Using the methods of [4], we can prove that any two out
of YA, YB , and YC are not continuously orbit equivalent.

Example 4.11. In this example, d D 4, A;B 2M4.Z/ have the same irreducible charac-
teristic polynomial h.t/ D t4 C t2 C 9,

A D

0BB@
0 1 0 0

0 0 1 0

0 0 0 1

�9 0 �1 0

1CCA ; B D

0BB@
0 1 �1 0

9 0 2 1

9 0 1 1

�18 �9 7 �1

1CCA :
One can show that Lemma 4.6 (i) holds for A, B , so that GA D GB (see also [4, Exam-
ple 11]). Thus, Zd -actions YA, YB are conjugate.
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