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Quasi-inner automorphisms of Drinfeld modular groups
A. W. Mason and Andreas Schweizer

Abstract. Let A be the set of elements in an algebraic function field K over F; which are integral
outside a fixed place oo. Let G = GL3(A) be a Drinfeld modular group. The normalizer of G
in GL,(K), where K is the quotient field of A, gives rise to automorphisms of G, which we refer
to as quasi-inner. Modulo the inner automorphisms of G, they form a group Quinn(G) which is
isomorphic to C1(A)3, the 2-torsion in the ideal class group CI(A). The group Quinn(G) acts on all
kinds of objects associated with G. For example, it acts freely on the cusps and elliptic points of G.
If T is the associated Bruhat-Tits tree, the elements of Quinn(G) induce non-trivial automorphisms
of the quotient graph G\ T, generalizing an earlier result of Serre. It is known that the ends of G\ T
are in one-to-one correspondence with the cusps of G. Consequently, Quinn(G) acts freely on the
ends. In addition, Quinn(G) acts transitively on those ends which are in one-to-one correspondence
with the vertices of G\ 7 whose stabilizers are isomorphic to GL3 (Fg).

1. Introduction

Let K be an algebraic function field of one variable with constant field IF, the finite field
of order g. Let oo be a fixed place of K, and let § be its degree. The ring A of all those
elements of K which are integral outside co is a Dedekind domain. Denote by K, the
completion of K with respect to oo, and let Co, be the co-completion of an algebraic
closure of Koo. The group GL;(K) (and its subgroup G = GL,(A)) acts as Mobius
transformations on Cy, Koo and hence 2 = Coo\ Koo, the Drinfeld upper halfplane. This
is part of a far-reaching analogy, initiated by Drinfeld [2], where QQ, R, C are replaced
by K, Koo, Co, respectively. The roles of the classical upper half plane (in C) and the
classical modular group SL;(Z) are assumed by 2 and G, respectively.

Modular curves, that is quotients of the complex upper half plane by finite index sub-
groups of SL,(Z), are an indispensable tool when proving deep theorems about elliptic
curves. Of similar importance in the theory of Drinfeld A-modules of rank 2 are Drin-
feld modular curves, which are (the “compactifications” of) the quotient spaces H\£2,
where H is a finite index subgroup of G. Consequently, we refer to G as a Drinfeld mod-
ular group.

A complicating factor in this correspondence between SL,(Z) and G is that, while the
genus of the former is zero, for different choices of K and oo, the genus of G can take
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many values. The simplest case, where K = [F,(t) and A = F,[¢] (equivalently, g = 0
and § = 1), has to date attracted most attention.

An element @ € Q2 which is stabilized by a non-scalar matrix in G is called elliptic.
Let E(G) be the set of all such elements. It is known [3, p. 50] that £(G) # @ if and only
if § is odd. Clearly, G acts on E(G) and the elements of the set of G-orbits, EIl(G) =
G\E(G) = {Gw : w € E(G)}, are called the elliptic points of G. It is known [3, p. 50]
that EIl(G) is finite. See [9] for a detailed treatment of elliptic points.

In addition, G acts on P1(K) = K U {oo}. (Here, of course, oo refers to the one
point compactification of K.) We refer to the elements of P!(K) as rational points. For
each finite index subgroup H of G, the elements of Cusp(H) = H\P!(K) are called
the cusps of H. Since A is a Dedekind domain, it is well known that Cusp(G) can be
identified with CI(A), the ideal class group of A. As Mobius transformations, G acts
without inversion on 7, the Bruhat-Tits tree associated with GL;(Ko) and the ends of
the quotient graph G\ 7 are determined by Cusp(G) [11, p. 106, Theorem 9].

Cusps and elliptic points are important for several reasons. If H is a finite index sub-
group of G, the quotient space H\2 will, after adding Cusp(H ), be the Coo-analog
of a compact Riemann surface, which is called the Drinfeld modular curve associated
with H. Moreover, in the covering of Drinfeld modular curves induced by the natural
map H\Q — G\, ramification can only occur above the cusps and elliptic points of G.
Also, for (classical and Drinfeld) modular forms, analyticity at the cusps and elliptic points
requires special care.

This paper is a continuation and extension of [9] which is concerned with the ellip-
tic points of G. There the starting pomt [3, p. 51] is the existence of a bl]eCIIOIl between
Ell(G) and ker N, where N: Cl(A) — CI(A) is the norm map and A=4 JFy2. It can
be shown [9] that Cl(A)z N ker N, the 2-torsion subgroup of ker N, is in bijection with
Ell(G)= ={Gw :w € E(G),Gw = Gw}, where @, the conjugate of w, is the image of @
under the Galois automorphism of K.F,2/K. (In [9], Ell(G)~ is denoted by Ell(G)>.)
Here we show that, when § is odd, Cl(A), and the 2-torsion in ker N are isomorphic.
This is the starting point for this paper, where the principal focus of attention is the
group Cl(A), and its actions on various objects related to G. Unless otherwise stated,
results hold for all §.

Let g € Now,(kx)(G), the normalizer of G in GL,(K). Then g, acting by conjugation,
induces an automorphism ¢, of G, which we refer to as quasi-inner.If g € G.Z(K), then (¢
reduces to an inner automorphism. If g € Ngr,x)(G)\G.Z(K), we call ¢, non-trivial.
We denote the quotient group Ngr,x)(G)/G.Z(K) by Quinn(G). It is well known [1]
that Quinn(G) is isomorphic to Cl(A4),. Hence G has non-trivial quasi-inner automor-
phisms if and only if |C1(A)| is even. Now, as an element of GL,(K), (g acts as a Mbius
transformation on the rational points and elliptic elements of G, as well as 7. In particu-
lar, g(w) = g(®). Since all of these actions are trivial for scalar matrices, they extend to
actions of Quinn(G) on Cusp(G), Ell(G) and the quotient graph, G\ 7 . In this paper, we
study the (often surprising) properties of these actions.
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Theorem 1.1. The group Quinn(G) acts freely on
(i) Cusp(G),
(ii) EN(G) if § is odd.

From the above, it is clear that Quinn(G) can be embedded as a subgroup Ell(G)~™
(resp. C1(A),) of ElI(G) (resp. Cusp(G)). We show that the action of Quinn(G) is equiva-
lent to multiplication by the elements of the subgroup. The “freeness” in this result follows
immediately. Restricting to these subsets yields stronger results.

Corollary 1.2. The group Quinn(G) acts freely and transitively on

(i) Cl(A)2,
(i) EIN(G)= if § is odd.

Corollary 1.3. When § is odd, Quinn(G) acts freely on EIl(G)* = {Gw : Gw # G},
Moreover; ifker N has no element of order 4, then Quinn(G) acts freely on

{Gw,Ga} : Gw € Ell(G)7).

Theorem 1.4. Every non-trivial element of Quinn(G) determines an automorphism
of G\T of order 2 which preserves the structure of all its vertex and edge stabilizers.

Serre [11, p. 117, Exercise 2 (e)] states this result for the special case K = F,(¢)
with § even. Our result shows that, in general, the quotient graph has symmetries of this
type provided |CI(A)| is even. (In general, this restriction is necessary.)

We now list more detailed results on the action of Quinn(G) on G\T . Serre [11,
p. 106, Theorem 9] has described the basic structure of G\ 7. Its ends (i.e., the equivalence
classes of semi-infinite paths without backtracking) are in one-to-one correspondence with
the elements of C1(A). To date, the only cases for which the precise structures of G\ T are
known are g = 0[4,6],and g = 6 = 1 [14].

Theorem 1.5. The group Quinn(G) acts freely on the ends of G\T and, in addition,
transitively on the ends of G\T corresponding to the elements of C1(A)5,

We show that the ends corresponding to CI(A4), are in one-to-one correspondence
with those vertices whose stabilizers are isomorphic to GL,(F,). (Each such vertex is
“attached” to the corresponding end.) It is known [8, Corollary 2.12] that if G, contains
a cyclic subgroup of order g2 — 1, then G, =~ IF;Z or GL,(Fy).

The building map (3, p. 41] extends to a map A: Ell(G) — vert(G\ 7). This map leads
to another action of Quinn(G) on the quotient graph.

Theorem 1.6. (a) The group Quinn(G) acts freely and transitively on
{v e vert(G\7) : G, = GL(F,)}.

(b) Suppose that § is odd and that ker N has no element of order 4. Then Quinn(G)
acts freely on
{v e vert(G\7) : Gy =~ F;z}.



A. W. Mason and A. Schweizer 4

As an illustration of our results, especially the existence of reflective symmetries as
in Theorem 1.4, we conclude with diagrams of two examples of G\ T, for each of which
g = § = 1, the so called “elliptic” case. For these we make use of Takahashi’s paper [14].
Special features of these cases include the following. For part (i), see [9, Theorem 5.1].

Corollary 1.7. Suppose that § = 1.

(1) The isolated (i.e., (graph) valency 1) vertices of G\T are precisely those whose
stabilizers are isomorphic to GL,(FF,) or IF;Z.

(ii) If ker N has no element of order 4, then Quinn(G) acts freely on the isolated
vertices of G\T .

By looking at the stabilizers in G of the objects discussed above, we obtain several
statements about the action of Quinn(G) on the conjugacy classes of certain types of
subgroups of G. (See Sections 3 and 5.)

For convenience, we begin with a list of notations which will be used throughout this

paper.

=
Q

the finite field with ¢ = p” elements;

an algebraic function field of one variable with constant field IF;
the genus of K;

a chosen place of K;

the degree of the place oo;

the ring of all elements of K that are integral outside oo;
the completion of K with respect to co;

Drinfeld’s halfplane;

the Bruhat-Tits tree of GL,(K);

the Drinfeld modular group GL;(A4);

the orbit of x under the action of G on the object x;
GL»(K);

the set of scalar matrices in @;

Z(K)NG;

the quadratic constant field extension K .qu;

A.IF,2, the integral closure of A4 in K ;

CI(R) the ideal class group of the Dedekind ring R;

CI°(F) the divisor class group of degree 0 of the function field F’;
Cusp(G) G\P!(K), the set of cusps of G;

E(G) the set of elliptic elements of G:

El(G) G\ E(G), the set of elliptic points of G;

) the image of w € E(G) under the Galois automorphism of K /K ;
Ell(G) {Gw:we EG), Gow = Go};

EIl(G)* EI(G)\EI(G)=;
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S(s) the stabilizer in a finite index subgroup S (of G) of s € P1(K);
G? the stabilizer in G of w € Co\ K;

Sw the stabilizer in S of w € vert(7) U edge(7);

H {H <G : H=GLy([F,)};

€ {CSG:CQF;‘Z};

Cnr {C €€ :C maximally finite in G };

Cum €\€mf;

1% {V e vert(G\T) : G, € €}

2. Quasi-inner automorphisms

Let F be any field containing A (and hence K), and let Z(F') denote the set of scalar
matrices in GL; (F'). We are interested here in automorphisms of G arising from conjuga-
tion by a non-scalar elerAnent of GL(F). We first show this problem reduces to Ng (G),
the normalizer of G in G = GL;(K). For each x € F, we use (x) as a shorthand for the
fractional ideal Ax.

Lemma 2.1. Let My € GL,(F) normalize G. Then

Mo € Z(F).Ng(G).

_ |« B
MO_[V 5]

Suppose that y # 0. Replacing My by y~! My, we may assume that y = 1. Now

Proof. Let

NT(HN~ ! e G,

where N = Moil. It follows that det(My), @, § € K and hence that 8 = a§ — det(M) € K.
The proof for the case where y = 0 is similar. ]

We state a special case (n = 2) of a result of Cremona [1] .

a b PN
M_(C d)eG,

(M) := (a) + (b) + (c) + (d).
Then M € Ng(G) if and only if

Theorem 2.2. Let

and define

a(M)* = (1),

where A = det(M).
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Corollary 2.3. Let M € Ng(G) with A = det(M).
(i) AT'M? € SL,(A).
(i) If A € A*, then M € G.

Proof. (i) By Theorem 2.2, every entry of M2 is in q(M)? = (A).
For part (i), let x be any entry of M. Then x> € A by Theorem 2.2 and so x € A,
since A is integrally closed. ]

Another important consequence [1] of Theorem 2.2 is the following.
Theorem 2.4. The map M +— q(M) induces an isomorphism
Ng(G)/Z(K).G = Cl(A)2,
where C1(A), is the subgroup of all involutions in C1(A).

Proof. This is another special case (7 = 2) of aresultin [1]. If [4 5 | € N5(G), it can be
shown [1, Remarks 2] that

(@) + (b) = (a) + (c) = (d) + (b) = (d) + (¢c) = a(M).

Consequently, there is a map from Ng(G) to CI(A),, which turns out to be an isomor-
phism. ]

Definition 2.5. An automorphism ¢, of G is called guasi-inner if

lg(x) = gxg ', xegG,

for some g € Ng(G). We call 1z non-trivial if g ¢ Z(K).G, i.e., if 1 does not act like an
inner automorphism. We note that

L) = lg, & 8185 € Z(K).
Finally, we define
Quinn(G) := Ng(G)/Z(K).G = CI(A),.

So Quinn(G) is the group of quasi-inner automorphisms modulo the inner ones. We
note that, in particular, all quasi-inner automorphisms of G act like inner automorphisms
if |C1(A4)]| is odd.

Let C1°(K) be the group of divisor classes of degree zero [13, p. 186]. It is known [11,
p. 104] that the following exact sequence holds:

0 — CI°(K) — Cl(A) — Z /87 — 0. (1)

Our next result is an immediate consequence of Theorem 2.4.
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Corollary 2.6. The group G has non-trivial quasi-inner automorphisms if and only if
[C1(A)| = 8|CI°(K)| is even.

Example 2.7. We illustrate the results of this section with the simplest case K = [F,(?),
the rational function field over F,. Then there exists a (monic) polynomial 7 (¢) € [F,[t],
of degree §, irreducible over I, such that

A:{f 'fek[t],mzo,degffém}.

am
It is known [13, p. 193, Theorem 5.1.15] that here ClO(K) is trivial, so that
Cl(A) = Z/§7.

Hence G has non-trivial quasi-inner automorphisms if and only if § is even. Hence here
either Quinn(G) is trivial or cyclic of order 2.

For a specific illustration of Theorem 2.4, we restrict further to § = 2. In this case,
n(t) =1t>+ ot + v, where 0 € F; and 7 € ;. We begin with the A-ideal generated
by 77! and ¢~ which is not principal. Let 7(t) = t¢' + t and put

(Tt
8o = _t/ 1 .

Then by Theorem 2.2, go € Ng(G) and from Theorem 2.4, we see that go ¢ Z(K).G.
Hence go provides a generator of C1(A4),.

Remark 2.8. From the theory of Jacobian varieties, we know that the 2-torsion in C1°(K)
is bounded by 22¢, and even by 2¢ if the characteristic of K is 2 [10, Theorem 11.12].
Hence by the exact sequence (1), it follows that |Quinn(G)| = |Cl(A),| < 226+! (and
< 28*1 when char(K) = 2).

In odd characteristic, we can easily find examples with |Cl(4),| = 22¢, provided we
are willing to accept a big constant field. Given a function field F of genus g with con-
stant field IF,r, just pick ¢ = p"" such that all 2-torsion points of Jac(F') are F,-rational
and consider K = F.F;. Then C1°(K), = (Z/27)?8. Choosing a place oo of K of odd
degree § from the exact sequence (1), we see that |Cl(4),| = 22%¢.

Similarly, in characteristic 2 examples for which |C1(A),| = 28 can be found by choos-
ing F suitably, namely F has to be ordinary.

Whether for even § one can reach the bound 228 +1 (resp. 26+1) depends on whether
or not the induced short exact sequence for the Sylow 2-subgroup of CI(A) splits or not.

Definition 2.9. Let R, S be subgroups of a group 7'. We write
R~S
if and only if R = S* = ¢St~ for some ¢t € T. We put
RT ={(R':t €T}
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Let $ be a set of subgroups of 7. We put
ST =(sT:5¢e8).
This paper is principally concerned with various actions of Quinn(G). It is appropriate

at this point to describe in detail the most important of these. Let ¢, be as above.

(i) Itis clear that GL,(K o) acts on 2 as Mobius transformations and that this action
is trivial for all scalar matrices. Then ¢, acts on E(G) since, for allw € E(G),

G#@ = (G?)® (< G).
Recall that Ell(G) = {Gw : ® € E(G)}. The map
Gor Gg(w)

extends naturally to a well-defined action of Quinn(G) on Ell(G).

(ii) Clearly, G acts as Mobius transformations on Pl (K), and it is well known that
G\P!(K) < CI(A).

As we shall see later from the structure of the quotient graph, it follows that, for all k €
P1(K), G(k) is infinite, metabelian. Recall that Cusp(G) = {Gk : k € P!(K)}. As before,
the map

Gk — Gg(k)

extends to a well-defined action of Quinn(G) on Cusp(G).

(iii) Serre [11, Chapter II, Section 1.1, p. 67] uses lattice classes as a model for the
vertices and edges of 7. It is clear that GL, (K ) acts naturally on these. In particular, the
scalar matrices act trivially. The map

Gwr— Gg(w),

where w € vert(7) U edge(7), extends to a well-defined action of Quinn(G) on the quo-
tient graph G\T . Note that G4(y) = ((Gw))® < G. We will use this action to extend
a result of Serre.

(iv) Suppose that
S ={H =G : H =GL(F,)}

or § is a G-conjugacy closed subset of € = {C < G : C = IF;Z}.

Then Quinn(G) acts by conjugation on . We use these to define actions of Quinn(G)
on significant subsets of vert(7).
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3. Action on vertex stabilizers
Almost all the results in this section hold for all §. We record the important general prop-
erties of subgroups of vertex stabilizers.
Lemma 3.1. (i) Gy, is finite for all v € vert(T).
(ii) Let S be a finite subgroup of G. Then

SSGUO

for some vy € vert(T).
Proof. See [11, p. 76, Proposition 2]. ]

In this section, we are concerned with subgroups of G, which contain a cyclic sub-
group of order g2 — 1. We record the following result.

Lemma 3.2. Suppose that G, contains a cyclic subgroup of order g*> — 1. Then
Gy, = GLy(Fy) or Gy = IF;Z.
Proof. See [8, Corollaries 2.2, 2.4 and 2.12]. [

In the first part of this section, we look at the action of quasi-inner automorphisms on
the following set:
H ={H <G : H =GL(F,)}.

Lemma 3.3. Let H € J. Then there exists vy € vert(T") for which
H = G,,.
Proof. Follows from Lemmas 3.1 (ii) and 3.2. ]

Remark 3.4. (i) Every T contains a particular vertex vy, usually referred to as standard
(after Serre), for which
Gy, = GL,(Fy).

See [11, p. 97, Remark 3].

(ii) On the other hand, for the case A = [F,[t] (equivalently, g(K) =0, § = 1), it
follows from Nagao’s theorem [11, Corollary, p. 87] that here vert(7") has no stabilizer
which is cyclic of order g2 — 1.

Lemma 3.5. Let H € #. Then there exists a quasi-inner automorphism k = g of G such
that
H = k(GLa(Fy)).
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Proof. From the proofs of [8, Theorem 2.6, Corollary 2.8], as well as [8, Corollary 2.12],
it is clear that there exists

a b ~
g= [c di| € GL»(K)

such that
H = g(GLy(Fy))g ™.

We denote by X the image of x € K under the extension of the Galois automorphism
of F2/IF, to K. It is clear that gEijg™! € My(A), where 1 <i,j <2andso

xy/A (=%y/A) € A

forall x,y € {a,b,c,d}, where A = det(g).
Now we may assume without loss of generality that ¢ # 0. Let z € {a, b, d}. Then

/A =¢c2?/A, cz/A=7czZ/A.

It follows that z/c = Z/¢, so that z/c € K. We now replace g = M by go = ¢~ M.
Then by Theorem 2.2, the map ko: G — G defined by ko (x) = goxgy " is a quasi-inner
automorphism of G. [ ]

Lemma 3.6. Let kg = tg, be a non-trivial quasi-inner automorphism of G, and let H € J.
Then
ko(H) # H.

Proof. By definition, go € Ng(G)\G.Z(K). Suppose to the contrary that
xko(H) = gHg™!

for some g € G. Replacing go by g~ g0, we may assume that g = 1. Now by Lemma 3.5,
H = ky(GLy(F,)) for some quasi-inner k, = Lgy say. It follows that

g1(GL2(Fy))gy ' = GLa(Fy).
where g1 = (g() ' 208)- As Ng(G)/G.Z(K) is abelian, this implies that
g1 = go (mod Z(K).G),
and so we may further assume that g; = go. Let
Sp ={T(a) = E12(a) : a € Fy}.
Now S, is a Sylow p-subgroup of GL,(F;) and so from the above,

gO(Sp)gal = h(Sp)h_l
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for some & € GL,(IF;). As above, we may assume then that # = 1. It follows that go

“fixes” oo, and so
| x
8o = 0 .

By Corollary 2.3 (i), we note that

(det(g0)) ™' r((g0)?) =y + ¥ € 4,

where y = af~!. Since A4 is integrally closed, it follows that y € A*(= F7). Then we can
replace go by B~ go which belongs to G by Corollary 2.3 (ii). Thus go € Z(K).G. ]

Lemma 3.7. Let e € edge(T) be incident with vg. Then
G. 5 GLy(Fy).

Proof. The edges attached to v are parametrized by P! (IFzs), and GL (IFg) acts on these
as Mobius transformations. See [11, p. 99, Exercise 6].

If the edge corresponds to f* € [Fs, it is not fixed by the translations in GL,(F,), and
if it corresponds to oo, it is not fixed by (§ §) € GL2(Fy). "

Proposition 3.8. No edge of T can have a stabilizer isomorphic to GL,(Fy).

Proof. For odd §, this follows from [8, Corollary 2.16]. We provide a proof that holds
for all §. Suppose to the contrary that there is an edge e whose stabilizer is isomorphic to
GL,(F;). Then by Lemma 3.2, the stabilizers of its terminal vertices are both G,.

By Lemma 3.5 and the action of quasi-inner automorphisms on 7, we can assume that

G, = GL,(F,).

It follows that GL, (IF;) stabilizes the geodesic from vy to one of the terminal vertices of e
which includes e, and hence an edge incident with vg. This contradicts Lemma 3.7. [

Corollary 3.9. Let H € J. Then there exists a unique vertex v € vert(7") such that
G, =H.
Proof. Follows from Lemma 3.3 and Proposition 3.8. ]

Remark 3.10. Another interesting consequence of Lemma 3.5 and Proposition 3.8 is the
following. Suppose that G, € J#. Then there exists k = ¢, such that k (v) = v;. Since «
is an automorphism of 7', the action of G, on the g% + 1 edges of T incident with v is
identical to the action of GL,(F,) on the edges of 7 incident with vy, as described in
Lemma 3.7.
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Definition 3.11. By definition,
vert(G\7) = {Gv : v € vert(7)}.
We put ¥ = Gv and define its stabilizer
Gy = (Gy)°.
We refer to Gy as being isomorphic to G,.
Lemma 3.12. There exists a bijection
HO o (T evert(G\T) : Gy € H).
Proof. Follows from Corollary 3.9 and the above. ]

It is clear that Quinn(G) acts on ¥ . Since Z(K), represented by scalar matrices, acts
trivially on 77, it is also clear that Quinn(G) acts on G\ T . We now come to the principal
result in this section which follows from Lemmas 3.5, 3.6 and 3.12.

Theorem 3.13. The group Quinn(G) acts freely and transitively on
(i) the G-conjugacy classes of subgroups of G which are isomorphic to GL,(Fy),

(ii) the vertices of G\T whose stabilizers are isomorphic to GL,(IFg) .
A special case of this result is provided by Corollary 2.6.

Corollary 3.14. Suppose that |C1(A)| is odd. Then

(i) every subgroup H of G isomorphic to GL,(Fy) is actually conjugate in G to the
natural subgroup GL,(F,) of G obtained from the inclusion Fy; C A,

(ii) the only vertex in G \ T whose stabilizer is isomorphic to GL,(F,) is Uy, the
image of the standard vertex vg.

4. Action on elliptic points

Throughout this section, we assume that § is odd. Recall that
Ell(G) = {Gw : v € E(G)}
denotes the elliptic points of the Drinfeld modular curve G\ 2.
Definition 4.1. We define
Ell(G)~ = {Gw:Gw = G} and EN(G)” = {Gw: Gw # G&).

(In [9, Section 3] ElI(G)~ is denoted by Ell(G),.)
The action of an element of GL,(Ks) on an element of Q will always refer to its
action as a Mobius transformation. We record the following.
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Lemma 4.2. Let g € N3(G) and w € E(G). Then
(@) g(w) € E(G),
(i) g(w) = g(@).
It is clear then that Quinn(G) acts on both ElI(G)= and ElI(G)7.
In this section, our approach is based on [9, Sections 3 and 4]. We recall some details.

Definition 4.3. Let / be an A-ideal (resp. A-ideal). Then [/] denotes the image of [ in
CI(A) (resp. C1(A)).

Fix ¢ € F,2 \ F;. By [9, Theorem 2.5], any elliptic point @ of G can be written as
w = etﬂ, where 5,1 € A and ¢ divides (¢ + s5)(¢ + 5) in A. Now let

Jo = A(e +5) + At.

It is known [9, Lemmas 3.1 and 3.2] that

(i) Jy is an A-ideal.

(i)  Jy is independent of the choice of & € F2 \ ;.

(iii) Letw,w’ € E(G). Then

Gw =G & [J,]=[Jo] in CI(A).

Let & be the Galois automorphism of K /K (which extends that of Fg2 /Fy). Letk € K.
Then the norm of k is kk, where k = (k). Now « restricts to A and so acts on its ideals

and hence its ideal class group. For each /T—ideal, J,the normof J, N(J) = AN (J J ),
which is an A-ideal. We now come to the norm map

N: CI(A) — CI(A),
where N ([1]) = [(I1) N A]. Then
[I] eker N < (I1)N Ais a principal A-ideal.
We restate [9, Theorem 3.4].
Theorem 4.4. The map w +— [Jy] induces a one-to-one correspondence
Ell(G) < ker N.

For each w, it is known that

W) Jo = Ja,

(ii) J,Jg is a principal A-ideal.

It follows that
ker N = {[Jo] : [Ja] = [Jo] '}

We recall from Theorem 2.4 that Quinn(G) can be identified with C1(A),. From this and
Theorem 4.4, we are able to study the action of Quinn(G) on Ell(G). For this purpose, we
require two further lemmas.
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Lemma 4.5. Let 1:ClI(A) — Cl(/T) be the canonical map, where (([I]) = [I/T] (I < A).
Then

(i) ¢ is injective,

(i) {[1] € CU(A); [1] = [T]} = «(CI(A)).
Proof. The analogous statements are known to hold for the canonical map
CI°(K) — CI°(K).

See [10, Corollary to Proposition 11.10]. The results follow from the exact sequence in
Section 2, since § is odd and the infinite place is inert in K. ]

Lemma 4.6. With the above notation, the 2-torsion in C1(A),
Cl(4)2 = ((CI(A)2) = (ker N),
the 2-torsion in ker N.
Proof. Let [I] € CI(A),. Then ¢([I]) has order 2 in Cl(A) by Lemma 4.5. Now
N@UD) = (DD = ([1])* =1

by Lemma 4.5 (ii). Hence (([/]) € ker N. Conversely, let [J] € CI(A) have order 2 and
lie in ker N. Then [J]?> = 1 and [J][J] = N([J]) = 1. Hence [J] = [J], and so [J] €
t(Cl(A),) again by Lemma 4.5 (ii). L]

Any element of Ng (G) can be represented by a matrix

a b N
M = G.
Ak
By multiplying M by a suitable scalar matrix, we may assume that a,b,c,d € A. As
before, let
q(M) := (a) + (b) + (¢c) + ().
Then
(i) a(M)* = (A).
(i) (a) + (b) = (@) + (¢) = (d) + (b) = (d) + (¢) = a(M).
See Theorem 2.2 and [1, Remarks 2]. Thus, g induces an isomorphism from Quinn(G)
onto Cl(A),, and so ¢ o g provides an embedding of Quinn(G) into CI(A).
As before, each w € E(G) can be represented as w = ‘Stﬁ, where 5,1 € A and ¢ divides
(e? + 5)(e + 5) in A. The element M acts as a Mobius transformation on @ by multiplying
the column vector (°7) on the left by the matrix M. It follows that Jps(w) is the A-ideal
generated by a(e + s) 4+ bt and c(e + s5) + dt. Our next result, the most important in this
section, shows that the action of Quinn(G) on Ell(G) is equivalent to group multiplication
inker N.
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Theorem 4.7. With the above notation,

[Im@)] = L@(M))Jo] = La(M)][Jo] in kerN.

Proof. From the above, it is clear that Js(») < q(M)J,. Since A is a Dedekind domain,
there is an integral ideal /; of A such that

JM(w) =q(M)Juli.
By the same argument, there exists an integral ideal 7, of A with
2@y = (M) Im@yla = a(M)?Jpli I = Ady i .

On the other hand, from part (i) of Corollary 2.3, we see that Jy2(,) = AJ,. Hence
I, = I, = A, and the result follows. [

An immediate consequence is the following.

Corollary 4.8. The group Quinn(G) acts freely on ENN(G). More precisely, a quasi-inner
automorphism that fixes an elliptic point in G \ Q must necessarily be inner.

Since
Gow=Gd & [Jz] = [Jo] = [Jo] .

we can identify EIl(G)~ with ¢((CI(A4);) = Quinn(G). Combining Lemma 4.6 and Corol-
lary 4.8, we obtain the following result.

Theorem 4.9. The group Quinn(G) acts freely and transitively on EII(G)~.

Theorem 3.13 (ii), which holds for all §, provides an alternative proof of Theorem 4.9.
Applying the former for the case of odd §, the latter then follows from the existence of
a Quinn(G)-invariant one-to-one correspondence between Ell(G)~ and {v € vert(G\T) :
Gy = GL,(Fy)}.

From the above, it is clear that |EIl(G)| = ng |EIl(G)~|, where

ng = |ker N : 1«(Cl(4),)].

It follows that |EI(G)#| = (ng — 1)|EI(G)=|.
We recall that the building map [3, p. 41] restricts to a map

A E(G) — vert(T),
for which G® < G, (4). Let « be a quasi-inner automorphism. Then by [3, p. 44, item (iii)],
Ak (@) = k(A(w)).

Then A induces a map
El(G) > vert T .
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By Lemma 4.2 (ii), Theorem 3.13 and [9, Proposition 3.4], this leads to two Quinn(G)-
invariant one-to-one correspondences,

EI(G)™ < {7 € vert(G\T) : Gy = GLy(F,)},
9 ={{Gw,Gd}:Gw # Gw} <V ={V € vert(G\T) : G, = IF;Z}.

Note that [§| = 1 [EIl(G)7|.

Lemma 4.10. Ler Go € EI(G)7, and let k be a quasi-inner automorphism represented
by M € N3 (G). Then k(Gw) = G if and only if [L(¢(M))] = [Jo)? and [J,] has order 4
inker N.

Proof. Letn > 2 be the order of [J,] in ker N. If k(Gw) = G, then by Theorem 4.7,

[La(M)][Jo] = [Jw]nil'
Hence [1(q(M))] = [J»]" 2 = [J»] 72, and so n = 4. The converse is straightforward. m

The following is an immediate consequence.

Lemma 4.11. Let v € 'V, and let {Gw, Gw} be the corresponding elliptic element of .
Then the length of the orbit of ¥V under the action of Quinn(G) is %|Quinn(G)| if [Jo] has
order 4 inker N and |Quinn(G)| otherwise.

Proposition 4.12. Suppose that |EII(G)~| < |[EI(G)|. Then
(a) Quinn(G) acts transitively on EIN(G)7 if and only ifng = 2.
(b) Quinn(G) acts transitively on 'V if and only if ng € {2, 3}.
(¢) Quinn(G) acts freely on 'V if and only if ng is odd.
(d) Quinn(G) acts freely and transitively on 'V if and only if ng = 3.

Proof. (a) Since Quinn(G) acts freely on Ell(G)¥, the action is transitive if and only if
|Quinn(G)| = |[EIl(G)=| = [EII(G)7| thatis if np = 2.

(b) If Quinn(G) acts transitively on 'V, then || < |[EIl(G)~| and song € {2,3}. When
ng =2, (a) applies. When ng = 3, the two Quinn(G)-orbits represented by Gw and G
are identified in .

(¢c) By Lemma 4.10, the action of Quinn(G) on § is not free if and only if there
exists [J,,] of order 4, and such an element exists if and only if ng is even.

(d) follows from (b) and (c). [

Remark 4.13. Suppose that g(K) = g > 0. The 2-torsion rank of an abelian variety of
dimension g is bounded by 2g. Applying this to C1°(K) or Cl(A4) (and using the fact that §
is odd), it follows that

|EI(G)~| < 228.
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See [10, Chapter 11]. On the other hand by the Riemann hypothesis for function fields [13,
Theorems 5.1.15 (e) and 5.2.1],

[EI(G)| = Lk (=1) = (Vg —1)*%.
If ng = 2, then
22g+1 2 (ﬁ_ 1)2g.

(a) Ifg > 16 (and g > 0), then Quinn(G) cannot act transitively on ElI(G)7 .
Another consequence follows using an identical argument.

(b) If ¢ > 23 (and g > 0), then Quinn(G) cannot act transitively on V.
Remark 4.14. It is known [8, Corollary 2.12, Theorem 5.1] that a vertex v of G\T is
isolated if and only if § = 1 and G, = GL,(F,) or ]F;Z. Hence when § = 1, therefore

Theorem 4.9, Proposition 4.12 and Remark 4.13 can be interpreted as statements about
the action of Quinn(G) on the isolated vertices of G\ 7.

5. Action on cyclic subgroups

Our focus of attention in this section are the subgroups of G which are cyclic of order
q2 — 1. As distinct from Section 3, some of the results require § to be odd.

Definition 5.1. A finite subgroup S of G is maximally finite if every subgroup of G which
properly contains it is infinite.

Lemma 5.2. Let C be a cyclic subgroup of G of order g*> — 1 which is not maximally
finite. Then there exists H € J which contains C. Moreover, H is unique if § is odd.

Proof. By Lemma 3.1 (ii), there exists G, which properly contains C. Hence G, € # by
Lemma 3.2.
Suppose now that § is odd. If H is not unique, then

C f le ﬂ szv

where vy # v,. It follows that C fixes the geodesic in T joining v; and v, including all
its edges. This contradicts [8, Corollary 2.16]. ]

Lemma 5.3. Let C, Cy be cyclic subgroups of order > — 1 contained in some H € ¥.
Then C, Cy are conjugate in H.

Proof. By Lemma 3.5, we may assume that H = GL,(IF;). This then becomes a well-
known result. In the absence of a suitable reference, we sketch a proof which lies within
the context of this paper.
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By the proof of [8, Theorem 2.6] (based on [8, Lemma 1.4]), it follows that

C =F"={geGLy(Fy) : g(n) = p}

for some p € F 2 \IF,. Let Co = FH0.
Now po = ap + B for some a, B € F,, where @ # 0. Then Co = goCgy ', where

Definition 5.4. Let

€ ={C <G : C, cyclic of order ¢g* — 1},
€nr = {C € € : C, maximally finite},
Cum = C\Cpr.
Clearly, every automorphism of G acts on both €, s and €, p,.

Proposition 5.5. The quasi-inner automorphisms act transitively on all cyclic subgroups
of G of order g% — 1 that are not maximally finite.

Proof. Let C € €. Then by Lemmas 3.5 and 5.2, there exists go € Ng(G) such that
C%° e GL,(F,).
The rest follows from Lemma 5.3. ]

The next result follows from Proposition 5.5 and Theorem 3.13.

Proposition 5.6. If § is odd, Quinn(G) acts freely and transitively on the conjugacy
classes (in G) of cyclic subgroups of G of order q> — 1 that are not maximally finite.

The restrictions on § in Lemma 5.2 and Proposition 5.6 are necessary.

Example 5.7. Consider the case where g(K) = 0, § = 2. This case is studied in detail
in [7, Section 3]. By the exact sequence in Section 2, it is known that here

CI(A) = Cl(A), = Quinn(G) = Z/27.
There exists a vertex v adjacent to the standard vertex vy and go € Ng(G)\G such that
Gyy = GLy(F)®° and Gy, NGy, € Eypm.

Hence the restriction on § in part of Lemma 5.2 is necessary.
It is known [7, Theorem 3.3] that in this case,

G = GLz(Fq) *C GLz(Fq)gO,
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where C (= GL,(IF;) N GL,(F,)8°) € €, . It follows by Lemma 5.3 that there exists
g € GL,(IF,) for which
C& =C*.

In this case, therefore Quinn(G), which is non-trivial, fixes C G The restriction on §
in Proposition 5.6 is therefore necessary.

We conclude this section with some remarks about €, 7.

Lemma 5.8. Suppose that § is odd. Then
Cet,r & C=GU;F;2.

Proof. Suppose that C = G, = IF;Z and that C € €,,,. Then by Lemmas 3.1 and 3.3,
it follows that C < G, N Gy, for some vy 7# v, which contradicts [8, Corollary 2.16].
The rest follows from Lemma 3.1. [ ]

When § is odd, there is therefore a one-to-one correspondence
(Ems)C < V.

For the case where § is odd, this shows that the results in Proposition 4.12 apply to the
action of Quinn(G) on (‘C’mf)G.

Remark 5.9. As a Mobius transformation, every member of G fixes an element of Coo.
Suppose now that § is even and that C is a cyclic subgroup of order ¢ — 1 (maxi-
mally finite or not). Then from the proof of [9, Proposition 2.3], it follows that C fixes
€ K.F,2\K. In this case, however 1 € Koo as § is even. So u, which is not in € and
not in K, can neither be an inner point nor a cusp of the Drinfeld modular curve G\.
We refer to u as pseudo-elliptic.

On the other hand, suppose that § is odd. Let g be any element of infinite order in G,
and let g fix A. Then A € Koo\ K.

6. Action on cusps

As distinct from Section 4, the results here hold for all §. Any element of G acts
on P1(K) = K U {oo} as a Mébius transformation. In this way, Quinn(G) acts on
G\P!(K) = Cusp(G). Every element of Cusp(G) can be represented in the form (a : b),
where a,b € A. Since A is a Dedekind ring, this gives rise to a one-to-one correspondence

Cusp(G) < CI(A).

Hence the action of Quinn(G) on Cusp(G) translates to an action of CI(A), on CI(A).
The principal result in this section is similar to but simpler than Theorem 4.7. It translates
this action into multiplication in the group Cl(A4). We sketch a proof.
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We can represent any cusp, ¢, by an element (x : y) € P!(K), where x, y € A. Let
Je =xA+ yA,

and let [J.] be its image in C1(A).
Now let « be a non-trivial element of Quinn(G). Then as before by Theorem 2.2, x can
be represented by a matrix
M = [a b] € G,
¢

d

where we may assume thata,b,c,d € A. Let (M) be the A-ideal generated by a, b, ¢, d.
The action of « on ¢ is given by the action of M multiplying the column vector (; ) on
the left by M. In this way,

JK(C) = JM(c) = (ax +by)A + (cx + dy)A.

Theorem 6.1. Under the identification of Cusp(G) with ClI(A) and Quinn(G) with
CI(A),, the action of Quinn(G) on the cusps translates into multiplication in the group
CI(A). More precisely,

V] = la(M)Je] = [a(M)][Jc] in CI(A).
Proof. Since A is a Dedekind domain, there exists an A-ideal /7 such that
Imey = aM)J 1.
By Corollary 2.3 (i), there exists an A-ideal I, with
Ae = Iy = ¢(M)Imey 2 = ¢(M)*JeIi T2 = AJc I I,
where A = det(M). Hence I; = I, = A, and the result follows. |
As in the previous section, we have the following immediate consequence.

Corollary 6.2. If a non-trivial quasi-inner automorphism k fixes any cusp, then k reduces
to an inner automorphism. In particular, Quinn(G) acts freely on Cusp(G).

Remark 6.3. The group Quinn(G) acts transitively on Cusp(G) if and only if ClI(4), =
CI(A).

From the exact sequence in Section 2, a necessary condition for this is § € {1, 2}.
If g(K) = 0, this condition is also sufficient, as then Cl1(A) = Z /3§ Z.

But if g(K) = g > 0, the action cannot be transitive for ¢ > 9 by an argument very
similar to that used in Remark 4.13. The inequality

CI()] _ (/3 - D
C0(K), — 22

shows that for fixed g > 9, the number of orbits of Quinn(G) on Cusp(G) tends to co
with g(K).
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The cusp oo (= ((1))) corresponds to the principal A-ideals. Its orbit under Quinn(G)
corresponds to the 2-torsion in CI(A) and in the sense of Theorem 6.1, the action of
Quinn(G) on it translates into C1(A4), acting on itself by multiplication.

For every cusp c, represented by the ideal class [J.] in Cl(A), there corresponds its
(group) inverse [J.]~! in Cl(A). We can partition CI(A) thus

Quinn(G) < Cl(A)2 = {[Je] : [Je] = [Jc] ™'},
CIAN\CU(A)2 = {[Je] : [Je] # [ 71

Our next result follows from Theorem 6.1 in the same way as Lemma 4.10 follows
from Theorem 4.7.

Lemma 6.4. A quasi-inner automorphism i, represented by M € N (G), maps the cusp ¢
corresponding to [J.] in C1(A)\ Cl1(A)a, to the cusp corresponding to [J.]~" if and only
if [J.] has order 4 and [J.]*> = q(M).

In the next section, we will use the results of Sections 5 and 6, together with Theo-
rem 3.13 (ii), to examine in detail the action of Quinn(G) on G\7 .

7. Action on the quotient graph

The model used by Serre for 7 [11, Chapter II, Section 1.1] is based on two-dimensional
so called lattice classes. Since every quasi-inner automorphism, tg, can be represented by
a matrix in @ it acts on 77, and hence Quinn(G) acts on G\ T .

In this section, we investigate the action of a quasi-inner automorphism on the quotient
graph H\T , where H is a finite index subgroup of G. In the process, we extend a result
of Serre [11, p. 117, Exercise 2 (e)] which motivated our interest in this question. We
begin with a detailed account of Serre’s classical description of G\T . Serre’s original
proof [11, p. 106, Theorem 9] is based on the theory of vector bundles. For a more detailed
version which refers explicitly to matrices, see [5]. In addition, we use the results of the
previous sections to shed new light on the structure of G\ T .

Definition 7.1. A ray R in a graph § is an infinite half-line, without backtracking. In ac-
cordance with Serre’s terminology [11, p. 104], we call R cuspidal if all its non-terminal
vertices have valency 2 (in §).

Let {g1,...,8s} C G, where s > 1, be a complete system of representatives for
Cl(A)2 (= Ng(G)/G.Z(K)). Let¢; = gi(o0), 1 <i <. We will assume that ¢; = oo.
If C1(A) = CI(A),, then {cq, ..., cs} is a complete system of representatives for CI(A).
If C1(A) # CI(A),, we can find further elements A1, ..., h; € G, where 1 > 1 so that

S ={Cl,...,Cs,d1,...,dt}

is a complete set of representatives for CI(4), where d; = h;(00),1 < j <t.
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Theorem 7.2. There exists a complete system of representatives € (C PY(K)) for
Cusp(G) (equivalently, C1(A)) of the above type such that

AT=xUu( U R)( U R@).
1<i<s 1<j=t
where
(i) X is finite,

(ii) each R(c;), R(d;) is a cuspidal ray (in G\T ), whose only intersection with X
consists of a single vertex,

(iii) the |CI(A)| cuspidal rays are pairwise disjoint.

Moreover, if R(e) is any of these cuspidal rays, then it has a lift, R(e), to T with the
following properties. Let vert(R(c)) = {v1,v2,...}. Then

(i) G'Ui S Gv,-_H, i 2 1:
(ii) Uizl Gy, = G(c), where G(c) is the stabilizer (in G) of the cusp c.

For each j, let 671 be the element of {d, ..., d;} corresponding to hj_1 (c0). We may
relabel the latter set as {dy, dy,...,dy, dy}, where t' = % We can use the results of
Section 3 to elaborate on the structure of the above cuspidal rays. We recall that

H ={H <G : H = GLy(F,)}.
Corollary 7.3. For the above set of |C1(A)| cuspidal rays,
i) Ry ={R(c1),...,R(cs)} < {V e vert(G\T) : G, € H} < Cl(A),.
(i) Ro = {R(d)). R(dj) : 1 < j <1’} < CUA)\ CL(A)s.
Proof. Let v € vert(G\T), where G, € #, and let H € J be any representative of its

stabilizer. Then, for some unique i,

H = gg;(GLy(F,))(ggi) ",

where g € G, by Lemmas 3.5 and 3.6. Now let u be any unipotent element of H. Then u
fixes gg;h(oo) for some h € GL,([F,). It follows that

ueG(c) & c=gc,
where g’ € G. The rest follows from Corollary 3.9 together with Theorem 3.13. ]

Remark 7.4. Let v € vert(G\T), where G, € #. Then it is shown in Corollary 7.3
that ¥ is adjacent in G\ 7 to a vertex whose stabilizer (up to conjugacy in G) is contained
in G(c;), for some unique i. In this way, U can be thought of as closer in G\T to R(c;)
than to any other cuspidal ray. For the case § = 1 (and only for this case), U is isolated
in G\J by [8, Theorem 5.1]. As in Takahashi’s example [14], such a ¥ then appears as
a “spike” next to its associated cuspidal ray.
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For each subgroup H of G, we recall that the elements of H\T are
vert(H\7) ={Hv :v evert(T)} and edge(H\T)={He:e cedge(T)}.
Definition 7.5. Let H, H™ be isomorphic subgroups of G. An isomorphism of graphs
¢: H\T — H*\T

is said to be stabilizer invariant if the following condition holds.
For any w € vert(7") U edge(7), let

¢(Hw) = H*w*
(where w* € vert(7") if and only if w € vert(7)). Then, for allu € H, and u* € H*w*,
Hy, = Hj..
As we shall see, it is easy to find examples of isomorphisms of quotient graphs which
are not stabilizer invariant.

Theorem 7.6. Let k = g, where g € Ng(G), and let H be a subgroup of G. Then the
map
kg: H\T — k(H)\T,

defined by

kg (Hw) = H'W',
where H' = H8 = gHg™ !, w' = g(w) and w € vert(7) U edge(T), defines a stabilizer
invariant isomorphism of the quotient graphs

K(H\T =~ H\T.

Proof. Note that kg is well defined since if «(x) = g1xgy!, where g1 € Ng(G), then
gg7! € Z(K) and Z, the set of scalar matrices in GL3(Koo), stabilizes every w. The
rest is obvious (since g acts on 7). [

Let H be any finite index subgroup of G, and let M be the largest normal subgroup
of G contained in H. Then N = M N M¢ is the largest (finite index) subgroup of G,
contained in H, which is normalized by G, Z(K) and g. (See Section 2.)

Corollary 7.7. Suppose that k is non-trivial (i.e., g ¢ G.Z(K)). Let N be a finite index
normal subgroup of G normalized by k. Then the map

kn: N\T — N\T,

defined as above, is a non-trivial stabilizer invariant automorphism whose order n is even.
Moreover, if Z < N, then n = 2m, where m divides |G : N|.
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Proof. To prove that kK is non-trivial, it suffices to prove that kg is not the identity map.
There exists vg € vert(7") for which (non-central) G,, < G(o0) [5, Lemma 3.2]. Suppose
to the contrary that kg fixes Gvg. Then there exists go € G such that g’ = ggo € G(c0)

which implies that
, _f(a b
£=Vo o)

We may assume that a, b, ¢ € A. By Theorem 2.2, together with an argument used in the
proof of Theorem 2.4, it follows that

a’A = c?A = acA.

Hence a,c € F;. Thus g’ € G and so g € G.Z(K).

For the second part, n is the smallest n (> 0) such that g” € N.Z(K). Now g2 €
G.Z(K) by Corollary 2.3 (i). If n is odd, then g € G.Z(K). Hence n = 2m is even.
In addition, when Z < N, m divides |G.Z(K) : N.Z(K)| = |G : N|. |

A special case of Corollary 7.7, combined with Corollary 2.6, is the following.

Corollary 7.8. Suppose that |C1(A)| = |Cusp(G)| is even. Then there exists a stabilizer
invariant automorphism of G\T of order 2.

Serre [11, p. 117, Exercise 2 (e)] states this result for the case where g(K) = 0 (i.e.,
K =TF,()) and § even. The restriction here is necessary. For the case g(K) = 0,4 = 1,
in which case A = F,[f] and |C1(4)| = 1, it is known by Nagao’s theorem [11, p. 87,
Corollary] that G\T is a cuspidal ray whose terminal vertex is isolated. Here then the
only (graph) automorphism is trivial.

Corollary 7.8 shows that Quinn(G) acts non-trivially on G\7 . This extends to an
action on its cuspidal rays which we now describe. We use the notation of Theorem 7.2.

Definition 7.9. Let R, R, be rays in a graph §. We write
R1~ Ro

if and only if |R;\R1 N R2| < 0o, i = 1,2. This a well-known equivalence relation. The
equivalence class containing the ray R is called the end (of §) determined by R. In the
notation of Theorem 7.2, we denote by & (e) the end (in G\ T") determined by R (e), where
e = ¢, dj.

Now let k = 15, where g € N5(G)\G.Z(K), be a non-trivial quasi-inner automor-
phism, and let ¥ be the corresponding (non-trivial) element of Quinn(G). Now fix e € §.
Let e* = k(e). Then by Corollary 6.2, e # e¢*, and we may assume that e* € §.

As in Theorem 7.2,

vert(R(e)) = {U1,02,...} and vert(R(e™)) = {V].705,...}.



Quasi-inner automorphisms of Drinfeld modular groups 25

Recall that
|G =Glo).

i>1
and that G,; < Gy,,,,i > 1.In addition, it is known [8, Theorem 2.1 (a)] that there exists
a normal subgroup N; of G, such that

Gy, /N; %F; XF;,

where N; =~ Vi+, the additive group of an [F,-vector space of dimension ;. It is also
known that n; < n;41. Corresponding results hold for R(e*).
Now let
my = max{|G,| : v € vert(X)}.

(Recall that X is finite.) Now choose any m > my. By the definition of graph automor-
phism kg determined by the non-trivial element ¥ of Quinn(G), together with Theo-
rem 7.2, there exists n > my such that

for all i > 0. This gives rise to a map

K: &(e) — &(e),

which in turn defines a Quinn(G)-action on the ends defined by the cuspidal rays in
G\T (Theorem 7.2). Since this action coincides precisely with the action of Quinn(G) on
Cusp(G), the following result is an immediate consequence of Theorem 3.13 (ii), Corol-
lary 6.2 and Lemma 6.4.

Corollary 7.10. With the notation of Theorem 7.2,

(i)  Quinn(G) acts (simultaneously) freely and transitively on
{E(c1),...,8&(cs)} and {¥ € vert(G\T) : G, = GL,(F,)}.
(i) Quinn(G) acts freely on
(€(d)).€d):1=j =<1}
(iii) Quinn(G) acts on ~
{eW).edp}:1<j =<1}

(iv)  Under the action of Quinn(G), some &(d;) is mapped to 8(62;) if and only if d;
has order 4 in C1(A).

We recall from Proposition 4.12 that when § is odd, Quinn(G) also acts on {V €
vert(G\7) : G, = IF;Z}.

Our final result in this section concerns the action of Ng(G) on 7. It is known [11,
p. 75, Corollary] that G acts without inversion (on the edges) of 7.
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Proposition 7.11. Suppose that § is odd. Then every g acts without inversion on T, and
hence on every quotient graph H\T .

Proof. As in Theorem 2.2, we can represent (g with a matrix M in G, and we can assume
that all its entries lie in A. Let A = det(M). Then the A-ideal generated by A is the square
of an ideal in A4, again by Theorem 2.2. It follows that, for all places v # v, V(A) is even.

By the product formula, then §vs,(A) and hence v (A) is even. The result follows
from [11, p. 75, Corollary]. ]

Example 7.12. To conclude this section, we consider the case where g(K) = 0 and 6 = 2.
We recall that there exists a quadratic polynomial = € IF,[¢], irreducible over [, such that

A={”im:fe]Fq[t],mZO,degf§2m}.

In this case, it is known that C1(4), = Cl(A) =~ Quinn(G) =~ Z/2Z. 1t is well known
that G\ T is a doubly infinite line, without backtracking. See [11, p. 113, §2.4.2 (a)] and,
for a more detailed description, [7, Section 3]. It is known that G\J lifts to a doubly
infinite line & in T, which we now describe in detail. For some go € Ng(G)\G.Z(K),
vert(D) = {vop, v5, v1,v7],...}, where

@) v =go(vi), i >0,

() Gyr = (Gy)®,i =0,

(111) Gvo = GL2 (IF(I)3

(iv) foreachi > 1,

—i
Gy, = {[g 07:9 i| ta, E]F;, degc 521’}.

Then £ maps onto (and is isomorphic to) G\T which has the following structure:

.—0 o o o o—o0—-
e o TP * * Sk
) U] Vo ) vy U

The action of the (essentially only) non-trivial quasi-inner automorphism of G\J (repre-
sented by go) is given by
v < v, i>0.
We note two features of <D which are of interest relevant to this section.

(i) From the structure of D, it is clear that the non-trivial quasi-inner automorphism
determined by gq inverts the edge joining vg and v, which shows that the restriction on §
in Proposition 7.11 is necessary.

(i1) For this case, there is only one stabilizer invariant involution. However, the graph
G\T has many automorphisms. Infinitely many examples include translations (which
have infinite order) and reflections in any vertex (which are involutions).
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8. Two instructive examples

We conclude with two examples which demonstrate how our results apply to the structure
of the quotient graph G\T7 . Both are elliptic function fields K/F,. We record some of
their basic properties.

Definition 8.1. A function field K/F, is elliptic [13, p. 217] if g(K) = 1 and K has
a place oo of degree 1.

Theorem 8.2. Suppose that K /IF, is elliptic. Then
(i) We have
K =TF4(x.y).
where x, y satisfy a (smooth) Weierstrass equation F(x,y) = 0 with
F(x,y) =y?>+aixy +aszy — x> —arx? —asx —ag € Fylx, y].

(ii) CI°(K) (= CI(A)) is isomorphic to E(Fy), the group of Fy-rational points,
{(a,B) eFy xFy: F(a,B) = 0} U {(c0, 00)}. Here the group operation is point
addition @ according to the chord-tangent law.

Proof. For item (i), see [13, Proposition 6.1.2]. For item (ii), see [13, Propositions 6.1.6
and 6.1.7]. [

Here a rational point (a, b) € E(F,) corresponds to the ideal class of A(x —a) +

A(y —b).
We also require some “elliptic” properties of K= K.Fg2 (which is a constant field
extension of K).

Corollary 8.3. Suppose that K /I, is elliptic. Then K /T2 is also elliptic and defined by
the same Weierstrass equation.

Proof. From the above, K = Fg2(x, y), where F(x, y) = 0. The rest follows from [13,
Proposition 6.1.3]. u

With our choice of infinite place, we have
A =TF4[x,y] and A= Fg2[x, y],
where x and y satisfy the Weierstrass equation F(x, y) = 0. In an analogous way,
Cl(A) = CI°(K) = E(F).

We recall that the image of any a € [F 2 under the Galois automorphism of F,./F, is
denoted by &. For each rational point P = (a, ) € E(IF;2), we put P = (a, B).
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Corollary 8.4. Suppose that K /¥, is elliptic. Under the identifications of CIO(E ) (resp.
CI°(K)) with E(Fy2) (resp. E(Fy)), the norm map N : CI°(K) — CI°(K) translates to
amap Ng: E(F,2) — E(Fy) defined by

Ng(P)=P & P,

so that
P ekerNg & P =—P.

Takahashi [14] has described in detail the quotient graph for an elliptic function field
over any field of constants. In all cases, G\ T is a tree. Since § = 1, for the case of a finite
field of constants, the isolated vertices of G\J are precisely those whose stabilizer is iso-
morphic to GL, (Fy) or ]Fq’;2 by [8, Theorem 5.1]. For each cusp ¢ € CI(A),, the cuspidal
ray R(c) in G\T has attached to its terminal vertex (appearing as a “spike”) an iso-
lated vertex with stabilizer isomorphic to GL,(F,). The remaining cuspidal rays consist
of % |C1(A)\ C1(A),| inverse pairs {R(c), R(c~)} which share a terminal vertex (appear-
ing in G\ T as the “prongs” of a “fork”).

In both our examples ¢ = 7 in which case the Weierstrass equation can be assumed to
take the short form

y? = f(x) =x>+ax +b,

where a, b € F,; and f(x) has no repeated roots.

Example 8.5. Let K = Fy(x, y), A = Fy[x, y] with y? = x3 — 3x.
It can be easily shown that

E(F7) = {(c0, 0), (0,0), (2, £3), (3, £2), (6, £3)}.

Since E is in the short Weierstrass form, the 8 points are listed as (additive) inverse pairs.
In particular, (0, 0) is the only such 2-torsion point. It follows that Quinn(G) = CI(A4), =
Z/27 and hence that Cl1(A) =~ Z/87Z. Let k be a non-trivial quasi-inner automorphism
of G representing the non-trivial element of Quinn(G). In E (F;), « is represented by (0, 0)
and, by Theorem 6.1, its action on Cusp(G) is determined by its action (via point addi-
tion @) in E(F;). In a diagram of G\T, as described in [14], we wish to ensure that
its involution provided by «, Corollary 7.8, is given by the reflection in the vertical axis
(see Figure 1 below). We begin by labeling appropriately its 8 cuspidal rays (correspond-
ing to E(F7)). By Corollary 6.2, k acts freely on these. By Corollary 7.3 (i), it is clear
that « interchanges the cusps (0o, 0o) and (0, 0). Attached to each of these is a “spike”
consisting of an isolated vertex whose stabilizer is isomorphic to GL,(IF7). Since « is
a graph automorphism, it interchanges these vertices, namely, g; and g,. By means of the
duplication formula [12, p. 53], it is easily checked that the rational 4-torsion points are
(2, £3). Then « interchanges (2, 3) and (2, —3) by Lemma 6.4. For the remaining cusps,
k interchanges (3, +2) and (6, 3). To make this more precise, we use the addition for-
mulae [12, p. 53] which show that (0,0) & (3,2) = (6, 3). Hence « interchanges (3, 2)
and (6, 3) by Theorem 6.1.
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(00, 0) (0,0)

(3,2) 6,3)

2,3) 2,-3)

Figure 1. Quotient graph for Example 8.5.

There remain the isolated vertices 1, 4 and 5, each of whose stabilizer is isomorphic
to Fj,. We deal with these via their connection with elliptic points. We recall from Theo-
rem 4.4 and the above that there exists a one-to-one correspondence

Ell(G) <> ker Ng = {(or., B) € E(Fs0) : (@, B) = (. —B)}

since the Weierstrass equation is in the short form.
Now let i denote one of the two square roots of —1 in IF;Z. Then

Ng = {(p,ei) € E(F49) : p, & € Fy}.

We conclude then that EIl(G) <> {(oc0, 00), (0, 0), (1, £3i), (4, £2i), (5, £3i)}. Here
Ell(G) is identified with a subgroup of E(IF49) listed as (additive) inverse pairs. Since
there is only one 2-torsion point, EIl(G) = Z/8Z. (In this case, |CI(A)| = |EIl(G)|. How-
ever, this not a general feature. For this particular K, its L-polynomial is Lg (t) = 1 + 7¢2,
sothat Lg(1) = Lg(-1).)

As with Cusp(G), the free action (Corollary 4.8) of Quinn(G) on Ell(G) is represented
by the action of (0, 0) in Ng (by point addition).
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By identifications in Section 4, the pairs (1, £3i), (4, £2i), (5, £3i) correspond to the
vertices 1, 4 and 5, respectively. By means of the duplication formula, it is readily verified
that the two points of order 4 in Ell(G) are (5, £3i). By Lemma 4.10, it follows that «
fixes vertex 5 and that k interchanges vertices 1, 4. For a more precise version of the latter
statement, we note that (0,0) & (1,3i) = (4,2i), and so (0,0) & (1, —3i) = (4, —2i).

It is of interest to use Theorem 2.2 to construct a matrix M which represents «.
We begin with the A-ideal, Ax + Ay whose square is Ax. In determining a possible M,
we recall from the proof of Theorem 2.4 the observation of Cremona [1] that every row
and column of M generates g (M ). Two possibilities which arise are

2 2
M=|:y x} or M:[y x]
X )y X -y

The latter is simpler since its square is a scalar matrix.

Example 8.6. Let K = F;(x, y), A = F[x, y] with 2 = x3 — x.
It is easily verified that

E(]F7) = {(OO, OO), (0’ O)a (la 0)7 (67 O)» (47 Zi:Z), (Sa :l:l)}»
listed as (additive) inverse pairs. The 2-torsion points are (0, 0), (1, 0), (6,0), and so

Quinn(G) = Cl(A), =~ Z/2Z & Z.)2Z,
Cusp(G) = CI(A) = Z/27 & 7./AZ.

Let the non-trivial quasi-inner automorphisms kg, k1, k¢ represent (0,0), (1,0), (6,0),
respectively, where kg = k1k¢. In the diagram representing G\ T (see Figure 2), we label
the 8 cusps with the above rational points in such a way that (i) the action of k¢ is the
reflection about the vertical axis, (ii) the action of «; is the reflection about the horizon-
tal axis, and (iii) (consequently) the action of k¢ is a rotation of 180 degrees about the
“central” vertex c.

There are 4 vertices whose stabilizers are isomorphic to GL,(IF7) which appear as
“spikes” attached to the 4 cusps given by the 2-torsion points in E(IF7), and so kg, k1
and k¢ interchange the vertex pairs {g1, g2}, {g1, g4} and {g1, g3}, respectively.

In CI(A), there are 4 points of order 4, namely (4, £2) and (5, 1), and it is easily
verified that the square of each is (1, 0). By Lemma 6.4, it follows that «; interchanges
the cusps (4, 2), (4, —2) as well as (5, 1), (5, —1). On the other hand, k¢ interchanges the
pairs (4, £2) and (5, £1). In more detail, kg maps (5, 1) to (4,—2), since (6,0) & (5,1) =
(4,-2).

There remain two vertices 2 and 3 whose stabilizers are cyclic order g2 — 1. As in
the previous example, we consider the elliptic function field K = K.F4 = Fyo (x,y):
y2 = x3 — x. As before, let i denote one of the square roots of —1 in F49. It can be
verified that Ell(G) <> Ng = {(0c0, 00), (0, 0), (1, 0), (6,0), (2, i), (3, £2i)}, listed as

additive inverse pairs in E (IF49).
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(00, 00) (6,0)

(4.2)

(5.1)

(1:0) (0:0)

Figure 2. Quotient graph for Example 8.6.

As before, |C1(A)| = |[EII(G)| = 8. (Again this is purely coincidental because Lk (t) =
1 + 7t2.) By correspondences discussed in Section 4, the 2 vertices of interest here cor-
respond to the pairs (2, i) and (3, £2i). It is easily verified that the squares of all 4 of
these points are (6, 0). It follows from Lemma 4.10 that «¢ fixes 2 and 3. On the other
hand, (1,0) & (2,i) = (3, —2i) and so «; interchanges 2 and 3.

Finally, using Theorem 2.2 the following matrices My, M, Mg = My M, represent
Ko, K1, K6, respectively,

Moz[y _X2i| and M1=|: Y —(x—l)(x+2)]'
X =y x—1 -y
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