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The 3-cyclic quantum Weyl algebras, their prime spectra
and a classification of simple modules (q is not a root

of unity)

Volodymyr V. Bavula

Abstract. The 3-cyclic quantum Weyl algebra AD A.˛;ˇ;  Iq2/, where ˛;ˇ; ; q2 2K (a ground
field), is a quadratic Noetherian domain of Gelfand–Kirillov dimension 3 that is generated by three
subalgebras each of them is either a quantum plane or the quantum Weyl algebra. For the algebrasA,
their prime, completely prime, primitive and maximal spectra are described together with contain-
ments of prime ideals (the Zariski–Jacobson topology on the spectrum) and simple A-modules are
classified when q2 is not a root of unity. For each prime ideal, an explicit set of ideal generators is
given. The centre Z.A/ of A is KŒ�� where � is a cubic element. A semisimplicity criterion for
the category of finite dimensional A-modules is given. Criteria are presented for all ideals of the
algebra A to commute and for each ideal of A to be a unique product of primes (up to order).

1. Introduction

In the paper, K is a field, K� D K n ¹0º, N D ¹0; 1; 2; : : :º, NC D ¹1; 2; : : :º and module
means a left module.

The 3-cyclic quantum Weyl algebra A.˛; ˇ; /.

Definition. For ˛;ˇ;  2K, we define the 3-cyclic quantum Weyl algebra AD A.˛;ˇ; /
as an algebra generated by x; y and z subject to the defining relations

xy D q2yx C ˛; (1)

xz D q�2zx C ˇ; (2)

yz D q2zy C : (3)

The family of cyclic quantum Weyl algebras appeared naturally when we tried to clas-
sify Harish-Chandra modules over the quantized Lorentz algebra [11]. The constant q2

rather than q is used in the defining relations of the algebra A in order that the results of
this paper can be applied without change in [11]. The algebras A belong to the class of
bi-quadratic algebras on 3 generators.
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Keywords: prime ideal, primitive ideal, weight module, the generalized Weyl algebra, simple module,
centralizer.



V. V. Bavula 2

The bi-quadratic algebras on 3 generators, [10]. LetK be a field andADKŒx1;x2;x3I
Q;A;B� be a bi-quadratic algebra where Q D .q1; q2; q3/ 2 K�3,

A D

0@a b c

˛ ˇ 

� � �

1A
and B D .b1; b2; b3/ 2 K. So, the algebra A is an algebra that is generated over the field
K by the elements x1; x2 and x3 subject to the defining relations

x2x1 � q1x1x2 D ax1 C bx2 C cx3 C b1;

x3x1 � q2x1x3 D ˛x1 C ˇx2 C x3 C b2;

x3x2 � q3x2x3 D �x1 C �x2 C �x3 C b3:

An explicit description of all the bi-quadratic algebras on 3 generators is obtained
in [10]. There are several dozens of classes.

Examples of bi-quadratic algebras on 3 generators.
(1) The universal enveloping algebra of any 3-dimensional Lie algebra.

(2) The 3-dimensional quantum space A3q1;q2;q3 WD KŒx1; x2; x3IQ;A D 0;B D 0�.

(3) The algebra U 0q.so3/ is generated over the field K by elements I1, I2 and I3
subject to the defining relations

q
1
2 I1I2 � q

� 12 I2I1D I3; q
1
2 I2I3 � q

� 12 I3I2D I1; q
1
2 I3I1 � q

� 12 I1I3D I2;

where q 2 K n ¹0;˙1º, [18, 20].

(4) The Askey–Wilson algebrasAW.3/ introduced by A. Zhedanov, [21]. The algebra
AW.3/ is generated by three elements K0, K1 and K2 subject to the defining
relations

ŒK0; K1�w D K2;

ŒK2; K0�w D BK0 C C1K1 CD1;

ŒK1; K2�w D BK1 C C0K0 CD0;

where B , C0, C1, D0, D1 2 K, ŒL;M�w WD wLM � w
�1ML and w 2 K�.

For a particular choice of the parameters ˛; ˇ and  , Ito, Terwilliger and Weng [19]
showed that the algebra Uq.sl2/ is the localization of the 3-cyclic quantum Weyl algebra
at the powers of x.

The algebra A D KŒx�ŒyI �1; ı1�ŒzI �2; ı2� is an iterated Ore extension. Therefore, the
algebraA is a Noetherian domain of Gelfand–Kirillov dimension 3. The associated graded
algebra grAwith respect to the standard filtration associated with the canonical generators
of the algebra A is the 3-dimensional quantum affine space, i.e.,

grA.˛; ˇ; / ' A.0; 0; 0/:
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Cyclic permutation symmetry and the rank ofA.˛;ˇ;/. Notice that cyclicly permut-
ing the canonical generators x; y and z of the algebra A (i.e., x! y! z! x) we obtain
the 3-cyclic quantum Weyl algebra but for a different choice of the defining parameters.
In more detail, let A.x; y; zI˛; ˇ; / D A.˛; ˇ; /; then

A.x; y; zI˛; ˇ; / D A.z; x; yI q2ˇ; q�2; ˛/:

So, we say that the class of 3-cyclic quantum Weyl algebras admits the cyclic permutation
symmetry. The rank rk.A/ of the algebra A.˛; ˇ; / is the number of nonzero parameters
in the set ¹˛; ˇ; º. The rank of the algebra is invariant under the cyclic permutation
symmetry. The cyclic permutation symmetry does not change the algebra but the way it
is parametrized. So, in order to study the algebras A.˛; ˇ; / it suffices to consider four
cases where rk.A/D 0;1; 2 and 3. Namely,A.0;0; 0/;A.˛;0; 0/;A.˛;ˇ;0/ andA.˛;ˇ;/
where ˛; ˇ;  2 K�.

Isomorphism criterion for the algebras A.˛; ˇ; /. Theorem 1.1 is a criterion for two
algebras A.˛; ˇ; / and A.˛0; ˇ0;  0/ to be isomorphic.

Theorem 1.1. Suppose the field K is not necessarily algebraically closed but is closed
under taking square roots (

p
K � K) and q2 is not a root of unity. Then two 3-cyclic

quantum Weyl algebras are isomorphic iff they have the same rank.

The aim of the paper. The aim of the paper is to give explicit descriptions of prime,
completely prime, primitive and maximal ideals, to classify simple modules and ideals of
the algebra A D A.˛; ˇ; / when q2 is not a root of unity, and to obtain corollaries of the
classification results. In [12], the root of unity case is considered.

The class of algebras A.˛; ˇ; / comprises different types of algebras. Properties of
the algebras depend on the rank rk.A/ and on the characteristic of K. Each type of algebras
requires somewhat different approaches to achieve the aim of the paper. Because of that
and for simplicity reason we assume that the field K is an algebraically closed field. Using
the same approach the interested reader may repeat arguments of this paper and obtain
similar results with obvious modifications for an arbitrary field (but the paper will be
more technical).

Since the opposite algebra Aop of the algebra A.˛; ˇ; / is an algebra of the type
A.˛0; ˇ0;  0/ and rk.Aop/ D rk.A/, a classification of simple right A-modules is automat-
ically obtained from a classification of simple left A.˛0; ˇ0;  0/-modules, and vice versa.
In this paper, we deal with left modules.

In this paper, q2 is not a root of unity (unless it is stated otherwise). The root of unity
case is considered in [12].

The centre of the algebra A. The centre Z.A/ of the algebra A is a polynomial algebra
KŒ�� where

� D yxz C
q�2

q2 � 1
x �

q2ˇ

q2 � 1
y C

˛

q2 � 1
z;

see Theorem 2.3.
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Theorem 1.2. Every nonzero ideal of the algebra A.˛; ˇ; / meets the centre.

Classifications of prime ideals and simpleA.˛;ˇ;/-modules. For a noncommutative
infinite dimensional algebra A, classifications of its simple modules (up to isomorphism)
yA and prime ideals Spec.A/ are very difficult problems (considered by many as intract-

able). Another difficult problem is to describe the Zariski–Jacobson topology on Spec.A/,
i.e., the complete containment information between prime ideals. The first two problems
are linked via the map

yA! Spec.A/; ŒM � 7! annA.M/:

The image Prim.A/ of this map, the set of primitive ideals, is far from being Spec.A/.
Typically, the set yA is much more massive than Prim.A/, e.g., if A is a simple algebra
(e.g., ADA1DKhx;@ j @x � x@D 1i is the first Weyl algebra over a field of characteristic
zero), then Prim.A/ D Spec.A/ D ¹0º but the set yA is huge. A typical situation is that
for arbitrary large number of independent parameters one can construct a family of simple
infinite dimensional modules that depends on this parameters and different choices of
values of the parameters give non-isomorphic modules. In the introduction to his book
“Enveloping Algebra” [17], Dixmier writes: “But a deeper study reveals the existence of
an enormous number of irreducible representations of [Heisenberg Lie algebra]. It seems
that these representations defy classification. A similar phenomenon exist for g D sl.2/,
and most certainly for all non-commutative Lie algebras.”

In 1981, Block classified simple modules over the first Weyl algebra A1 and sl2 over
the field of complex numbers C [16]. In his book “Enveloping Algebra”, Dixmier writes:
“Even if yA is very large, Prim.A/ can be of reasonable size. N. Jacobson has equipped it
with a topology and termed it the structural space of A.”

Let D be a (commutative) Dedekind domain, � be its automorphism and ı be a � -
derivation of D (that is, ı.d1d2/ D ı.d1/d2 C �.d1/ı.d2/ for all elements d1; d2 2 D).
LetDŒxI�; ı� be a skew polynomial ring, it is a ring which is generated by the ringD and
x subject to the defining relations xd D �.d/x C ı.d/ for all d 2 D. In [4], the simple
modules of the ring DŒxI �; ı� are classified. In [2, 7], simple modules over generalized
Weyl algebras DŒX; Y I �; a� are classified, see also [3, 6, 15]. In [14], simple modules of
generalized cross products with coefficients from D are classified.

One of the key points in obtaining a classification of simple A-modules is to use (not
in a straightforward way) a classification of simple modules of some explicit generalized
Weyl algebras A D DŒx; yI �; a� and skew polynomial ring B D DŒxI �; ı� where D is a
Dedekind domain (in this paper, D D KŒz� or D D KŒz; z�1�), � is an automorphism of
D and ı is a � -derivation of D.

The paper has the following structure. In Sections 2 and 3, general properties of the
algebras A.˛; ˇ; / are considered and results are given that are used in classifications
of prime ideals and simple A-modules. In Section 5, we first classify the sets of prime,
completely prime, primitive and maximal ideals of the algebra A.˛; 0; 0/ (Theorem 5.2
and Corollary 5.3) where ˛ ¤ 0. Then using an explicit description of primitive ideals of
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the algebra A.˛; 0; 0/, for each primitive ideal p of A, simple A=p-modules are classified
(Theorem 5.4).

For the algebra A D A.˛; ˇ; / where ˛ ¤ 0 and ˇ ¤ 0, the opposite approach is
used. First, we classify simple modules and then prime, completely prime, primitive and
maximal ideals are classified.

Let us explain our approach in classification of simple A-modules. The set yA of iso-
morphism classes of simple A-modules is a disjoint union

yA D
G
!2K

1xA.!/ where xA.!/ D A=.� � !/;

see (17), where K is an algebraically closed field. For each ! 2 K, the set 1xA.!/ is a
disjoint union of the three sets (see, (21))

1xA.!/ D1xA.!/ .z-torsion/ t1xA.!/ .z-torsionfree, KŒz�-torsion/

t
1xA.!/ .KŒz�-torsionfree/:

In Section 6, each of the three subsets above are described. The descriptions are too tech-
nical to present in the introduction.

An ideal p of an algebra R is called a completely prime ideal of R if the factor algebra
R=p is a domain. Each completely prime ideal is a prime ideal but not vice versa, in
general. The set of completely prime ideals of R is denoted by Specc.R/. An ideal of an
algebraR is called a primitive ideal ofR if it is the annihilator ideal of a simpleR-module.
Each primitive ideal is a prime ideal but not vice versa, in general. The set of primitive
ideals of R is denoted by Prim.R/.

In Section 7, prime, completely prime, primitive and maximal ideals are described for
the algebra A.˛; ˇ; / in the cases where ˛ ¤ 0, ˇ ¤ 0,  D 0 and ˛ ¤ 0, ˇ ¤ 0 and
 ¤ 0, respectively. When  ¤ 0, there are two cases: char.K/ ¤ 2 and char.K/ D 2.

For example, the prime spectrum of the algebra A D A.˛; ˇ; / (where ˛; ˇ;  2 K�

and char.K/ ¤ 2) is described by the diagram below (Theorem 7.4),

Spec.A/ D ¹0; .� � !/ j ! 2 Kº t ¹a˙i j i > 1º;

aC1 aCia�1a�i

.� � !C1 /
. . . .� � !Ci / . . ..� � !�1 /. . ..� � !�i /

. . . ¹.� � !/ j ! 2 K n Lº

0

where i > 1, L WD ¹!˙i j i > 1º and !˙i WD ˙
1Cq2i

q2�1

�
˛ˇ

.q2�1/q2i

� 1
2 (all numbers in L are

distinct, Lemma 6.7 (3)), and
b

a
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means a ¨ b, if two ideals are not connected by a path of lines then they are incomparable
(a 6� b and b 6� a).

If  ¤ 0 and char.K/ D 2, the prime spectrum of the algebra A (where ˛; ˇ;  2 K�)
is described by the diagram below (Theorem 7.6),

Spec.A/ D ¹0; .� � !/ j ! 2 Kº t ¹ai j i > 1º;

a1 ai

.� � !1/ . . . .� � !i / . . .¹.� � !/ j ! 2 K n Lº

0

where i > 1, L WD ¹!i j i > 1º and !i WD 1Cq2i

q2�1

�
˛ˇ

.q2�1/q2i

� 1
2 where the numbers !i are

all distinct (Lemma 6.7 (3)).

Commutativity of ideals and every ideal is a unique product of prime ideals. For
an algebra A, we say that ideals commute if IJ D JI for all ideals I and J of A. In [9,
Section 4], it was shown that ideals ofU.sl2/ commute and every ideal is a unique product
of prime ideals (with multiplicity and up to permutation). For the algebrasADA.˛;ˇ;/,
Theorem 1.3 is a criterion of ideals to commute and for each ideal of A to be a unique
product of prime ideals.

Theorem 1.3. Suppose that K is an algebraically closed field and q2 is not a root of
unity. Then ideals of the algebra A D A.˛; ˇ; / commute iff rk.A/ D 2; 3. Furthermore,
if rk.A/ D 2; 3 then each ideal of A is a unique product of prime ideals (see Theorem 7.1
and Theorem 1.4, for details).

Theorem 1.4 shows that every ideal of the algebra xA.˛; ˇ; / where ˛; ˇ 2 K�, is a
unique product of primes.

Theorem 1.4. Suppose that K is an algebraically closed field and q2 is not a root of unity.
Let A D A.˛; ˇ; / where ˛ ¤ 0 and ˇ ¤ 0. Then:

(1) the ideals of the algebra A commute and each ideal of A is a unique product (up
to order) of prime ideals (see statements (2) and (3)).

(2) If  ¤ 0 and char.K/¤ 2 then every nonzero ideal I of A is a unique product (up
to order) of prime ideals,

I D
Y
!2K

.� � !/n.!/ �
Y
i>1

.aCi /
ni �

Y
j>1

.a�j /
mj ;

where n.!/ 2 N, ni ; mj 2 ¹0; 1º and all but finitely many numbers n.!/; ni and
mj are equal to zero.
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(3) If  ¤ 0 and char.K/D 2 then every nonzero ideal I of A is a unique product (up
to order) of prime ideals

I D
Y
!2K

.� � !/n.!/ �
Y
i>1

anii

where n.!/ 2 N, ni 2 ¹0; 1º and all but finitely many numbers n.!/ and ni are
equal to zero.

As an application of Theorem 1.4, we show that ideals of Uq.sl2/ commute and each
ideal is a unique product of primes, Theorem 8.1.

Semisimplicity of the category of finite dimensional modules. We say that a category
of finite dimensional A-modules is semisimple if every nonzero finite dimensional A-
module is a direct sum of simple finite dimensional A-modules. For example, the category
of finite dimensional U.sl2/-modules and Uq.sl2/-modules are semisimple. Theorem 1.5
is a semisimplicity criterion of the category of finite dimensional A.˛; ˇ; /-modules.

Theorem 1.5. Suppose that K is an algebraically closed field, q2 is not a root of unity
and A D A.˛; ˇ; /. Then the category of finite dimensional A-modules is semisimple iff
rk.A/ D 3.

Theorem 1.6 is a criterion for the algebra A.˛; ˇ; / to have only infinite dimensional
modules apart from the zero module.

Theorem 1.6. Suppose that K is an algebraically closed field, q2 is not a root of unity
and A D A.˛; ˇ; /. Then all nonzero A-modules are infinite dimensional iff rk.A/ D 2.

Classification of simple finite dimensional A.˛; ˇ; /-modules. In each of the four
cases, rk.A/ D 0; 1; 2 and 3, simple finite dimensional A-modules are classified (Corol-
lary 4.4, Corollary 5.5, Corollary 6.6, Corollary 6.9 and Corollary 6.11).

In particular, suppose that AD A.˛;ˇ; / where ˛;ˇ;  2K�. If char.K/¤ 2 then for
each natural number i D 1; 2; : : : there are only two (non-isomorphic) simple A-modules
of dimension i (namely, L.!Ci / and L.!�i /, Theorem 6.8 (2)). If char.K/ D 2, then for
each natural number i D 1; 2; : : : there is only one simple A-module of dimension i
(namely, L.!i /, Theorem 6.10 (2)).

Criterion for all prime ideals of the algebraA.˛;ˇ;/ to be completely prime ideals.
Theorem 1.7 is such a criterion.

Theorem 1.7. Suppose that K is an algebraically closed field and q2 is not a root of unity.
Then all prime ideals of the algebra AD A.˛;ˇ; / are completely prime iff rk.A/D 0; 1
or 2.

Theorem 1.8 shows that all prime ideals that are induced from the centre of the algebra
A.˛; ˇ; / are completely prime.
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Theorem 1.8. Suppose that K is an algebraically closed field and q2 is not a root of unity.
Then for all ˛; ˇ; ; ! 2 K, the ideal .� � !/ of the algebra A.˛; ˇ; / is a completely
prime ideal.

In Section 8, applications of the classificational results obtained in the previous sec-
tions are given. In particular, the above theorems are proved.

2. The 3-cyclic quantum Weyl algebra and its centre

The aim of the section is to prove Theorem 2.3 about the centre of the algebra A. Some
algebras that are related toA are introduced and studied. They are examples of generalized
Weyl algebras. These algebras are used in finding the prime spectrum of the algebra A and
classifying simple A-modules.

The algebra A1 D Khx; @ j @x � x@ D 1i is called the Weyl algebra. The algebra
An WD A

˝n
1 is called the n-th Weyl algebra. If char.K/ D 0 then the Weyl algebra is the

ring of polynomial differential operators.AnDKhx1; : : : ;xn; @1; : : : ; @niwhere @i WD @
@xi

.

The central element� of A. It is easy to check that the element

� D yxz C
q�2

q2 � 1
x �

q2ˇ

q2 � 1
y C

˛

q2 � 1
z (4)

belongs to the centre of the algebraA. In fact, if q2 is not a root of unity thenZ.A/DKŒ��
(Theorem 2.3). The element � can be written in the form

� D dz C l where d WD yx C
˛

q2 � 1
and l WD

q�2

q2 � 1
x �

q2ˇ

q2 � 1
y: (5)

The element d satisfies the following relations

xd D q2dx; yd D q�2dy; dz D zd C q�2x C ˇy: (6)

For all n > 1,

�n D �ny
nxnzn C � � � where �n D .q2/

n.n�1/
2 (7)

and the three dots mean smaller terms (with respect to the standard filtration on A) of total
degree < 3 where deg.x/ D deg.y/ D deg.z/ D 1. Indeed,

�n D .dz/n C � � � D dnzn C � � � .since dz D zd C � � � /

D .q2/1C2C���Cn�1ynxnzn C � � � .by (1)/

D �ny
nxnzn C � � � :

Proposition 2.1. (1) The multiplicative set S D¹xid j q2k j i; j 2N;k 2Zº is an Ore
set of A and Ax;d WD S�1A D KŒ��˝ B is a tensor product of algebras where
B D KŒd˙1�Œx˙1I �� is a Noetherian domain of Gelfand–Kirillov dimension 2
and �.d/ D q2d .

(2) The algebra B is a central simple algebra.
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Proof. (1) By (5), the multiplicative set S is an Ore set of A. Using (5), the elements y
and z can be “replaced” by the elements d and �, respectively, and the equality Ax;d D
KŒ��˝ B follows from the presentation of the algebra A as an iterated Ore extension. It
is obvious that B is a Noetherian domain of Gelfand–Kirillov dimension 2.

(2) Since q2 is not a root of 1, the algebra B is central and simple.

Definition (Generalized Weyl algebra, [5–7]). Let D be a ring, � be an automorphism of
D and a is an element of the centre of D. The generalized Weyl algebra A WD D.�; a/ WD
DŒX; Y I �; a� is a ring generated by D, X and Y subject to the defining relations

X˛ D �.˛/X and Y˛ D ��1.˛/Y for all ˛ 2 D; YX D a and XY D �.a/:

The algebra A D
L
n2ZAn is Z-graded where An DDvn, vn D Xn for n > 0, vn D Y �n

for n < 0 and v0 D 1. It follows from the above relations that vnvm D .n; m/vnCm D

vnCmhn;mi for some .n;m/ 2 D. If n > 0 and m > 0 then

n � m W .n;�m/ D �n.a/ � � � �n�mC1.a/; .�n;m/ D ��nC1.a/ � � � ��nCm.a/;

n � m W .n;�m/ D �n.a/ � � � �.a/; .�n;m/ D ��nC1.a/ � � � a;

in other cases .n;m/ D 1. Clearly, hn;mi D ��n�m..n;m//.

The generalized Weyl algebra A and its centre. Let A be the subalgebra ofA generated
by the elements e; f; z and � where

e WD xz �
q2ˇ

q2 � 1
and f WD yz C



q2 � 1
: (8)

Let � be the automorphism of the polynomial algebra D D KŒz; �� given by the rule
�.z/ D q�2z and �.�/ D �. The elements e; f; z and � satisfy the following relations:

eu D �.u/e; f u D ��1.u/f for all u 2 D;

fe D a; and ef D �.a/; (9)

where a D � q2˛

q2�1
z2 C q2�z � q2ˇ

.q2�1/2
. In more detail,

fe D

�
yz C



q2 � 1

��
xz �

q2ˇ

q2 � 1

�
D q2zyxz C

q2

q2 � 1
xz �

q2ˇ

q2 � 1
yz �

q2ˇ

.q2 � 1/2

D q2z

�
� �

q�2

q2 � 1
x C

q2ˇ

q2 � 1
y �

˛

q2 � 1
z

�
C

q2

q2 � 1
xz �

q2ˇ

q2 � 1
yz �

q2ˇ

.q2 � 1/2

D �
q2˛

q2 � 1
z2 C q2�z �

q2ˇ

.q2 � 1/2
D a;
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ef D

�
xz �

q2ˇ

q2 � 1

��
yz C



q2 � 1

�
D zyxz C q�2˛z2 �

ˇ

q2 � 1
yz C



q2 � 1
xz �

q2ˇ

.q2 � 1/2

D z

�
� �

q�2

q2 � 1
x C

q2ˇ

q2 � 1
y �

˛

q2 � 1
z

�
C q�2˛z2 �

ˇ

q2 � 1
yz C



q2 � 1
xz �

q2ˇ

.q2 � 1/2

D �
q�2˛

q2 � 1
z2 C�z �

q2ˇ

.q2 � 1/2
D �.a/:

Let R be a ring and s 2 R. Suppose that the set S D ¹si j i > 0º is a left denominator
set in R. Then Rs WD S�1R D ¹s�ir j r 2 R; i > 0º is the localization of R at S , i.e., the
localization of R at the powers of the element s.

The next proposition shows that the algebra A is a GWA such that A� A�Az D Az ,
it also shows that the centres of the algebras A; A and Az are a polynomial algebra KŒ��.

Proposition 2.2. (1) The algebra A D DŒe; f I �; a� is the GWA where D D KŒz;��
is a polynomial algebra, �.z/ D q�2z, �.�/ D � and a D � q2˛

q2�1
z2 C q2�z �

q2ˇ

.q2�1/2
.

(2) A � A � Az D Az where Az D Dz Œe; f I �; a� is a GWA and the subscript “z”
means the localization of an algebra at the Ore set ¹zi j i 2 Nº.

(3) Z.A/ D Z.Az/ D Z.Az/ D KŒ��.

Proof. (1) Let A0 D DŒe; f I �; a� be the GWA in statement (1). By (9), the algebra A is a
factor algebra of the GWA A0. In fact, the canonical epimorphism A0!A, e 7! e, f 7! f ,
z 7! z, � 7! � is an isomorphism since the K-basis of the GWA A0, ¹zi�j ; zi�j ek ;
zi�jf k j i; j 2N; k > 1º, is mapped by the canonical epimorphism to a set of K-linearly
independent elements. This follows from the fact that ¹xiyj zk j i; j; k 2 Nº is a K-basis
of A and explicit expressions for the leading terms of the images of the elements of the
basis of the GWA A0.

(2) Statement (2) follows from statement (1) and (8).
(3) Since q2 is not a root of 1, then KŒ�� � Z.A/ � Z.Az/D KŒ�� (the last equality

is due to the fact that q2 is not a root of unity).

Suppose that ˛ ¤ 0. Then the algebra A D Khx; y j xy D q2yx C ˛i is isomorphic
to the quantum Weyl algebra (by replacing x by ˛�1x). By (6),

A D KŒd �Œx; yI �; a WD d � ˛0� (10)

is a GWA where �.d/ D q2d and ˛0 D ˛
q2�1

(see the definition of d in (5)).
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Recall that a D a2z2 C a1z C a0 2 KŒz� (Proposition 2.2) where

a2 D �
q2˛

q2 � 1
; a1 D q

2�; and a0 D �
q2ˇ

.q2 � 1/2
: (11)

Theorem 2.3 describes the centre Z.A/ of the algebra A.˛; ˇ; /.

Theorem 2.3. Let A D A.˛; ˇ; /. Then Z.A/ D KŒ��.

Proof. We use notation and results of Proposition 2.1. Since q2 is not a root of 1, KŒ�� �
Z.A/ � Z.Ax;d / D KŒ��˝Z.B/ D KŒ��˝K D KŒ��, and so Z.A/ D KŒ��.

Lemma 2.4. The algebra A is a free KŒ��-module and the set of elements ¹xiyj zk j
.i; j; k/ 2 N3 nN3

Cº is a free basis for the KŒ��-module A.

Proof. The statement follows from the fact that xyz is the leading term of the element
� (see (4)) with respect to the standard filtration associated with the canonical generators
x; y and z of the algebra A.

3. Prime ideals of the algebra A

In this section, we explain key ideas and an approach to classification of prime ideals and
simple modules for the algebra A. Briefly, using various localizations of the algebra A
we split the sets of prime ideals and simple modules into natural subclasses and then we
describe elements in each class (using different techniques).

The prime ideals of A and their partition. For an algebra R, let Spec.R/ be the set
of its prime ideals. The set .Spec.R/;�/ is a partially ordered set (poset) with respect
to inclusion of prime ideals. Each element r 2 R determines two maps from R to R,
r � W x 7! rx and � r W x 7! xr where x 2 R.

A non-empty subset S of R is called a multiplicative set if SS � S and 0 … S . A
multiplicative set S is called a left Ore set if Sr \Rs ¤ ; for all r 2 R and s 2 S (the left
Ore condition). A left Ore set S is called a left denominator set if rs D 0 for some r 2 R
and s 2 S then s0r D 0 for some s0 2 S . If S is a left denominator set of R then the ring
of the left fraction S�1R D ¹s�1r j s 2 S; r 2 Rº is called the left localization of R at S .
An element r 2 R is called a normal element of R if Rr D rR.

Proposition 3.1 ([13]). Let R be a Noetherian ring and s be an element of R such that
�s WD ¹s

i j i 2 Nº is a left denominator set of the ring R and .si / D .s/i for all i > 1

(e.g., s is a normal element such that ker.�sR/ � ker.sR�/). Then Spec.R/D Spec.R; s/t
Specs.R/ where Spec.R; s/ WD ¹p 2 Spec.R/ j s 2 pº, Specs.R/D ¹q 2 Spec.R/ j s … qº

and

(a) the map Spec.R; s/! Spec.R=.s//, p 7! p=.s/, is a bijection with the inverse
q 7! ��1.q/ where � W R! R=.s/, r 7! r C .s/,
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(b) the map Specs.R/! Spec.Rs/, p 7! ��1s p, is a bijection with the inverse q 7!

��1.q/ where � W R! Rs WD ��1s R, r 7! r
1

.

(c) For all p 2 Spec.R; s/ and q 2 Specs.R/;p 6� q.

In this paper, we identify the sets in the statements (a) and (b) via the bijections given
there.

Lemma 3.2. Let t 2 ¹x;y; zº. Then .t i /D .t/i inA for all i > 1. Furthermore, if .˛;ˇ/¤
.0; 0/ then .xi / D A for all i > 1; if .˛; / ¤ .0; 0/ then .yi / D A for all i > 1; if
.ˇ; / ¤ .0; 0/ then .zi / D A for all i > 1.

Proof. In view of the cyclic permutation symmetry, we may assume that t D z. If .ˇ;/D
.0; 0/ then the element z is a normal element of A, and so .zi / D .z/i for all i > 1. If
.ˇ; / ¤ .0; 0/, say ˇ ¤ 0, then it follows from the equalities

xzi D q�2izix C
1 � q�2i

1 � q�2
ˇzi�1; i > 1; (12)

and the induction on i that .zi / D A for all i > 1. Then clearly .z/i D A for all i > 1.

Lemma 3.3. Let A D A.˛; ˇ; / where ˛ ¤ 0 and S D KŒ�� n ¹0º. Then the algebra
S�1Az DK.�/Œz˙1�Œe;f I�;a� is a simple GWA where � and a are as in Proposition 2.2.

Proof. By Proposition 2.2, the algebra S�1Az is the GWA as in the lemma. To prove
simplicity of the algebra S�1Az we check that the conditions for simplicity of a GWA
given in [1, Theorem 4.2] are satisfied: the element a and �.a/ are regular (since ˛ ¤
0), the algebra D D K.�/Œz˙1� has no proper � -invariant ideals (since q2 is not a root
of unity), the automorphisms ¹� i j i > 1º are not inner automorphisms (since D is a
commutative algebra), finally we have to verify that DaCD� i .a/ D D for all i > 1.

Since ˛ ¤ 0, the ideals Da and D� i .a/ are distinct for each i > 1. To prove the
statement it suffices to show that Da is a maximal ideal, i.e., the Laurent polynomial
a 2K.�/Œz˙1� is irreducible. If ˇ D 0 then a D z.� q2˛

q2�1
z C q2�/ is irreducible (since

z is a unit ofD). If ˇ ¤ 0 and  ¤ 0 the polynomial (in z) a is irreducible since otherwise
it would have a nonzero root p

q
2 K.�/ (since ˇ ¤ 0) where p and q are co-prime

polynomials in KŒ��. The fact that p
q

is a root of a can be written as p
q
.p
q
C ��/ D �

where �; � 2 K�. Then p 2 K� since otherwise taking the value of the equality above at
a root of p we would have 0 D � ¤ 0, a contradiction. The equality above can be written
as p.p C ��q/ D �q2. Then deg�.q/ D 1 and taking the equality modulo q we get
p2 � 0 .mod q/, a contradiction. The proof of the lemma is complete.

By Lemma 3.2, .zi / D .z/i for all i > 1. Then, by Proposition 3.1,

Spec.A/ D Spec.A=.z// t Spec.Az/ (13)

and p 6� q for all prime ideals p 2 Spec.A=.z// and q 2 Spec.Az/.
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Since the algebra S�1Az is simple (Lemma 3.3) and the field K is an algebraically
closed field, every nonzero prime ideal of the algebra Az contains an element � � ! for
a unique ! 2 K (since if ! ¤ !0 then .� � !/C .� � !0/ D .1/). Therefore,

Spec.Az/ D ¹0º t
G
!2K

Spec.Az=.� � !// (14)

and prime ideals from distinct components in (14) are not comparable (neither p � q nor
p � q).

The factor algebras xA.˛; ˇ; I !/. Given ! 2 K, consider the factor algebra xA D
xA.!/ D xA.˛; ˇ;  I!/ D A=.� � !/.

Lemma 3.4. The set ¹xiyj zk j .i; j; k/ 2 N3 n N3
Cº is a K-basis for the algebra

xA.˛; ˇ;  I!/ where NC WD ¹1; 2; : : :º.

Proof. The statement follows from the fact that xyz is the leading term of � with respect
to the standard filtration associated with the canonical generators x; y and z of the alge-
bra A.

By Proposition 2.2, the factor algebra

xAz WD xAz.!/ WD xAz.˛; ˇ;  I!/ WD Az=.� � !/ D KŒz˙1�Œe; f I �; a! � (15)

is a GWA where �.z/ D q�2z and a! D � q2˛

q2�1
z2 C q2!z � q2ˇ

.q2�1/2
. Since ˛ ¤ 0, the

algebra xAz is a Noetherian domain of Gelfand–Kirillov dimension 2.
Consider the algebra ƒ.�; �/ WD KhX; Y j XY D �YX C �i where �; � 2 K and

� ¤ 0. Then for all i > 1,

XY i D �iY iX C .1C �C � � � C �i�1/�Y i�1 C � � � (16)

where the three dots mean a polynomial in KŒy� of degree< i � 1 (use the induction on i ).
An element r of a ring R is called a regular element if the element r is neither left nor
right zero divisor. The set of all regular elements of the ring R is denoted by CR.

Proposition 3.5. Let A D A.˛; ˇ; / where ˛ ¤ 0 and ˇ ¤ 0. Then:

(1) for all ! 2 K, the element z is a regular non-unit in A=.� � !/;

(2) for all ! 2 K, the A-module V.!/ WD A=A.� � !; z/ '
L
i>0 Kxi N1 is simple

and z-torsion where N1 D 1C A.� � !; z/.

Proof. (1) Let xA D A=.� � !/.
(i) The map � z W xA! xA, u 7! uz is an injection but not a bijection. Let AD Khx; y j

xy D q2yx C ˛i, the quantum Weyl algebra (since q2 is not a root of unity and ˛ ¤ 0).
Then, by Lemma 3.4,

xA D KŒz�˚ Vyz ˚ Vxz ˚Ad
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where Vyz D
L
i;j>0 KyiC1zj and Vxz D

L
i;j>0 KxiC1zj . Clearly, the maps � z W Vyz

! Vyz , v 7! vz; � z W Vxz ! Vxz , v 7! vz and � z W Ad ! A, ud 7! udz D u.! � l/

(since dz D � � l � ! � l .mod .� � !//) are injections (the last one is an injection
since ˇ ¤ 0). Since

xAz D KŒz�z ˚ Vyzz ˚ Vxzz ˚A.! � l/;

the map � z W xA! xA, u 7! uz is an injection. The map � z is not a bijection since

V.!/ D xA= xAz ' A=A.! � l/ '
M
i>0

Kxi N1 'KŒx� KŒx�

since l D q�2˛

q2�1
x � q2ˇ

q2�1
y ¤ 0 (as ˇ ¤ 0) where N1 D 1C xAz.

(ii) The map z� W xA! xA; u 7! zu is an injection but not a bijection: Since the opposite
algebra Aop D A.˛0; ˇ0;  0/q�2 to A is the 3-cyclic quantum Weyl algebra with ˛0 ¤ 0 and
ˇ0 ¤ 0 (since ˛ ¤ 0 and ˇ ¤ 0), the map z � is an injection, by the statement (i).

(2) The set Sz D ¹zi j i > 0º is an Ore set of the algebra xA.!/ that consists of regular
elements of xA.!/, by statement (1). Therefore, the set Sz is a denominator set of xA.!/
and the xA.!/-module V.!/ is a z-torsion one, i.e., Sz-torsion. In particular, the A-module
V.!/ is a z-torsion one. To finish the proof of statement (2), it suffices to show that the xA-
module V D V.!/ is simple. Notice that KŒx�V 'KŒx�. Let U be a nonzero submodule of
V such that U ¤ V , we seek a contradiction. Then U D pKŒx�N1 for a unique polynomial
p D xn C �xn�1 C � � � 2 KŒx� of degree n > 1. Recall that zx D q2xz � q2ˇ. By (16),

U 3 zp N1 D z.xn C �xn�1 C � � � /N1

D
�
q2nxnz � .1C q2 C � � � C q2.n�1//q2ˇxn�1 C �q2.n�1/xn�1z C � � �

�
N1

D

�
�
q2n � 1

q2 � 1
q2ˇxn�1 C � � �

�
N1:

This contradicts to the choice of p as the degree of the nonzero polynomial in the bracket
above is n � 1 < n D deg.p/, since q2 is not a root of unity.

Lemma 3.6. Let AD A.˛;ˇ; / where ˛ ¤ 0 and ˇ ¤ 0. Then, for each ! 2K, the ideal
of A, .� � !/ D A \ .� � !/Az , is a completely prime ideal.

Proof. Since ˛ ¤ 0, the algebra xAz ' Az=Az.� � !/ is a Noetherian domain, see (15).
Hence, the ideal A\ .�� !/Az of A is a completely prime ideal. By Proposition 3.5 (1),
.� � !/ D A \ .� � !/Az .

Simple A-modules and their partition. If K is an algebraically closed field then

yA D
G
!2K

1xA.!/: (17)



The 3-cyclic quantum Weyl algebras 15

For each ! 2 K,

1xA.!/ D1xA.!/ .z-torsion/ t1xA.!/ .z-torsionfree/ (18)

where a simple A-module M belongs to the first (resp., second) set if S�1z M D 0 (resp.,
S�1z M ¤ 0) and the module M is called z-torsion (resp., z-torsionfree).

The set S D KŒz� n ¹0º is a (left and right) Ore set of the algebra xA.!/ and xA.!/z
which are domains. The localization

B D B.!/ WD S�1 xA.!/ ' S�1 xA.!/z D K.z/Œe; e�1I �� D
M
i2Z

K.z/ei (19)

is a skew Laurent polynomial algebra and xA.!/ � B . The algebra B is a (left and right)

principle ideal domain. The set 1xA.!/ of isomorphism classes of simple xA.!/-modules is
a disjoint union

1A.!/ D1A.!/ .KŒz�-torsion/ t1A.!/ .KŒz�-torsionfree/ (20)

where 1A.!/.KŒz�-torsion/ WD ¹ŒM �21A.!/ j S�1M D 0º and 1A.!/.KŒz�-torsionfree/ WD
¹ŒM � 21A.!/ j S�1M ¤ 0º. A simple module from the first (resp., second) set is called
KŒz�-torsion or S -torsion (resp., KŒz�-torsionfree or S -torsionfree).

It follows from (18) and (20) that

1xA.!/ D1xA.!/.z-torsion/ t1xA.!/.z-torsionfree;KŒz�-torsion/ t1xA.!/.KŒz�-torsionfree/:
(21)

4. Classification of prime ideals and simple modules for the algebra
A.0; 0; 0/

In this section, K is an algebraically closed field and A D A.0; 0; 0/. For the algebra A,
the prime, completely prime, primitive and maximal ideals are classified (Theorem 4.1
and Corollary 4.2). Furthermore, the simple A-modules are classified (Theorem 4.3).

Suppose for a moment that the elements ˛, ˇ and  are arbitrary. Then by (1), (2) and
(3), the factor algebra ƒ WD ƒ.˛; ˇ; / WD A=.z/ is equal to

ƒ.˛; ˇ; / D

´
Khx; y j xy D q2yx C ˛i; if .ˇ; / D .0; 0/;

0; otherwise.

If ˛ D ˇ D  D 0 then the algebra ƒ.0; 0; 0/ D Khx; y j xy D q2yxi is the, so-called,
quantum plane and its prime spectrum is well known.
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Specƒ.0; 0; 0/:

¹.y; x � �/ j � 2 K�º.¹.x; y � �/ j � 2 K�º .x; y/

.y/.x/

0 (22)

If ˛¤ 0 then the algebraƒ.˛;0;0/DKhx;y j xyD q2yxC ˛i, is the, so-called, quantum
Weyl algebra. Its prime spectrum is also well known.

Specƒ.˛; 0; 0/:

¹.d; x � �/ j � 2 K�º

.d/

0 (23)

where d D yx � ˛
1�q2

.

The set SpecA.0; 0; 0/. The next theorem is a description of prime ideals for the algebra
A.0; 0; 0/.

Theorem 4.1. Suppose that the field K is an algebraically closed field. Then the spectrum
of the algebra A.0; 0; 0/ is given below together with all possible containments of prime
ideals where � D yxz,

¹.x � �; y; z/ j � 2 K�º¹.x; y � �; z/ j � 2 K�º.x; y; z/¹.x; y; z � �/ j � 2 K�º

.y; z/.x; z/.x; y/

¹.� � !/ j ! 2 K�º..z/.y/.x/

0

(24)

Proof. LetADA.0;0;0/. Recall thatZ.A/DKŒ��where�D yxz (Proposition 2.2 (3),
since q2 is not a root of unity). The elements x; y; z 2 A are normal and d D yx. Let
S D ¹�i j i > 0º. By Proposition 2.1 (1), the algebra S�1A ' S�1Ax;d D KŒ�˙1�˝B
where the algebra B is a central simple Noetherian algebra, and so every nonzero prime
ideal of A that does not contain � contains an element �� ! for a unique ! 2 K� (since
K is an algebraically closed field). Since ! ¤ 0, yxz D ! in xA.!/, and so the normal
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elements x; y and z are units in xA.!/. So, the algebra

xA.!/ '
S�1A

S�1A
�
� � !

� ' KŒ�˙1�

.� � !/
˝ B ' B

' Khx˙1; y˙1 j xy D q2yxi ' KŒy˙1�Œx˙1I �� (25)

is a simple algebra since �.y/ D q2y and q is not a root of unity. This means that the
ideals ¹.� � !/ j ! 2 K�º are maximal ideals of A.

The ideal .�/ D .yxz/ D .x/.y/.z/ is a product of three completely prime ideals
.x/, .y/, .z/. In particular, the ideal .�/ is not a prime ideal and every prime ideal of
the algebra A that contains the element � necessarily contains one of the prime ideals
.x/; .y/ or .z/. Using the fact that each of the factor algebras A=.x/, A=.y/ and A=.z/
is a quantum plane, and (22), we see that the set of prime ideals of A containing one of
the prime ideals .x/, .y/ or .z/ is as in the diagram (24). The proof of the theorem is
complete.

The next corollary describes the sets of maximal, primitive and completely prime
ideals of the algebra A.0; 0; 0/.

Corollary 4.2. Suppose that the field K is an algebraically closed field andADA.0;0;0/.
Then:

(1) Max.A/D ¹.��!/ j ! 2K�º tM where M WD ¹.x;y; z/; .x � �;y; z/; .x;y �

�; z/; .x; y; z � �/ j � 2K�º. For every ! 2K�, the factor algebra A=.�� !/'
KŒy˙1�Œx˙1I �� is a simple Noetherian domain of Gelfand–Kirillov dimension 2
where �.y/ D q2y and, for all maximal ideals m 2M, A=m ' K.

(2) Prim.A/ D Max.A/ t ¹.x/; .y/; .z/º.

(3) Spec.A/ D Specc.A/, all prime ideals of A are completely prime ideals.

(4) Every nonzero prime ideal of A meets the centre.

Proof. The statements follow from (24) and the proof of Theorem 4.1.

Let A be an algebra. For each primitive ideal p 2 Prim.A/, let yA .p/ WD ¹ŒM � 2 yA j

annA.M/ D pº. Then

yA D
G

p2Prim.A/

yA.p/:

Recall that Prim.A/DMax.A/t ¹.x/; .y/; .z/º and Max.A/D ¹.��!/ j ! 2K�º tM

(Proposition 4.2) provided q2 is not a root of unity.

Classification of simpleA.0;0;0/-modules. A classification of simple modules over the
quantum plane is given in [3]. The next theorem is a classification of simple A-modules
where q2 is not a root of unity.
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Theorem 4.3. Suppose that the field K is an algebraically closed field. Then:

(1) for every ! 2 K�, yA..� � !// D1xA.!/ and the classification of simple xA.!/-
modules of the algebra xA.!/ WD A=.� � !/ ' KŒy˙1�Œx˙1I �� (where �.y/ D
q2y, see (25)) is given in [6, 7].

(2) For each maximal ideal m 2 M D ¹.x; y; z/; .x � �; y; z/; .x; y � �; z/;

.x; y; z � �/ j � 2 K�º, yA.m/ D ¹A=mº and A=m ' K.

(3) For each p 2 ¹.x/; .y/; .z/º, the factor algebra A=p is a quantum plane (e.g.,
A=.X/ D Khy; z j yz D q2zyi) and

yA.p/ D bA=p.weight, linear/ t bA=p.KŒH �-torsionfree/

where the sets bA=p.weight, linear/ and bA=p.KŒH �-torsionfree/ are described
in [3].

The next corollary is a classification of simple finite dimensional A-modules where q2

is not a root of unity.

Corollary 4.4. Suppose that K is an algebraically closed field. Then

yA.fin. dim./ D ¹A=m j m 2Mº

is the set of isomorphism classes of simple finite dimensional A-modules. Furthermore,
dim.A=m/ D 1 for all m 2M.

Proof. The corollary follows from Theorem 4.3.

It remains to consider the remaining cases where rk.A/D 1;2;3, i.e., .˛;0;0/; .˛;ˇ;0/
and .˛; ˇ; /, respectively, where ˛; ˇ;  2 K�.

• So, we assume till the end of the paper that ˛ ¤ 0.

5. Classification of prime ideals and simple modules for the algebra
A.˛; 0; 0/ where ˛ ¤ 0

In this section, K is an algebraically closed field and A D A.˛; 0; 0/ where ˛ ¤ 0. For
the algebra A, its prime, completely prime, primitive and maximal ideals and the simple
A-modules are classified (Theorem 5.2, Corollary 5.3 and Theorem 5.4).

The prime spectrum of the algebra A.˛; 0; 0/.

Lemma 5.1. Suppose that A D A.˛; 0; 0/ where ˛ ¤ 0. Then:

(1) the algebra A D KŒz; d �Œx; yI �; d � ˛
q2�1

� is a GWA where �.z/ D q�2z and
�.d/D q2d . In particular, the elements z and d ofA are normal regular elements.

(2) For all ! 2K�, .�� !/D A\Az.�� !/ is a completely prime ideal of A, and
the algebra A=.� � !/ is a simple Noetherian domain.
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Proof. (1) Statement (1) follows at once from (1), (2) and (3).
(2) By statement (1) and the equality � D dz, the factor algebra

A=.� � !/ ' KŒd˙1�
h
x; yI �; d �

˛

q2 � 1

i
is a GWA which is a simple, Noetherian domain, by [1, Theorem 4.2]. In particular, the
ideal .� � !/ of A is a completely prime ideal. Similarly,

Az=Az.� � !/ ' KŒd˙1�
h
x; yI �; d �

˛

q2 � 1

i
D A=.� � !/:

Therefore, .� � !/ D A \ Az.� � !/.

The next theorem is a description of prime ideals of the algebraA.˛;0;0/where ˛¤ 0.

Theorem 5.2. Suppose that K is an algebraically closed field. Let A D A.˛; 0; 0/ where
˛ ¤ 0. Then the spectrum of the algebra A is given by the diagram below where � D dz
and d D yx C ˛

q2�1
:

¹.z; d; x � �/ j � 2 K�º

.z; d/

¹.� � !/ j ! 2 K�º.z/ .d/

0 (26)

(1) For each ! 2 K�, A=.� � !/ ' KŒd˙1�Œx; yI �; d � ˛
q2�1

� is a GWA which is a
simple Noetherian domain of Gelfand–Kirillov dimension 2.

(2) A=.z/ ' Khx; y j xy D q2yx C ˛i is a quantum Weyl algebra.

(3) A=.d/ ' KŒz�Œx˙1I �� is a skew Laurent polynomial ring where �.z/ D q�2z.

(4) A=.z; d/ ' KŒx˙1� is a Laurent polynomial ring.

(5) A=.z; d; x � �/ ' K for all � 2 K�.

Proof. By Lemma 5.1, statements (1)–(5) hold. So, all the ideals in the diagram (26)
are completely prime ideals since the algebras in statements (1)–(5) are domains. The
inclusions in the diagram (26) are obvious. Since � D dz, we have that .�/ � .d/ and
.�/ � .z/. So, there are no other inclusions in the diagram (26) (since .�/C .� � !/ D
.1/ for all ! 2 K�). In view of (13), (14), and the fact that the algebras Az=Az.�� !/ '
A=.� � !/ are simple (Lemma 5.1 (2)) there are no new prime ideals in Spec.A/ apart
from the ones given in the diagram (26).

The next corollary describes the sets of maximal, prime and completely prime ideals
of A.
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Corollary 5.3. Suppose that K is an algebraically closed field. Let A D A.˛; 0; 0/ where
˛ ¤ 0. Then

(1) Max.A/ D ¹.z; d; x � �/ j � 2 K�º t ¹.� � !/ j ! 2 K�º.

(2) Prim.A/ D Max.A/ t ¹.z/; .d/º.

(3) Specc.A/ D Spec.A/.

(4) Every nonzero prime ideal of A meets the centre of A.

Proof. The theorem follows from the explicit description of prime factor algebras given
in Theorem 5.2.

Classification of simple A.˛; 0; 0/-modules.

Theorem 5.4. Suppose that K is an algebraically closed field. Let A D A.˛; 0; 0/ where
˛ ¤ 0. Then

yA D yA.z/ t yA.d/ t
G

m2Max.A/

yA.m/

where

(1) If m D m� WD .z; d; x � �/ where � 2 K� then yA.m�/ D ¹A=m� ' Kº.

(2) If m D .� � !/ where ! 2 K� then yA.� � !/ D 4A=.� � !/ and the simple
A=.��!/-modules for the GWAA=.��!/DKŒd˙1�Œx;yI�;d � ˛

q2�1
� (where

�.d/ D q2d ) are classified in [7] (see also [4, 14]).

(3) yA.d/ D 1A=.d/ n ¹A=m� j � 2 K�º and the simple modules of the algebraA=.d/
' KŒz�Œx˙1I �� (where �.z/ D q�2z) are classified in [7] (see also [4, 14]).

(4) yA.z/ D 1A=.z/ n ¹A=m� j � 2 K�º and the simple modules of the algebra A=.z/
' Khx; y j xy D q2yx C ˛i are classified in [3].

The set yA.fin. dim./. Corollary 5.5 is a classification of simple finite dimensional A-
modules where q2 is not a root of unity.

Corollary 5.5. Suppose that K is an algebraically closed field. Let A D A.˛; 0; 0/ where
˛ ¤ 0. Then

yA.fin. dim./ D ¹A=m� j � 2 K�º

where m� D .z; d; x � �/ is a maximal ideal of A and dimK.A=m�/ D 1.

Proof. The corollary follows from Theorem 5.4 since for the algebras in statements (2)–
(4) simple modules are infinite dimensional.

6. Classification of simpleA.˛;ˇ; /-modules where ˛ ¤ 0 and ˇ ¤ 0

In this section, K is an algebraically closed field and A D A.˛; ˇ; / where ˛ ¤ 0 and
ˇ ¤ 0. A classification of simple A-modules is given.
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Classification of simple A.˛; ˇ; /-modules. In view of (17) and (21), in order to clas-
sify simple A.˛; ˇ; /-modules we have to classify simple modules in each of the three
subsets in (21). This is done below. In each of the three cases a different approach is used.

The set 1A.!/.z-torsion/. Theorem 6.1 describes the set 1A.!/.z-torsion/.

Theorem 6.1. Suppose that K is an algebraically closed field. Let A D A.˛; ˇ; / where
˛ ¤ 0 and ˇ ¤ 0. Then 1xA.!/.z-torsion/ D ¹V.!/º where V.!/ D xA.!/= xA.!/z.

Proof. Recall that each z-torsion simple xA.!/-module is an epimorphic image of the
xA.!/-module V.!/. The xA.!/-module V.!/ is simple (Proposition 3.5 (2)), and the the-

orem follows.

In the xA.!/-module V.!/ D
L
i>0 Kxi N1 (see Proposition 3.5), for all i > 0,

exi N1 D

�
q2.iC1/

1 � q2
ˇxi C � � �

�
N1: (27)

In more detail, recall that e D xz � ˇ0 where ˇ0 D
q2ˇ

q2�1
. Then

exi N1 D .xzxi � ˇ0x
i /N1

(16)
D

�
x
�
q2ixiz � .1C q2 C � � � C q2.i�1//q2ˇxi�1

�
� ˇ0x

i
C � � �

�
N1

D �

�
q2i � 1

q2 � 1
C

1

q2 � 1

�
q2ˇxi N1C � � �

D
q2.iC1/

1 � q2
ˇxi N1C � � � :

• So, Eˇ WD ¹
q2.iC1/

1�q2
ˇ j i > 0º is the set of eigenvalues of the linear map e � W V.!/!

V.!/, v 7! ev.

Lemma 6.2. Given a nonzero element b D b.z; e/ 2 KŒz�ŒeI �� where �.z/ D q�2z. If
the map b � W V.!/! V.!/, v 7! bv has nonzero kernel then the polynomial b.0; e/ 2
KŒe� ' KŒz�ŒeI ��=.z/ has a root in the set Eˇ D ¹

q2.iC1/

1�q2
ˇ j i > 0º.

Proof. Recall that V.!/'KŒx�N1'KŒx� KŒx�. So, the xA.!/-module V.!/ admits a filtra-
tion by the degree of x, V.!/ D

S
i>0 Vi where Vi D ¹p N1 j deg.p/ 6 iº. For all i > 0,

zVi � Vi�1, by (16). The element b D b.z; e/ D b.0; e/ C b0z is a unique sum where
b0 2KŒz�ŒeI��. The field K is an algebraically closed field. So, b.0; e/D �

Qs
iD1.e � �i /

where � 2 K� and �1; : : : ; �s are the roots of the polynomial b.0; e/ 2 KŒe�. By (27), for
all i > 0, eVi � Vi and

bxi N1 D b.0; e/xi N1C � � � D �

sY
jD1

�
q2.iC1/ˇ

1 � q2
� �j

�
xi N1C � � � :

So, if an element v D xi N1C � � � belongs to the kernel of the map b � W V.!/! V.!/ then
necessarily �j D q2.iC1/

1�q2
ˇ 2 Eˇ for some j , as required.
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The set 1xA.!/.KŒz�-torsionfree/. Theorem 6.3 is an explicit description of the set 1xA.!/
(KŒz�-torsionfree). Recall that xA.!/� xA.!/z �B DB.!/, see (19). The GWA xA.!/z D
KŒz˙1�Œe; f I �; a� is also the GWA xA.!/z D KŒz˙1�Œf; eI ��1; �.a!/�.

For nonzero elements p; q 2 KŒz˙1�, we write p <��1 q if there is no maximal ideal
m of KŒz˙1� such that q 2 m and p 2 .��1/i .m/ for some i > 0.

Definition. An element b D
Pm
iD0 e

ibi 2 KŒz�ŒeI �� 2 xA.!/z (where bi 2KŒz�, b0 ¤ 0,
bm ¤ 0 andm> 1) is called r-normal if it is l-normal as an element of the GWA xA.!/z D
KŒz˙1�Œf; eI ��1; �.a!/�, i.e., b0 <��1 bm and b0 <��1 �.a!/.

Theorem 6.3. Let K be an algebraically closed field. Let A D A.˛; ˇ; / where ˛ ¤ 0,
ˇ ¤ 0 and ! 2 K. Then

1xA.!/.KŒz�-torsionfree/ D
°
ŒMb WD

xA.!/= xA.!/ \ Bb� j b D b.z; e/ 2 KŒz�ŒeI �� is an

r-normal, irreducible element of B such that the polynomial

b.0; e/ 2 KŒe� has no root in the set Eˇ

±
where Eˇ D ¹

q2.iC1/

1�q2
ˇ j i > 0º and the algebra B D B.!/ is defined in (19); and Mb '

Mb0 iff the elements b and b0 are similar (i.e.,B=Bb'B=Bb0 asB-modules). All modules
Mb are infinite dimensional.

Proof. LetL andR be the left-hand side and right-hand side of the equality in the theorem
and xA D xA.!/. We have to show that R D L.

(i) L � R: LetM be a KŒz�-torsionfree, simple xA-module, i.e.,M 2 L. SinceMz is a
simple xAz-module,Mz ' xAz= xAz \Bb for some element b D b.z; e/ 2 KŒz�ŒeI�� which
is an r-normal, irreducible element of B (by [7, Theorem 5]). Now, for all n > 0,

Mz D

�
xAzn C xA \ Bb

xA \ Bb

�
z

'

�
xAzn

xAzn \ xA \ Bb

�
z

D

�
xAzn

xAzn \ Bb

�
z

D

�
xA

xA \ Bbz�n

�
z

D

�
xA

xA \ B!zn.b/

�
z

where !zn.b/ D znbz�n. The element b D b.z; e/ is a unique sum b D b0 C b
0z where

b0 D b.0; e/ 2KŒe� and b0 2KŒz�ŒeI��. Notice that !zn.b/D !zn.b0/C !zn.b0/z and so
!zn.b/jzD0 D !zn.b0/ 2 KŒe�. The field K is an algebraically closed field. In particular,
all the elements !zn.b0/ 2 KŒz�ŒeI �� are r-normal, irreducible elements of B . Let b0 D
�
Qs
iD1.e � �i / where �1; : : : ; �s are roots of the polynomial b0 2 KŒe� and � 2 K�.

Since !zn.e/ D q2ne,

!zn.e/ D �
0

sY
iD1

.e � q�2n�i / for some �0 2 K�:

So, for all sufficiently large n, the polynomial !zn.b0/ has no roots in the set Eˇ (since
q2 is not a root of unity). Fix one such n and let M 0 D xA= xA \ B!zn.b/. Then M D
soc xA.Mz/ DM

0, by simplicity of M and M 0. Therefore, M 2 R.
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(ii) L � R: We have to show that each xA-module M 0 D xA= xA \ Bb in R is simple,
i.e., the left ideal I D xA \ Bb is a maximal left ideal of xA. Let J be a left ideal of xA
such that I ¨ J ¨ xA, we seek a contradiction. By the very definition, the xA-module M 0

is KŒz�-torsionfree.
Localizing the short exact sequence of the xA-modules

0! J=I !M 0 D A=I ! xM WD A=J ! 0

at the powers of the element z we obtain a short exact sequence of xA-modules

0! .J=I /z !M 0z !
xMz ! 0:

The xAz-module M 0z is simple and KŒz�-torsionfree (since b is r-normal) and the xAz-
module .J=I /z is a nonzero xAz-module (since the xA-moduleM 0 is z-torsionfree). There-
fore, .J=I /z D M 0z , and so xMz D 0. So, J � I C Azi for some i > 1. The xA-module
N WD A=J is z-torsion. By Theorem 6.1, the unique z-torsion simple xA-module V is an
epimorphic image of the xA-module N . In particular, there is a nonzero vector 0 ¤ v 2 V
such that Jv D 0. In particular, bv D 0. By Lemma 6.2, the polynomial b.0; e/ 2 KŒe�
has root in the set Eˇ , a contradiction.

The set 1xA.!/ (z-torsionfree, KŒz�-torsion). The classification of simple z-torsionfree,
KŒz�-torsion xA.!/-modules is done in two steps. First, we show that this class coincides
with the set of simple, KŒz�-torsion xA.!/z-modules (Theorem 6.4). Second, since the
algebra xA.!/ is a GWA with Dedekind base ring that belongs to the class of GWAs
considered in [7], we apply the classification results of [7] to our algebra (Theorem 6.5,
Theorem 6.8 and Theorem 6.10).

Theorem 6.4. Suppose that K is an algebraically closed field. Let A D A.˛; ˇ; / where
˛ ¤ 0, ˇ ¤ 0 and ! 2 K. Then

1xA.!/.z-torsionfree;KŒz�-torsion/ D 1xA.!/z.KŒz�-torsion/;

i.e., every simple, KŒz�-torsion A.!/z-module is a simple, z-torsionfree, KŒz�-torsion
A.!/-module (by restriction to the algebra xA.!/), and vice versa.

Proof. Let L and R be the left-hand side and right-hand side of the equality. Then the
map L! R, ŒM � 7! ŒMz � is an injection. Since every element N of R is a semisimple
KŒz˙1�-module (by [7, Theorem 1]) and K is an algebraically closed field, it is also a
simpleA.!/-module since z � WN !N , n 7! zn is a bijection. Therefore, the mapL!R

is a bijection.

The case  D 0. In Theorem 6.5, we consider the case when  D 0. We denote by
K�=hq2i the factor group of the multiplicative group K� by the subgroup hq2i D ¹q2i j i 2
Zº generated by the element hq2i. Elements of the group K�=hq2i are cosets O D �hq2i

where � 2 K�. For each coset O, we fix an element, say �O . So, O D �Ohq
2i.
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Theorem 6.5. Suppose that K is an algebraically closed field. Let A D A.˛; ˇ; 0/ where
˛ ¤ 0, ˇ ¤ 0 and ! 2 K. Then:

(1) bxA.0/.z-torsionfree;KŒz�-torsion/D¹MOD
xA.0/z= xA.0/z.z ��O/ jO 2K�=hq2iº

where �O is an arbitrary but fixed element of the coset O D �Ohq
2i.

(2) For ! ¤ 0,

1xA.!/.z-torsionfree; KŒz�-torsion/

D
®
L D xA.!/z= xA.!/z.z � .q

2
� 1/˛�1!; e/;

L0 D xA.!/z= xA.!/z.z � q
2.q2 � 1/˛�1!; f /;

MO D
xA.!/z= xA.!/z.z � �O

�
j O 2 K�=hq2i;O ¤ .q2 � 1/˛�1!hq2i

¯
where �O is an arbitrary but fixed element of the coset O D �Ohq

2i.

All modules in statements (1) and (2) are infinite dimensional.

Proof. Since  D 0, a! D �q2.q2 � 1/�1˛z.z � .q2 � 1/˛�1!/. Now, the theorem fol-
lows from Theorem 6.4 and [7, Theorem 1].

Corollary 6.6. Suppose that K is an algebraically closed field. Let AD A.˛;ˇ; 0/ where
˛ ¤ 0 and ˇ ¤ 0. Then the zero module is the only finite dimensional A-module.

Proof. The corollary follows from Theorem 6.1, Theorem 6.3 and Theorem 6.5.

The case  ¤ 0. It remains to consider the case when  ¤ 0.

Lemma 6.7. Suppose that K is an algebraically closed field, ˛; ˇ;  2 K� and ! 2 K.
Let �0 WD .

ˇ

.q2�1/˛
/
1
2 . Then:

(1) both (necessarily nonzero) roots of the polynomial a! D �
q2˛

q2�1
z2 C q2!z �

q2ˇ

.q2�1/2
belong to a single coset in K�=hq2i iff either

(a) ! ¤ 0, and in this case either ! D !˙i WD ˙
1Cq2i

q2�1
. ˛ˇ

.q2�1/q2i
/
1
2 , i > 1, (¹�˙i ;

q2i�˙i º are two distinct roots of the polynomial a!˙i where �˙i WD
.q2�1/!˙i
.1Cq2i /˛

)

or i D 0, char.K/¤ 2, ! D !˙0 WD ˙
2

q2�1
. ˛ˇ
q2�1

/
1
2 , (�˙0 D

q2�1
2˛

!˙0 D˙�0

is a double root of the polynomial a˙!0 ), or

(b) ! D 0, and in this case char.K/D 2 and �0 is a double root of the polynomial
a! .

(2) The polynomial a! has a double root iff either ! D !˙0 D ˙
2

q2�1
. ˛ˇ
q2�1

/
1
2 ,

char.K/ ¤ 2 and in this case �˙0 D
.q2�1/!˙0

2˛
D ˙�0 is the double root of the

polynomial a!˙0 or ! D 0, char.K/ D 2 and �0 is the double root of a0.

(3) If char.K/ ¤ 2 then the elements ¹!Ci ; !
�
i j i > 0º are distinct. If char.K/ D 2

then the elements ¹!i j i > 1º are distinct and nonzero where !i D !Ci D !
�
i .
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Proof. (1) The polynomial a! D � q2˛

q2�1
.z2 � .q2 � 1/˛�1!z C ˇ

.q2�1/˛
/ has two neces-

sarily nonzero roots (since ˇ;  2 K�) that may coincide. Both roots belong to the same
coset in K�=hq2i iff they belong to the set ¹�; q2i�º for some � 2 K� and i > 0 iff
.1C q2i /� D .q2 � 1/˛�1! and q2i�2 D ˇ

.q2�1/˛
iff either ! ¤ 0 and in this case either

� D .q2�1/!

.1Cq2i /˛
and ! D ˙1Cq

2i

q2�1
. ˛ˇ

.q2�1/q2i
/
1
2 for some natural number i > 1 or i D 0 and

char.K/ ¤ 2 (since otherwise 0 D 2� D .q2 � 1/˛�1! ¤ 0, a contradiction); or ! D 0
and in this case char.K/ D 2 and � D . ˇ

.q2�1/˛
/
1
2 D �0 is a double root of a0.

(2) Statement (2) follows from statement (1).
(3) Statement (3) follows from the following fact: !˙i D !

�
j where � 2 ¹C;�º for

some i ¤ j iff qi C q�i D ˙.qj C q�j / where � D ˙ iff .qi � qj /.1� q�.iCj // D 0
iff q2 is a root of unity, a contradiction.

By Lemma 6.7, we have two cases: char.K/ ¤ 2 and char.K/ D 2. In each case, let
us summarize some facts that will be used in Theorem 6.8 and Theorem 6.10 and their
proofs, respectively. We keep the notation of Lemma 6.7.

Suppose that char.K/ ¤ 2. Then the following holds.

• The polynomial a! has double root iff ! 2 ¹!C0 ; !
�
0 º. In this case, !C0 ¤ !

�
0 and for

! D !˙0 , �˙0 D ˙�0 is the double root of a!˙0 and �C0 hq
2i ¤ ��0 hq

2i.

• The polynomial a! has two distinct roots that belong to the same coset in K�=hq2i iff
! 2 ¹!Ci ;!

�
i j i > 1º. In this case, the elements of the set ¹!Ci ;!

�
i j i > 1º are distinct

and for each ! D !˙i , ¹�˙i ; q
2i�˙i º are the two distinct roots of the polynomial a!˙i .

• The polynomial a! has two (necessarily distinct) roots that belong to distinct cosets
in K�=hq2i iff ! 2 K� n ¹!Ci ; !

�
i j i > 0º. In this case, for each ! let �!;1 and �!;2

be the two (distinct) roots of the polynomial a! .

• The elements ¹!Ci ; !
�
i j i > 0º are distinct.

Suppose that char.K/ D 2. Then the following holds.

• The polynomial a! has double root iff ! D 0. In this case, �0 is a double root of the
polynomial a0.

• The polynomial a! has two distinct roots that belong to the same coset in K�=hq2i
iff ! 2 ¹!i j i > 1º. In this case, the elements of the set ¹!i j i > 1º are distinct
nonzero elements and for each ! D !i , ¹�i ; q2i�iº are the two distinct roots of the
polynomial a!i .

• The polynomial a! has two (necessarily distinct) roots that belong to distinct cosets
in K�=hq2i iff ! 2 K� n ¹0; !i j i > 1º. In this case, for each ! let �!;1 and �!;2 be
the two (distinct) roots of the polynomial a! .

• The elements ¹0; !i j i > 1º are distinct.

For each coset O 2 K�=hq2i, we fixed a representative �O 2 O. So, O D �Ohq
2i.
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The set 1A.!/ (z-torsionfree, KŒz�-torsion) where ˛; ˇ;  2 K� and char.K/ ¤ 2. The-
orem 6.8 gives an explicit description of the set 1A.!/.z-torsionfree;KŒz�-torsion/ in the
case where ˛; ˇ;  2 K� and char.K/ ¤ 2.

Theorem 6.8. We keep the notation of Lemma 6.7. Suppose that K is an algebraically
closed field with char.K/ ¤ 2. Let A D A.˛; ˇ; / where ˛; ˇ;  2 K�, and

M.!/ WD1xA.!/ .z-torsionfree;KŒz�-torsion/D 1xA.!/z .KŒz�-torsion/ (Theorem 6.4):

Then:

(1) suppose that ! 2 ¹!C0 ; !
�
0 º, i.e., the polynomial a!˙0 has the double root �˙0 D

˙�0 where �0 D .
ˇ

.q2�1/˛
/
1
2 . Then

M!˙0
D
®
LC.!

˙
0 /; L�.!

˙
0 /; MO.!

˙
0 / j O 2 K�=hq2i; O ¤ �˙0 hq

2
i
¯

where

L�.!
˙
0 / D

xA.!˙0 /z=
xA.!˙0 /z.e; z � �

˙
0 /;

LC.!
˙
0 / D

xA.!˙0 /z=
xA.!˙0 /z.f; z � q

2�˙0 /;

MO.!
˙
0 / D

xA.!˙0 /z=
xA.!˙0 /z.z � �O/:

All modules in M!˙i
are infinite dimensional.

(2) Suppose that ! 2 ¹!Ci ;!
�
i j i > 1º, i.e., the polynomial a!˙i has two distinct roots

¹�˙i ; q
2i�˙i º that belong to the same coset in K�=hq2i. Then for ! D !˙i ,

M!˙i
D
®
LC.!

˙
i /; L�.!

˙
i /; L.!

˙
i /; MO.!

˙
i / jO 2K�=hq2i and O¤ �˙i hq

2
i
¯

where

L�.!
˙
i / D

xA.!˙i /z=
xA.!˙i /z.e; z � �

˙
i /;

LC.!
˙
i / D

xA.!˙i /z=
xA.!˙i /z.f; z � q

2.iC1/�˙i /;

L.!˙i / D
xA.!˙i /z=

xA.!˙i /z.e; z � q
2i�˙i ; f

i /;

MO.!
˙
i / D

xA.!˙i /z=
xA.!˙i /z.z � �O/:

For all i > 1, dimK.L.!
˙
i // D i and the module L.!˙i / is the only finite dimen-

sional module in the set M!˙i
.

(3) Suppose that ! 2 K� n ¹!˙i j i > 0º, i.e., the polynomial a! has two (distinct)
roots, say �!;1 and �!;2, that belong to distinct cosets (�!;1hq2i ¤ �!;2hq

2i).
Then

M! D
®
L�.!; �!;i /; LC.!; �!;i /; MO.!/

j i D 1; 2 and O 2 K�=hq2i n ¹�!;1hq
2
i; �!;2hq

2
iº
¯
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where

L�.!; �!;i / D xA.!/z= xA.!/z.e; z � �!;i /;

LC.!; �!;i / D xA.!/z= xA.!/z.f; z � q
2�!;i /;

MO.!/ D xA.!/z= xA.!/z.z � �O/:

All modules in M! are infinite dimensional.

The set yA.fin. dim./ where ˛;ˇ;  2 K� and char.K/ ¤ 2. We denote by yA.fin. dim./
the set of isomorphism classes of simple finite dimensional A-modules. Corollary 6.9
classifies all simple finite dimensionalA.˛;ˇ;/-modules where ˛;ˇ; 2K� and char.K/
¤ 2. It shows that for each natural number i > 1 there are only 2 simple non-isomorphic
A-modules of dimension i .

Corollary 6.9. We keep the notation of Theorem 6.8. Suppose that K is an algebraically
closed field with char.K/ ¤ 2. Let A D A.˛; ˇ; / where ˛; ˇ;  2 K�. Then

yA.fin. dim./ D ¹L.!Ci /; L.!
�
i / j i D 1; 2; : : :º

and dimK.L.!
˙
i // D i for all i > 1.

Proof. The corollary follows from Theorem 6.8 and [7, Theorem 1].

The set yA.!/ (z-torsionfree, KŒz�-torsion) where ˛;ˇ; 2 K� and char.K/D 2. The-
orem 6.10 gives an explicit description of the set yA.!/ (z-torsionfree, KŒz�-torsion) in the
case where ˛; ˇ;  2 K� and char.K/ D 2.

Theorem 6.10. We keep the notation of Lemma 6.7. Suppose that K is an algebraically
closed field of char.K/ D 2. Let A D A.˛; ˇ; / where ˛; ˇ;  2 K� and

M! WD
1xA.!/.z-torsionfree;KŒz�-torsion/ D 1xA.!/z.KŒz�-torsion/ (Theorem 6.4):

Then:

(1) suppose that ! D 0, i.e., the polynomial a0 has double root �0 D .
ˇ

.q2�1/˛
/
1
2 .

Then

M0 D
®
LC.0/; L�.0/; MO.0/ j O 2 K�=hq2i; O ¤ �0hq

2
i
¯

where

L�.0/ D xA.0/z= xA.0/z.e; z � �0/;

LC.0/ D xA.0/z= xA.0/z.f; z � q
2�0/;

MO.0/ D xA.0/z= xA.0/z.z � �O/:

All modules in M0 are infinite dimensional.
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(2) Suppose that ! 2 ¹!i j i > 1º, i.e., the polynomial a!i has two distinct roots
¹�i ; q

2i�iº that belong to the same coset in K�=hq2i. Then, for ! D !i ,

M!i D
®
LC.!i /; L�.!i /; L.!i /; MO.!i / j O 2 K�=hq2i and O ¤ �i hq

2
i
¯

where

L�.!i / D xA.!i /z= xA.!i /z.e; z � �i /;

LC.!i / D xA.!i /z= xA.!i /z.f; z � q
2.iC1/�i /;

L.!i / D xA.!i /z= xA.!i /z.e; z � q
2i�i ; f

i /;

MO.!i / D xA.!i /z= xA.!i /z.z � �O/:

For all i > 1, dimKL.!i /D i and the moduleL.!i / is the only finite dimensional
module in the set M!i .

(3) Suppose that ! 2 K� n ¹!i j i > 1º, i.e., the polynomial a! has two (distinct)
roots, say �!;1 and �!;2, that belong to distinct cosets in K�=hq2i, .�!;1hq2i ¤
�!;2hq

2i/. Then

M! D
®
L�.!; �!;i /; LC.!; �!;i /; MO.!/

j i D 1; 2 and O 2 K�=hq2i n ¹�!;1hq
2
i; �!;2hq

2
iº
¯

where

L�.!; �!;i / D xA.!/z= xA.!/z.e; z � �!;i /;

LC.!; �!;i / D xA.!/z= xA.!/z.f; z � q
2�!;i /;

MO.!/ D xA.!/z= xA.!/z.z � �O/:

All modules in M! are infinite dimensional.

Proof. The theorem follows from [7, Theorem 1] and Lemma 6.7.

The set yA.fin. dim./ where ˛; ˇ;  2 K� and char.K/ D 2. Corollary 6.11 classifies
all simple finite dimensional A.˛; ˇ; /-modules where ˛; ˇ;  2 K� and char.K/ D 2. It
shows that for each natural number i > 1 there is only one simpleA-module of dimension i
(up to isomorphism).

Corollary 6.11. We keep the notation of Theorem 6.10. Suppose that K is an algebraically
closed field with char.K/ D 2. Let A D A.˛; ˇ; / where ˛; ˇ;  2 K�. Then

yA.fin. dim./ D ¹L.!i / j i D 1; 2; : : :º

and dimK.L.!i // D i for all i > 1.

Proof. The corollary follows from Theorem 6.10 and [7, Theorem 1].
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7. Classification of prime ideals for the algebra A.˛; ˇ; / where
˛ ¤ 0 and ˇ ¤ 0

In this section, K is an algebraically closed field and A D A.˛; ˇ; / where ˛ ¤ 0 and
ˇ ¤ 0. For the algebra A, the prime, completely prime, primitive and maximal ideals
are classified. The results and their proofs are different in the following cases:  D 0;
 ¤ 0 and char.K/¤ 2; and  ¤ 0 and char.K/D 2, (see Theorem 7.1, Theorem 7.4 and
Theorem 7.6).

Since ˇ ¤ 0, .zi / D A for all i > 1, by Lemma 3.2. Now, by (13) and (14),

Spec.A/ D ¹0º
G
!2K

Spec. xA.!/z/: (28)

Since ˇ ¤ 0, .zi / D A for all i > 1, by Lemma 3.2. Then .zi / D .1/ for all i > 1 in
xA.!/ D A=.� � !/. Now, by Proposition 3.1, the map

Spec. xA.!//! Spec. xA.!/z/; p 7! pz (29)

is a bijection with the inverse q 7! xA.!/ \ q where pz is the localization of the prime
ideal p at the powers of z. By Proposition 3.5 (1), the element z is a regular non-unit of
the algebra xA.!/, and so xA.!/� xA.!/z . By (15), xA.!/z D NAz.!/DKŒz˙1�Œe; f I�;a! �
and a! ¤ 0 for all ! (since ˛ ¤ 0). Therefore, the algebra xA.!/z is a domain, hence so
is the algebra xA.!/ since xA.!/ � xA.!/z . So, the ideal .� � !/ of the algebra A is a
completely prime ideal, and so,

¹0; .� � !/ j ! 2 Kº � Specc.A/: (30)

The set T WD KŒ�� n ¹0º is a denominator set in Az that consists of central regular
elements. Then

A � Az D Az � T
�1Az D T

�1Az D K.�/Œz˙1�Œe; f I �; a� (31)

where K.�/ D T �1KŒ�� is the field of rational functions in the variable � over K and
the algebra T �1Az D T �1Az is the GWA K.�/Œz˙1�Œe; f I �; a� with coefficients in the
Laurent polynomial ring K.�/Œz; z�1� over the field K.�/.

The set Spec.A.˛;ˇ;0//. The next theorem is a description of prime, maximal, primitive
and completely prime ideals of the algebra A.˛; ˇ; 0/. For an algebra R, we denote by
	.R/ the set of ideals of R.

Theorem 7.1. Suppose that K is an algebraically closed field. Let A D A.˛; ˇ; 0/ where
˛ ¤ 0 and ˇ ¤ 0. Then:

(1) Spec.A/ D ¹0; .� � !/ j ! 2 Kº. In particular, every nonzero prime ideal meets
the centre.

(2) Max.A/ D Prim.A/ D ¹.� � !/ j ! 2 Kº.
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(3) Specc.A/ D Spec.A/.

(4) The algebra A=.� � !/ is a simple Noetherian domain for all ! 2 K.

(5) The map 	.A/! 	.KŒ��/, I 7! I \ KŒ�� is a bijection with the inverse map
a 7! Aa. In particular, all ideals of the algebra A commute .IJ D JI / and every
ideal I is a unique product of maximal ideals (I D

Qs
iD1.� � �i /

ni where �i 2
K and ni > 1).

Proof. (4) Recall that, xA.!/z D Az.!/ D KŒz˙1�Œe; f I �; a! � is a GWA (by (15)) where
a! D z.�

q2˛

q2�1
z C q2!/. Using the simplicity criterion for generalized Weyl algebras [1,

Theorem 4.2], we see that the algebra xA.!/z is simple for all ! 2 K. Then, statement (4)
follows from (29) and Lemma 3.6.

(1) Recall that Az � T �1Az . By the simplicity criterion for GWAs [1, Theorem 4.2],
the GWA T �1Az is a simple algebra. Hence, any nonzero prime ideal p of the algebra
Az contains a non-scalar polynomial in the variable �, say t D

Qn
iD1.� � !i /

ni where
!1; : : : ; !n are distinct roots of t . Hence, .� � !i / � p for some i , by statement (4). The
ideal .��!i / is a maximal ideal, by statement (4). Therefore, pD .��!i /, as required.

(2) Statement (2) follows from statement (1).
(3) Statement (3) follows from statement (4).
(5) Statement (5) follows from statement (1).

The set Spec.A.˛;ˇ;//where  ¤ 0. Recall that, for each ! 2K, xA.!/DA=.� � !/.
The algebra xA.!/D KŒz�Œe; f I�; a! � is a GWA where �.z/D q�2z. Further, by Propos-
ition 2.2 (1), (2), xA.!/ � xA.!/z ' Az=.� � !/z . We have seen already that xA.!/ �
xA.!/z . By Proposition 2.2 (2), Az D Az , hence xA.!/z D xA.!/z and so

xA.!/ � xA.!/ � xA.!/z D xA.!/z : (32)

Lemma 7.2. (1) Suppose that char.K/ ¤ 2. We keep the notation of Theorem 6.8.
Then

Ext1A.L.!
˙
i /; L.!

˙
i // D 0 for all i > 1:

(2) Suppose that char.K/ D 2. We keep the notation of Theorem 6.10. Then

Ext1A.L.!i /; L.!i // D 0 for all i > 1:

Proof. We give a proof of both statements simultaneously. LetLDL.!˙i / if char.K/¤ 2,
(respectively, L D L.!i / if char.K/ D 2). Suppose that Ext1A.L;L/ ¤ 0, i.e., there exists
a non-split sequence of A-modules

0! L!M ! L! 0;

we seek a contradiction. Notice that the A-module M is an epimorphic image of the A-
moduleM 0 WDA=A.e; .z � q2i�˙i /

2; f i /, (respectively,M 0 WDA=A.e; .z � q2i�/2; f i /).
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Since in both cases dimK.M
0/D 2i , we must haveM DM 0, as dimK.M/D 2dimK.L/D

2i . Notice that

M 0 D

i�1M
jD0

f jKŒz�=.z � q2i�˙i /
2 N1 where N1 D 1CA.e; .z � q2i�˙i /

2; f i /;

respectively,

M 0 D

i�1M
jD0

f jKŒz�=.z � q2i�i /
2 N1 where N1 D 1CA.e; .z � q2i�i /

2; f i //:

In both cases, 0 D e N1 and so 0 D fe N1 D a.z; �/N1 D a.q2i�˙i ; �/N1, (respectively, 0 D
fe N1 D a.z; �/N1 D a.q2i�i ; �/N1). Hence, � D !˙i (respectively, � D !i ). Therefore,
.� � !˙i /M

0 D 0 (respectively, .� � !i /M 0 D 0). This means that the A-module M 0 is
also an xA.!˙i /-module (respectively, xA.!i /-module). By Proposition 7.3 (1), .xb˙i /

2Dxb˙i
where xb˙i D annxA.!˙i /.L.!

˙
i // (respectively, by Proposition 7.5 (1), .xbi /2 D xbi where

xbi D annxA.!i /.L.!i //). So, in both cases M ' L˚ L, a contradiction.

For a natural number n > 1, we denote by Mn.K/ the algebra of n � n matrices over
the field K. There are two cases to consider: char.K/ ¤ 2 and char.K/ D 2.

The case char.K/ ¤ 2.

Proposition 7.3. We keep the notation of Theorem 6.8. Suppose that K is an algebraically
closed field, char.K/ ¤ 2 and i 2 NC D ¹1; 2; : : :º. Then:

(1) the simple i -dimensional xA.!˙i /-module L.!˙i / is also a simple xA.!˙i /-module
(via the restriction of scalars (32)),

.xb˙i /
2
D xb˙i and xA.!˙i /=xb

˙
i 'Mi .K/

where xb˙i D annxA.!˙i /.L.!
˙
i //.

(2) Let b˙i be the pre-image of the ideal xb˙i under the epimorphism A ! xA.!˙i /,
˛ 7! ˛ C .� � !˙i /. Then .b˙i /

2 D b˙i and A=b˙i '
xA.!˙i /=

xb˙i 'Mi .K/.

Proof. (1) The algebra xA.!/DKŒz�Œe;f I�;a! � is a GWA. By [7, Theorem 1], the simple
i -dimensionalA.!˙i /-moduleL.!˙i / is also a simple xA.!˙i /-module (by restriction since
xA.!i / � xA.!i /). Then xA.!˙i /=xb

˙
i ' Mi .K/. By [8, Corollary 4], .xb˙i;z/

2 D xb˙i;z (since
the polynomial a!˙i 2 KŒz� has degree 2), where xb˙i;z is the localization of the ideal xb˙i of

the algebra xA.!˙i / at the powers of z. So,

0 D xb˙i;z=.
xb˙i;z/

2
D
�
xb˙i =.

xb˙i /
2
�
z
:

We must have .xb˙i /
2 D xb˙i . Suppose that this is not the case, i.e., N WD xb˙i =.xb

˙
i /
2 ¤ 0,

we seek a contradiction. Then the A.!˙i /-moduleN is annihilated by the ideal xb˙i . Since,
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A.!˙i /=
xb˙i ' Mi .K/, the A.!˙i /-module N is isomorphic to L.!˙i /

n, a direct sum of
n copies of the A.!˙i /-module L.!˙i / for some n > 1. Since the map z � W L.!˙i /!
L.!˙i /, v 7! zv is a bijection, so is the map z � W N ! N , u 7! zu. Therefore, 0 ¤ N D
Nz D 0, a contradiction. Ideals of the GWAs like the GWA xA.!˙i /z were classified in [8].

(2) By the very definition of the ideal b˙i ,

A=b˙i ' xA.!
˙
i /=
xb˙i 'Mi .K/:

By Lemma 7.2 (1), .b˙i /
2 D b˙i .

The next theorem is a description of prime, maximal, primitive and completely prime
ideals of the algebra A.˛; ˇ; /.

Theorem 7.4. Suppose that K is an algebraically closed field and char.K/ ¤ 2. Let A D
A.˛; ˇ; / where ˛ ¤ 0, ˇ ¤ 0 and  ¤ 0. Then:

(1) Spec.A/ D ¹0; .� � !/ j ! 2 Kº t ¹a˙i j i > 1º, where a˙i D annA.L.!˙i //, see
Theorem 6.8, .a˙i /

2 D a˙i and A=a˙i 'Mi .K/, the algebra of i � i matrices over
K. The containments of prime ideals of the algebra A are given by the diagram
below:

aC1 aCia�1a�i

.� � !C1 /
. . . .� � !Ci / . . ..� � !�1 /. . ..� � !�i /

. . . ¹.� � !/ j ! 2 K n Lº

0

where i > 1, L D ¹!˙i j i > 1º and !˙i D ˙
1Cq2i

q2�1
. ˛ˇ

.q2�1/q2i
/
1
2 (all numbers in L

are distinct, Lemma 6.7 (3)).

(2) Max.A/ D Prim.A/ D ¹.� � !/ j ! 2 K n Lº t ¹a˙i j i > 1º.

(3) Specc.A/ D ¹.� � !/ j ! 2 Kº t ¹aC1 ; a
�
1 º.

(4) The algebra xA.!/ is a Noetherian domain for all ! 2 K.

(5) The algebra xA.!/ is simple iff ! … L D ¹!˙i j i > 1º.

(6) For each !D!˙i where i > 1, the ideal xa˙i WD a˙i =.��!
˙
i /D ann xA.!˙i /.L.!

˙
i //

is a unique proper ideal of the algebra xA.!˙i /, .xa
˙
i /
2 D xa˙i , xA.!˙i /=xa

˙
i 'Mi .K/,

xa˙i D .
xb˙i / D

xA.!˙i /
xb˙i
xA.!˙i / and xb˙i D xA.!

˙
i / \ xa

˙
i .

(7) For all i > 1, .a˙i /
2 D a˙i and A=a˙i 'Mi .K/.

(8) Every nonzero prime ideal meets the centre of A.

Proof. (4) Statement (4) is obvious.
(5) Since ˇ¤ 0, .zi /D .1/ for all i > 1 in xA.!/ (Lemma 3.2). By (29), Spec. xA.!//D

Spec. xA.!/z/. Now, statement (5) follows from the simplicity criterion [1, Theorem 4.2]
for the GWA xA.!/z D xA.!/z .
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(6) Let xA D xA.!˙i / and xA D xA.!˙i /. The inclusion of algebras xA � xA yields the
inclusions

xb˙i �
xA \ xa˙i � .

xb˙i / � xa
˙
i

and the algebra homomorphisms (Lemma 7.3)

Mi .K/ ' xA=xb
˙
i !

xA=A \ xa˙i ! xA=.xb˙i /!
xA=.xa˙i / 'Mi .K/:

Clearly, all homomorphisms are isomorphisms, and so the inclusions above are equalities.
By Proposition 7.3 (1), .xb˙i /

2 D xb˙i . Now,

.xa˙i /
2
D
�
.xb˙i /

�2
�
�
.xb˙2i /

�
D .xb˙i / D xa

˙
i ;

and so .xa˙i /
2 D xa˙i .

(7) By Proposition 7.3 (2), .b˙i /
2 D b˙i . By statement (6), xa˙i D .xb

˙
i /, and so a˙i D

.b˙i /. Now,
.a˙i /

2
D
�
.b˙i /

�2
�
�
.b˙i /

2
�
D .b˙i / D a˙i ;

and so .a˙i /
2 D a˙i .

(1) Statement (1) follows from statements (5)–(7) and Lemma 3.6.
(2) Statement (2) follows from statement (1).
(3) Statement (3) follows from statement (1), (30) and statement (7).
(8) Statement (8) follows from statement (1).

The case char.K/ D 2.

Proposition 7.5. We keep the notation of Theorem 6.10. Suppose that K is an algebraic-
ally closed field, char.K/ D 2 and i 2 NC D ¹1; 2; : : :º. Then:

(1) the simple i -dimensional xA.!i /-moduleL.!i / is also a simple xA.!i /-module (via
the restriction of scalars (32)),

.xbi /
2
D xbi and xA.!i /=xbi 'Mi .K/

where xbi WD annxA.!i /.L.!i //.

(2) Let bi be the pre-image of the ideal xbi under the epimorphism A! xA.!i /, ˛ 7!
˛ C .� � !i /. Then b2i D bi and A=bi ' xA.!i /=xbi 'Mi .K/.

Proof. (1) The algebra xA.!/DKŒz�Œe;f I�;a! � is a GWA. By [7, Theorem 1], the simple
i -dimensional A.!i /-module L.!i / is also a simple xA.!i /-module. Then xA.!i /=xbi '
Mi .K/. By [8, Corollary 4], .xbi;z/2D xbi;z (since the polynomial a!i 2KŒz� has degree 2),
where xbi;z is the localization of the ideal xbi of the algebra xA.!i / at the powers of z. So,

0 D xbi;z=.xbi;z/
2
D
�
xbi=.xbi /

2
�
z
:

We must have .xbi /2 D xbi . Suppose that this is not the case, i.e., N WD xbi=.xbi /2 ¤ 0,
we seek a contradiction. Then the A.!i /-module N is annihilated by the ideal xbi . Since
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A.!i /=xbi 'Mi .K/, the A.!i /-module N is isomorphic to L.!i /n, a direct sum of n
copies of the A.!i /-module L.!i / for some n > 1. Since the map z � W L.!i /! L.!i /,
v 7! zv is a bijection, so is the map z � W N ! N , u 7! zu. Therefore, 0¤ N D Nz D 0,
a contradiction. Ideals of the GWAs like the GWA xA.!i /z were classified in [8].

(2) By the very definition of the ideal bi ,

A=bi ' xA.!i /=xbi 'Mi .K/:

By Lemma 7.2 (1), b2i D bi .

The next theorem is a description of prime, maximal, primitive and completely prime
ideals of the algebra A.˛; ˇ; / in the case where ˛; ˇ;  2 K� and char.K/ D 2.

Theorem 7.6. Suppose that K is an algebraically closed field and char.K/ D 2. Let A D
A.˛; ˇ; / where ˛ ¤ 0, ˇ ¤ 0 and  ¤ 0. Then:

(1) Spec.A/ D ¹0; .� � !/ j ! 2 Kº t ¹ai j i > 1º, where ai D annA.L.!i //, see
Theorem 6.10, a2i D ai and A=ai ' Mi .K/, the algebra of i � i matrices over
K. The containments of prime ideals of the algebra A are given by the diagram
below:

a1 ai

.� � !1/ . . . .� � !i / . . .¹.� � !/ j ! 2 K n Lº

0

where i > 1, LD ¹!i j i > 1º and !i D
1Cq2i

q2�1
. ˛ˇ

.q2�1/q2i
/
1
2 (all numbers in L are

distinct, Lemma 6.7 (3)).

(2) Max.A/ D Prim.A/ D ¹.� � !/ j ! 2 K n Lº t ¹ai j i > 1º.

(3) Specc.A/ D ¹.� � !/ j ! 2 Kº t ¹a1º.

(4) The algebra xA.!/ is a Noetherian domain for all ! 2 K.

(5) The algebra xA.!/ is simple iff ! … L D ¹!i j i > 1º.

(6) For each ! D !i where i > 1, the ideal xai WD ai=.� � !i / D ann xA.!i /.L.!i //
is a unique proper ideal of the algebra xA.!i /, .xai /2 D xai , xA.!i /=xai 'Mi .K/,
xai D .xbi / D xA.!i /xbi xA.!i / and xbi D xA.!i / \ xai .

(7) For all i > 1, a2i D ai and A=ai 'Mi .K/.

(8) Every nonzero prime ideal meets the centre of A.

Proof. (4) Statement (4) is obvious.
(5) Since ˇ¤ 0, .zi /D .1/ for all i > 1 in xA.!/ (Lemma 3.2). By (29), Spec. xA.!//D

Spec. xA.!/z/. Now, statement (5) follows from the simplicity criterion [1, Theorem 4.2]
for the GWA xA.!/z D xA.!/z .
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(6) Let xAD xA.!i / and xAD xA.!i /. The inclusion of algebras xA � xA yields the inclu-
sions

xbi � xA \ xai � .xbi / � xai

and the algebra homomorphisms (Lemma 7.3)

Mi .K/ ' xA=xbi ! xA=A \ xai ! xA=.xbi /! xA=.xai / 'Mi .K/:

Clearly, all homomorphisms are isomorphisms, and so the inclusions above are equalities.
By Proposition 7.3 (1), xb2i D xbi . Now,

xa2i D
�
.xbi /

�2
�
�
.xb2i /

�
D .xbi / D xai ;

and so xa2i D xai .
(7) By Proposition 7.3 (2), b2i D bi . By statement (6), xai D .xbi /, and so ai D .bi /.

Now,
a2i D

�
.bi /

�2
�
�
.bi /

2
�
D .bi / D ai ;

and so a2i D ai .
(1) Statement (1) follows from statements (5)–(7) and Lemma 3.6.
(2) Statement (2) follows from statement (1).
(3) Statement (3) follows from statement (1), (30) and statement (7).
(8) Statement (8) follows from statement (1).

8. Applications and corollaries

In this section, applications and corollaries of the classifications are given. In particular,
proofs of Theorems 1.1, 1.2, 1.6, 1.5 and 1.3 are given.

Proof of Theorem 1.2. (i) If I is a prime ideal then I \ Z.A/ ¤ 0: By Theorem 1.1,
there are only 4 cases to consider. Now, statement (i) follows from Corollary 4.2 (4),
Corollary 5.3 (4), Theorem 7.1 (1), Theorem 7.4 (8) and Theorem 7.6 (8).

(ii) If I is a nonzero ideal then I \Z.A/¤ 0: Let nD n.I / be the prime radical of I ,
i.e., n D

T
P2min.I / P is the intersection of minimal prime ideals over I . The algebra A

is Noetherian, hence there is a natural number s > 1 such that

I � ns �
Y

P2min.I /

P s DW P ;

the order of multiples in the product is arbitrary. The algebra A is a prime algebra, hence
P ¤ 0. Then

P � Q WD
Y

P2min.I /

.P \Z.A//s ¤ 0;

since the centre Z.A/ D KŒ�� is a domain and all P \Z.A/ ¤ 0. Then I \Z.A/ ¤ 0,
since I \Z.A/ � Q ¤ 0.
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Proof of Theorem 1.1. By the cyclic permutation symmetry, we have 4 cases to consider
for .˛; ˇ; /: .0; 0; 0/, .˛; 0; 0/, .˛; ˇ; 0/ and .˛; ˇ; / where ˛; ˇ;  2 K�. Using the
change of generators of the algebra A D A.˛; ˇ; / from .x; y; z/ to .�x; �y; �z/ where
�; �; � 2 K� and the fact that

p
K � K we may assume that each of the nonzero scalars

˛; ˇ and  is 1. So, we may assume that .˛; ˇ; / is one of the four options (according
to rk.A/ D 0; 1; 2 and 3): .0; 0; 0/, .1; 0; 0/, .1; 1; 0/ and .1; 1; 1/. Suppose that K is an
algebraically closed field. In these cases, the posets .Spec.A/;�/ are not isomorphic (use
the description of .Spec.A/;�/). Therefore, the algebras are not isomorphic.

Suppose that K is not necessarily an algebraically closed field and K be its algebraic
closure. If two algebras in the list of four above are isomorphic over K then they are
automatically isomorphic over K and so they must coincide.

Proof of Theorem 1.6. The theorem follows from the classification of simple A-modules
(by Theorem 7.1 (4), if rk.A/ D 2 then all nonzero A-modules are infinite dimensional).

Proof of Theorem 1.8. The statement of Theorem 1.8 holds for all ranks rk.A/ D 0; 1; 2
and 3, see the classifications of prime ideals for each rank above.

Proof of Theorem 1.7. Let A D A.˛; ˇ; /. If rk.A/ D 0; 1 or 2 then every prime ideal of
A is completely prime (Corollary 4.2 (3), Corollary 5.3 and Theorem 7.1 (3)). If rk.A/D 3
then the result follows from Theorem 7.4 (3) and Theorem 7.6 (3).

Proof of Theorem 1.5. Let A D A.˛; ˇ; /. If rk.A/ D 0; 1, then the category of finite
dimensional A-modules is not semisimple (use the fact that the category of finite dimen-
sional KŒt �-modules is not semisimple). If rk.A/ D 2, the category of finite dimensional
A-modules contains only zero module (Theorem 1.6). Hence, it is not semisimple. Sup-
pose that rk.A/ D 3. To finish the proof of the theorem it suffices to show that, for each
! 2 K, the category F! of finite dimensional A-modules is semisimple provided F! ¤ 0

whereM 2F! iff dimK.M/<1 and .��!/nM D 0 for some nD n.M/> 1. If F! ¤ 0

then the category F! contains a unique simple module, say U D U! (Theorem 6.8 (2) and
Theorem 6.10 (2)). Since its annihilator a D annA.U!/ is an idempotent ideal (a2 D a)
(Theorem 7.4 (1) and Theorem 7.6 (1)) such that A=a ' Mn.K/ is the n � n matrix
algebra over K where n D dimK.U /, the category F! is a semisimple category.

The algebra U D Uq.sl2/. If q2 ¤ 1 then the algebra

Uq.sl2/ D K
D
K˙1; E; F j KE D q2EK; KF D q�2FK; ŒE; F � D

K �K�1

q � q�1

E
is isomorphic to the algebra A D A.˛; ˇ;  I q2/z where ˛ D 1 � q2, ˇ D 1 � q�2 and
 D 1 � q2 via the isomorphism

Uq.sl2/! A; K 7! z; E 7!
1 � zx

1 � q�2
; F 7!

y � z�1

q � q�1

and x 7!K�1 C .1 � q2/K�1E, y 7!K�1 C .q � q�1/F and z 7!K is its inverse, [19].
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The algebra Uq.sl2/ is a localization Az of the algebra A D A.˛; ˇ;  I q2/ at the
powers of the element z with rk.A/ D 3. It follows from Theorem 1.5 that the category of
finite dimensional Uq.sl2/-modules are semisimple (this result is known). It follows from
Theorem 1.3, that the ideals of the algebra Uq.sl2/ commute and each ideal of Uq.sl2/ is
a unique product of primes (Theorem 8.1).

Theorem 8.1. Suppose that K is an algebraically closed field, q2 is not a root of unity
and U D Uq.sl2/. We keep the notation of Theorem 6.8 and Theorem 6.10. Then:

(1) the algebra U is isomorphic to the localization Az of the algebra A D A.1; 1; 1/
at the powers of the element z.

(2) Spec.Az/ D

´
¹.0/; .� � !/z j ! 2 Kº t ¹.a˙i /z j i > 1º; if char.K/ ¤ 2;

¹.0/; .� � !/z j ! 2 Kº t ¹.ai /z j i > 1º; if char.K/ D 2:

(3) Suppose that char.K/¤ 2. Then the ideals of U commute and every nonzero ideal
I of U is a unique product (up to permutation) of prime ideals,

I D
Y
!2K

.� � !/n.!/z �

Y
i>1

.aCi /
ni
z �

Y
j>1

.a�j /
mj
z ;

where n.!/ 2 N, ni ; mj 2 ¹0; 1º and all but finitely many numbers n.!/; ni and
mj are equal to zero.

(4) Suppose that char.K/D 2. Then the ideals of U commute and every nonzero ideal
I of U is a unique product (up to permutation) of prime ideals,

I D
Y
!2K

.� � !/n.!/ �
Y
i>1

.ai /
ni
z :

Proof. The algebra U is a particular case of GWAs that are considered in [9] and the
theorem is a particular case of [9, Theorem 1].

For an algebra R, we denote by 	.R/ the set of its ideals.

Proof of Theorem 1.4. (1) Statement (1) follows from Theorem 7.1 (5) (when  D 0),
statement (2) (when  ¤ 0, char.K/ ¤ 2) and statement (3) (when  ¤ 0, char.K/ D 2).

(2) and (3) We prove statements (2) and (3) simultaneously. Recall that Az D U D

Uq.sl2/ for which analogues of statements (2) and (3) hold (Theorem 8.1). Let I be a
nonzero ideal of the algebra A. By Theorem 8.1 (3), (4),

Iz D g �
Y
i>1

.aCi /
ni
z �

Y
j>1

.a�j /
mj
z if char.K/ ¤ 2

(respectively, Iz D g �
Q
i>1.ai /

ni
z if char.K/ D 2) for some monomial polynomial g 2

KŒ��. Since A � Az and I � Iz \ A, we see that g 2 I . Notice that

A D
M

i;j;k>0;
ijkD0

KŒ��xiyj zk � Az D
M

i;j>0; k2Z;
ijkD0

KŒ��xiyj zk :
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Hence, Ig�1 is an ideal of A such that .Ig�1/ D Izg�1. So, replacing the ideal I by the
ideal Ig�1 we may assume that g D 1, in both cases.

Let min.I / and min.Iz/ be the sets of minimal primes of the ideals I GA and Iz GAz
over the ring A and Az , respectively. By (29), the map

min.I /! min.Iz/; p 7! pz

is a bijection with the inverse q 7! A \ q. Clearly, min.Iz/ D ¹.aCi /z ; .a
�
j /z j ni ¤ 0;

mj ¤ 0º (respectively, min.Iz/ D ¹.ai /z j ni ¤ 0º). Hence, min.I / D ¹aCi ;a
�
j j ni ¤ 0;

mj ¤ 0º (respectively, min.I / D ¹ai ; j ni ¤ 0º) since .aCi /z \ A D aCi and .a�j /z \
A D a�j , by the maximality of the ideals aCi and a�j (respectively, since .ai /z \ A D ai ,
by the maximality of the ideal ai ). The algebra A is a Noetherian algebra. Hence, the
ideal I contains a product of powers of its minimal primes. The minimal primes of I are
idempotent ideals and they commute. Hence,

I D
Y
i>1

.aCi /
ni �

Y
j>1

.a�j /
mj

(respectively, I D
Q
i>1 anii ), as required.

Proof of Theorem 1.3. If the rank r of the algebra A.˛; ˇ; / is 0 or 1, then it follows at
once from the descriptions of prime ideals that not all of them commute. If r D 2; 3 then
the ideals commute and each ideal is a unique product of prime ideals, by Theorem 1.4.
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