
© 2024 European Mathematical Society
Published by EMS Press

J. Eur. Math. Soc. (Online first) DOI 10.4171/JEMS/1411

Miklos Abert · Nicolas Bergeron · Mikołaj Frączyk · Damien Gaboriau
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Abstract. We prove new vanishing results on the growth of higher torsion homologies for suitable
arithmetic lattices, Artin groups and mapping class groups. The growth is understood along Farber
sequences, in particular, along residual chains. For principal congruence subgroups, we also obtain
strong asymptotic bounds for the torsion growth.

As a central tool, we introduce a quantitative homotopical method called effective rebuilding.
This constructs small classifying spaces of finite index subgroups, at the same time controlling the
complexity of the homotopy. The method easily applies to free abelian groups and then extends
recursively to a wide class of residually finite groups.

Keywords. Arithmetic groups, discrete subgroups of semisimple Lie groups, higher rank lattices,
Artin groups, mapping class groups, homology torsion

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. The Borel construction and Geoghegan rebuilding . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3. Cellular homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4. Effective rebuilding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5. Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6. Quality of rebuilding for nilpotent groups: Proof of Theorem E . . . . . . . . . . . . . . . . . . 29
7. Quality of rebuilding of extensions by unipotent lattices . . . . . . . . . . . . . . . . . . . . . . . 38
8. A general quantitative rebuilding theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9. Bounding torsion: A proof of Gabber’s Proposition 9.1 . . . . . . . . . . . . . . . . . . . . . . . 43
10. Farber sequences and cheap rebuilding property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11. Lattices in semisimple Lie groups: Proof of Theorem B . . . . . . . . . . . . . . . . . . . . . . . 58
12. Application to mapping class groups: Proof of Theorem D . . . . . . . . . . . . . . . . . . . . . 61
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Miklos Abert: Alfréd Rényi Institute of Mathematics, 1053 Budapest, Hungary;
karinthy@gmail.com

Nicolas Bergeron: Département de Mathématiques et Applications, ENS / PSL University,
75005 Paris, France; nicolas.bergeron@ens.fr
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1. Introduction

Let M be a finite volume Riemannian manifold or a finite CW-complex. One of the most
powerful and well-studied invariants ofM are its homology groups. These abelian groups
decompose into a free part and a torsion part. The ranks of the free parts give the ratio-
nal Betti numbers of M . One can also compute the mod p Betti numbers from the full
homology group and the Euler characteristic, as the alternating sum of Betti numbers.
For a finite sheeted cover of M , the Euler characteristic is multiplicative in the index
of the cover, but already the rational Betti numbers can behave quite erratically in this
respect. To smooth this behavior out, one can consider the j -th `2 homology, and mea-
sure the dimension of the corresponding Hilbert space using von Neumann dimension
(Atiyah [4]). Alternatively, one can consider the growth of the j -th rational Betti numbers
over a suitable sequence of finite sheeted covers ofM . As shown by the Lück approxima-
tion theorem [38], these two attempts give the same result, called the j -th `2 Betti number
of M . This result naturally led to studying the growth of other homological invariants as
well, like the growth of the mod p Betti numbers and the growth of the torsion.

Over the years, the interest of the community has shifted from the study of the homol-
ogy of spaces to the homology of their fundamental groups. Our results are also expressed
in terms of group homology.

Since the torsion grows at most exponentially in the index of the cover, the right
definition of the j -th torsion growth of M is to take the logarithm of the cardinality of
the j -th torsion group of the covering space, normalized by the index of the cover, and
consider its limit for a suitable sequence of covers.

As of now, control of the torsion (and also the mod p Betti numbers) is much weaker
than for the rational Betti numbers. In particular, we do not have an analogue of the
Lück approximation theorem, even in the most natural settings (see Section 1.3 below
where we speculate about a natural analytic invariant that should describe Betti numbers
growth in positive characteristic). More than that, strikingly, we do not know a single
example of a finitely presented group with positive first homology torsion growth over a
decreasing sequence of finite index normal subgroups with trivial intersection, while, at
the same time, it is a well-accepted conjecture that all sequences of congruence subgroups
of arithmetic hyperbolic 3-manifold group have this property [9, 11, 17].

In this paper, we prove vanishing results on the torsion growth of higher homology
groups of a natural class of residually finite groups, using a new homotopical method
called effective rebuilding. We apply this method to non-uniform higher rank lattices,
mapping class groups and various Artin groups, among others. For the lattice case, we also
obtain explicit estimates of the convergence for covering maps with respect to principal
congruence subgroups.

1.1. Main results

We start by stating two theorems in their simplest forms that are good showcases for
the more general and technical results of the paper. For a group � , its homology groups
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decompose as Hj .�;Z/ D Zbj .�/ ˚Hj .�;Z/tors where bj .�/ is the j -th Betti number
and where Hj .�;Z/tors is the torsion subgroup. Let j � j denote cardinality.

Our first result deals with an arbitrary sequence of finite index subgroups.

Theorem A. Let � D SLd .Z/ .d � 3/ and let .�n/n2N be a sequence of pairwise dif-
ferent finite index subgroups of � . Then for every degree j � d � 2 we have

log jHj .�n;Z/torsj

Œ� W �n�
! 0 as n!1: (1.1)

There are deep number-theoretical motivations to study torsion in the homology of
arithmetic groups. It has long been known to be related to algebraic K-theory and the Van-
diver conjecture; see e.g. [27, 46] for an account on these relations. More recently, it has
attracted further attention since, thanks to the deep work of Scholze [44], one can roughly
say that mod p torsion classes in the homology of congruence subgroups of SLd .Z/
parametrize field extensions K=Q whose Galois groups are subgroups of PGLd .Fp/.
Theorem A confirms a part of a general related conjecture of Bergeron and Venkatesh that
postulates that the limit in (1.1) is zero for all d � 3 and all j except when .d; j /D .3; 2/
or .d; j / D .4; 4/ [3, 9, 12].

When restricting our attention to principal congruence subgroups

�.N/ D ker.SLd .Z/! SLd .Z=NZ//;

our second result gives quantitative upper bounds on the torsion growth.

Theorem B. Let � D SLd .Z/ .d � 3/. Then for all N � 1 and j � d � 2 we have

log jHj .�.N /;Z/torsj

Œ� W �.N/�
D O

�
logN
N d�1

�
as N !1: (1.2)

We refer to Section 11 for the more general Theorem 11.1 about non-uniform lattices
in semisimple Lie groups.

The first homology case of Theorem A, that is, the case j D 1, is known; in particular,
it follows from [2, Theorem 4]. Using the less elementary, but more classical machinery
of congruence subgroup property (CSP) on these groups, the authors of [2] also show the
stronger estimate that there exists a constant c depending only on d such that for all finite
index subgroups �0 of SLd .Z/ we have

jH1.�0;Z/torsj D jH1.�0;Z/j D j�
ab
0 j � ŒSLd .Z/ W �0�c (1.3)

(see [2, Section 5.1]).
For d D 3, we expect that the degree bound j � d � 2 is sharp for both theorems

above. The general conjecture of [12] indeed postulates exponential growth of torsion
for SL3.Z/ in degree 2. As an indication, big torsion groups do show up in the recent
computational work of Ash, Gunnells, McConnell and Yasaki [3]. The degree bound j �
d � 2 is probably not optimal for higher degrees. We shall see that it is a natural stopping
point for our approach, though.
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The non-effective version of our methods already gives applications for the growth
of mod p Betti numbers for any prime p. Since we obtain good control over the number
of cells of finite covers, it follows that the growth of the j -th mod p Betti number is
zero under the conditions of Theorem A. The supplementary control offered by principal
congruence subgroups leads, as in Theorem B, to explicit estimates on the growth of the
mod p Betti numbers (see Theorem 11.1):

Theorem C. Let � D SLd .Z/ .d � 3/ and let .�n/n2N be a sequence of pairwise distinct
finite index subgroups of � . Then for every field K and every degree j � d � 2 we have

dimK Hj .�n; K/
Œ� W �n�

! 0 as n!1: (1.4)

For the principal congruence subgroups �.N/, we have

dimK Hj .�.N /;K/
Œ� W �.N/�

D O

�
1

N d�1

�
as N !1: (1.5)

Note that the j D 1 case of (1.4) again follows from known results. The first mod p
Betti number is a lower bound for the minimal number of generators, hence the rank
gradient dominates the growth of the first mod p Betti number. It is shown for instance in
[23, Theorem 4.14 (3)] that for SLd .Z/ .d � 3/, the rank gradient vanishes for arbitrary
injective sequences of finite index subgroups, using the work of Gaboriau on cost [29]. In
a somewhat different direction, Frączyk proved that, for the finite field F2, the estimate
dimF2 H1.�;K/=vol.�nG/ D o.1/ holds uniformly for all lattices in any simple higher
rank real Lie groupG [28]. For non-uniform lattices in higher rank, Lubotzky and Slutsky
[37] use the congruence subgroup property to give explicit and near optimal estimates on
the rank and hence on the first mod p Betti numbers, but for uniform lattices the best
known result follows from Frączyk’s work. We wonder whether the methods implemented
in our paper can be adapted to deal similarly with arbitrary sequences of lattices in a
simple higher rank real Lie group G. For the rank 1 case, see the nice papers [6, 43].

The results of Theorem C are new for higher homology groups. The closest result
we are aware of is due to Calegari and Emerton and concerns p-adic chains like pn-
congruence subgroups �.pn/ in SLd .Z/; see [10,20,21] where the existence of a limit is
established (not its value) and the error term is estimated. In small degrees that our meth-
ods address, our error term is better, but note that [20] also deals with the difficult case
around the middle dimension. Recent works [19, 22] and conjectures (personal commu-
nication) of Calegari and Emerton suggest that in reality the bound on jHj .�.N /;Z/torsj

(rather than its logarithm) should be polynomial in N in degrees � d � 2. Let us also
mention the papers of Sauer and of Kar, Kropholler and Nikolov [35, 43], in which they
prove the vanishing of the j -th torsion growth for a wide class of amenable groups.

Although the results above are homological, we build homotopical machinery to
obtain them. This approach goes back to [16, 29, 36]. Since we use a general topological
approach, our work also applies to a wide class of groups such as torsion-free nilpotent
groups, infinite polycyclic groups, Baumslag–Solitar groups BS.1; n/ and BS.n; n/ for
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any non-zero integer n, residually finite Artin groups, and does not need or assume deep
results like the CSP.

In particular, our method applies to mapping class groups of higher genus surfaces.
For g; b 2 N let ˛.g; b/D 2g � 2 if g > 0 and b D 0, ˛.g; b/D 2g � 3C b if g > 0 and
b > 0, and ˛.g; b/ D b � 4 if g D 0.

Theorem D. Let S be an orientable surface of genus g > 0 with b boundary components
and let � DMCG .S/ be its mapping class group. Let .�n/n2N be a Farber sequence of
finite index subgroups of � . Then for every coefficient fieldK and every degree j �˛.g;b/
we have

dimK Hj .�n; K/
Œ� W �n�

! 0 and
log jHj .�n;Z/torsj

Œ� W �n�
! 0 as n!1: (1.6)

See Definition 10.1 for the definition of a Farber sequence. Examples include decreas-
ing sequences of finite index normal subgroups with trivial intersection. Observe that for
lattices in higher rank simple Lie groups, it follows from the Stuck–Zimmer Theorem
[47] via [1] that any injective sequence is indeed a Farber sequence. Both SLd .Z/ and
MCG .S/ are then handled using the same method.

1.2. Structure, arguments and further results

Throughout this article, any group action on a CW-complex is required to respect the CW-
complex structure. Our starting point is the obvious observation that, while the number of
cells of a finite index cover † of a CW-complex † is proportional to the index, it turns
out that, for tori, the space † can be rebuilt with a much simpler cell structure.

At the origin of the theory of “(co)homology of groups”, the standard homological
invariants of a group � are obtained as the homological invariants of a (and hence of any)
compact space†with fundamental group � and contractible universal cover z†, whenever
such a † exists. In fact, instead of contractibility, the ˛-connectedness of z† is enough to
compute the homological invariants up to degree ˛ from the cellular chain complex of †.

Our strategy is to exploit the existence, for certain groups � (like those appearing in
Theorems A and D), of such a complex † with nicely embedded tori-like subcomplexes
so as to capitalize on the “obvious observation” above.

Let � be a countable group acting on a CW-complex� and let ˛ be a positive integer.
Recall that a topological space X is ˛-connected (resp. ˛-aspherical) if the homotopy
groups �i .X; x/ are trivial for i D 0; : : : ; ˛ (resp. i D 2; : : : ; ˛). Suppose that the CW-
complex� is ˛-connected and that for every cell ! �� the stabilizer �! acts trivially on
the cell !. We may be led to consider a finite index subgroup first or to consider a barycen-
tric subdivision so as to ensure this last condition. A general construction, called the
Borel construction, then associates to the action � Õ � an ˛-aspherical CW-complex †
whose fundamental group is � . The construction in fact naturally leads to a stack of CW-
complexes … W †! �n�, and, roughly speaking, the fiber over a cell �! of �n� is a
classifying space for the stabilizer �! of ! under the action � Õ � (see the following
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diagram).

�! ÕD…�1.�!/ � Õ z† � Õ �

B.�! ; 1/ D …
�1.�!/ † �n�

…

We briefly recall all these notions in Section 2 (in particular in Proposition 2.1) as it will
be useful for us. We refer to the excellent book of Geoghegan [31, Section 6.1] for more
details.

At the risk of a spoiler, we indicate right away that we shall use the complex � to
be the rational Tits building � for � D SLd .Z/. Note that this complex � is .d � 3/-
connected (see Section 11), which is the sole reason why we can only treat the homology
groups in the range j � d � 2 in Theorems B and A. Similarly in Theorem D for the
mapping class group MCG .S/, for which we shall use the curve complex as � (see
Section 12). The key aspect of our proof is that the stabilizers �! in these actions � Õ �

contain non-trivial free abelian normal subgroups, so that each fiber is itself a torus bundle.
However, in its original form, the Borel construction is not yet suitable for us. More
precisely, in order to build “nicer classifying spaces” for the finite index subgroups that
allow exploiting the structure of the stabilizers out of the total space † of the stack … W
†! �n�, we make use of Geoghegan’s Rebuilding Lemma [31, Proposition 6.1.4] (see
Proposition 2.2 below). This is not yet enough. In order to get a grip on the torsion part of
the homology, we make use of a proposition attributed to Gabber (see [46, Proposition 3,
p. 214]):

log jHj .†;Z/torsj � .# of j -cells/ � sup.log k@jC1k; 0/: (1.7)

See Section 9 where, for the convenience of the reader, we give a proof of this inequality
following the point of view of [12]. This reduces the problem of estimating the torsion to
bounding the number of cells and the norms of the boundary maps. Thus, to be able to
really make use of Gabber’s proposition, we have to turn the Rebuilding Lemma into an
effective statement. This is the content of our Proposition 4.2. In the end, this Effective
Rebuilding Lemma is a machine that provides an explicit rebuilding of the total space †
of a stack of complexes † ! �n� given a rebuilding of its fibers, and that moreover
provides bounds on the number of cells and norms of the chain boundary maps.

In various interesting situations, each fiber of … W †! �n� is itself a torus bundle.
The standard CW structure on the torus and an inductive procedure using the effective
rebuilding lemma yield “classifying spaces” for the finite index subgroups, which will be
sufficiently “small” to prove our asymptotic theorems.

One needs to be able to rebuild efficiently not only free abelian groups but also finitely
generated torsion-free nilpotent groups. This is the content of the general Theorem E
stated below, which we believe to be of independent interest.

First, let us give a precise definition of a rebuilding (of good quality). This is a central
notion of this paper.

For a CW-complex X we denote by X .˛/ its ˛-skeleton and jX .˛/j its number of
˛-cells. By convention X .�1/ is the empty set.
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Definition 1 (Rebuilding). Let ˛ 2N and let X be a CW-complex with finite ˛-skeleton.
An ˛-rebuilding of X consists of the following data .X;X 0; g;h;P/:
(1) a CW-complex X 0 with finite ˛-skeleton;

(2) two cellular maps g W X .˛/! X 0.˛/ and h W X 0.˛/! X .˛/ that are homotopy inverse
to each other up to dimension ˛ � 1, i.e., h ı gjX.˛�1/ � idjX.˛�1/ within X .˛/ and
g ı hjX 0.˛�1/ � idjX 0.˛�1/ within X 0.˛/;

(3) a cellular homotopy P W Œ0; 1� � X .˛�1/ ! X .˛/ between the identity and h ı g, i.e.,
P.0; �/ D idjX.˛�1/ and P.1; �/ D h ı gjX.˛�1/ .

Definition 2 (Quality of a rebuilding). Given real numbers T; � � 1, we say that .X;X 0;
g;h;P/ is an ˛-rebuilding of quality .T; �/ if

8j � ˛; jX 0.j /j � �T �1jX .j /j; (cell bound)

8j � ˛; log kgj k; log khj k; log k�j�1k; log k@0j k � �.1C logT /; (norm bound)

where @0 is the boundary map on X 0, we denote by g and h the chain maps respectively
associated to g and h, and � W C�.X/! C�C1.X/ is the chain homotopy induced by P in
the cellular chain complexes:

C˛.X/ � � � � � � C1.X/ C0.X/

C˛.X
0/ � � � � � � C1.X

0/ C0.X
0/

@˛

g˛
�˛�1

@1

g1
�1 g0�0

@0˛

h˛

@0
1

h1 h0 (1.8)

and the norms k � k are derived from the canonical `2-norms on the cellular chain com-
plexes.

We will simplify the notation and write .X; X 0/ instead of .X; X 0; g; h; P/ when the
explicit cellular maps are not relevant.

The definition above captures an intrinsic tension between “having few cells” and
“maintaining tame norms”.

Given a finite coverX1! X (of large degree), our main task is to construct a rebuild-
ing .X1; X 01/ of sufficiently good quality .T1; �1/. In some cases, it is possible to take
�1 D �.X/ independently of the cover and T1 linear in the degree; see Sections 6 and 7.
In particular, for finitely generated torsion-free nilpotent groups (called unipotent lattices
in the text), the precise efficient rebuilding we obtain can be stated as follows.

Theorem E. Letƒ be a finitely generated torsion-free nilpotent group. If Y0 is a compact
K.ƒ; 1/ space, then there exists a constant �Y0 � 1 such that for every finite index sub-
group ƒ1 � ƒ, the cover Y1 D ƒ1n QY0 admits an ˛-rebuilding .Y1; Y 01; g;h;P/ of quality
.Œƒ W ƒ1�; �Y0/ for every ˛.

Recall that a K.ƒ; 1/ space is a CW-complex with fundamental group isomorphic
to ƒ and whose universal cover is contractible.



M. Abert, N. Bergeron, M. Frączyk, D. Gaboriau 8

Remark. Since the number of j -cells of Y1 is jY .j /1 j D Œƒ W ƒ1�jY
.j /
0 j, the number of

j -cells of the K.ƒ1; 1/ space Y 01 satisfies the bound j.Y 01/
.j /j � �Y0 Œƒ W ƒ1�

�1jY
.j /
1 j D

�Y0 jY
.j /
0 j, independent of ƒ1.

Remark. The proof of Theorem E (in Section 6) yields for various ƒ1 a rebuilding Y 01
with only O.2h/ cells, where h is the Hirsch length of ƒ. This is, in fact, “the” minimal
number of cells that a K.ƒ; 1/ CW-complex can have, since

P
j dimQHj .ƒ;Q/ D 2h:

Theorem E is used for the proof of Theorem B; the latter is in fact deduced from a
general result: Theorem 8.1 proved in Section 8. One key feature of the principal congru-
ence subgroup �.N/ of Theorem B is that it intersects every infinite unipotent subgroup
of SLd .Z/ along a subgroup of index at least N . Note that general sequences of finite
index subgroups of SLd .Z/ do not have this property, e.g., for each positive integerN the
non-principal congruence subgroup

�0.N / D

²�
a b

c> D

�
2 SLd .Z/ W a 2 Z; b; c 2 Zd�1; D 2 GLd�1.Z/; N j c

³
of SLd .Z/ contains the whole group of upper-triangular unipotent matrices with integer
coefficients. To prove Theorem A we need to show that if .�n/ is an injective sequence
of finite index subgroups of SLd .Z/, then �n intersects most of the infinite unipotent
subgroups of SLd .Z/ along subgroups of large index.

In general, to deal with arbitrary Farber sequences of a given residually finite group �
we introduce a property that we believe to be of independent interest. We say that � has
the cheap ˛-rebuilding property (Definition 10.6) if it admits a K.�; 1/ space X with
finite ˛-skeleton and a constant �X � 1 that satisfy the following property. For every
Farber sequence .�n/n2N for � and T � 1, there exists n0 such that for n � n0 the cover
Xn WD �nn QX admits an ˛-rebuilding .Xn; Yn/ of quality .T; �X /. We note that cheap
0-rebuilding simply means that � is infinite.

We establish a robust bootstrapping criterion for a group to have the cheap ˛-rebuild-
ing property:

Theorem F (Theorem 10.9). Let � be a residually finite group acting on a CW-complex
� in such a way that any element stabilizing a cell fixes it pointwise. Let ˛ 2 N and
assume that the following conditions hold:

(1) �n� has finite ˛-skeleton;

(2) � is .˛ � 1/-connected;

(3) the stabilizer of each cell of dimension j � ˛ has the cheap .˛ � j /-rebuilding
property.

Then � itself has the cheap ˛-rebuilding property.

As a corollary, the cheap ˛-rebuilding property is an invariant of commensurability.
Also, it holds for all infinite polycyclic groups for all ˛. It also passes from a normal
subgroup N G � to � if Nn� is of type F˛ . See Corollary 10.13. More significantly, we
show
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Theorem G. Let ˛ � 0. The following groups have the cheap ˛-rebuilding property:

(1) arithmetic lattices of Q-rank at least ˛ C 1 .Theorem 11.3/;

(2) finitely generated residually finite Artin groups satisfying the K.�; 1/ conjecture and
whose nerve is .˛ � 1/-connected .Theorem 10.17/;

(3) the mapping class groups MGC.S/ where S is a surface of genus g > 0 with
b > 0 boundary components and 2g � 3C b � ˛ or g > 0, b D 0 and 2g � 2 � ˛
.Theorem 12.1/.

The “cell bound” condition of Definition 2 in the cheap ˛-rebuilding property is very
much related to the notion of slowness introduced in [16]. This condition already implies
the vanishing of the growth of homology over arbitrary fields for a wide class of groups.
In particular, a group with the cheap 2-rebuilding property is finitely presented and eco-
nomical, in the sense of [36], with respect to any Farber chain of finite index subgroups.
To control the torsion, however, we need the full force of the cheap ˛-rebuilding property:

Theorem H (Theorem 10.20). Let � be a countable group of type F˛C1 that has the
cheap ˛-rebuilding property for some non-negative integer ˛. Then for every Farber
sequence .�n/n2N , every coefficient field K and 0 � j � ˛ we have

lim
n!1

dimK Hj .�n; K/
Œ� W �n�

D 0 and lim
n!1

log jHj .�n;Z/torsj

Œ� W �n�
D 0:

In analogy with the Lück approximation theorem [38] which identifies the first limit
with the usual `2-Betti number b.2/j .�IK/ when K D Q, we will loosely write

b
.2/
j .�IK/ D lim sup

n!1

dimK Hj .�n; K/
Œ� W �n�

once the sequence .�n/ is fixed. Note that non-abelian finitely generated free groups do
not have the cheap 1-rebuilding property (since b.2/1 .Fr IQ/ D r � 1 6D 0).

According to Theorem G (1), SLd .Z/ has the cheap .d � 2/-rebuilding property. The-
orem H, therefore, implies Theorem A. Similarly, Theorem G (3) and Theorem H imply
Theorem D.

Theorem H is related to [2, Theorems 7 and 9] where Abert, Gelander and Nikolov
investigate the first homology torsion growth for chain-commuting,1 i.e., groups that admit
a finite generating list ¹
1; : : : ; 
mº of elements of infinite order such that Œ
i ; 
iC1� D 1
for i D 1; : : : ; m � 1. This is a class of groups featured in [29] where SLd .Z/ .d � 3/
being a chain-commuting group is exploited to compute its cost. These groups have the
cheap 1-rebuilding property (see Proposition 10.15). We therefore recover that finitely
presented chain-commuting groups have vanishing first homology torsion growth along

1Note that in that paper the authors named these groups “right-angled”, which raised concerns
since it is too close to the well-established name “right-angled Artin” and may generate confusion.
So, we suggest the new name “chain-commuting”.
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any Farber sequence. Note that already in degree j D 1, Theorem H also establishes the
vanishing of the homology torsion growth for a natural class of groups where [2] does not
apply (see Example 10.16). Moreover, thanks to Theorem G (2), it applies to quite general
Artin groups in higher degrees and yields

Theorem I. Let � be a finitely generated residually finite Artin group satisfying the
K.�; 1/ conjecture and whose nerve is .˛ � 1/-connected. Then for every Farber se-
quence .�n/n2N , coefficient field K and 0 � j � ˛ we have

b
.2/
j .�IK/ D 0 and lim

n!1

log jHj .�n;Z/torsj

Œ� W �n�
D 0:

When � is a right-angled Artin group (RAAG) the first part of the theorem is not new:
In fact, Avramidi, Okun and Schreve [5] have even computed all the `2-Betti numbers
b
.2/
j .�IK/. Their result is that b.2/j .�IK/D bj�1.LIK/, the reduced Betti number of the

nerve L of � . Thus b.2/j .�IK/ is indeed equal to 0 when L is .j � 1/-connected. This
shows that Theorem G (2) is optimal for RAAGs. Building on their computation of the
`2-Betti numbers b.2/j .�I F2/, Avramidi, Okun and Schreve also prove that a RAAG �

whose nerve is a flag triangulation of RP 2 has exponential homology torsion growth in
degree j D 2 [5, Corollary 3]. Since � has the cheap 1-rebuilding property (it is in fact
chain-commuting), this shows that Theorem H is in a certain sense optimal: for ˛ D 1,
there are groups that have the cheap ˛-rebuilding property and have exponential torsion
growth in degree j D ˛ C 1.

1.3. Speculations and questions

One thing that makes rational Betti numbers powerful invariants is that their growth is
connected with `2-cohomology. In particular, by the Lück approximation theorem, the
rational homology growth can be expressed as the corresponding `2-Betti number. Thus
it is natural to ask, even at a conceptual level, what is the analytic invariant behind the
homology growth in positive characteristic. In [30], the last-named author with Bran-
don Seward drew a connection between finite-field homology problems and sofic entropy
problems, such as, for example, whether entropy depends upon the choice of sofic approx-
imation †. Let � act freely and cocompactly on a contractible (or at least j -connected)
simplicial complex L. Consider the coboundary maps with coefficients in a finite fieldK:

C j�1.L;K/
ıj

�! C j .L;K/
ıjC1

���! C jC1.L;K/:

In particular, Im.ıj / D ker.ıjC1/ (equivalently H j .L;K/ D 0).
In analogy with the work of Elek [26], the authors were led to introduce the notion of

the j -th sofic entropy Betti number ˇj;†K .�/ of the group � over the field K for a sofic
approximation† of � as a measurement of the violation of a Yuzvinsky addition formula
(see [30, p. 6]):

ˇ
j;†
K .�/ � log jKj C h†top.C

j�1.L;K// D h†top.ker.ıj //C h†top.Im.ı
j //;
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where h†top.V / is the topological sofic entropy of the action of � on the subshift V . They
proved in particular [30, Corollary 5.4] that: If � is residually finite and † comes from
a Farber chain .�n/, and the entropy h†top.ker.ıj // is achieved as a limit rather than an
upper limit, then

lim sup
n!1

dimK H j .�nnL;K/

Œ� W �n�
D ˇ

j;†
K .�/:

To conclude this introduction, we finally raise the following:

Question 1.1. Let � be the fundamental group of a finite volume hyperbolic 3-manifold.
Does � have the cheap 1-rebuilding property?

It is tempting to believe that the answer is no. These groups have zero first `2-Betti
number, so the Betti number criterion does not apply. But it is conjectured that for arith-
metic hyperbolic 3-manifold groups the torsion in degree 1 grows exponentially along
Farber sequences of congruence subgroups [9, 11, 17].

2. The Borel construction and Geoghegan rebuilding

Let � be a countable group acting on a CW-complex �.
Technically speaking, the Borel construction is a trick that converts an action of a

group � on a space � into a free action of � on a homotopy equivalent space �0 (see
for instance [33, Section 3.G.2]). Namely, take �0 D � � E� with the diagonal action
of � , 
.y; z/ D .
y; 
z/ where � acts on E� (the universal cover of some classifying
space B�) as deck transformations. The diagonal action is free, in fact a covering space
action, since this is true for the action in the second coordinate. The orbit space of this
diagonal action is usually denoted � �� E� . We now briefly explain the “stack” inter-
pretation of Geoghegan [31, Section 6.1] alluded to in the introduction.

A cellular map … W †! ˆ between two CW-complexes is a stack of CW-complexes
with base space ˆ, total space † and CW-complexes called fibers Fe over e if for each
n � 1 (denoting by En the set of n-cells of ˆ) there is a cellular map

fn W
G
e2En

Fe � Sn�1 ! …�1.ˆ.n�1// (2.1)

and a homeomorphism

kn W …
�1.ˆ.n�1// [fn

� G
e2En

Fe � Bn
�
! …�1.ˆ.n// (2.2)

such that

(1) kn agrees with the inclusion on …�1.ˆ.n�1//,

(2) kn maps each cell onto a cell,
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(3) the following diagram commutes up to homotopy relative to …�1.ˆ.n�1//:

…�1.ˆ.n�1// t .
F
e2En

Fe � Bn/

quotient
��

.…j;�eıpr2/

))
…�1.ˆ.n�1// [fn .

F
e2En

Fe � Bn/

kn
��

ˆ.n/

…�1.ˆ.n//

…j

55

(2.3)

where .…j; �e ı pr2/ W …
�1.ˆ.n�1// t .

F
e2En

Fe � Bn/! ˆ.n/ is the restriction of …
to …�1.ˆ.n�1//, while on each Fe � Bn, it is the composition of the projection onto Bn

followed by the characteristic map �e of the cell e 2 En in the CW-complex ˆ. Thus
there is a homotopy

H W
�
…�1.ˆ.n�1// t

� G
e2En

Fe � Bn
��
� Œ0; 1�! ˆ.n/

such that

Hj…�1.ˆ.n�1//�Œ0;1�D…j; H.�; 0/D .…j;�e ıpr2/; and H.�; 1/D…jıkn ıquotient:

Note that the strong commutation of diagram (2.3) required in the definition of stacks
in [31, Section 6.1, p. 147] (2008 version of the book) is in fact too strong and that [31,
Proposition 6.1.4] needs the commutation to occur up to homotopy. Both the flaw and
the way to fix it have been pointed out to us by Boris Okun and Kevin Schreve. We are
extremely grateful to them for that. The relevant corrections of Ross Geoghegan’s book
appear on his webpage math.binghamton.edu/ross/tmgt.

Following [31, Section 6.1], the Borel construction for � Õ � eventually takes the
form of a stack … W †! �n� below:

Proposition 2.1. Let � be a countable group acting on a simply connected CW-complex
� so that for every cell ! � � the stabilizer �! acts trivially on !. Write ˆ D �n�.
Then there exists a stack of CW-complexes … W †! ˆ with fiber Fe over e such that

(1) the fundamental group �1.†/ is isomorphic to �;

(2) for each cell e of ˆ the fiber Fe is aspherical and �1.Fe/ Š �! , where ! is any cell
in � above e.

Moreover, if � is n-connected then the universal cover z† of the total space † is n-
connected.

Recall that a CW-complex space Y is said to be n-connected if it is connected and
all its homotopy groups �jY are trivial for 0 � j � n. By convention, a .�1/-connected
space will just be an arbitrary topological space.

math.binghamton.edu/ross/tmgt
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Note that if ! and !0 are two cells of � above a cell e of ˆ, they are in the same �-
orbit and thus the stabilizers �! and �!0 are conjugate in � . In particular these stabilizers
are isomorphic, so there is no harm in writing �e WD �! .

In practice it is often desirable to replace the fibers Fe by different CW-complexes of
the same homotopy types. Geoghegan’s stack decomposition and his Rebuilding Lemma
[31, Proposition 6.1.4] makes this possible:

Proposition 2.2 (Rebuilding Lemma, Geoghegan [31, Proposition 6.1.4]). Let… W†!ˆ
be a stack of CW-complexes. If for each cell e of ˆ we are given a CW-complex F 0e of the
same homotopy type as Fe , then there is a stack of CW-complexes …0 W †0 ! ˆ with
fiber F 0e over e, and a homotopy equivalence g making the following diagram commute
up to homotopy over each cell:

†

…
��

g
// †0

…0
~~

ˆ

Proposition 2.2 allows one to replace, up to homotopy equivalence, each fiber Fe in
Proposition 2.1 by a prescribed classifying space for �! .

Recall that a group � is of type Fn if it admits a classifying space whose n-skeleton
is finite; equivalently if it admits an .n � 1/-aspherical CW-complex X with finite n-
skeleton and �1.X/ ' � (since turning X into an aspherical complex can be made by
adding only cells of dimension � nC 1).

Let ˛ 2N. Suppose that each group �e is of type F˛ . Thanks to the rebuilding lemma
we may then assume that

each fiber Fe of the stack … W †! ˆ has a finite ˛-skeleton.

If we suppose furthermore that� is .˛ � 1/-connected then the universal cover of the total
space z† is also .˛ � 1/-connected. The cellular chain complex Cq.z†/ therefore gives a
partial resolution

C˛.z†/! � � � ! C0.z†/! Z! 0

of Z by free ZŒ��-modules of finite rank.

Remark 2.3. If � � � is a subgroup of finite index, then in the commuting diagram

† D �nz†
… //

�

��
	

ˆ D �n�

��

† D �nz†
… // ˆ D �n�

(2.4)

the map … is naturally a stack satisfying (1) and (2) of Proposition 2.1, the map � is a
finite cover. For any n 2 N we thus have

j†
.n/
j D Œ� W ��j†.n/j:
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Proposition 2.2 gives a way to improve the covering space† by simplifying the fibers
of the stack …. Our next goal is to make this procedure explicit enough to control the
boundary maps in (cellular) homology. We first recall some basic facts about the latter.

3. Cellular homology

The material in this section covers the basic properties of cellular homology in the context
of stacks of CW-complexes. We review it to set up the notation for the following sections.
Let … W †! ˆ be a stack of CW-complexes with fiber over each cell e of ˆ denoted
by Fe .

Recall that by definition, the Z-module of the degree a cellular chains is

Ca.†/ D Ha.†
.a/; †.a�1//:

Now each homeomorphism (2.2) induces a map of pairs

.F .k/e � Bn; F .k/e � Sn�1 [ F .k�1/e � Bn/! .†.nCk/; †.nCk�1//;

which induces an injective map

HnCk.F
.k/
e � Bn; F .k/e � Sn�1 [ F .k�1/e � Bn/! CnCk.†/: (3.1)

Considering the long exact sequence for the pair

.F .k/e � Bn; F .k/e � Sn�1 [ F .k�1/e � Bn/;

the Künneth theorem yields a natural isomorphism of Z-modules:

Hk.F
.k/
e ; F .k�1/e /˝Hn.B

n;Sn�1/
'
! HnCk.F

.k/
e � Bn; F .k/e � Sn�1 [ F .k�1/e � Bn/:

(3.2)
By definition, we have

Hk.F
.k/
e ; F .k�1/e / D Ck.Fe/:

The Z-moduleHn.Bn;Sn�1/ is free of rank 1 generated by the relative fundamental class
ŒBn;Sn�1�. From now on we will identify

Ck.Fe/˝Hn.B
n;Sn�1/ (3.3)

with the subspace of CnCk.†/ spanned by the image of the composition of the maps (3.2)
and (3.1).

The ascending filtration ofˆ by its n-skeletaˆ.n/ induced via… W†!ˆ then yields
an ascending filtration

F nC�.†/ D
M
e2ˆ.n/

C��dim e.Fe/˝Hdim e.B
dim e;Sdim e�1/ (3.4)

on the cellular chain complex C�.†/. Recall that the boundary operator @ W Ca.†/ !
Ca�1.†/ is defined using the homology long exact sequences of the pairs .†.a/; †.a�1//
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and .†.a�1/; †.a�2//:

Ca.†/

Š

��

@ // Ca�1.†/

Š

��

Ha.†
.a/; †.a�1//

ı // Ha�1.†
.a�1// // Ha�1.†

.a�1/; †.a�2//

On restriction to the image of (3.1) the composition of maps in the diagram above is the
composition of the map

HnCk.F
.k/
e � Bn; F .k/e � Sn�1 [ F .k�1/e � Bn/

ıDı1˚ı2
������! HnCk�1.F

.k/
e � Sn�1/˚HnCk�1.F

.k�1/
e � Bn/

with the direct sum of the two natural maps

HnCk�1.F
.k/
e � Sn�1/! HnCk�1.F

.k/
e � Sn�1; F .k�1/e � Sn�1/;

HnCk�1.F
.k�1/
e � Bn/! HnCk�1.F

.k�1/
e � Bn; F .k�1/e � Sn�1/:

Definition 3.1 (In the fiber, @vert). Let

@vert
W Ck.Fe/˝Hn.B

n;Sn�1/! Ck�1.Fe/˝Hn.B
n;Sn�1/

be the map that makes the following diagram commute:

Ck.Fe/˝Hn.B
n;Sn�1/

Š

��

@vert
// Ck�1.Fe/˝Hn.B

n;Sn�1/

HnCk.Ae;n;k/
ı2
�! HnCk�1.F

.k�1/
e �Bn/ // HnCk�1.F

.k�1/
e �Bn; F .k�1/e �Sn�1/

Š

OO

where Ae;n;k stands for the pair (F .k/e � Bn; F .k/e � Sn�1 [ F .k�1/e � Bn).

Given e 2 En, we denote by

fe W Fe � Sn�1 ! †

the map obtained by restricting fn. By construction it induces a map of pairs

.F .k/e � Sn�1; F .k�1/e � Sn�1/! .†.nCk�1/; †.nCk�2//:

Definition 3.2 (In the base, @hor). Let

@hor
W Ck.Fe/˝Hn.B

n;Sn�1/! CnCk�1.†/

be the map that makes the following diagram commute:

Ck.Fe/˝Hn.B
n;Sn�1/

Š

��

@hor
// CnCk�1.†/

HnCk.Ae;n;k/
ı1
�!HnCk�1.F

.k/
e �Sn�1/ // HnCk�1.F

.k/
e �Sn�1; F .k�1/e �Sn�1/

.fe/�

OO
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By naturality we get

Lemma 3.3. The boundary map @ W C�.†/! C��1.†/ decomposes as

@ D @vert
C @hor (3.5)

where @vert preserves each summand C�.Fe/˝Hdim e.Bdim e;Sdim e�1/ and acts on it by
the boundary operator of the cellular chain complex C�.Fe/, and where

@hor
W F nC�.†/! F n�1C��1.†/

maps c ˝ ŒBn;Sn�1� 2 C�.Fe/˝Hn.Bn;Sn�1/ .with e 2 En/ to

.�1/dim c.fe/�.c ˝ ŒS
n�1�/:

Proof. The sign here comes from the isomorphism in the first vertical arrow of the com-
mutative diagram of Definition 3.2.2

4. Effective rebuilding

Letˆ be a finite CW-complex and let†!ˆ be a stack of CW-complexes with fibers Fe .
Now, if for each cell e of ˆ we are given a CW-complex F 0e of the same homotopy type
as Fe , Proposition 2.2 implies that there exists a stack of CW-complexes…0 W†0!ˆwith
fiber F 0e over e, and a homotopy equivalence g making the following diagram commute
up to homotopy over each cell:

†

…
��

g
// †0

…0
~~

ˆ

(4.1)

For each cell e of ˆ let ke W Fe ! F 0e be a cellular map that induces a homotopy equiva-
lence. In particular there exists a cellular map le W F 0e ! Fe and a homotopy

†e W Œ0; 1� � Fe ! Fe (4.2)

between †e.0; �/ D le ı ke and †e.1; �/ D idFe .
The maps ke and le induce chain maps

ke W C�.Fe/! C�.F
0
e/ and le W C�.F

0
e/! C�.Fe/:

The homotopy †e induces a map �e W C�.Fe/! C�C1.Fe/ given by

�e.c/ D .†e/�.ŒI; @I �˝ c/ for any cell c � Fe:

2Analogously, the cellular chain complex of a product X � Y of two CW-complexes is the
tensor product C�.X/ ˝ C�.Y / equipped with the boundary operator @ ˝ id C .�1/j id ˝ @ on
Ci .X/˝ Cj .Y /.
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The map �e is then a chain homotopy between 1 and le ı ke , i.e.,

le ı ke � 1 D @�e C �e@:

We denote by
k W C�.†/! C�.†

0/; l W C�.†
0/! C�.†/

and
� W C�.†/! C�C1.†/

the (“vertical”) maps induced by ke , le and �e on each subspace (3.3).
The three goals of this section are the following:

(1) To give explicit formulas for the chain maps g W C�.†/! C�.†
0/ and h W C�.†0/!

C�.†/ respectively associated to g and a homotopy inverse h, in terms of k, l and � .

(2) To describe an explicit chain homotopy � W C�.†/! C�C1.†/ between the identity
and h ı g, in terms of k, l and � .

(3) To give an explicit formula for the boundary operator @0 on the cellular chain complex
C�.†

0/ in terms of k, l , � , the boundary operator @ on the cellular chain complex
C�.†/, and the vertical boundary operator .@0/vert.

The precise result is Proposition 4.2 below; it is a (homological) effective version of
Proposition 2.2. Note that we do not give effective formulas for the homotopy between
g ı h and the identity as we will not use it. For the same reason we do not even name the
homotopy between g ı h and the identity.

The proof consists in explicating the construction of the homotopy equivalence
between† and†0: both the stack of CW-complexes…0 W†0!ˆ and the map g W†!†0

are constructed by induction on the dimension of the cells. Suppose that

gn�1 W …�1.ˆ.n�1//! .…0/�1.ˆ.n�1//

has been constructed. Then over n-cells the stack †0 is built from the composition of the
maps

f 0n W
G
e2En

F 0e �Sn�1
ln
�!

G
e2En

Fe �Sn�1
fn
�!…�1.ˆ.n�1//

g.n�1/
����! .…0/�1.ˆn�1/ (4.3)

where
ln D

G
e2En

le � idSn�1 :

For each n we denote

Xn D
G
e2En

Fe � Bn; An D
G
e2En

Fe � Sn�1 and Yn D …
�1.ˆ.n//

and

X 0n D
G
e2En

F 0e � Bn; A0n D
G
e2En

F 0e � Sn�1 and Y 0n D .…
0/�1.ˆ.n//:
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By construction we have

Yn D Yn�1 [fn Xn and Y 0n D Y
0
n�1 [f 0n X

0
n:

Now the map g, its homotopy inverse h and an explicit homotopy

P W Œ0; 1� �†! †; P.0; �/ D id†; P.1; �/ D h ı g;

are obtained as the direct limits of maps

gn W Yn ! Y 0n; hn W Yn ! Y 0n and Pn W Œ0; 1� � Yn ! Yn

inductively constructed by considering the diagram

Xn

ln
��

An
�oo

ln
��

fn // Yn�1

hn�1
��

X 0n

kn

OO

A0n
�oo

kn

OO

f 0n // Yn�1

gn�1

OO

(4.4)

Here � denotes the inclusion map, we have f 0n D gn�1 ı fn ı ln and the maps ln ı kn and
hn�1 ı gn�1 are homotopic to the identity. From these data the proposition proved in the
next subsection gives explicit formulas for the chain maps induced by gn and hn. This
provides a (homological) effective version of [31, Theorem 4.1.8].

4.1. Explicit gluing

Let X; X 0; A; A0; Y; Y 0 be CW-complexes fitting into the following diagram of cellular
maps:

X

l
��

A
�oo

l
��

f
// Y

h
��

X 0

k

OO

A0
�oo

k

OO

f 0
// Y 0

g

OO

where the �’s denote inclusions, f 0 D g ı f ı l and the maps l ı k and h ı g are homotopic
to the identity. Assume furthermore that any cell e of X that intersects A is contained
in A, similarly for X 0 and A0, and that k�1.A0/ D A and l�1.A/ D A0.

Let I D Œ0; 1�. Fix explicit homotopies

† W I �X ! X and P W I � Y ! Y;

†.0; x/ D x; †.1; x/ D l ı k.x/; P.0; y/ D y; P.1; y/ D h ı g.y/;

such that †.�; A/ � A.
The cellular chain complex C�.X tf Y / can be naturally identified with

C�.X/˚ C�.Y /=.�;�f /C�.A/:

In the following we use the same letter for the maps and the induced maps on a cellular
chain complex except that the chain maps are not bold faced.
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For any cell e � X .n/ let Œe� WD e�.ŒBn; Sn�1�/: The homotopy † induces a map
� W C�.X/! C�C1.X/; given by

�.Œe�/ D .†/�.ŒI; @I �˝ Œe�/ for any cell e � X:

The map � is then a chain homotopy between 1 and l ı k, i.e.,

l ı k � 1 D @� C �@:

The same discussion applies to Y ; we denote by � the corresponding chain homotopy.
Decompose the cellular chain complex C�.X/ as

C�.X/ D
X
e 6�A

ZŒe�˚ ��C�.A/

and let 1A W C�.X/ ! ��C�.A/ be the projection onto the second component. Define
analogously 1A0 W C�.X 0/! �0�C�.A

0/. It follows from our assumptions k�1.A0/� A and
l�1.A/ � A0 that

k ı 1A D 1A0 ı k and l ı 1A0 D 1A ı l:

In order to lighten the notations we will suppress �� and identifyC�.A/with a subcomplex
of C�.X/.

Proposition 4.1 (Explicit Gluing Lemma). (1) There exist cellular maps

Qg W X [f Y ! X 0 [f 0 Y
0 and Qh W X 0 [f 0 Y 0 ! X [f Y

such that QgjY D g, QhjY D h and Qh ı Qg is homotopy equivalent to the identity.

(2) The chain maps Qg W C�.X [f Y / ! C�.X
0 [f 0 Y

0/ and Qh W C�.X 0 [f 0 Y 0/ !
C�.X [f Y / respectively associated to Qg and Qh are induced by maps defined on
C�.X/˚ C�.Y / and C�.X 0/˚ C�.Y 0/ by the formulas

Qg D .k ı .1 � 1A/C g ı f ı 1A � g ı f ı � ı .1A@ � @1A//˚ g;

Qh D .l ı .1 � 1A0/C h ı f
0
ı 1A0 C � ı f ı l ı .1A0@ � @1A0//˚ h;

where g and h are the chain maps respectively induced by g and h.

(3) There exists a homotopy

zP W I � .X [f Y /! X [f Y

such that zP.0; z/ D z and zP.1; z/ D Qh ı Qg.z/:
(4) The chain homotopy Q�.c/ D zP�.ŒI; @I � ˝ c/ associated to zP is induced by a map

defined on C�.X/˚ C�.Y / by

Q� D
�
� ı .1 � 1A/C � ı f ı 1A � � ı f ı � ı .1A@ � @1A/

�
˚ �:

The proof of Proposition 4.1 consists in explicating the construction of the maps Qh
and Qg. We postpone it until Section 5. The construction is quite technical so the reader
may want to skip Section 5 on a first reading. It is instructive to check that our formulas
work at the level of homology groups.
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4.2. Rebuilding of †

Starting from

Y0 D
G
e2E0

Fe; Y 00 D
G
e2E0

F 0e; g0 D k0; h0 D l0 and P0 D †0;

we inductively apply Proposition 4.1 to (4.4) and construct the desired extensions gn, hn
and Pn of gn�1, hn�1 and Pn�1.

We identify
C�.Xn/ D

M
e2En

C�.Fe/˝ C�.B
n/

and let
ŒBn;Sn� 2 Hn.B

n;Sn/ D Cn.B
n/

be the relative fundamental class that generates the Z-module Cn.Bn/ of rank 1. Note that
given c 2C�.Fe/we have 1An.c˝ ŒB

n;Sn�/D 0 and .1An ı @� @ ı 1An/.c˝ ŒB
n;Sn�/D

1An@.c ˝ ŒB
n; Sn�/ D .�1/dim cc ˝ ŒSn�1� where the last equality follows from Lem-

ma 3.3. There are analogous formulas for c0 2 C�.F 0e/ replacing An by A0n.
Denoting by gn and hn the chain maps respectively associated to gn and hn and by �n

and �n the chain homotopies respectively associated to †n and Pn, Proposition 4.1 gives

gn.c ˝ ŒB
n;Sn�/ D kn.c ˝ ŒB

n;Sn�/ � .�1/dim cgn�1 ı f ı �n.c ˝ ŒS
n�1�/;

hn.c
0
˝ ŒBn;Sn�/ D ln.c

0
˝ ŒBn;Sn�/C .�1/dim c�n�1 ı f ı ln�1.c

0
˝ ŒSn�1�/;

�n.c ˝ ŒB
n;Sn�/ D �n.c ˝ ŒB

n;Sn�/ � .�1/dim c�n�1 ı f ı �n.c ˝ ŒS
n�1�/:

We can simplify these formulas by identifying

C�.Yn/ D .C�.Xn/˚ C�.Yn�1//=.1;�f�/C�.An/

with M
e2En

C�.Fe/˝Hn.B
n;Sn�1/ � F nC�.†/:

The map g W†!†0 induces chain maps gn W F nC�.†/! F nC�.†
0/, and by Lemma 3.3

the chain maps gn are inductively defined as follows:

� The restriction of gn to F n�1C�.†/ is equal to gn�1.

� If e is an n-cell of ˆ, the restriction of gn to C�.Fe/˝Hn.Bn;Sn/ is given by

gn.c ˝ ŒB
n;Sn�/ D ke.c/˝ ŒB

n;Sn�1�

C gn�1 ı @
hor.�e.c/˝ ŒB

n;Sn�1�/ .c 2 C�.Fe//: (4.5)

The sign has changed because dim�e.c/D dim c C 1, so .�1/dim cf ı �n.c ˝ ŒSn�1�/D
�@hor.�e.c/˝ ŒBn;Sn�1�/; by Lemma 3.3. By induction, we get

g D k ı
� nX
iD0

.@hor
ı �/i

�
: (4.6)

Note that � preserves the filtration F nC�.†/ and that the map @hor maps F nC�.†/ to
F n�1C��1.†/. It follows that .@hor ı �/i vanishes on Cn.†/ for i � nC 1.
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We similarly get formulas for h and �. To sum up we get

Proposition 4.2 (Effective Rebuilding Lemma). (1) The rebuilding lemma yields a CW-
stack …0 W †0 ! ˆ, cellular maps g W † ! †0, h W †0 ! † and a homotopy P W
I �†! † such that

P.0; �/ D id† and P.1; �/ D h ı g:

(2) The chain maps g W C�.†/! C�.†
0/, h W C�.†0/! C�.†/ and � W C�.†/! C�.†/

respectively associated to g, h and P are given by

g D k ı
� 1X
iD0

.@hor
ı �/i

�
on C�.†/; (4.7)

h D
� 1X
iD0

.� ı @hor/i
�
ı l on C�.†0/; (4.8)

� D � ı
� 1X
iD0

.@hor
ı �/i

�
on C�.†/: (4.9)

(3) The boundary operator @0 on the cellular chain complex C�.†0/ of the rebuilt CW-
complex †0 is given on C�.†0/ by

@0 D .@0/vert
C k ı

� 1X
iD0

.@hor
ı �/i

�
ı @hor

ı l: (4.10)

Proof. It only remains to prove (3). Lemma 3.3 applies to the stack …0 W †0 ! ˆ so that
if e is an n-cell of ˆ and c 2 C�.Fe/ we have

..@0/hor/.c ˝ e/ D .�1/dim cf 0e .c ˝ ŒS
n�1�/: (4.11)

On the other hand, it follows from the construction of …0 W †0 ! ˆ that

f 0e .c ˝ ŒS
n�1�/ D gn�1.fe.le.c/˝ ŒS

n�1�//: (4.12)

We conclude that

..@0/hor/.c ˝ e/ D .�1/dim cf 0e .c ˝ ŒS
n�1�/

D .�1/dim cgn�1.fe.le.c/˝ ŒS
n�1�//

D gn�1 ı @
hor
ı l.c ˝ e/;

and (4.10) follows from (4.7).

5. Proof of Proposition 4.1

Let X be a CW-complex and let A � X be a subcomplex. Then .¹0º � X/ [ .I � A/
is a strong deformation retract of I � X (see e.g. [31, Theorem 1.3.15]). We refine this
property in the following lemma.
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Lemma 5.1. There exists a cellular map

p W I �X ! ¹0º �X [ I � A

such that for all x 2 X , a 2 A and s 2 �0; 1�,

(1) p.0; x/ D .0; x/ 2 ¹0º �X ;

(2) p.s; x/ D .p1.s; x/; p2.s; x// 2 Œ0; s� �X ;

(3) p.s; a/ D .s; a/ 2 I � A,

and the following formulas hold for any chain c 2 C�.X/:

p�.ŒI; @I �˝ c/ D ŒI; @I �˝ 1Ac;

ı�.ŒI; @I �˝ c/ D ŒI; @I �˝ .1 � 1A/c;

where
ı W I �X ! I �X; ı.s; x/ D .s � p1.s; x/; p2.s; x//:

Proof. We define the map p cell by cell, starting from 0-dimensional cells and attaching
any available cell of the lowest dimension as pictured in Figure 1.

AX

0 1

Fig. 1. The map p.

The proof reduces to the following statement. Let Z be a CW-subcomplex of X of
dimension at most n, and let e W Bn ! X be an n-cell with e.Sn�1/ � Z.n�1/. Suppose
we are given a cellular map

p W I �Z ! ¹0º �Z [ I � .A \Z/

satisfying all the desired properties. Put Z0 D Bn te Z. We shall construct an extension

p W I �Z0 ! ¹0º �Z0 [ I � .A \Z0/

of p satisfying all the required properties. To do so it is enough to define p on I � Bn so
that

8s 2 I; 8x 2 Sn�1; p.s; x/ D p.s; e.x//:

Now if e � A we put
p.s; e.x// D .s; e.x// 2 I � A: (5.1)
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Otherwise p.s; e.x// is already defined for all x 2 Sn�1, so we put p.s; x/ D p.s; e.x//
for x 2 Sn�1, p.0; x/D .0; x/ for x 2 Bn and extend the map to I � Bn using the homo-
topy extension property for the pair ¹0º � Bn [ I � Sn�1 (cf. [31, Theorem 1.3.15]). By
replacing p1.s; x/ with max ¹s; p1.s; x/º we can ensure that condition (2) is satisfied.

Fig. 2. The map p.1;�/.

By construction, the maps p and ı are cellular and both p.I � e/ and ı.I � e/ are
contained in I � e. Write Œe� D e�.ŒBn; Sn�/ and Œ@e� D e�.ŒSn�1�/. We check the for-
mulas for p� and ı� on ŒI; @I �˝ Œe�. When e � A, the formula for p� follows from the
definition (see (5.1)). If e 6� A then the .nC 1/-cell I � e is mapped by p into

¹0º � .Z0/.n/ [ I �Z.n�1/;

which is contained in the n-skeleton of I �Z0. It follows that p�.ŒI; @I �˝ Œe�/D 0. This
proves the formula for p�.

Since p� ı @ D @ ı p�, the formula for p� now implies that

p�.Œ1�˝ c/ D Œ0�˝ .1 � 1A/c C ŒI; @I �˝ .1A@ � @1A/c C Œ1�˝ 1Ac (5.2)

and consequently

ı�.Œ1�˝ c/ D Œ1�˝ .1 � 1A/c � ŒI; @I �˝ .1A@ � @1A/c C Œ0�˝ 1Ac: (5.3)

Fig. 3. The map ı.

We finally derive the general formula for ı�.ŒI; @I �˝ Œe�/ from (5.3): we know that

ı�.ŒI; @I �˝ Œe�/ 2 Cn.I �Z
0/ D C0.I /˝ CnC1.Z

0/˚ C1.I /˝ Cn.Z
0/

D C1.I /˝ Cn.Z
0/;
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since Z0 is n-dimensional. As ı.I � e/ � I � e we must have

ı�.ŒI; @I �˝ Œe�/ D ˛ŒI; @I �˝ Œe�

for some ˛ 2 Z. To find ˛ we compute @ı�.ŒI; @I �˝ Œe�/ using (5.3) and, by induction,
the formula for ı� on ŒI; @I �˝ Œ@e�:

@ı�.ŒI; @I �˝ Œe�/ D ı�.@.ŒI; @I �˝ Œe�//

D ı�.Œ1�˝ Œe�/ � ı�.Œ0�˝ Œe�/ � ı�.ŒI; @I �˝ Œ@e�/

D @.ŒI; @I �˝ .1 � 1A/Œe�/:

Hence ˛ D 0 if e � A and ˛ D 1 otherwise. This proves the formula for ı�.

We now come back to the notations of Proposition 4.1.
Let

p W I � .X [� A/! .¹0º �X/ [ .I � A/

be the map afforded by Lemma 5.1 applied to the pair .X;A/. We write

ps.x/ D p.s; x/ .s 2 I; x 2 X/:

We have

C�.¹0º �X [ I � A/ D Œ0�˝ C�.X/C ŒI; @I �˝ C�.A/C Œ1�˝ C�.A/

and, according to Lemma 5.1 and (5.2), the map p can be chosen so that

p�.ŒI; @I �˝ c/ D ŒI; @I �˝ 1Ac;

.p1/�.c/ D Œ0�˝ .1 � 1A/c C Œ1�˝ 1Ac C ŒI; @I �˝ .1A@ � @1A/c

D Œ0�˝ c C @ŒI; @I �˝ 1Ac C ŒI; @I �˝ .1A@ � @1A/c:

As in Lemma 5.1, we write p1s W I � X ! I and p2s W I � X ! X for the coordinates
of ps . Replacing p1s .x/ with min ¹s; p1s .x/º we may assume that p1s .x/ � s for s 2 I
(actually, the construction in Lemma 5.1 already gives such a p).

Similarly, using Lemma 5.1 we choose a map

q W I � .X 0 [� A
0/! .¹0º �X 0/ [ .I � A0/:

For the readers’ convenience we spell out the relevant properties of q. For all x0 2 X 0,
a0 2 A0 and s 2 I ,

q.0; x0/ D .0; x0/; q.s; a0/ D .s; a0/

and

q�.ŒI; @I �˝ c/ D ŒI; @I �˝ 1A0c;

.q1/�.c/ D Œ0�˝ .1 � 1A0/c C Œ1�˝ 1A0c C ŒI; @I �˝ .1A0@ � @1A0/c

D Œ0�˝ c C @ŒI; @I �˝ 1A0c C ŒI; @I �˝ .1A0@ � @1A0/c:
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We define the map
Qg W X [f Y ! X 0 [f 0 Y

0

to be equal to g on Y and for x 2 X by the formula

Qg.x/ D

´
k ı p21.x/ if p1.x/ 2 ¹0º �X;

g ı f ı†.1 � p11.x/; p
2
1.x// if p1.x/ 2 I � A:

To check that Qg is a well-defined continuous map it is enough to verify that the partial
formulas coincide on

¹x 2 X W p1.x/ 2 ¹0º � Aº

and that for all a 2 A we have Qg.a/ D g ı f .a/. If p1.x/ 2 ¹0º � A we have

k ı p21.x/ D f
0
ı k ı p21.x/ in X 0 [f 0 Y 0

and

f 0 ı k ı p21.x/ D g ı f ı l ı k ı p21.x/
D g ı f ı†.1; p21.x// D g ı f ı†.1 � p11.x/; p

2
1.x//:

For a 2 A we have p1.a/ D .1; a/ so

Qg.a/ D g ı f ı†.0; a/ D g ı f .a/;

as desired.
Analogously we define the map

Qh W X 0 [f 0 Y 0 ! X [f Y

to be equal to h on Y 0 and for x 2 X 0 by the formula

Qh.x/ D

´
l ı q21.x/ if q1.x/ 2 ¹0º �X 0;

†.q11.x/; f ı l ı q21.x// if q1.x/ 2 I � A0:

The verification that Qh is well-defined and continuous is completely analogous to what we
did for Qg.

The formulas for the chain maps Qg and Qh respectively associated to Qg and Qh now follow
from those for .p1/� and .q1/�, more specifically, from the identity (5.2).

It remains to construct an explicit homotopy between the identity map and Qh ı Qg, which
is the main content of the proposition. On X we have

Qh ı Qg.x/ D

8̂̂̂̂
<̂
ˆ̂̂:

l ı q21 ı k ı p21.x/ if p1.x/ 2 ¹0º �X and q1 ı k ı p21.x/ 2 ¹0º �X
0;

P.q11 ı k ı p21.x/; f ı l ı q21 ı k ı p21.x//
if p1.x/ 2 ¹0º �X and q1 ı k ı p21.x/ 2 I � A

0;

h ı g ı f ı†.1 � p11.x/; p
2
1.x// if p1.x/ 2 I � A,
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while on Y we have
Qh ı Qg.y/ D h ı g.y/ for all y 2 Y:

Note that for p1.x/ 2 I �A; we have k ı p21.x/ 2 A
0 so q1.k ı p21.x// D .1;k ı p

2
1.x//

and therefore

h ı g ı f ı†.1 � p11.x/; p
2
1.x// D P.1; f ı†.1 � p11.x/; p

2
1.x///

D P.q11 ı k ı p21.x/; f ı†.1 � p11.x/; p
2
1.x///:

This already suggests the rough form of the homotopy between 1 and Qh ı Qg. We want to
construct a map

QP W I � .X [f Y /! X [f Y with QP.0; z/ D z and QP.1; z/ D Qh ı Qg.z/:

2We define it piece by piece starting with Œ1=2; 1� � .X [f Y /. Define

C1 WD ¹.s; x/ 2 Œ0; 1=2� �X W p1.x/ 2 ¹0º �X and q2s ı k ı p21.x/ 2 ¹0º �X
0
º;

C2 WD ¹.s; x/ 2 Œ0; 1=2� �X W p1.x/ 2 ¹0º �X and q2s ı k ı p21.x/ 2 I � A
0
º;

C3 WD ¹.s; x/ 2 Œ0; 1=2� �X W p1.x/ 2 I � Aº:

For all s 2 Œ0; 1=2� we set

QP.1=2C s; y/ D P.2s; y/ if y 2 Y

and define

QP.1=2C s; x/ D

8̂̂<̂
:̂

l ı q22s ı k ı p21.x/ if .s; x/ 2 C1;

P.q12s ı k ı p21.x/; f ı l ı q22s ı k ı p21.x// if .s; x/ 2 C2;

P.q12s ı k ı p21.x/; f ı†.1 � p11.x/; p
2
1.x/// if .s; x/ 2 C3;

for all x 2 X . Let us check that the partial maps agree on the common boundaries.

� The common boundary to C1 and C2 is the set

¹.1=2C s; x/ W p1.x/ 2 ¹0º �X and q2s ı k ı p21.x/ 2 ¹0º � A
0
º:

For .1=2C s; x/ therein, we have l ı q22s ı k ı p21.x/ 2 A so that

l ı q2s ı k ı p21.x/ D f ı l ı q2s ı k ı p21.x/
D P.q12s ı k ı p21.x/; f ı l ı q2s ı k ı p21.x//:

� The common boundary of C2 and C3 is

¹.1=2C s; x/ W p1.x/ 2 ¹0º � A and q2s ı k ı p21.x/ 2 I � A
0
º:

Note that p1.x/ 2 ¹0º � A forces k ı p21.x/ 2 A
0 so that we have q2s ı k ı p21.x/ D

.2s;k ı p21.x//: Then

P.q12s ı k ı p21.x/; f ı l ı q22s ı k ı p21.x//

D P.q12s ı k ı p21.x/; f ı l ı k ı p21.x//
D P.q12s ı k ı p21.x/; f ı†.1 � p11.x/; p

2
1.x///:
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� The common boundary of C1 and C3 is

¹.1=2; x/ W p1.x/ 2 ¹0º � Aº:

It is contained in C1 \ C2 \ C3 so that this case follows from the previous two.

� Finally, Y non-trivially intersects only C3 and their common subset is

¹.1=2C s; a/ W a 2 Aº:

There we have

q12s ı k ı p21.a/ D 2s; p11.a/ D 1 and p21.a/ D a;

so that
P.q12s ı k ı p21.a/; f ı†.1 � p11.a/; p

2
1.a/// D P.2s; f .a//:

Now that we have a well-defined continuous map QP.s; �/ for s 2 Œ1=2; 1�, we proceed to
define QP for s 2 Œ0; 1=2�. First note that QP.1=2; �/ can be more simply defined by

QP.1=2; y/ D y if y 2 Y; and QP.1=2; x/ D †.1 � p11.x/; p
2
1.x// if x 2 X:

The last expression is indeed equal to

l ı k ıp21.x/ if p1.x/ 2 ¹0º �X; and f ı†.1�p11.x/;p
2
1.x// if p1.x/ 2 I �A:

For s 2 Œ0; 1=2� we then set

QP.s; y/ D y if y 2 Y; and QP.s; x/ D †.2s � p12s.x/; p
2
2s.x// if x 2 X:

The total map QP W I � .X [f Y /! X [f Y is continuous by construction. It remains to
compute

Q�.c/ D QP�.ŒI; @I �˝ c/ for all c 2 C�.X [f Y /:

Let us refine the CW-complex structure of I by taking the first barycentric subdivision of
the original one. There are now two 1-dimensional cells I1 D .0; 1=2/ and I2 D .1=2; 1/
such that ŒI; @I � D ŒI1; @I1�C ŒI2; @I2�. It follows that

QP�.ŒI; @I �˝ c/ D QP�.ŒI1; @I1�˝ c/C QP�.ŒI2; @I2�˝ c/:

Given c 2 C�.Y / we have

QP�.ŒI1; @I1�˝ c/ D 0 and QP�.ŒI2; @I2�˝ c/ D �.c/;

whence QP�.ŒI; @I �˝ c/ D �.c/:
Now let c 2 C�.X/: We first compute QP�.ŒI2; @I2�˝ c/. Recall that it follows from

(5.2) that

.p1/�.c/ D Œ0�˝ .1 � 1A/c C ŒI; @I �˝ .1A@ � @1A/c C Œ1�˝ 1Ac:
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From this and the definition of QP on Œ1=2; 1� � .X [f Y / we get

QP�.ŒI2; @I2�˝ c/ D ˛�ˇ�.ŒI; @I �˝ .1 � 1A/c/
C P�.
�.ŒI; @I �˝ ŒI; @I �˝ .1A@ � @1A/c//
C P�.ŒI; @I �˝ f ı 1A.c//; (5.4)

where

˛ W .¹0º �X 0/ [ .I � A0/! X [f Y; ˇ W I �X ! .¹0º �X 0/ [ .I � A0/

and 
 W I � I � A! I � Y are given by

˛.s; x/ D

´
l.x/ if .s; x/ 2 ¹0º �X 0;

P.s; f ı l.x// if .s; x/ 2 I � A0;
ˇ.s; x/ D qs ı k.x/

and

.s; t; a/ D .q1s ı k.a/; f ı†.1 � t; a// D .s; f ı†.1 � t; a//:

Recall the notations

�.u/ D †�.ŒI; @I �˝ u/ and �.u/ D P�.ŒI; @I �˝ u/

for respectively u 2 C�.X/ and u 2 C�.Y /.
For all u 2 C�.X/ we have

ˇ�.ŒI; @I �˝ u/ D q�.ŒI; @I �˝ k.u// D ŒI; @I �˝ 1A0 ı k.u/

and

�.ŒI; @I �˝ ŒI; @I �˝ u/ D �ŒI; @I �˝ f ı �.u/:

Note that it follows from the formula for ˇ� that

ˇ�.ŒI; @I �˝ .1 � 1A/.c// D ŒI; @I �˝ 1A0 ı k ı .1 � 1A/.c/

D ŒI; @I �˝ k ı 1A ı .1 � 1A/.c/ D 0:

So we do not need to compute ˛� in (5.4) to conclude that

QP�.ŒI2; @I2�˝ c/ D �� ı f ı � ı .1A@ � @1A/.c/C � ı f ı 1A.c/:

We finally compute QP�.ŒI1; @I1�˝ c/: Let

ı W I �X ! I �X; ı.s; x/ D .s � p1s .x/; p
2
s .x//:

By Lemma 5.1, we can choose p so that ı is cellular and

ı�.ŒI; @I �˝ c/ D ŒI; @I �˝ .1 � 1A/c:

It then follows from the definition of QP on Œ0; 1=2� � .X [f Y / that

QP�.ŒI1; @I1�˝ c/ D †� ı ı�.ŒI; @I �˝ c/ D � ı .1 � 1A/.c/:

We conclude that

Q� D
�
� ı .1 � 1A/ � � ı f ı � ı .1A@ � @1A/C � ı f ı 1A

�
˚ �:

This finishes the proof of Proposition 4.1.
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6. Quality of rebuilding for nilpotent groups: Proof of Theorem E

The goal of the section is to prove the following:

Theorem 6.1 (Theorem E). Let ƒ be a finitely generated torsion-free nilpotent group. If
Y0 is a compact K.ƒ; 1/ space, there exists a constant � � 1 such that for every finite
index subgroup ƒ1 � ƒ, the cover Y1 D ƒ1n QY0 admits an ˛-rebuilding .Y1; Y 01; g; h;P/
of quality .Œƒ W ƒ1�; �/ for every ˛.

6.1. Generalities on rebuildings and quality

Let ˛ 2 N and let X be a CW-complex with finite ˛-skeleton. Recall (Definition 1 of the
introduction) that an ˛-rebuilding of X is a collection .X; X 0; g; h; P/ that consists of a
CW-complex with finite ˛-skeleton X 0, two cellular maps between the ˛-skeleta

g W X .˛/ ! X 0.˛/ and h W X 0.˛/ ! X .˛/

that are homotopy inverse to each other up to dimension ˛ � 1, and a cellular homotopy
P W Œ0; 1� �X .˛�1/ ! X .˛/ between the identity and h ı g on X˛�1.

Recall furthermore (Definition 2 of the introduction) that given two real numbers
T; � � 1, an ˛-rebuilding .X;X 0; g;h;P/ is of quality .T; �/ if

8j � ˛; jX 0.j /j � �T �1jX .j /j; (cell bound)

8j � ˛; log kgj k; log khj k; log k�j�1k; log k@0j k � �.1C logT /; (norm bound)

where g; h are the chain maps respectively associated to g; h and where � W C�.X/ !
C�C1.X/ is the chain homotopy induced by P in the cellular chain complexes (1.8).

In this section we make two general observations regarding rebuildings and their
quality.

First note that if X1 ! X is a finite cover, every ˛-rebuilding .X; X 0; g; h; P/
of X induces (via the lifting property [33, Propositions 1.33 and 1.34]) an ˛-rebuilding
.X1; X

0
1; g1;h1;P1/ with

X 01 D
fX 0=�1.X1/:

Lemma 6.2 (Rebuilding induced to finite cover). Let X be a finite CW-complex. There
is a constant ıX such that for every ˛-rebuilding .X; X 0/ of quality .T; �/ and for every
finite covering X1 ! X , the induced ˛-rebuilding .X1; X 01/ is of quality .T; �ıX /.

Proof. A covering map of CW-complexes induces a trivial covering over each open cell.
In particular,

(1) both sides of the cell bounds are multiplied by the degree of the cover leaving the
quality of the cell bounds unchanged,

(2) the degree of the attaching map of each cell remains bounded along coverings by a
constant depending only on X .
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It follows from this last observation that the norms (induced by the `2-norms) of the
boundary map and of the maps g, h and � remain bounded by a constant ıX along cover-
ings.

Lemma 6.3 (Composition of rebuildings). Let .X;X 0;g1;h1;P1/ and .X 0;X 00;g2;h2;P2/
be two ˛-rebuildings of respective quality .T1; �1/ and .T2; �2/, with T1; T2; �1; �2 � 1.
Let

g3 D g2 ı g1; h3 D h1 ı h2; P3.t; x/ D

´
P1.2t; x/ if 0 � t � 1=2;

h1 ı P2.2t � 1; g1.x// if 1=2 < t � 1:

Then .X;X 00; g3;h3;P3/ is an ˛-rebuilding of quality .T1T2; 4�1�2/:

Proof. The fact that .X; X 00; g3; h3; P3/ is an ˛-rebuilding follows from the definition.
The quality of the cell bounds being multiplicative, it remains to check the norm bounds.
Since we have

log kg3k � log kg1k C log kg2k � �1.1C logT1/C �2.1C logT2/

� �1 C �2 C �1 logT1 C �2 logT2
� 2�1�2.1C logT1T2/;

similarly for h3, and

log k�3k D log k�1 C h1 ı �2 ı g1k � log 2Cmax ¹log k�1k; log kh1 ı �2 ı g1kº

� log 2C �1.1C logT1/C �2.1C logT2/C �1.1C logT1/

� 4�1�2.1C logT1T2/;

here the degrees match well, e.g. .�3/˛�1 D .�1/˛�1 C .h1/˛ ı .�2/˛�1 ı .g1/˛�1 in top
degree. The lemma follows.

Corollary 6.4 (Starting with a homotopy equivalent complex). Let X be a finite CW-
complex. Let Y be a finite CW-complex that is homotopy equivalent to X . There are
constants .T; �/ such that if a finite cover Y1 ! Y admits an ˛-rebuilding Z1 of quality
.T1; �1/, then the corresponding finite cover X1 ! X admits an ˛-rebuilding of quality
.T T1; ��1/.

Proof. The homotopy equivalence between X and Y makes Y an ˛-rebuilding of X of
a certain quality .T0; �0/. By Lemma 6.2, the ˛-rebuilding induced between the finite
coversX1 and Y1 is of quality .T0; ıX�0/. The composition ˛-rebuilding from Lemma 6.3
between X1 and Z1 has quality .T0T1; 4ıX�0�1/. Set T D T0 and � D 4ıX�0.

X1 Y1 Z1

X Y

.T T1;��1/

.T0;ıX�0/ .T1;�1/

.T0;�0/
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6.2. Unipotent lattices

Now let � be a finitely generated, torsion-free nilpotent group, equivalently – by a theorem
of Mal’tsev [39] – the group � is a unipotent lattice, i.e., it is isomorphic to a lattice in a
connected, finite-dimensional unipotent Lie group.

We define a central series Li .�/ by

L0.�/ D � and LiC1.�/ D ker
�
Li .�/! .Li .�/=Œ�;Li .�/�/˝Z Q

�
:

By definition, the quotientsLi .�/=LiC1.�/ are torsion-free abelian. We define the graded
group

gr� D
1M
iD0

Li .�/=LiC1.�/:

We have gr� ' Zh where h is the Hirsch length of � . For the purpose of this paper this
can be taken as the definition of Hirsch length.

The goal of this section is to prove Theorem E according to which finite covers of
classifying spaces of unipotent lattices admit a rebuilding of quality proportional to the
degree of the cover. This is, up to a constant, the best quality one could hope for.

To prepare for the proof we will need a few simple lemmas.

Definition 6.5. An automorphism � of a unipotent lattice � is a unipotent automorphism
if the induced automorphism of the graded group

gr � 2 Aut.gr�/ ' GLh.Z/

is unipotent.

Equivalently � 2 Aut.�/ is unipotent if and only if the associated semidirect product

� Ì� Z D h.
; t/ j t
 t�1 D �.
/i

is nilpotent.

Lemma 6.6. Let � be a non-trivial unipotent lattice and � be a unipotent automorphism
of � . There exists a normal subgroup � 0 � � with quotient �=� 0 ' Z such that � 0 is
preserved by � and � acts trivially on �=� 0.

Proof. The group L1.�/ is preserved by � and by construction we have �=L1.�/ ' Zd

for some d > 0. Write �0 2 GL.d;Z/ for the automorphism induced on �=L1.�/' Zd .
Since �0 is unipotent we can find a codimension 1 subspace W � V D Qd such that
�0W D W and the induced action on V=W is trivial. Let U D Zd \W and put � 0 D
UL1.�/: Then �.� 0/ D �0.U /L1.�/ D � 0, we have

�=� 0 ' Zd=Zd \W ' Z

and the induced action of � on this quotient is trivial.
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Lemma 6.7. Let .X0; x0/ be a pointed CW-complex. Let G D �1.X0; x0/ and assume
that X0 is a classifying space for G. Let ˛, ˇ W .X0; x0/! .X0; x0/ be two cellular maps
such that the induced morphisms

˛�; ˇ� W G ! G

are conjugated by some element g0 2 G : ˛� D g0ˇ�g
�1
0 . Then there exists a cellular

homotopy

H W I �X0 ! X0 such that H.0; �/ D ˛; H.1; �/ D ˇ;

and the loop
Œ0; 1�! X0; s 7! H.s; x0/;

represents g0 2 G.

Proof. We first construct an explicit cellular map q W .X0; x0/! .X0; x0/ that induces
the morphism

q� W G ! G; g 7! g�10 gg0;

and a (non-pointed!) homotopy between the identity map and q. Start with a map

q0 W .¹0º �X0/ [ .I � ¹x0º/! X0; q0.0; �/ D idX0 and q0.�; x0/ D s;

where s W I ! X0 is some loop based at x0 and representing g�10 2 G. By Lemma 5.1
there is a map

p W I �X0! .¹0º �X0/[ .I � ¹x0º/ with p.0; �/D ¹0º � idX0 ; p.1; x0/D .1; x0/:

Let
q W .X0; x0/! .X0; x0/; x 7! q0.p.1; x//:

It follows from the construction that q induces the morphism

q� W G ! G; g 7! g�10 gg0;

and the map
H0 W I �X0 ! X0; .t; x/ 7! q0.p.t; x//;

gives a homotopy between the identity map and q. The maps

q ı ˛; ˇ W .X0; x0/! .X0; x0/

induce the same endomorphisms of G. It therefore follows from e.g. [31, Proposition
7.1.6] that there exists a homotopy

H1 W I �X0 ! X0 such that H1.0; �/ D q ı ˛; H1.1; �/ D ˇ; H1.�; x0/ D x0:

Therefore, the map

H.t; x/ D

´
H0.2t; ˛.x// if 0 � t � 1=2;

H1.2t � 1; x/ if 1=2 � t � 1;

is a homotopy between ˛ and ˇ and the loop s 7! H.s; x0/ represents g0:
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Lemma 6.8. Let � be a unipotent lattice of Hirsch length h and let � W � ! � be a
unipotent automorphism. There exists a K.�; 1/ CW-complex X0 with a distinguished
point x0 and a cellular map � W X0 ! X0 fixing x0 such that for every 
 2 � ,

��.
/ D �.
/;

and for every m 2 N we have

log k�mk � h log jmj CO�.1/;

where k�mk denotes the norm induced by the `2-norm of the action of �m on the cellular
chain complex associated to X0.

Proof. We prove the lemma by induction on the Hirsch length of � . The base case h D 0

corresponds to the trivial group and one can take X0 to be the CW-complex that consists
of exactly one 0-cell.

Suppose now that the lemma is proved up to Hirsch length h � 1 and consider a
unipotent lattice � of Hirsch length h. By Lemma 6.6 there exists a � -invariant normal
subgroup � 0 � � such that �=� 0 ' Z and the induced action of � on �=� 0 is trivial.
Choose t0 2 � such that t0� 0 generates �=� 0.

By the inductive hypothesis there exists a K.� 0; 1/ space X 00 with a distinguished
point x00 and a cellular automorphism � 0 WX 00!X 00 that fixes x00, induces � 0 on �1.X 00;x

0
0/

D � 0 and satisfies
log k.� 0/mk � .h � 1/ logmCO�0.1/

form 2N. Choose a cellular map �0 W X 00! X 00 which fixes x00 and induces the automor-
phism 
 7! t�10 
 t0 on the fundamental group. Take X0 to be the quotient

X0 D .X
0
0 � Œ0; 1�/=� where � is generated by .x; 1/ � .�0.x/; 0/ .x 2 X 00/

and let x0 be the image of .x00; 0/ in the quotient. The CW-complex X0 is a K.�; 1/
space and the image of ¹x00º � Œ0; 1� in X0 is a loop based at x0 that represents t0 in
�1.X0/' � . We proceed to construct the desired cellular map � WX0!X0. Since � acts
trivially on �=� 0, the two maps

�0 ı �
0; � 0 ı �0 W .X0; x0/! .X0; x0/

induce two endomorphisms of � that are conjugated by t�10 �.t0/ 2 �
0. Lemma 6.7 there-

fore implies that there exists a homotopy

H W I �X 00 ! X 00 such that H.0; �/ D �0 ı �
0; H.1; �/ D � 0 ı �0;

and the loop
Œ0; 1�! X0; s 7! H.s; x0/;

represents t�10 �.t0/ 2 �
0. We define � W X0 ! X0 by

�.x; t/ D

´
.� 0.x/; 2t/ if 0 � t � 1=2;

.H.2t � 1; x/; 0/ if 1=2 < t � 1:
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We claim that the endomorphism of � induced by � is � . Since we already know that
� induces � on � 0, it is enough to compute its value on t0. By construction, t0 is repre-
sented by the loop in X0 that is the image of ¹x00º � Œ0; 1�. This loop is sent by � to the
concatenation of s 7! .x0; s/ with s 7! H.s; x0/. The latter represents t�10 �.t0/ 2 �

0, so
the concatenation represents �.t0/ as desired.

It remains to compute the chain maps and to check the bound on the norm. Recall that
as Z-modules,

C�.X0/ D .C�.X
0
0/˝ Œ0�/˚ .C�.X

0
0//˝ ŒI; @I �:

In these coordinates, the chain map induced by � is given by the formulas

�.c ˝ Œ0�/ D � 0.c/˝ Œ0� and �.c ˝ ŒI; @I �/ D � 0.c/˝ ŒI; @I �C r.c/˝ Œ0�;

where r.c/ D H.ŒI; @I �˝ c/: By induction we have

�m.c ˝ Œ0�/ D � 0m.c/˝ Œ0�;

�m.c ˝ ŒI; @I �/ D � 0m.c/˝ ŒI; @I �C

m�1X
iD0

� 0i .r.c//˝ Œ0�:

It follows that

k�mk � m sup ¹k� 0mk; k� 0i ı rk W i D 1; : : : ; m � 1º C krk;

which, by induction, gives

log k�mk � h logmC 2 log krk CO�0;� 0.1/ D h logmCO�;� .1/:

6.3. The proof of Theorem E

We prove the theorem by induction on the Hirsch length h. The base case h D 0 holds
trivially since then � is the trivial group.

Suppose now that the lemma is proved up to Hirsch length h � 1 and consider a
unipotent lattice � of Hirsch length h > 0. Thanks to Corollary 6.4 we only need to prove
the theorem for a single classifying space of � . Therefore our first step is the construction
of a convenient Y0.

Let ƒ be a normal subgroup of � such that �=ƒ ' Z. Choose t0 2 � such that t0ƒ
generates �=ƒ. Then � decomposes as a semidirect product

� D ht0i Ëƒ:

The automorphism
ƒ! ƒ; � 7! t0�t

�1
0 ;

is unipotent. By Lemma 6.8 there exists a pointed CW-complex .X0; x0/ which is a
K.ƒ; 1/ space and a cellular map � W .X0; x0/! .X0; x0/ such that the induced endo-
morphism �� W ƒ! ƒ is precisely the unipotent automorphism � 7! t0�t

�1
0 and

k�mk � .h � 1/ logmCO�0;t0.1/:



On homology torsion growth 35

We let Y0 be the quotient

Y0 D .X0 � Œ0; 1�/=¹.x; 1/ � .�.x/; 0/º

and take the image y0 of .x0; 0/ as basepoint. Then �1.Y0; y0/ is isomorphic to � and Y0
is a K.�; 1/ space. Note for future reference that the projection of ¹x0º � Œ0; 1� into Y0 is
a loop that represents the element t0 in � .

Now let �1 � � be a finite index subgroup. Set `D Œ� Wƒ�1� andƒ1Dƒ\�1. Since
t`0 2 ƒ�1 we can choose a 2 ƒ such that t1 D at`0 2 �1: The group �1 then decomposes
as a semidirect product, �1 D ht1i Ëƒ1: It follows that Œ� W �1� D `Œƒ W ƒ1�: Put

Y1 D �1n QY0:

This is the complex we want to rebuild. It is naturally a stack over the CW-complex
obtained by lifting the standard CW-complex structure on the circle by an `-fold self-
covering map. We rebuild Y1 in two steps. The first rebuilding .Y1; Y 01/ consists of chang-
ing the base of the stack to get a stack over the standard CW-complex on the circle.
It decreases the number of cells to jY 01j D jY1j`

�1. The second rebuilding .Y 01; Y
00
1 / is

obtained by applying our effective version of the rebuilding lemma after applying the
inductive hypothesis to the fibers of the stack. This second rebuilding will bring the num-
ber of cells down to jY 001 j D jY1jŒ� W �1�

�1 D jY0j:

Before performing the two rebuildings we give an explicit description of the stack
structure of Y1: the map � W X0 ! X0 lifts to a map � W QX0 ! QX0 such that for all � 2 ƒ
and for all Qx 2 QX0, we have

�.� � Qx/ D ��.�/ � Qx:

In particular, � maps each .t i0ƒ1t
�i
0 /-orbit of Qx (with i 2 Z) to the .t iC10 ƒ1t

�i�1
0 /-orbit

of Qx. Writing

X1;.i/ D .t
i
0ƒ1t

�i
0 /n

QX0 and simply X1 D X1;.0/;

we conclude that � induces a well-defined map

� W X1;.i/ ! X1;.iC1/:

Finally, since
a.t`0ƒ1t

�`
0 /a�1 D t1ƒ1t

�1
1 D ƒ1;

the map
QX0 ! QX0; Qx 7! a � Qx;

induces a well-defined map

a W X1;.`/ ! X0; .t`0ƒ1t
�`
0 / Qx 7! ƒ1a Qx:

It follows that

Y1 '

`�1G
iD0

.X1;.i/ � Œ0; 1�/=�; (6.1)
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where � is generated by

.x.i/; 1/ � .�.x.i//; 0/ for i 2 ¹0; : : : ; ` � 2º; and .x.`�1/; 1/ � .a ı �.x.`�1//; 0/:

Indeed, we have

ƒ1n QY0 D
G
i2Z

.X1;.i/ � Œ0; 1�/=¹.x.i/; 1/ � .�.x.i//; 0/º;

and quotienting it further by the action of ht1i, which has the effect of identifying .x.i/; t /
with .a.x.iC`//; t/, we get (6.1).

First rebuilding

Let
Y 01 D X1 � Œ0; 1�=¹.x; 1/ � .a ı �

`.x/; 0/º:

It is aspherical and �1.Y 01/ ' ht1i Ëƒ1 D �1 so Y 01 is another K.�1; 1/ space. Note that
jY 01j D `

�1jY1j: We define three maps

g W Y1 ! Y 01; h W Y 01 ! Y1 and P W I � Y1 ! Y1

by the following formulas, with x.i/ 2 X1;.i/, x 2 X1 and s; t 2 Œ0; 1�:

g.x.i/; t / D

´
.x.i/; t / if i D 0;

.a ı �`�i .x.i//; 0/ if i D 1; : : : ; ` � 1;

h.x; t/ D .�b`tc.x/; `t � b`tc/;

and

P.s; .x.i/; t // D

´
.�b˛c.x.i//; ˛ � b˛c/ if i C t � .` � 1/s and ˛ D `.iCt�s.`�1//

`�s.`�1/
;

.a ı �`�i .x.i//; 0/ if i C t � .` � 1/s:

The maps g and h are cellular and P is a cellular homotopy between the identity and
h ı g. The composition g ı h is also homotopic to the identity since it induces the identity
on �1.Y 01/. Therefore .Y1; Y 01; g;h;P/ is a rebuilding.

We now compute the chain maps induced by g, h and P as well as the boundary map
on C�.Y 01/, which we shall denote by @Y 0

1
. First note that

C�.Y1/ D

`�1M
iD0

�
C�.X1;.i//˝ Œ0�˚ C�.X1;.i//˝ ŒI �

�
;

and
C�.Y

0
1/ ' C�.X1/˝ Œ0�˚ C�.X1/˝ ŒI �

as Z-modules. In these coordinates, for c 2 C�.X1/ we have

@Y 0
1
.c ˝ Œ0�/ D @X1c ˝ Œ0�;

@Y 0
1
.c ˝ ŒI �/ D @X1c ˝ ŒI �C .�1/

dim c.�c ˝ Œ0�C a ı �`.c//˝ Œ0�;
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for c.i/ 2 C�.X1;.i// we have

g.c.i/ ˝ Œ0�/ D

´
c.i/ ˝ Œ0� if i D 0;

a ı �`�i .c.i//˝ Œ0� if i > 0;

g.c.i/ ˝ ŒI �/ D

´
c.i/ ˝ ŒI � if i D 0;

0 if i > 0;

for c 2 C�.X1/ we have

h.c ˝ Œ0�/ D c ˝ Œ0� and h.c ˝ ŒI �/ D

`�1X
iD0

� i .c/˝ ŒI �;

and for c.i/ 2 C�.X1;.i// we have

�.c.i/ ˝ Œ0�/ D

´
0 if i D 0;P`�1
jDi �

j .c/˝ ŒI � if i > 0;
and �.c.i/ ˝ ŒI �/ D 0:

The map a WC�.X1;.`//!C�.X1/ is unitary and by Lemma 6.8, k�`k�OX0;� .1C log`/:
We deduce that

k@Y 0
1
k; kgk; khk; k�k � OY0.1C log `/: (6.2)

This concludes the first step.

Second rebuilding

By induction there exists a rebuilding .X1; X 01; k; l;†/ of quality .Œƒ W ƒ1�; OX0.1//: To
shorten notation we shall write �1 D a ı �`: Let

A D X1 � ¹0; 1º and A0 D X 01 � ¹0; 1º:

Define a map f W A! X1 by

f .x; 0/ D x and f .x; 1/ D �1.x/:

We then have

Y 01 D X0 � Œ0; 1�=¹.x; 1/ � .�1.x/; 0/º D .X1 � Œ0; 1�/ [f X1:

Now consider the diagram

X1 � Œ0; 1� A X1

X 01 � Œ0; 1� A0 X 01

k�id k�id

f

kl�id

f 0

l�id l
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where f 0 D k ı f ı .l � id/. Define

Y 001 D .X
0
1 � Œ0; 1�/ tf 0 X

0
1:

The number of cells in Y 001 is 2jX 01j D OX0.1/ and

C�.Y
00
1 / D C�.X1/˝ ŒI �˚ C�.X1/

as Z-modules. The boundary map is given by

@Y 0
1
.c ˝ ŒI �/ D @X 0

1
.c/˝ ŒI �C .�1/dim c�

�k.�1.l.c///C k.l.c//
�
;

@Y 0
1
.c/ D @X 0

1
.c/;

for c 2 C�.X 01/:
Let

g0 W Y 01 ! Y 001 and h0 W Y 001 ! Y 01

be the cellular maps afforded by Proposition 4.1 and let

P0 W I � Y 01 ! Y 01

be the homotopy between the identity and h0 ı g0, also provided by Proposition 4.1. Let

� W C�.X1/! C�C1.X1/ and �0 W C�.Y
0
1/! C�C1.Y

0
1/

be the chain homotopies respectively induced by † and P0.
By induction we have

log kkk; log klk; log k�k � OX0.1C log Œƒ W ƒ1�/ and log kf k � OY0.1C log `/:

Using the explicit formulas for the chain maps from Proposition 4.1 we deduce that

log k@Y 0
1
k; log kg0k; log kh0k; log k�0k �Y0 log `C log Œƒ W ƒ1�C 1

D log Œ� W �1�C 1: (6.3)

Let
g00 D g0 ı g; h00 D h ı h0

and

P00.s; y/ D

´
P.2s; y/ if 0 � s � 1=2;

h.P0.2t � 1; g.y/// if 1=2 � s � 1;
for y 2 Y1:

Using (6.2) and (6.3) we see that .Y1; Y 001 ; g00; h00; P00/ is a rebuilding of quality
.Œ� W �1�; OY0.1//. This proves Theorem E.

7. Quality of rebuilding of extensions by unipotent lattices

Consider a countable group G that contains a finitely generated, torsion-free, nilpotent,
normal subgroup A. Suppose furthermore that G=A is of type F˛ for some integer ˛ � 0.

Let B be a classifying space (CW-complex) for G=A with finite ˛-skeleton. The
group G acts on its universal cover zB with cell stabilizers all equal to A.
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Let Y be a finite classifying space for A. The Borel construction followed by the
Proposition 2.2 yields a stack of CW-complexes D ! B with base B where each fiber
is Y .

The goal of this section is to prove the following effective rebuilding statement.

Proposition 7.1. Let G1 � G be a finite index subgroup, let D1 ! B1 be the associated
stack and let A1 D A \ G1. Then the total space D1 is a classifying space for G1 and
there exists an ˛-rebuilding .D1;D01; g;h;P/ of quality .ŒA W A1�; OY;D.1//.

Proof. Each fiber of D ! B has the same number of cells ni 2 N in each dimension i
(with ni D 0 above the dimension of Y ).

The CW-complex B has finitely many cells in each dimension j � ˛; we denote by
mj this number. The total number of cells of dimension ` � ˛ of the total complex D is
then finite and equal to

N` D
X
iCjD`

nimj :

Now consider the stack D1 ! B1. The total space D1 has ŒG W G1�N` cells in each
dimension ` � ˛. More precisely, each fiber Y1 of D1 ! B1 is a classifying space for
A1 DA\G1 which contains ŒA WA1�ni cells in each dimension i andB1 contains ŒG=A W
G1=A1�mj cells in each dimension j � ˛. Thus

N`ŒG W G1� D
X
iCjD`

ŒA W A1�ni ŒG=A W G1=A1�mj :

The group A being finitely generated, torsion-free and nilpotent, Theorem E implies
that there exists an ˛-rebuilding .Y1;Y 01;k; l;†/ of quality .ŒA WA1�;OY .1//. In particular,
Y 01 is a classifying space for A1 and letting D01 ! B1 be the rebuilding of the stack
D1 ! B1 associated to the rebuilding Y 01 of the fibers we conclude that D01 has

OY

� X
iCjD`

ni ŒG=A W G1=A1�mj

�
D OY

�
N`ŒG W G1�

ŒA W A1�

�
cells in each dimension ` � ˛.

In fact, Proposition 4.2 provides .D1;D01; g;h;P/ and expresses the boundary map @0

on Cn.D01/, the chain maps induced by g and h, and the chain homotopy induced by P in
terms of k, l , � , the (vertical) boundary map on C�.Y / and the horizontal boundary map
on C�.B/. The norms of the two boundary maps are bounded by OY;D.1/, and since the
rebuilding .Y1; Y 01; k; l;†/ is of quality .ŒA W A1�; OY .1//, the logarithms of the norms
of k, l and � are bounded by OY;D.1C log ŒA W A1�/. Formulas (4.10) therefore imply
that .D1; D01; g; h;P/ is of quality .ŒA W A1�; OY;D.1//. Indeed, consider for example the
boundary map @0 on Cj .D01/ for some j � ˛. We have

k@0k � k.@0/vert
k C kkk




� jX
iD0

.@hor
ı �/i

�


 k@hor
k klk

� k.@0/vert
k C Pj .ŒA W A1�/;



M. Abert, N. Bergeron, M. Frączyk, D. Gaboriau 40

where Pj is a polynomial of degree OY;D.1/ whose coefficients do not depend on the
subgroup A1. It follows that

log k@0k D OY;D.1C log ŒA W A1�/:

The bounds for g, h and � are obtained similarly.

8. A general quantitative rebuilding theorem

Let ˛ be a positive integer and let �Õ� be a CW-complex action of a countable group �
that satisfies the following assumptions.

(Cond 1) The CW-complex � is .˛ � 1/-connected.

(Cond 2) For every cell ! � � the stabilizer �! acts trivially on !.

(Cond 3) The quotient CW-complex ˆ WD �n� has finite ˛-skeleton ˆ.˛/.

(Cond 4) The group � is of type F˛C1.

(Cond 5) Each stabilizer group �! is of type F˛ .

Recall from Proposition 2.1 that, as long as � is assumed to be simply connected, the
Borel construction associates to this action a stack of CW-complexes †! ˆ WD �n�

such that † has an .˛ � 1/-connected universal cover and the fundamental group �1.†/
isomorphic to � .

Theorem 8.1 (Quantitative rebuilding). Suppose that � is finitely presented and that for
each cell e of ˆ.˛/ the group �e is finitely generated and contains a finitely generated,
torsion-free, nilpotent, normal subgroup Ze . There exists a constant � such that for every
finite index normal subgroup �1 � � , there exists a CW-complex †C1 with finite .˛ C 1/-
skeleton such that the following hold:

(1) The CW-complex †C1 has an ˛-connected universal cover.

(2) The fundamental group �1.†C1 / is isomorphic to �1.

(3) In each dimension � ˛, the total number of cells of †C1 is bounded above by

�
X
e2ˆ.˛/

Œ� W �1�

ŒZe W �1 \Ze�
: (8.1)

(4) In each degree � ˛ C 1, the norm of the boundary operator on the chain complex
C�.†

C
1 / is bounded above by

�Œ� W �1�
� : (8.2)

To prove the theorem we will consider the stack of CW-complexes †! ˆ WD �n�.
However, for the fundamental group of the latter to be isomorphic to � , we need � to be
simply connected. This follows from the hypothesis for ˛ � 2 but in certain interesting
cases, e.g., for � D SL3.Z/, the natural candidate for � is the Tits complex which fails
to be simply connected. We need a way to “fix” these spaces before we start using them.
This is the content of the following:
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Lemma 8.2. Let � be a finitely generated group. Consider a 1-dimensional cocompact �-
CW-complex� whose cells are fixed pointwise by their stabilizers. Assume that all vertex
stabilizers are finitely generated. Then there exists a simply connected �-CW-complex
�C whose 1-skeleton is �. Moreover, if � is finitely presented then �C is �-cocompact.

Proof. Up to refining the structure of the CW-complex on �, we may assume that it is
a graph. The point is to kill the fundamental group of � by gluing some 2-cells along
�-orbits of loops in �.

By [25, Theorem 9.2, p. 39] the group � sits in a short exact sequence

1! �1.�/! G
�
! � ! 1; (8.3)

where G is the fundamental group of the natural quotient graph of groups associated with
the action � Õ �. The assumption that the quotient space is compact and the vertex
stabilizers are finitely generated imply that G is finitely generated. Thus G is the quotient
of a free group F. QS/ (where QS is finite). By (8.3), � is also such a quotient. Thus we have
surjective morphisms

F. QS/
�
! G

�
! �:

The group � is the quotient of F. QS/ by a normal subgroup whose image by � is exactly the
kernel of �, i.e., it is �1.�/. Pick a collection .�j / of elements of G such that the kernel
of � is the normal subgroup generated by the �j ’s. If � is finitely presented, it admits a
finite presentation

� D h QS j r1; : : : ; rpi:

It follows that .�j / can be chosen to be the finite collection �.r1/; : : : ; �.rp/.
Consider now the action of G on its Bass–Serre tree T , a base vertex v in T and

the paths cj in T from v to �j .v/. They project to loops �j in � D �1.�/nT . Since
these loops normally generate �1.�/, gluing a 2-cell along the �j ’s and extending �-
equivariantly produces the required simply connected complex �C. If � is finitely pre-
sented, this complex is �-cocompact.

Proof of the Quantitative Rebuilding Theorem 8.1. We need to work with an � that is
simply connected. If ˛ � 2 this follows from the assumptions. For ˛ D 1 we can use
Lemma 8.2 to replace� by (its 1-skeleton and then by) a simply connected 2-dimensional
complex �C satisfying all the assumptions of the theorem. In any case, the Borel con-
struction followed by the rebuilding lemma (Proposition 2.2) then associates to the action
of � on� a stack of CW-complexes †! ˆ WD �n� such that the fundamental group of
† is isomorphic to � and the fiber over each cell e D �! is a classifying space Fe of �!
with finite ˛-skeleton.

Now consider the stack of CW-complexes

†1 ! ˆ1 (8.4)

associated to the finite index subgroup �1 � � , so that

†1 D �1nz† and ˆ1 D �1n�:
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Each cell e 2 ˆ is covered by #.�en�=�1/ cells in �1n�, and since �1 is a normal
subgroup of � , the fibers of (8.4) over each of these cells are all isomorphic to the finite
cover De of Fe associated to �1 \ �e � �e .

By hypothesis, as long as dim e � ˛, the group �e contains a finitely generated,
torsion-free, nilpotent, normal subgroupZe . We may therefore apply Proposition 7.1 with
G D �e and G1 D �e \ �1. It follows that there exists a rebuilding .De; D0e; ke; le;†e/

of quality .ŒZe W �1 \Ze�; O�;�.1// of each fiber De of (8.4).
Applying the rebuilding lemma (Proposition 4.2) to (8.4) we get a stack of CW-

complexes
…0 W †01 ! ˆ1;

cellular homotopy equivalences g1 W†1!†01, h1 W†01!†1 and a homotopy P1 between
the identity and h1 ı g1. Note that over each cell of ˆ1 covering a cell e of ˆ, the fiber
of …0 is D0e .

The total space †01 is homotopy equivalent to †1 and therefore has an .˛ � 1/-
connected universal cover and a fundamental group isomorphic to �1. Moreover, in each
dimension n � ˛, the total number of cells of †01 is

O

� X
e2ˆ.n/

#.�en�=�1/
Œ�e W �1 \ �e�

ŒZe W �1 \Ze�

�
D O

� X
e2ˆ.˛/

Œ� W �1�

ŒZe W �1 \Ze�

�
:

To control the norm of the boundary operator on the chain complex C�.†01/ we apply
Proposition 4.2 as in the proof of Proposition 7.1. Equation (4.10) implies that the bound-
ary operator @0 of the (rebuilt) chain complex C�.†01/ can be written in terms of the
(vertical) boundary operator in the fibers, the (vertical) maps (k, l and � ) and the boundary
operators @ and @vert acting on the chain complex C�.†1/ D C�.�1nz†/ (before rebuild-
ing).

The norms of the boundary operators @ and @vert are bounded by constants that depend
only on the local combinatorial structure of † (see Lemma 6.2).

Now over each cell e of ˆ of dimension � ˛, the rebuilding .De; D0e; ke; le;†e/ is
of quality .ŒZe W �1 \Ze�;O�;�.1// and it follows that the norm of the vertical boundary
operator .@0/vert is O.Œ�e W �e \ �1�O.1// and therefore O.Œ� W �1�O.1//. For the same
reason, the norms of the vertical maps ke , le and �e are bounded byO.Œ�e W�e \�1�O.1//,
and formula (4.10) finally implies that the norm of the boundary operator on the chain
complex C�˛.†01/ is O.Œ� W �1�O.1//.

The universal cover of †01 is “only” .˛ � 1/-connected. However, since � is of type
F˛C1, it follows from [31, Theorem 8.2.1] that it is possible to attach finitely many �-
orbits of .˛ C 1/-cells to z† to make an ˛-connected �-CW complex. Write the quotient
as †C D † tf ˆ, with ˆ D

F
I B˛C1 a finite collection of .˛ C 1/-cells and f W @ˆ DF

I S˛ ! †.˛/ the map that attaches these .˛ C 1/-cells to †. Then write

�1n
e†C D †1 tf1 ˆ1

where ˆ1 D
F
I1

B˛C1 is the preimage of ˆ in †C1 and f1 W @ˆ1 D
F
I1

S˛ ! †
.˛/
1 is
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the lift of f . We have diagram

ˆ1 @ˆ1 †1

ˆ1 @ˆ1 †01

id id

f1

gid

'

id h

with ' D g ı f1: It then follows from Proposition 4.1 that the space

†C1 D †
0
1 t' ˆ1

is homotopy equivalent to †1 tf1 ˆ1: The map f1, being a lift of f , is of norm
kf1k � kf k. Finally, the norm of the boundary map on†C1 in degree ˛C 1 is bounded by
k'k � kf1k kgk: The latter being of norm O.Œ� W �1�

O.1// we conclude that the norm of
the degree ˛C 1 boundary operator on the chain complex C�.†C1 / isO.Œ� W �1�O.1//.

9. Bounding torsion: A proof of Gabber’s Proposition 9.1

In this section we prove the following useful proposition attributed to Gabber (see [46,
Proposition 3, p. 214]). Our proof here follows the viewpoint of [12, Section 2].

Let .C�; @/ be the cellular chain complex associated to a finite CW-complex †. Each
Cj is a free Z-module of finite rank with a canonical basis associated to the j -cells of †.
We equip each finite-dimensional vector space Cj ˝ R with the associated Euclidean
norm. For any coefficient field K and for any integer j � 0, it follows from the definition
of the homology groups that

dimK Hj .C� ˝K/ � rankCj : (9.1)

To bound the torsion homology we will use the following analogous observation.

Proposition 9.1 (Gabber). For any j � 0,

log jHj .C�/torsj � .rankCj / � sup.log k@jC1k; 0/: (9.2)

Here k@jC1k denotes the operator norm, associated with the Euclidean norm on the C�.

Proof. Given a finite rank free Z-module A such that AR D A˝ R is endowed with a
positive definite inner product .�; �/ (a metric for short), we define vol.A/ to be the volume
of AR=A. When considered without further specification, the free Z-module Za (a 2N�)
will denote the standard one where Ra D Za ˝R is endowed with the canonical metric.

Let a; b > 0 be integers and
f W Za ! Zb (9.3)

be a Z-linear map. We set det0.f / to be the product of all non-zero singular values of f .
Recall that the non-zero singular values of f are – with multiplicity – the positive square
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roots of the non-zero eigenvalues of ff �. Note that

det0.f / � sup.kf k; 1/min.a;b/

where kf k denotes the operator norm of fR W Ra ! Rb .
Now recall from [12, (2.1.1)] the “metric rank formula”

det0.f / D vol.imagef /vol.kerf /: (9.4)

Here we understand the metrics on .kerf /˝R and .imagef /˝R as those induced from
Ra and Rb . LetQ D cokerf . It is a finitely generated Z-module. LetQ DQtors ˚Qfree

be its decomposition into a torsion part and a free part.
Writing

Rb D .imagef /˝R˚ .imagef /? (9.5)

and applying [12, (2.1.1)] to the orthogonal projection Zb ! .image f /? we con-
clude that the quotient 1=vol.imagef / is the product of jQtorsj

�1 with the “regulator”
vol.Qfree/, where the metric onQfree ˝R is obtained by identifying it with a subspace of
.imagef /?. In summary,

1

vol.imagef /
D

vol.Qfree/

jQtorsj
�1
: (9.6)

It follows from (9.4) and (9.6) that

jQtorsj D det0.f /
vol.Qfree/

vol.kerf /
� det0.f /: (9.7)

The last inequality follows from two facts: (1) ker f being a sublattice of Za we have
vol.ker f / � 1, and (2) vol.Qfree/ � 1 since Qfree is spanned by vectors of length at
most 1.

Proposition 9.1 follows from (9.7) applied to

Q D coker.@jC1 W CjC1 ! Cj /:

Indeed, the homology group Hj .C�/ is contained in Q and it follows from (9.7) that the
size of the torsion part of Q is smaller than

det0.@jC1/ � sup.k@jC1k; 1/rankCj :

10. Farber sequences and cheap rebuilding property

10.1. Farber neighborhoods

Let � be a countable group. Let Sub� denote the space of subgroups of � equipped
with the topology induced from the topology of pointwise convergence on ¹0; 1º� . The
subset Subfi

� � Sub� of finite index subgroups is equipped with the induced topology. It
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is countable when � is finitely generated. The group � continuously acts by conjugation
on both Sub� and Subfi

� .
We consider the fixed point ratio function defined for finite index subgroups � 0 � �:

fx�;
 W Subfi
� ! Œ0; 1�; � 0 7!

j¹g� 0 W 
g� 0 D g� 0ºj

Œ� W � 0�
:

Thus fx�;
 .� 0/ is just the proportion of fixed points of 
 2 � in the action � Õ �=� 0.

Definition 10.1. A sequence .�n/n2N of subgroups of � is called a Farber sequence if it
consists of finite index subgroups and for every 
 2 � n ¹1º we have

lim
n!1

fx�;
 .�n/ D 0:

Though we will not use it, note that if � is finitely generated and S � � is a finite
symmetric generating set, the sequence .�n/n2N is Farber if and only if the sequence of
Schreier graphs Sch.�nn�;S/ converges to the Cayley graph Cay.�;S/ in the Benjamini–
Schramm topology [8], and if and only if the sequence of actions � Õ �=�n defines a
sofic approximation of � .

Observe that � admits Farber sequences if and only if it is residually finite. The notion
is designed to encompass non-normal finite index subgroups.

Definition 10.2 (Farber neighborhood). Let � be a residually finite group. An open subset
U of Subfi

� is a �-Farber neighborhood if it is �-invariant and every Farber sequence in
Subfi

� eventually belongs to U .

We can think of these �-Farber neighborhoods as neighborhoods of ¹idº in Subfi
� ,

except that ¹idº 62 Subfi
� .

Example 10.3. Assume � is residually finite. The sets

U�;S;ı D ¹�
0
2 Subfi

� W fx�;
 .�
0/ < ı for 
 2 Sº;

where S � � n ¹1º is a finite subset and ı > 0, are non-empty and form a basis of �-
Farber neighborhoods. Let .
j /j2N be an enumeration of � and Sn D ¹
0; 
1; : : : ; 
nº.
Then the same holds for U�;Sn;1=n. If �n 2 U�;Sn;1=n, then .�n/n2N is a Farber sequence.
It follows that if V � Subfi

� does not contain any U�;S;ı , then we can construct a Farber
sequence .�n/n2N as above that does not meet V .

Lemma 10.4. Let � be a residually finite group and let ƒ � � be an infinite subgroup.
For every ƒ-Farber neighborhood U � Subfi

ƒ and ı > 0, there exists a �-Farber neigh-
borhood V � Subfi

� such that for any � 0 2 V we have

j¹
 2 �=� 0 W 
� 0
�1 \ƒ 2 U ºj

Œ� W � 0�
� 1 � ı:

In words, the lemma says that the finite index subgroups .� 0/
 \ƒ of ƒ belong to a
prescribed ƒ-Farber neighborhood for a large proportion of the conjugates .� 0/
 as long
as � 0 belongs to a small enough �-Farber neighborhood.
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Proof of Lemma 10.4. It is enough to prove the statement for U D Uƒ;S;ı (from Ex-
ample 10.3) for any finite S b ƒ and 1 > ı > 0.

Let V D U�;S;ı2=jS j. Then, for � 0 2 V and each 
 2 S , simple combinatorial argu-
ments give

ı2

jS j
� fx�;
 .� 0/ D

1

Œ� W � 0�

X
g2�=�0

1.�0/g .
/

D
1

Œ� W � 0�

X
g2ƒn�=�0

X
�2ƒ=..�0/g\ƒ/

1..�0/g\ƒ/�.
/

D
1

Œ� W � 0�

X
g2�=�0

�
1

Œƒ W .� 0/g \ƒ�

X
�2ƒ=..�0/g\ƒ/

1..�0/g\ƒ/�.
/

�
D

1

Œ� W � 0�

X
g2�=�0

fxƒ;
 ..� 0/g \ƒ/:

Hence,

j¹g 2 �=� 0 W fxƒ;
 ..� 0/g \ƒ/ � ıºj � Œ� W � 0�
ı

jS j

and
j¹g 2 �=� 0 W 9
 2 S s.t. fxƒ;
 ..� 0/g \ƒ/ � ıºj � Œ� W � 0�ı:

Thus

j¹g 2 �=� 0 W fxƒ;
 ..� 0/g \ƒ/ � ı for all 
 2 Sºj � Œ� W � 0�.1 � ı/:

We conclude that

1

Œ� W � 0�

X
g2�=�0

1Uƒ;S;ı ..�
0/g \ƒ/ � 1 � ı;

as desired.

10.2. The cheap rebuilding property

Definition 10.5 (Cheap ˛-rebuilding property, Farber sequences). Let � be a residually
finite group and let ˛ be a non-negative integer. A Farber sequence .�n/n of � has the
cheap ˛-rebuilding property if there exists a K.�; 1/ space X with finite ˛-skeleton and
a constant �X � 1 such that for every real number T � 1, there is n0 such that when
n � n0 the finite covers Yn ! X with �1.Yn/ D �n admit an ˛-rebuilding .Yn; Y 0n/ of
quality .T; �X /:

The group � itself has the cheap ˛-rebuilding property if the existence of the com-
plex X and of the constant �X holds in a “uniform way” for all Farber sequences. More
precisely:
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Definition 10.6 (Cheap ˛-Rebuilding Property, groups). Let � be a countable group and
let ˛ be a non-negative integer. The group � has the cheap ˛-rebuilding property if it is
residually finite and there exists a K.�; 1/ space X with finite ˛-skeleton and a constant
�X � 1 such that for every real number T � 1, there exists a �-Farber neighborhood
U D U.X; T / � Subfi

� such that every finite cover Y ! X with �1.Y / 2 U admits an
˛-rebuilding .Y; Y 0/ of quality .T; �X /:

The simplest group with cheap ˛-rebuilding property for every ˛ is the infinite cyclic
group Z, as we show in Lemma 10.10. Many other groups have this property; see Corol-
lary 10.13 for some examples.

Remark 10.7. It is important to note that finite groups do not have the cheap ˛-rebuilding
property, for any ˛: for each finite group there is a bound on the qualities of its rebuildings.
In fact, a residually finite group has the cheap 0-rebuilding property if and only if it is
infinite.

Lemma 10.8. One can replace in both definitions “there exists aK.�;1/ space with finite
˛-skeleton and there is a constant �X” by “for everyK.�; 1/ space with finite ˛-skeleton,
there is a constant �X”.

Proof. Let X and X 0 be k-aspherical CW-complexes with finite ˛-skeleta and �1.X/ '
�1.X

0/ ' � . Assume that X 0 satisfies the condition in Definition 10.5. Then by basic
obstruction theory, there exist cellular maps

g1 W X .˛/ ! X 0.˛/ and h1 W X 0.˛/ ! X .˛/

that are homotopy inverse to each other up to dimension ˛ � 1, and a cellular homotopy
P1 W Œ0; 1� �X .˛�1/! X .˛/ between the identity of X .˛�1/ and the restriction of h1 ı g1
to X .˛�1/. Observe for the case ˛ D 1 that the isomorphism between the fundamental
groups allows us to define g1 and h1 up to the 2-skeleta.

Let �1 be an upper bound for all the norms k.h1/j k, k.g1/j k for j 2 ¹0; : : : ; ˛º and
k.�1/j k for j D 0; 1; : : : ; ˛ � 1 that moreover satisfies jX 0.j /j � �1jX .j /j for all j 2
¹0; : : : ; ˛º. Thus .X;X 0/ is an ˛-rebuilding of quality .1; �1/.

For every real number T � 1, there exists a �-Farber neighborhood U D U.X 0; T / �
Subfi

� such that every finite cover Y 0 ! X 0 with �1.Y 0/ 2 U admits an ˛-rebuilding
.Y 0; Y 00/ of quality .T;�X 0/: Let Y !X be the finite cover associated with .h1/�.�1.Y 0//
��1.X/'� . By Lemma 6.2 (rebuilding induced to finite cover) the ˛-rebuilding .X;X 0/
induces a rebuilding .Y; Y 0/ of quality .1; �1ıX /. Applying Lemma 6.3 (on composition
of rebuildings) to the rebuildings .Y; Y 0/ and .Y 0; Y 00/ we get an ˛-rebuilding .Y; Y 00/ of
quality .T; 4�1ıX�X 0/.

Theorem 10.9. Let � be a residually finite group acting on a CW-complex � in such a
way that any element stabilizing a cell fixes it pointwise. Let ˛ be a non-negative integer
and assume that the following conditions hold:

(1) �n� has finite ˛-skeleton;
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(2) � is .˛ � 1/-connected;

(3) for each cell ! 2 � of dimension j � ˛ the stabilizer �! has the cheap .˛ � j /-
rebuilding property.

Then � itself has the cheap ˛-rebuilding property.

Proof. If ˛ D 0, this follows from Remark 10.7 and (3): the stabilizer of any 0-cell is
infinite, thus so is � .

From now on we assume ˛ � 1. As in the proof of Theorem 8.1 we need to work
with a simply connected �. For ˛ � 2 this follows from the assumptions. For ˛ D 1,
we note that the vertex stabilizers (j D 0) have the 1-rebuilding property and thus are
finitely generated, so we can use Lemma 8.2 to replace � by (its 1-skeleton and then by)
a 1-connected 2-dimensional complex �C satisfying all the assumptions of the theorem.

Since all the information we need is located in the ˛-skeleton (or 2-skeleton for ˛D 1),
we may assume that � has dimension at most ˛ (or 2 for ˛ D 1).

Given a contractible CW-complexE� with a free action of � (i.e., the universal cover
of some classifying space for �), the Borel construction (Section 2) considers the product
� � E� with the diagonal action. It is .˛ � 1/-connected, the fundamental group of
the quotient �n.� � E�/ is isomorphic to � and the projection map �n.� � E�/!
�n� is interpreted (by Proposition 2.1) as a stack of CW-complexes with fiber ' ! �

.�!nE�/ ' �!nE� over each cell �! of �n�.
Let Œ�� WD ¹!1; : : : ; !N º � � be a list of distinct representatives of the �-orbits of

cells of dimension� ˛; there are finitely many of them, by hypothesis (1). Let! 2 Œ�� be a
cell of dimension j � ˛. By hypothesis the stabilizer �! has the cheap .˛ � j /-rebuilding
property and is therefore of type F˛�j . Let X! be a classifying space for �! with finite
.˛ � j /-skeleton. SinceX! and �!nE� are homotopy equivalent, Geoghegan’s Rebuild-
ing Lemma (Proposition 2.2) yields a stack†! �n� with fiberX! over each cell �! of
�n�. Per condition (1), the quotient �n� has finite ˛-skeleton so the whole stack † has
finite ˛-skeleton. At this point we might as well forget how we constructed †; the only
important properties to keep in mind are that it fits into a stack … W †! �n�, it has an
.˛ � 1/-connected universal cover, it has finite ˛-skeleton, �1.†/ is isomorphic to � and
each fiber over �! is a CW-complex X! with .˛ � 1/-connected universal cover, finite
˛-skeleton, and �1.X!/ ' �! .

Now let �1 � � be a finite index subgroup of � and let †1 be the finite cover of †
corresponding to �1. Any �-orbit of cells �!�� splits into a family of �1-orbits indexed
by the double cosets:

�! D
G


2�1n�=�!

�1
!:

The complex †1 is naturally the total space of a stack over �1n�. If 
! is any cell
of � (
 2 �) and �
! \ �1 D 
�!
�1 \ �1 is its stabilizer for the �1-action, then the
fiber of this stack over the cell �1
! of �1n� takes the form

X1;
! D .
�!

�1
\ �1/n zX
! ' .�! \ 


�1�1
/n zX! :
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z† †1 D �1nz† † D �nz†

� �1n� �n�

We remark that since †1 is a cover of †, we know that the norm (induced from the
`2-norm) of the boundary map @ W C�.†1/! C��1.†1/ is bounded in degrees � � ˛ by
a constant depending only on †, not on �1.

We will perform some rebuilding of †1 and determine conditions on �1 under which
its quality is good enough.

Step 1. Rebuilding the stack

The cheap-rebuilding property (assumption (3)) of the stabilizers �!i applied to X!i (by
Lemma 10.8, we have the freedom of the space in Definition 10.6) gives constants cX!i �
1 for which the following choice is possible:

Let T � 1 be a real number. We choose for each i D 1; : : : ;N a �!i -Farber neighbor-
hood Ui � Subfi

�!i
, and for every finite index subgroup ƒ � �!i with ƒ 2 Ui we choose

an .˛ � dim!i /-rebuilding R.!i ; T;ƒ/ of ƒneX!i of quality .T; �X!i /.
We want to use the effective rebuilding Lemma (Proposition 4.2) to rebuild the stack

†1 D �1nz†. To do that, we need to specify a rebuilding of each fiber X1;! with �! �
�n�: The full set of fibers of †1 ! �1n� consists of the CW-complexes X1;
!i with
i D 1; : : : ; N and 
 2 �1n�=�!i . Note that

X1;
!i D .�
!i \ �1/n
zX
!i ' .�!i \ 


�1�1
/n zX!i :

We rebuild X1;
!i according to whether �1;!i ;
 WD .�!i \ 

�1�1
/ 2 Ui � Subfi

�!i
or not by using the rebuilding

.X1;
!i ; X
0
1;
!i

;k
!i ; l
!i ;†
!i / WD

´
R.!i ; T; �1;!i ;
 / if �1;!i ;
 2 Ui � Subfi

�!i
;

X 01;
!i D X1;
!i if �1;!i ;
 62 Ui ;
(10.1)

i.e., we simply use the trivial rebuilding .X1;
!i ; X1;
!i ; id; id; 0/ when �1;!i ;
 62 Ui .
By virtue of Proposition 4.2 we obtain a global rebuilding .†1; †01; g;h;P/. Our goal

is now to estimate its quality. Recall that the tension in Definition 2 of quality (in the
introduction) is between “having few cells” and “maintaining tame norms”. Observe that
for the fibers associated with �1;!i ;
 2 Ui , both are controlled by definition of the �!i -
Farber neighborhood. In particular, the norms of the vertical maps in these fibers are
bounded by a polynomial in T . As for the fibers associated with �1;!i ;
 62 Ui , the quality
is “very good” as far as the “norm bound” is concerned. The number of cells will be
controlled later in Step 2.

Let us simply denote by k W C�.X1;!/ ! C�.X
0
1;!/ and l W C�.X 01;!/ ! C�.X1;!/

the maps respectively induced by k! and l! . Similarly, let � W C�.X1;!/! C�C1.X1;!/
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be the chain homotopy map induced by †! . Finally, let g W C�.†1/! C�.†
0
1/ and h W

C�.†
0
1/!C�.†1/ be the chain maps induced by g and h and let � WC�.†1/!C�C1.†1/

be the chain homotopy map induced by P.
As in the paragraphs preceding and preparing Proposition 4.2, we consider the decom-

positions

C�.†1/ D
M

�1!2�1n�

Œ!�˝ C�.X1;!/ and C�.†
0
1/ D

M
�1!2�1n�

Œ!�˝ C�.X
0
1;!/:

By a slight abuse of notation we will simply write ~ instead of 1 ˝ ~ for ~ D k, k! ,
l , l! , � or �! : We write @, @hor, @vert for the boundary, horizontal boundary and vertical
boundary maps in the stack C�.†1/, and @0, .@0/hor, .@0/vert for the boundary, horizontal
boundary and vertical boundary maps on C�.†01/. By Proposition 4.2 (formulas (4.7)–
(4.10)) we have

g D k ı
� 1X
iD0

.@hor
ı �/i

�
;

h D
� 1X
iD0

.� ı @hor/i
�
ı l;

� D � ı
� 1X
iD0

.@hor
ı �/i

�
;

@0 D .@0/vert
C k ı

� 1X
iD0

.@hor
ı �/i

�
ı @hor

ı l:

Recall that in each of these expressions the sum is in fact finite since the summands vanish
for i large enough. The norms of .@0/vert, k, l , � and @hor are bounded by polynomials in T
with coefficients depending on† and on the constants �X!i , but independent of �1. This is
thus also the case for the norms of g, h, � and @0, the chain maps appearing in the definition
of the quality of a rebuilding. Their log is thus bounded by a constant (independent of �1)
times 1C logT . This ensures the norm bound condition for every �1.

Step 2. Counting cells

In remains to ensure a control on the number of cells of †01. Let #.d/.X/ denote the
number of d -cells of X . We need to exhibit a �-Farber neighborhood V � Subfi

� such
that if �1 belongs to V then

#.j /.†01/ � O.#
.j /.†1/=T / for each j 2 ¹0; : : : ; ˛º:

Given an arbitrary finite index �1 � � , we intend to count the number of cells in †01.
For that purpose we introduceN functions Fi W � ! R, with i 2 ¹1; : : : ;N º, correspond-
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ing to the chosen distinct representatives Œ�� WD ¹!1; : : : ; !N º � � of the �-orbits of
cells in �, by the formulas

Fi .
/ D

´
T �1 if .�!i \ 


�1�1
/ 2 Ui ;

1 otherwise;

where Ui is the �!i -Farber neighborhood chosen at the beginning of Step 1. Denoting
q WD dim!i , recall that to each ƒ 2 Ui � Subfi

�!i
we have associated a cheap .˛ � q/-

rebuilding .X1;
!i ; X
0
1;
!i

/ in equation (10.1) of quality .T; �X!i /. In particular, the cell
bound gives #.`/.X 01;
!i / � �X!i � Fi .
/ � #.`/.X1;
!i / for every ` 2 ¹0; 1; : : : ; ˛ � qº.

By our choices of fiber rebuildings we thus get

#.j /.†01/ D
jX
qD0

X
!2�1n�
dim!Dq

#.j�q/.X 01;!/ D
X

!2�1n�
dim!�j

#.j�dim!/.X 01;!/

D

jX
qD0

X
!i2Œ��

dim!iDq

X

2�1n�=�!i

#.j�q/.X 01;
!i /

�

jX
qD0

X
!i2Œ��

dim!iDq

X

2�1n�=�!i

�X!i � Fi .
/ � #.j�q/.X1;
!i /

� ��
jX
qD0

X
!i2Œ��

dim!iDq

 X

2�1n�=�!i

#.j�q/.X1;
!i /
T

„ ƒ‚ …
(A)

C

�
1 �

1

T

� X

2�1n�=�!i
Fi .
/D1

#.j�q/.X1;
!i /

„ ƒ‚ …
(B)

!

where �� WD max ¹�X!i W i 2 ¹1; : : : ; N ºº.
In order to bound the part associated with (A), observe that

jX
qD0

X
!i2Œ��

dim!iDq

X

2�1n�=�!i

#.j�q/.X1;
!i / D #.j /.†1/:

In order to bound the part associated with (B), observe that

� the covering †1 ! † induces the covering X1;
!i ! X!i , and thus

#.j�q/.X1;
!i / D Œ�
!i W �
!i \ �1�#
.j�q/.X!i /I

� Œ�
!i W �
!i \ �1�D Œ�!i W 

�1�1
 \ �!i � is exactly the number of �1n�-classes that

are gathered together to form the �1n�=�!i -class of 
 ;
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� the invariance under conjugation of the �!i -Farber neighborhoods ensures thatFi .
/D
Fi .
�/ for every � 2 �!i , and it follows thatX


2�1n�=�!i
Fi .
/D1

#.j�q/.X1;
!i / D
X


2�1n�=�!i
Fi .
/D1

Œ�
!i W �
!i \ �1�#
.j�q/.X!i /

D

X

2�1n�
Fi .
/D1

#.j�q/.X!i /:

By Lemma 10.4, there exists a �-Farber neighborhood V � Subfi
� such that for �1 2 V

and i 2 ¹1; : : : ; N º we have

j¹
 2 �1n� W Fi .
/ D 1ºj D j¹
 2 �=�1 W 
�1

�1
\ �!i 62 Uiºj � T

�1Œ� W �1�:

Thus X

2�1n�=�!i
Fi .
/D1

#.j�q/.X1;
!i / � T
�1Œ� W �1�#.j�q/.X!i /;

jX
qD0

X
!i2Œ��

dim!iDq

X

2�1n�=�!i ;

Fi .
/D1

#.j�q/.X1;
!i / �
jX
qD0

X
!i2Œ��

dim!iDq

T �1Œ� W �1�#.j�q/.X!i /

„ ƒ‚ …
DT�1#.j/.†1/

:

This finishes the proof of Theorem 10.9.

10.3. First examples

Lemma 10.10. Z has the cheap ˛-rebuilding property for any ˛.

Proof. We will verify the property forX D Œ0; 1�=¹0� 1º being the circle with one 0-cell
and one 1-cell. Given a positive integerm we denote byXm D Œ0;m�=¹0�mº them-fold
cover ofX associated to the subgroupmZ of Z and equipped with the cell structure lifted
from X .

Let T be a positive real number. The subset U � Subfi
Z that consists of all the finite

index subgroupsNZ in Z withN � 4T is a Z-Farber neighborhood. Pick some subgroup
NZ in U . We now explain how to construct a rebuilding of quality .T;O.1// of XN . To
do so, first pick some sequence of integers

0 D a0 < a1 < � � � < am D N with T=2 � aiC1 � ai � T:

For each t 2 Œ0; N / let �.t/ be the integer in Œ0;m � 1� determined by t 2 Œa�.t/; a�.t/C1/:
The cellular maps g W XN ! Xm and h W Xm ! XN defined by

g.t/ D �.t/Cmin.t � a�.t/; 1/ and h.t/ D abtc C .abtcC1 � abtc/.t � btc/
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are homotopy inverses to each other. The explicit homotopy P W XN � Œ0; 1� ! XN
between id and h ı g is given by

P.t; s/ D min
�
a�.t/ C .t � a�.t//.1C s.a�.t/C1 � a�.t/ � 1//; a�.t/C1

�
:

One easily verifies that the `2-operator norms of the induced chain maps satisfy

kgk; khk; k�k D O.T C 1/ and k@k; k@0k � 2:

The number of cells in Xm is m 2 ŒN=T; 2N=T � in dimension 0 and 1. Hence, Z has the
cheap ˛-rebuilding property for any ˛ 2 N.

As particular cases of Theorem 10.9 we obtain:

Example 10.11 (Graphs of groups). Let � be a residually finite group that splits as a
finite graph of groups with edge and vertex stabilizers that satisfy the cheap .˛ � 1/-
rebuilding property (and cheap ˛-rebuilding property respectively) for every ˛. Consid-
ering its Bass–Serre tree �, we find that � itself has the cheap ˛-rebuilding property.
This applies for instance to the residually finite Baumslag–Solitar groups BS.1; n/ and
BS.n; n/, for any non-zero integer n.

Example 10.12 (Groups acting on graphs). If a residually finite group � acts cocom-
pactly on a connected graph G such that

� vertex stabilizers have the cheap 1-rebuilding property;

� edge stabilizers are infinite,

then � has the cheap 1-rebuilding property.

10.4. Further applications

Recall that a group � is called polycyclic if there is a sequence of subgroups

� D A0 F A1 F � � � F An D ¹1º

such that each quotient group Ai=AiC1 is cyclic. As a corollary of Theorem 10.9 and
Lemma 10.10 we obtain

Corollary 10.13. Let � be a residually finite countable group. The following holds:

(1) Let � 0 � � be a finite index subgroup. Then � has the cheap ˛-rebuilding property if
and only if � 0 does.

(2) If � has an infinite normal subgroup N such that �=N is of type F˛ and N has the
cheap ˛-rebuilding property, then � has the cheap ˛-rebuilding property.

(3) Zm has the cheap ˛-rebuilding property for every ˛.

(4) Infinite polycyclic groups have the cheap ˛-rebuilding property for every ˛.

Proof. (1) If � has the cheap ˛-rebuilding property, then the witnesses .X;�;U.T // for �
yield witnesses for � 0. Conversely, if � 0 has the cheap ˛-rebuilding property one can
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assume, up to passing to a further finite index subgroup, that it is normal in � . Then pick
any .˛ � 1/-connected CW-complex � with a free action of �=� 0 that is finite in every
dimension� ˛ and apply Theorem 10.9 to the �-action on� defined through the quotient
map � ! �=� 0.

(2) Let B be a classifying space (CW-complex) B for �=N with finite ˛-skeleton.
The group � acts on its universal cover zB with cell stabilizers all equal to N and one can
apply Theorem 10.9 to this action.

(3) and (4) finally follow from Lemma 10.10 and (2) by induction.

Example 10.14. Corollary 10.13 (2) implies for instance that SLd .Z/ËZd has the cheap
˛-rebuilding property for every ˛. The same is true for the standard braid groups since
they have an infinite cyclic center.

10.5. Chain-commuting groups

The following proposition connects the cheap 1-rebuilding property to the rewirings of
chain-commuting (also called right-angled) groups considered in [2].

Proposition 10.15. Let � be a residually finite group that is chain-commuting, i.e.,
admits a finite generating list ¹
1; : : : ; 
mº of elements of infinite order such that Œ
i ; 
iC1�
D 1 for all i 2 ¹1; : : : ; m � 1º. Then � has the cheap 1-rebuilding property.

Note: Our proof below is incomplete and necessitates the additional assumption that
the normalizers of the subgroups Hj are finitely generated, which is not granted in gen-
eral. A complete proof can be found in an article of Matthias Uschold [50].

Proof of Proposition 10.15. According to Example 10.12 it suffices to produce a cocom-
pact action � Õ G on a connected graph such that

� vertex stabilizers have the 1-rebuilding property,

� edge stabilizers are infinite.

We build the graph G as follows: For each i 2 ¹1; : : : ;mº, let Hi be the (free abelian)
infinite subgroup of � generated by 
i . The vertex set of G consists of all the conjugates
of theHi in � , and two distinct conjugates gHig�1 and hHjh�1 represent an edge if and
only if the subgroup they generate is abelian.

The conjugation action of � on the set of its subgroups induces an action of � on G .
Observe that, by hypothesis, the vertices corresponding toH1; : : : ;Hm belong to the same
connected component of G . It follows that for every g 2 � the vertices gH1g�1; : : : ;
gHmg

�1 also belong to one connected component of G . Now for any j 2 ¹1; : : : ; mº we
have

gHjg
�1
D .g
�1j /Hj .g


�1
j /�1;

and since ¹
1; : : : ; 
mº is a generating set of � , we conclude that the graph G is connected.
The stabilizer of each vertex, or each edge, contains a normal subgroup that is a free

infinite abelian subgroup (a conjugate of some Hj ). These stabilizers therefore have the
cheap 1-rebuilding property (by Corollary 10.13 (2) and Lemma 10.10).
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Finally, the quotient �nG is a finite graph (onm vertices). Theorem 10.9 applies to the
action of � on G and we conclude that � itself has the cheap 1-rebuilding property.

The cheap ˛-rebuilding property goes beyond chain-commuting groups, even for
˛ D 1. We now give an example.

Example 10.16 (Non-chain-commuting examples ƒ Ë Z2). If a free group ƒ �

SL2.Z/ does not contain any non-trivial unipotent element, then any embedding of
Z2 in the canonical semidirect product ƒ Ë Z2 lies inside the obvious normal Z2: If
.�1; a2/; .�2; a2/ 2 ƒ Ë Z2 commute (and generate Z2), then up to considering some
power of them, one can assume �1 D �2. It follows that ��11 a

�1
2 a1�1 D a

�1
2 a1, so that

�1 is unipotent, thus trivial.
In order to find such a subgroup ƒ of SL.2;Z/, it is enough to consider a finite cover

of the modular orbifold SL2.Z/nH2 that is a surface S of genus g � 2 (with cusps). The
fundamental group of the compact surface S 0 obtained by adding one point to each cusp
of S surjects onto the free group F2. Finally, pick a pull-back of this free group along the
maps SL2.Z/ � �1.S/� �1.S

0/� F2. It does not contain any non-trivial unipotent
element.

Consequently, such a semidirect product � D ƒ Ë Z2 is not chain-commuting, while
it has the cheap ˛-rebuilding property for all ˛ by Corollary 10.13 (2).

10.6. Artin groups

Let I be a finite set. A Coxeter matrix M D .mij / on I is an I -by-I symmetric matrix
M D .mij / with entries in N [ ¹1º such that mi i D 1 for all i and mij � 2 whenever
i ¤ j . Associated to M are

� a Coxeter group WI , or simply W , given by the presentation

W D hsi ; i 2 I j .sisj /
mij D 1; .i; j / 2 I 2i

with the convention that the relation is ignored if mij D1,

� an Artin group AI , or simply A, given by the presentation

A D hai ; i 2 I j aiajaiajai � � �„ ƒ‚ …
mij

D ajaiajaiaj � � �„ ƒ‚ …
mij

; .i; j / 2 I 2i;

� a simplicial complex, called the nerve of M , that we define below.

If the corresponding Coxeter group W is finite we say that A is spherical. These Artin
groups are sometimes also referred to as “Artin groups of finite type” in the literature.

If J � I , let MJ denote the minor of M whose rows and columns are indexed by J ,
and let WJ , resp. AJ , be the corresponding Coxeter group, resp. Artin group. It is known
[14] that the natural map WJ ! WI , resp. AJ ! AI , is injective and hence WJ , resp.
AJ , can be identified with the subgroup of WI , resp. AI , generated by ¹si W i 2 J º, resp.
¹ai W i 2 J º.
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The nerve of M is the simplicial complex L whose vertex set is I and a subset � � I
spans a simplex if and only if W� is finite.

Charney and Davis [24, Section 3] have associated to M a simple complex C of
groups, in the sense of [15, Definition 12.11]. The construction goes as follows: First
consider the partially ordered set (poset)

P D ¹J � I W WJ is finiteº

ordered by inclusion. To any � 2 P one associates the Artin group A� , and for each
� � � the associated homomorphism A� ! A� is the natural inclusion. The geometric
realization of C is simply connected (in fact, contractible), since the empty set is an initial
object for the poset P . In particular, the fundamental group of the complex of groups C

is A (the direct limit of the A� ). The complex C is developable, that is, it arises from the
action of a group on a simplicial complex. More precisely, let

AP D ¹gAJ W g 2 A; J 2 P º;

ordered by inclusion. The stabilizer of gAj 2 AP is the subgroup gAJg�1; hence, A acts
without inversion on AP . Let

X D jAP 0j

be the geometric realization of the derived poset of AP ; it is the simplicial complex,
referred to as the “modified Deligne complex” in [24], where k-simplices correspond to
totally ordered chains of elements in AP . The complex of groups C explicitly arises from
the action of A on X .

It is conjectured that X is contractible and this conjecture is equivalent to the cele-
brated K.�; 1/ conjecture for Artin groups. The main theorem of [24] is that this conjec-
ture holds when the nerve L is a flag complex, i.e., the Coxeter group WJ associated to
every clique J is finite. This holds for instance if A is either spherical or a right-angled
Artin group. The conjecture also holds whenever L has dimension at most 1. Recently,
Paolini and Salvetti [41] proved that the K.�; 1/ conjecture holds for all affine Artin
groups.

Theorem 10.17 (Artin groups with .˛ � 1/-connected nerve). LetM be a Coxeter matrix
whose nerve L is .˛ � 1/-connected. Suppose that the K.�; 1/ conjecture holds for
the associated Artin group A and that A is residually finite. Then A has the cheap ˛-
rebuilding property.

Proof. We first consider the case where A is spherical, or equivalently where L is a sim-
plex. In [13, Main Theorem], Bestvina proves that A is then commensurable with G �Z,
where G D A=h�2i is the quotient of A by some central element �2, and moreover G
acts cocompactly on a contractible simplicial complex X and the action is transitive on
the vertices with stabilizers Z=2Z. It follows that G is of type F˛ for every ˛ (see e.g.
[31, Theorem 7.3.1]). Applying Corollary 10.13 (2) we find that G � Z has the cheap
˛-rebuilding property for every ˛. By Corollary 10.13 (1), so does A.
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Consider now the case where A is of general type. We would like to apply our The-
orem 10.9 to the action of A on the modified Deligne complex X ; but the stabilizers of
the vertices of the form AJ for J D ; are trivial. We therefore modify X as follows: Let
��X be the subcomplex associated to the subposet P0 of P consisting of the non-empty
subsets J � I . The A-action on X preserves � and the cell stabilizers are now isomor-
phic to the non-trivial spherical Artin groups AJ , J 6D ;. The complement X n� is the
disjoint union of the open stars St.v/ of the vertices v of X corresponding to the elements
gA; 2AP (g 2A). Each such star St.v/ is the cone over the link of v inX and this link is
isomorphic to the simplicial complex jP 00j associated to the poset of non-empty spherical
subsets of I , i.e., the nerve L of M . By hypothesis the latter is .˛ � 1/-connected and
X is contractible, it therefore follows from the Mayer–Vietoris and Hurewicz Theorems
(and the van Kampen Theorem in degree 1) that � is .˛ � 1/-connected. Then a direct
application of Theorem 10.9 shows that the Artin group A has the cheap ˛-rebuilding
property as long as it is residually finite.

Example 10.18. The direct product � D F2 � � � � � F2 of k copies of the free group
on two generators has the cheap .k � 1/-rebuilding property. This follows from Theo-
rem 10.17 when k � 2. The nerve of these right-angled Artin groups has the homotopy
type of a .k � 1/-dimensional sphere.

Remark 10.19. In fact, to obtain Theorem 10.17, instead of the K.�; 1/ conjecture, it is
enough to assume that the modified Deligne complexX is .˛ � 1/-connected: this ensures
that the � in the proof is .˛ � 1/-connected.

10.7. Homology growth

Theorem 10.20. Let � be a finitely presented residually finite group of type F˛C1 that has
the cheap ˛-rebuilding property for some non-negative integer ˛. Then for every Farber
sequence .�n/n2N , coefficient field K and 0 � j � ˛ we have

lim
n!1

dimK Hj .�n; K/
Œ� W �n�

D 0 and lim
n!1

log jHj .�n;Z/torsj

Œ� W �n�
D 0:

Proof. Let X be a K.�; 1/ CW-complex with finite ˛-skeleton. Let T � 1. Then there
exists a �-Farber neighborhood U � Subfi

� such that for any finite index subgroup �1 2 U
there exists an ˛-rebuilding .X1 D �1n QX;X 01/ of quality .T; O.1//: In degree � ˛, the
complex X 01 has O.Œ� W �1�=T / cells of this dimension and the norms of the boundary
maps are O.T C 1/: It follows from (9.1) that for all j � ˛ we have

dimK Hj .�n; K/ D O.Œ� W �1�T �1/:

Letting T !1 proves the first part of the theorem. By Proposition 9.1 we similarly get

log jHj .�1;Z/torsj � O.Œ� W �1�T
�1 log.T C 1//

for j D 0; : : : ; ˛ � 1. Letting T ! 1 proves the second part of the theorem for all
0 � j � ˛ � 1.
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To handle the remaining case j D ˛, we take advantage of the fact that in Proposi-
tion 9.1 the only information needed from dimension ˛ C 1 is the norm of the boundary
maps @˛C1 (but not the number of .˛ C 1/-cells) and that the norm of the boundary
maps is bounded when taking coverings. We proceed exactly as in the end of the proof
of Theorem 8.1: by adding finitely many .˛ C 1/-cells to X , we can make it ˛-aspherical
(see [31, Theorem 8.2.1]). Write ˆ D

F
I B˛C1 for this collection of .˛ C 1/-cells and

let f W @ˆ D
F
I S˛ ! X .˛/ be the map that attaches the .˛ C 1/-cells to X . Then

XC WD X tf ˆ is a finite ˛-aspherical CW-complex with fundamental group � .
Let T; U be as above and let �1 2 U be a finite index subgroup. Let X1 D �1n QX

and let .X1; X 01; g; h;P/ be an ˛-rebuilding of quality .T; O.1// given by the rebuilding

property of � . We also consider XC1 D �1n
eXC. The CW-complex XC1 can be written as

XC1 D X1 tf1 ˆ1 where ˆ1 D
F
I1

B˛C1 is the preimage of ˆ in XC1 and f1 W @ˆ1 DF
I1

S˛ ! X
.˛/
1 is the lift of f . We have a diagram

ˆ1 @ˆ1 X1

ˆ1 @ˆ1 X 01

id id

f1

gid

'

id h

with ' D g ı f1. By Proposition 4.1 the space X 01 t' ˆ1 is homotopy equivalent to

X1 tf1 ˆ1 D X
C
1 :

Therefore, H˛.�1;Z/ D H˛.X
0
1 t' ˆ1;Z/: Since f1 is a lift of f , its norm satisfies

kf1k � kf k D O.1/. The norm of the boundary map on X 01 t' ˆ1 in degree ˛ C 1 is
bounded by k'k � kf1k kgk D O.T C 1/. By Proposition 9.1 we have

log jH˛.X 01 t' ˆ1;Z/torsj � log k@˛C1k.X 0
1
t'ˆ1/

� #.˛/.X 01 t' ˆ1/

� O.log.T C 1/Œ� W �1�T �1/:

Since any Farber sequence eventually falls into U , letting T !1we get the theorem.

We end this section with a question.

Question 10.21. Does every residually finite amenable group of type F˛ have the cheap
˛-rebuilding property?

In this context, Kar, Kropholler and Nikolov [35, Theorem 1] prove the vanishing of
the j -th torsion growth for j � ˛. The arguments of [43], while stated in a restricted
framework, also give this vanishing.

11. Lattices in semisimple Lie groups: Proof of Theorem B

Let G be an affine algebraic group defined over Q. The radical of G is the greatest con-
nected normal solvable subgroup. The group G is called semisimple if its radical is trivial.
In the following, we assume that G is connected and semisimple.
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An algebraic group T over Q is an algebraic torus if the group T.C/ of its complex
points is isomorphic to a product of GL1.C/. If T is isomorphic to a product of GL1
themselves over Q, then T is said to be split over Q. The maximal dimension of a torus
in G that is split over Q is called the rational rank of G.

A Zariski-closed subgroup P of G is called parabolic if P contains a connected solv-
able subgroup, i.e., a Borel subgroup of G. If P is defined over Q, then P is called a
rational parabolic subgroup. The unipotent radical of P is defined to be its largest normal
subgroup consisting entirely of unipotent elements.

A Z-structure of G is given by a faithful Q-embedding of G in some GLn. We define
� D GZ to be the intersection of G with GLn.Z/ and the level N principal congruence
subgroup �.N/ to be the intersection of G with the kernel of GLn.Z/! GLn.Z=NZ/.
Here N is some positive integer.

Theorem 11.1. Let G be a connected semisimple affine algebraic group defined over Q
equipped with a Z-structure. Let r � 2 be the rational rank of G. Then there exists a
constant � D �.G/ such that for every principal congruence subgroup �.N/ �GZ, every
j � r � 1 and every coefficient field K we have

dimKHj .�.N /;K/� �N .1�ı/ dim G and log jHj .�.N /;Z/torsj � �N
.1�ı/ dim G logN;

(11.1)
where

ı D min
²

dim U
dim G

W U is the unipotent radical of a parabolic subgroup of G
³
:

The lattices �.N/ are non-uniform if and only if the rational rank r of G is positive.
In other words, Theorem 11.1 is empty for uniform lattices. Our theorem vacuously holds
for r D 0 and r D 1.

Remark 11.2. In case GD SLd we have r D d � 1 and dim GD d2 � 1. Any parabolic
subgroup of G is conjugate to a subgroup of block upper triangular matrices, and the
unipotent radical of such is the subgroup where the block diagonal elements are the iden-
tity. It follows that

ı D
d � 1

d2 � 1
D

1

d C 1
:

Since there exists a universal constant C such that

1 >
ŒSLd .Z/ W �.N/�

N d2�1
> C > 0;

Theorem 11.1 implies Theorem B, as well as the congruence case of Theorem C, of the
introduction.

Proof of Theorem 11.1. We first recall the spherical Tits building �Q.G/ associated
with G over Q (see [48, 49]); it is a simplicial set whose non-degenerate simplices are
in bijection with proper rational parabolic subgroups of G. Each proper maximal rational
parabolic subgroup corresponds to a vertex of �Q.G/, and k C 1 proper parabolic sub-
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groups P0; : : : ;Pk are the vertices of a k-simplex if and only if P0 \ � � � \ Pk is a rational
parabolic subgroup, and this simplex corresponds to the parabolic subgroup P0 \ � � � \Pk .

If the rational rank r of G is equal to 1, then �Q.G/ is a countable collection of
points. Otherwise �Q.G/ is a spherical building (see [48, Theorem 5.2]). For any maxi-
mal Q-split torus T, all the rational parabolic subgroups containing T form an apartment
in this building and each of these subcomplexes give a simplicial triangulation of the
sphere of dimension ˛ D r � 1 so that �Q.G/ has the homotopy type of a bouquet of
˛-spheres (Solomon–Tits theorem [45]); in particular, it is .˛ � 1/-connected. We refer to
[18, Section V.5] for this and more about spherical buildings.

The rational points G.Q/ of G act on the set of rational parabolic subgroups by conju-
gation and hence on �Q.G/: for any g 2 G.Q/ and any rational parabolic P, the simplex
associated to P is mapped to the simplex associated to gPg�1. Let � � G.Q/ be an arith-
metic subgroup of G.Q/. Then by reduction theory (see e.g. [42, Theorem 4.15]) there
are only finitely many �-conjugacy classes or rational parabolic subgroups. Therefore,
the quotient �n�Q.G/ is a finite simplicial complex.

From now on we let � D GZ, we fix some principal congruence subgroup �.N/
and let � denote the rational Tits building �Q.G/. Up to replacing � by its barycentric
subdivision we may furthermore assume that for every cell � � � the stabilizer �� acts
trivially on � .

The stabilizer �� of a simplex � � � associated to a rational parabolic subgroup P
contains the intersection PZ of P with GLd .Z/. In particular, �� contains the Z-points
U.Z/ of the unipotent radical U of P as a normal subgroup. The group U.Z/ is finitely
generated, torsion-free, nilpotent and its intersection with the stabilizer �.N/� is equal to

ker.U.Z/! U.Z=NZ//;

which is of index at least N ı dim G in U.Z/. On the other hand, it is well known that

Œ� W �.N/� � O.N dim G/

(see e.g. [7, bottom of p. 3134]). It therefore follows from Theorem 8.1 (with �1 D �.N/)
that there exists a constant c D c.G/ that depends on G but not on �.N/ and a finite CW-
complex †CN such that the following properties hold:

(1) The CW-complex †CN has an ˛-connected universal cover.

(2) In each dimension � ˛, the total number of cells of †CN is bounded by

cN .1�ı/ dim G: (11.2)

(3) In each degree � ˛ C 1 the norm of the boundary operator on the chain complex
C�.†

C

N / is bounded by
cN c : (11.3)

We conclude by applying (9.1) and Proposition 9.1. Let � D c2 log c. Then in each degree
j � ˛ we have both

dimK Hj .�.N /;K/ � �N .1�ı/ dim G and log jHj .�.N //torsj � �N
.1�ı/ dim G logN:
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We used the fact that the stabilizers of cells in the action of � on� have infinite normal
unipotent subgroups. Hence, by Corollary 10.13 they all have the cheap ˛-rebuilding
property, for every ˛. Upon applying Theorem 10.9 to the action of � on the rational Tits
building � we get

Theorem 11.3. Let G be a connected semisimple affine algebraic group defined over Q
equipped with a Z-structure. Let r be the rational rank of G. Then GZ has the cheap
.r � 1/-rebuilding property.

Theorem 10.20 now yields

Theorem 11.4. Let G be a connected semisimple affine algebraic group defined over Q
equipped with a Z-structure. Let r be the rational rank of G. Then for any Farber
sequence .�n/n2N in GZ and any coefficient field K we have

lim
n!1

dimK Hj .�n; K/
Œ� W �n�

D 0 and lim
n!1

log jHj .�n;Z/torsj

ŒGZ W �n�
D 0

for j D 0; : : : ; r � 1.

This implies Theorem A and the first part of Theorem C of the introduction.

12. Application to mapping class groups: Proof of Theorem D

Let S be a closed orientable surface of genus g with b connected boundary components.
We assume that

�.S/ D 2 � 2g � b < 0 and b � 4 if g D 0:

We write MCG .S/ for the mapping class group of S . Let us recall the construction of the
curve complex C.S/.

The complex C.S/ is a combinatorial cell complex whose k-cells consist of collec-
tions of k C 1 simple closed curves on S which are disjoint, essential, and pairwise non-
homotopic, considered up to homotopy. In particular, a 0-dimensional cell corresponds
to the homotopy class of a simple closed curve and top-dimensional cells correspond to
maximal families of pairwise non-homotopic essential closed curves in S . It is equipped
with a cocompact MCG .S/-action.

Under our hypotheses, S admits a hyperbolic structure and the size of any maxi-
mal family of pairwise non-homotopic essential closed curves in S is finite, equal to
3g � 3C b. So the dimension of C.S/ is 3g � 4C b.

Now let F be a finite collection of m closed, disjoint, essential, pairwise non-
homotopic simple closed curves on S . The stabilizer of the homotopy class of F in
MCG .S/, denoted Stab F , fits into a short exact sequence

1! Zm ! Stab F !MCG 0.S n F /! 1;
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where MCG 0.S n F / is the subgroup of those mapping classes in MCG .S n F / that
permute the boundary in such a way that it can still be glued back to obtain F in S (see
e.g. [40, (1)]). The group MCG 0.S n F / has finite index in MCG .S n F /, which is of
class Fk for every k � 0 by [34, Theorem 5.4.A]. Hence the stabilizers Stab F are of
class Fk for every k � 0.

In order to ensure the assumption that the cell stabilizers act freely on them, we con-
sider instead the action of � DMCG .S/ on the barycentric subdivision� of C.S/. Now
the stabilizer of any cell � of � is a finite index subgroup of some Stab F as above.
Therefore �� is of class F˛ for every ˛ � 0 and it has a finite rank normal free abelian
subgroup, so by Corollary 10.13 it has the cheap ˛-rebuilding property for every ˛.

The homotopy type of C.S/ (and therefore that of �) was identified by Harer [32,
Theorem 3.5]; it is homotopy equivalent to a bouquet of spheres of dimension ˛.g; b/
where

˛.g; b/ WD

8̂̂<̂
:̂
2g � 2 if g � 2 and b D 0;

2g � 3C b if g � 1 and b � 1;

b � 4 if g D 0 and b � 4:

Thus, the space � is .˛.g; b/ � 1/-connected. By Theorem 10.9, we obtain

Theorem 12.1. The mapping class group MCG .S/ has the cheap ˛.g; b/-rebuilding
property.

By [34, Theorem 5.4.A], MCG .S/ is of class F˛ for every ˛ � 0. Applying Theo-
rem 10.20 finishes the proof of Theorem D.

Curiously we had a hard time trying to apply our method to Out.Fn/, thus our ques-
tion:

Question 12.2. What is the range of ˛ for which Out.Fn/ has the cheap ˛-rebuilding
property?
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