
Groups Geom. Dyn. (Online first)
DOI 10.4171/GGD/765

© 2024 European Mathematical Society
Published by EMS Press

Quasi-inner automorphisms of Drinfeld modular groups

A. W. Mason and Andreas Schweizer

Abstract. Let A be the set of elements in an algebraic function field K over Fq which are integral
outside a fixed place 1. Let G D GL2.A/ be a Drinfeld modular group. The normalizer of G
in GL2.K/, where K is the quotient field of A, gives rise to automorphisms of G, which we refer
to as quasi-inner. Modulo the inner automorphisms of G, they form a group Quinn.G/ which is
isomorphic to Cl.A/2, the 2-torsion in the ideal class group Cl.A/. The group Quinn.G/ acts on all
kinds of objects associated with G. For example, it acts freely on the cusps and elliptic points of G.
If T is the associated Bruhat–Tits tree, the elements of Quinn.G/ induce non-trivial automorphisms
of the quotient graph GnT , generalizing an earlier result of Serre. It is known that the ends of GnT
are in one-to-one correspondence with the cusps of G. Consequently, Quinn.G/ acts freely on the
ends. In addition, Quinn.G/ acts transitively on those ends which are in one-to-one correspondence
with the vertices of GnT whose stabilizers are isomorphic to GL2.Fq/.

1. Introduction

Let K be an algebraic function field of one variable with constant field Fq , the finite field
of order q. Let1 be a fixed place of K, and let ı be its degree. The ring A of all those
elements of K which are integral outside 1 is a Dedekind domain. Denote by K1 the
completion of K with respect to 1, and let C1 be the 1-completion of an algebraic
closure of K1. The group GL2.K1/ (and its subgroup G D GL2.A/) acts as Möbius
transformations on C1,K1 and hence�D C1nK1, the Drinfeld upper halfplane. This
is part of a far-reaching analogy, initiated by Drinfeld [2], where Q, R, C are replaced
by K, K1, C1, respectively. The roles of the classical upper half plane (in C) and the
classical modular group SL2.Z/ are assumed by � and G, respectively.

Modular curves, that is quotients of the complex upper half plane by finite index sub-
groups of SL2.Z/, are an indispensable tool when proving deep theorems about elliptic
curves. Of similar importance in the theory of Drinfeld A-modules of rank 2 are Drin-
feld modular curves, which are (the “compactifications” of) the quotient spaces Hn�,
where H is a finite index subgroup of G. Consequently, we refer to G as a Drinfeld mod-
ular group.

A complicating factor in this correspondence between SL2.Z/ andG is that, while the
genus of the former is zero, for different choices of K and 1, the genus of G can take

Mathematics Subject Classification 2020: 11F06 (primary); 20E08, 20E36, 20G30 (secondary).
Keywords: Drinfeld modular group, quasi-inner automorphism, elliptic point, cusp, quotient graph.



A. W. Mason and A. Schweizer 2

many values. The simplest case, where K D Fq.t/ and A D FqŒt � (equivalently, g D 0

and ı D 1), has to date attracted most attention.
An element ! 2 � which is stabilized by a non-scalar matrix in G is called elliptic.

Let E.G/ be the set of all such elements. It is known [3, p. 50] that E.G/ ¤ ; if and only
if ı is odd. Clearly, G acts on E.G/ and the elements of the set of G-orbits, Ell.G/ D
GnE.G/ D ¹G! W ! 2 E.G/º, are called the elliptic points of G. It is known [3, p. 50]
that Ell.G/ is finite. See [9] for a detailed treatment of elliptic points.

In addition, G acts on P1.K/ D K [ ¹1º. (Here, of course, 1 refers to the one
point compactification of K.) We refer to the elements of P1.K/ as rational points. For
each finite index subgroup H of G, the elements of Cusp.H/ D HnP1.K/ are called
the cusps of H . Since A is a Dedekind domain, it is well known that Cusp.G/ can be
identified with Cl.A/, the ideal class group of A. As Möbius transformations, G acts
without inversion on T , the Bruhat–Tits tree associated with GL2.K1/ and the ends of
the quotient graph GnT are determined by Cusp.G/ [11, p. 106, Theorem 9].

Cusps and elliptic points are important for several reasons. If H is a finite index sub-
group of G, the quotient space Hn� will, after adding Cusp.H/, be the C1-analog
of a compact Riemann surface, which is called the Drinfeld modular curve associated
with H . Moreover, in the covering of Drinfeld modular curves induced by the natural
map Hn�! Gn�, ramification can only occur above the cusps and elliptic points of G.
Also, for (classical and Drinfeld) modular forms, analyticity at the cusps and elliptic points
requires special care.

This paper is a continuation and extension of [9] which is concerned with the ellip-
tic points of G. There the starting point [3, p. 51] is the existence of a bijection between
Ell.G/ and ker xN , where xN W Cl. zA/ ! Cl.A/ is the norm map and zA D A:Fq2 . It can
be shown [9] that Cl. zA/2 \ ker xN , the 2-torsion subgroup of ker xN , is in bijection with
Ell.G/D D ¹G! W ! 2 E.G/;G! D G x!º, where x!, the conjugate of !, is the image of !
under the Galois automorphism of K:Fq2=K. (In [9], Ell.G/D is denoted by Ell.G/2.)
Here we show that, when ı is odd, Cl.A/2 and the 2-torsion in ker xN are isomorphic.
This is the starting point for this paper, where the principal focus of attention is the
group Cl.A/2 and its actions on various objects related to G. Unless otherwise stated,
results hold for all ı.

Let g 2 NGL2.K/.G/, the normalizer of G in GL2.K/. Then g, acting by conjugation,
induces an automorphism �g ofG, which we refer to as quasi-inner. If g 2G:Z.K/, then �g
reduces to an inner automorphism. If g 2 NGL2.K/.G/nG:Z.K/, we call �g non-trivial.
We denote the quotient group NGL2.K/.G/=G:Z.K/ by Quinn.G/. It is well known [1]
that Quinn.G/ is isomorphic to Cl.A/2. Hence G has non-trivial quasi-inner automor-
phisms if and only if jCl.A/j is even. Now, as an element of GL2.K/, �g acts as a Möbius
transformation on the rational points and elliptic elements of G, as well as T . In particu-
lar, g.!/ D g.x!/. Since all of these actions are trivial for scalar matrices, they extend to
actions of Quinn.G/ on Cusp.G/, Ell.G/ and the quotient graph, GnT . In this paper, we
study the (often surprising) properties of these actions.
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Theorem 1.1. The group Quinn.G/ acts freely on

(i) Cusp.G/,
(ii) Ell.G/ if ı is odd.

From the above, it is clear that Quinn.G/ can be embedded as a subgroup Ell.G/D

(resp. Cl.A/2) of Ell.G/ (resp. Cusp.G/). We show that the action of Quinn.G/ is equiva-
lent to multiplication by the elements of the subgroup. The “freeness” in this result follows
immediately. Restricting to these subsets yields stronger results.

Corollary 1.2. The group Quinn.G/ acts freely and transitively on

(i) Cl.A/2,
(ii) Ell.G/D if ı is odd.

Corollary 1.3. When ı is odd, Quinn.G/ acts freely on Ell.G/¤ D ¹G! W G! ¤ G x!º.
Moreover, if ker xN has no element of order 4, then Quinn.G/ acts freely on

¹¹G!;G x!º W G! 2 Ell.G/¤º:

Theorem 1.4. Every non-trivial element of Quinn.G/ determines an automorphism
of GnT of order 2 which preserves the structure of all its vertex and edge stabilizers.

Serre [11, p. 117, Exercise 2 (e)] states this result for the special case K D Fq.t/
with ı even. Our result shows that, in general, the quotient graph has symmetries of this
type provided jCl.A/j is even. (In general, this restriction is necessary.)

We now list more detailed results on the action of Quinn.G/ on GnT . Serre [11,
p. 106, Theorem 9] has described the basic structure ofGnT . Its ends (i.e., the equivalence
classes of semi-infinite paths without backtracking) are in one-to-one correspondence with
the elements of Cl.A/. To date, the only cases for which the precise structures ofGnT are
known are g D 0 [4, 6], and g D ı D 1 [14].

Theorem 1.5. The group Quinn.G/ acts freely on the ends of GnT and, in addition,
transitively on the ends of GnT corresponding to the elements of Cl.A/2,

We show that the ends corresponding to Cl.A/2 are in one-to-one correspondence
with those vertices whose stabilizers are isomorphic to GL2.Fq/. (Each such vertex is
“attached” to the corresponding end.) It is known [8, Corollary 2.12] that if Gv contains
a cyclic subgroup of order q2 � 1, then Gv Š F�

q2
or GL2.Fq/.

The building map [3, p. 41] extends to a map �WEll.G/! vert.GnT /. This map leads
to another action of Quinn.G/ on the quotient graph.

Theorem 1.6. (a) The group Quinn.G/ acts freely and transitively on

¹zv 2 vert.GnT / W Gv Š GL2.Fq/º:

(b) Suppose that ı is odd and that ker xN has no element of order 4. Then Quinn.G/
acts freely on

¹zv 2 vert.GnT / W Gv Š F�
q2
º:
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As an illustration of our results, especially the existence of reflective symmetries as
in Theorem 1.4, we conclude with diagrams of two examples of GnT , for each of which
g D ı D 1, the so called “elliptic” case. For these we make use of Takahashi’s paper [14].
Special features of these cases include the following. For part (i), see [9, Theorem 5.1].

Corollary 1.7. Suppose that ı D 1.

(i) The isolated (i.e., (graph) valency 1) vertices of GnT are precisely those whose
stabilizers are isomorphic to GL2.Fq/ or F�

q2
.

(ii) If ker xN has no element of order 4, then Quinn.G/ acts freely on the isolated
vertices of GnT .

By looking at the stabilizers in G of the objects discussed above, we obtain several
statements about the action of Quinn.G/ on the conjugacy classes of certain types of
subgroups of G. (See Sections 3 and 5.)

For convenience, we begin with a list of notations which will be used throughout this
paper.

Fq the finite field with q D pn elements;
K an algebraic function field of one variable with constant field Fq ;
g the genus of K;
1 a chosen place of K;
ı the degree of the place1;
A the ring of all elements of K that are integral outside1;
K1 the completion of K with respect to1;
� Drinfeld’s halfplane;
T the Bruhat–Tits tree of GL2.K1/;
G the Drinfeld modular group GL2.A/;
Gx the orbit of x under the action of G on the object x;
yG GL2.K/;
Z.K/ the set of scalar matrices in yG;
Z Z.K/ \G;
zK the quadratic constant field extension K:Fq2 ;
zA A:Fq2 , the integral closure of A in zK;

Cl.R/ the ideal class group of the Dedekind ring R;
Cl0.F / the divisor class group of degree 0 of the function field F ;
Cusp.G/ GnP1.K/, the set of cusps of G;
E.G/ the set of elliptic elements of G:
Ell.G/ GnE.G/, the set of elliptic points of G;
x! the image of ! 2 E.G/ under the Galois automorphism of zK=K;
Ell.G/D ¹G! W ! 2 E.G/; G! D G x!º;
Ell.G/¤ Ell.G/nEll.G/D;
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S.s/ the stabilizer in a finite index subgroup S (of G) of s 2 P1.K/;
G! the stabilizer in G of ! 2 C1nK;
Sw the stabilizer in S of w 2 vert.T / [ edge.T /;
H ¹H � G W H Š GL2.Fq/º;
C ¹C � G W C Š F�

q2
º;

Cmf ¹C 2 C W C maximally finite in Gº;
Cnm CnCmf ;
V ¹zv 2 vert.GnT / W Gv 2 Cº

2. Quasi-inner automorphisms

Let F be any field containing A (and hence K), and let Z.F / denote the set of scalar
matrices in GL2.F /. We are interested here in automorphisms of G arising from conjuga-
tion by a non-scalar element of GL2.F /. We first show this problem reduces to N yG.G/,
the normalizer of G in yG D GL2.K/. For each x 2 F , we use .x/ as a shorthand for the
fractional ideal Ax.

Lemma 2.1. Let M0 2 GL2.F / normalize G. Then

M0 2 Z.F /:N yG.G/:

Proof. Let

M0 D

�
˛ ˇ


 ı

�
:

Suppose that 
 ¤ 0. Replacing M0 by 
�1M0, we may assume that 
 D 1. Now

NT.1/N�1 2 G;

whereN DM˙10 . It follows that det.M0/, ˛;ı 2K and hence that ˇD ˛ı� det.M0/2K.
The proof for the case where 
 D 0 is similar.

We state a special case (n D 2) of a result of Cremona [1] .

Theorem 2.2. Let

M D

�
a b

c d

�
2 yG;

and define
q.M/ WD .a/C .b/C .c/C .d/:

Then M 2 N yG.G/ if and only if

q.M/2 D .�/;

where � D det.M/.
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Corollary 2.3. Let M 2 N yG.G/ with � D det.M/.

(i) ��1M 2 2 SL2.A/.

(ii) If � 2 A�, then M 2 G.

Proof. (i) By Theorem 2.2, every entry of M 2 is in q.M/2 D .�/.
For part (ii), let x be any entry of M . Then x2 2 A by Theorem 2.2 and so x 2 A,

since A is integrally closed.

Another important consequence [1] of Theorem 2.2 is the following.

Theorem 2.4. The map M 7! q.M/ induces an isomorphism

N yG.G/=Z.K/:G Š Cl.A/2;

where Cl.A/2 is the subgroup of all involutions in Cl.A/.

Proof. This is another special case (n D 2) of a result in [1]. If
�
a b
c d

�
2 N yG.G/, it can be

shown [1, Remarks 2] that

.a/C .b/ D .a/C .c/ D .d/C .b/ D .d/C .c/ D q.M/:

Consequently, there is a map from N yG.G/ to Cl.A/2, which turns out to be an isomor-
phism.

Definition 2.5. An automorphism �g of G is called quasi-inner if

�g.x/ D gxg
�1; x 2 G;

for some g 2 N yG.G/. We call �g non-trivial if g … Z.K/:G, i.e., if �g does not act like an
inner automorphism. We note that

�g1 D �g2 , g1g
�1
2 2 Z.K/:

Finally, we define

Quinn.G/ WD N yG.G/=Z.K/:G Š Cl.A/2:

So Quinn.G/ is the group of quasi-inner automorphisms modulo the inner ones. We
note that, in particular, all quasi-inner automorphisms of G act like inner automorphisms
if jCl.A/j is odd.

Let Cl0.K/ be the group of divisor classes of degree zero [13, p. 186]. It is known [11,
p. 104] that the following exact sequence holds:

0! Cl0.K/! Cl.A/! Z=ıZ! 0: (1)

Our next result is an immediate consequence of Theorem 2.4.
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Corollary 2.6. The group G has non-trivial quasi-inner automorphisms if and only if

jCl.A/j D ıjCl0.K/j is even:

Example 2.7. We illustrate the results of this section with the simplest case K D Fq.t/,
the rational function field over Fq . Then there exists a (monic) polynomial �.t/ 2 FqŒt �,
of degree ı, irreducible over Fq , such that

A D
° f
�m
W f 2 kŒt �; m � 0; degf � ım

±
:

It is known [13, p. 193, Theorem 5.1.15] that here Cl0.K/ is trivial, so that

Cl.A/ Š Z=ıZ:

Hence G has non-trivial quasi-inner automorphisms if and only if ı is even. Hence here
either Quinn.G/ is trivial or cyclic of order 2.

For a specific illustration of Theorem 2.4, we restrict further to ı D 2. In this case,
�.t/ D t2 C �t C � , where � 2 Fq and � 2 F�q . We begin with the A-ideal generated
by ��1 and t��1 which is not principal. Let �.t/ D t t 0 C � and put

g0 D

�
� t

�t 0 1

�
:

Then by Theorem 2.2, g0 2 N yG.G/ and from Theorem 2.4, we see that g0 … Z.K/:G.
Hence g0 provides a generator of Cl.A/2.

Remark 2.8. From the theory of Jacobian varieties, we know that the 2-torsion in Cl0.K/
is bounded by 22g , and even by 2g if the characteristic of K is 2 [10, Theorem 11.12].
Hence by the exact sequence (1), it follows that jQuinn.G/j D jCl.A/2j � 22gC1 (and
� 2gC1, when char.K/ D 2).

In odd characteristic, we can easily find examples with jCl.A/2j D 22g , provided we
are willing to accept a big constant field. Given a function field F of genus g with con-
stant field Fpr , just pick q D prn such that all 2-torsion points of Jac.F / are Fq-rational
and consider K D F:Fq . Then Cl0.K/2 Š .Z=2Z/2g . Choosing a place1 of K of odd
degree ı from the exact sequence (1), we see that jCl.A/2j D 22g .

Similarly, in characteristic 2 examples for which jCl.A/2j D 2g can be found by choos-
ing F suitably, namely F has to be ordinary.

Whether for even ı one can reach the bound 22gC1 (resp. 2gC1) depends on whether
or not the induced short exact sequence for the Sylow 2-subgroup of Cl.A/ splits or not.

Definition 2.9. Let R, S be subgroups of a group T . We write

R � S

if and only if R D S t D tSt�1 for some t 2 T . We put

RT D ¹Rt W t 2 T º:
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Let � be a set of subgroups of T . We put

�T D ¹ST W S 2 �º:

This paper is principally concerned with various actions of Quinn.G/. It is appropriate
at this point to describe in detail the most important of these. Let �g be as above.

(i) It is clear that GL2.K1/ acts on � as Möbius transformations and that this action
is trivial for all scalar matrices. Then �g acts on E.G/ since, for all ! 2 E.G/,

Gg.!/ D .G!/g .� G/:

Recall that Ell.G/ D ¹G! W ! 2 E.G/º. The map

G! 7! Gg.!/

extends naturally to a well-defined action of Quinn.G/ on Ell.G/.

(ii) Clearly, G acts as Möbius transformations on P1.K/, and it is well known that

GnP1.K/$ Cl.A/:

As we shall see later from the structure of the quotient graph, it follows that, for all k 2
P1.K/,G.k/ is infinite, metabelian. Recall that Cusp.G/D ¹Gk W k 2P1.K/º. As before,
the map

Gk 7! Gg.k/

extends to a well-defined action of Quinn.G/ on Cusp.G/.

(iii) Serre [11, Chapter II, Section 1.1, p. 67] uses lattice classes as a model for the
vertices and edges of T . It is clear that GL2.K1/ acts naturally on these. In particular, the
scalar matrices act trivially. The map

Gw 7! Gg.w/;

where w 2 vert.T /[ edge.T /, extends to a well-defined action of Quinn.G/ on the quo-
tient graph GnT . Note that Gg.w/ D ..Gw//

g � G. We will use this action to extend
a result of Serre.

(iv) Suppose that
� D ¹H � G W H Š GL2.Fq/º

or � is a G-conjugacy closed subset of C D ¹C � G W C Š F�
q2
º.

Then Quinn.G/ acts by conjugation on �G . We use these to define actions of Quinn.G/
on significant subsets of vert.T /.
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3. Action on vertex stabilizers

Almost all the results in this section hold for all ı. We record the important general prop-
erties of subgroups of vertex stabilizers.

Lemma 3.1. (i) Gv is finite for all v 2 vert.T /.

(ii) Let S be a finite subgroup of G. Then

S � Gv0

for some v0 2 vert.T /.

Proof. See [11, p. 76, Proposition 2].

In this section, we are concerned with subgroups of Gv which contain a cyclic sub-
group of order q2 � 1. We record the following result.

Lemma 3.2. Suppose that Gv contains a cyclic subgroup of order q2 � 1. Then

Gv Š GL2.Fq/ or Gv Š F�
q2
:

Proof. See [8, Corollaries 2.2, 2.4 and 2.12].

In the first part of this section, we look at the action of quasi-inner automorphisms on
the following set:

H D ¹H � G W H Š GL2.Fq/º:

Lemma 3.3. Let H 2 H . Then there exists v0 2 vert.T / for which

H D Gvo :

Proof. Follows from Lemmas 3.1 (ii) and 3.2.

Remark 3.4. (i) Every T contains a particular vertex vs , usually referred to as standard
(after Serre), for which

Gvs D GL2.Fq/:

See [11, p. 97, Remark 3].

(ii) On the other hand, for the case A D FqŒt � (equivalently, g.K/ D 0, ı D 1), it
follows from Nagao’s theorem [11, Corollary, p. 87] that here vert.T / has no stabilizer
which is cyclic of order q2 � 1.

Lemma 3.5. LetH 2H . Then there exists a quasi-inner automorphism � D �g ofG such
that

H D �.GL2.Fq//:
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Proof. From the proofs of [8, Theorem 2.6, Corollary 2.8], as well as [8, Corollary 2.12],
it is clear that there exists

g D

�
a b

c d

�
2 GL2. zK/

such that
H D g.GL2.Fq//g�1:

We denote by xx the image of x 2 zK under the extension of the Galois automorphism
of Fq2=Fq to zK. It is clear that gEijg�1 2M2.A/, where 1 � i; j � 2 and so

xy=� .D xy=x�/ 2 A

for all x; y 2 ¹a; b; c; dº, where � D det.g/.
Now we may assume without loss of generality that c ¤ 0. Let z 2 ¹a; b; dº. Then

c2=� D xc2=x�; cz=� D cz=x�:

It follows that z=c D xz=xc, so that z=c 2 K. We now replace g D M by g0 D c�1M .
Then by Theorem 2.2, the map �0WG ! G defined by �0.x/ D g0xg�10 is a quasi-inner
automorphism of G.

Lemma 3.6. Let �0D �go be a non-trivial quasi-inner automorphism ofG, and letH 2H .
Then

�0.H/ 6� H:

Proof. By definition, g0 2 N yG.G/nG:Z.K/. Suppose to the contrary that

�0.H/ D gHg
�1

for some g 2G. Replacing g0 by g�1g0, we may assume that g D 1. Now by Lemma 3.5,
H D �00.GL2.Fq// for some quasi-inner �00 D �g 00 , say. It follows that

g1.GL2.Fq//g�11 D GL2.Fq/;

where g1 D .g00/
�1g0g

0
0. As N yG.G/=G:Z.K/ is abelian, this implies that

g1 � g0 .modZ.K/:G/;

and so we may further assume that g1 D g0. Let

Sp D ¹T .a/ D E12.a/ W a 2 Fqº:

Now Sp is a Sylow p-subgroup of GL2.Fq/ and so from the above,

g0.Sp/g
�1
0 D h.Sp/h

�1
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for some h 2 GL2.Fq/. As above, we may assume then that h D 1. It follows that g0
“fixes”1, and so

g0 D

�
˛ �

0 ˇ

�
:

By Corollary 2.3 (i), we note that

.det.g0//�1 tr..g0/2/ D 
 C 
�1 2 A;

where 
 D ˛ˇ�1. Since A is integrally closed, it follows that 
 2 A�.D F�q /. Then we can
replace g0 by ˇ�1g0 which belongs to G by Corollary 2.3 (ii). Thus g0 2 Z.K/:G.

Lemma 3.7. Let e 2 edge.T / be incident with vs . Then

Ge ˆ GL2.Fq/:

Proof. The edges attached to vs are parametrized by P1.Fqı /, and GL2.Fq/ acts on these
as Möbius transformations. See [11, p. 99, Exercise 6].

If the edge corresponds to f 2 Fqı , it is not fixed by the translations in GL2.Fq/, and
if it corresponds to1, it is not fixed by

�
0 1
1 0

�
2 GL2.Fq/.

Proposition 3.8. No edge of T can have a stabilizer isomorphic to GL2.Fq/.

Proof. For odd ı, this follows from [8, Corollary 2.16]. We provide a proof that holds
for all ı. Suppose to the contrary that there is an edge e whose stabilizer is isomorphic to
GL2.Fq/. Then by Lemma 3.2, the stabilizers of its terminal vertices are both Ge .

By Lemma 3.5 and the action of quasi-inner automorphisms on T , we can assume that

Ge D GL2.Fq/:

It follows that GL2.Fq/ stabilizes the geodesic from vs to one of the terminal vertices of e
which includes e, and hence an edge incident with vs . This contradicts Lemma 3.7.

Corollary 3.9. Let H 2 H . Then there exists a unique vertex v 2 vert.T / such that

Gv D H:

Proof. Follows from Lemma 3.3 and Proposition 3.8.

Remark 3.10. Another interesting consequence of Lemma 3.5 and Proposition 3.8 is the
following. Suppose that Gv 2 H . Then there exists � D �g such that �.v/ D vs . Since �
is an automorphism of T , the action of Gv on the qı C 1 edges of T incident with v is
identical to the action of GL2.Fq/ on the edges of T incident with vs , as described in
Lemma 3.7.
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Definition 3.11. By definition,

vert.GnT / D ¹Gv W v 2 vert.T /º:

We put zv D Gv and define its stabilizer

Gzv D .Gv/
G :

We refer to Gzv as being isomorphic to Gv .

Lemma 3.12. There exists a bijection

HG
$ ¹zv 2 vert.GnT / W Gv 2 Hº:

Proof. Follows from Corollary 3.9 and the above.

It is clear that Quinn.G/ acts on HG . SinceZ.K/, represented by scalar matrices, acts
trivially on T , it is also clear that Quinn.G/ acts on GnT . We now come to the principal
result in this section which follows from Lemmas 3.5, 3.6 and 3.12.

Theorem 3.13. The group Quinn.G/ acts freely and transitively on

(i) the G-conjugacy classes of subgroups of G which are isomorphic to GL2.Fq/,

(ii) the vertices of GnT whose stabilizers are isomorphic to GL2.Fq/ .

A special case of this result is provided by Corollary 2.6.

Corollary 3.14. Suppose that jCl.A/j is odd. Then

(i) every subgroup H of G isomorphic to GL2.Fq/ is actually conjugate in G to the
natural subgroup GL2.Fq/ of G obtained from the inclusion Fq � A,

(ii) the only vertex in G n T whose stabilizer is isomorphic to GL2.Fq/ is zvs , the
image of the standard vertex vs .

4. Action on elliptic points

Throughout this section, we assume that ı is odd. Recall that

Ell.G/ D ¹G! W ! 2 E.G/º

denotes the elliptic points of the Drinfeld modular curve Gn�.

Definition 4.1. We define

Ell.G/D D ¹G! W G! D G x!º and Ell.G/¤ D ¹G! W G! ¤ G x!º:

(In [9, Section 3] Ell.G/D is denoted by Ell.G/2.)
The action of an element of GL2.K1/ on an element of � will always refer to its

action as a Möbius transformation. We record the following.
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Lemma 4.2. Let g 2 N yG.G/ and ! 2 E.G/. Then

(i) g.!/ 2 E.G/,

(ii) g.!/ D g.x!/.

It is clear then that Quinn.G/ acts on both Ell.G/D and Ell.G/¤.
In this section, our approach is based on [9, Sections 3 and 4]. We recall some details.

Definition 4.3. Let I be an A-ideal (resp. zA-ideal). Then ŒI � denotes the image of I in
Cl.A/ (resp. Cl. zA/).

Fix " 2 Fq2 n Fq . By [9, Theorem 2.5], any elliptic point ! of G can be written as
! D "Cs

t
, where s; t 2 A and t divides .x"C s/."C s/ in A. Now let

J! D A."C s/C At:

It is known [9, Lemmas 3.1 and 3.2] that

(i) J! is an zA-ideal.

(ii) J! is independent of the choice of " 2 Fq2 n Fq .

(iii) Let !;!0 2 E.G/. Then

G! D G!0 , ŒJ! � D ŒJ!0 � in Cl. zA/:

Let ˛ be the Galois automorphism of zK=K (which extends that of Fq2=Fq). Let k 2 zK.
Then the norm of k is kxk, where xk D ˛.k/. Now ˛ restricts to zA and so acts on its ideals
and hence its ideal class group. For each zA-ideal, J , the norm of J , N.J / D A \ .J xJ /,
which is an A-ideal. We now come to the norm map

xN W Cl. zA/! Cl.A/;

where xN.ŒI �/ D Œ.I NI / \ A�. Then

ŒI � 2 ker xN , .I NI / \ A is a principal A-ideal:

We restate [9, Theorem 3.4].

Theorem 4.4. The map ! 7! ŒJ! � induces a one-to-one correspondence

Ell.G/$ ker xN:

For each !, it is known that

(i) J! D Jx! ,

(ii) J!Jx! is a principal A-ideal.

It follows that
ker xN D ¹ŒJ! � W ŒJx! � D ŒJ! ��1º:

We recall from Theorem 2.4 that Quinn.G/ can be identified with Cl.A/2. From this and
Theorem 4.4, we are able to study the action of Quinn.G/ on Ell.G/. For this purpose, we
require two further lemmas.
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Lemma 4.5. Let �WCl.A/! Cl. zA/ be the canonical map, where �.ŒI �/ D ŒI zA� (I E A).
Then

(i) � is injective,

(ii) ¹ŒI � 2 Cl. zA/I ŒI � D ŒxI �º D �.Cl.A//.

Proof. The analogous statements are known to hold for the canonical map

Cl0.K/! Cl0. zK/:

See [10, Corollary to Proposition 11.10]. The results follow from the exact sequence in
Section 2, since ı is odd and the infinite place is inert in zK.

Lemma 4.6. With the above notation, the 2-torsion in Cl.A/,

Cl.A/2 Š �.Cl.A/2/ D .ker xN/2;

the 2-torsion in ker xN .

Proof. Let ŒI � 2 Cl.A/2. Then �.ŒI �/ has order 2 in Cl. zA/ by Lemma 4.5. Now

xN.�.ŒI �// D �.ŒI �/�.ŒI �/ D .�.ŒI �//2 D 1

by Lemma 4.5 (ii). Hence �.ŒI �/ 2 ker xN . Conversely, let ŒJ � 2 Cl. zA/ have order 2 and
lie in ker xN . Then ŒJ �2 D 1 and ŒJ �Œ xJ � D xN.ŒJ �/ D 1. Hence ŒJ � D Œ xJ �, and so ŒJ � 2
�.Cl.A/2/ again by Lemma 4.5 (ii).

Any element of N yG.G/ can be represented by a matrix

M D

�
a b

c d

�
2 yG:

By multiplying M by a suitable scalar matrix, we may assume that a; b; c; d 2 A. As
before, let

q.M/ WD .a/C .b/C .c/C .d/:

Then

(i) q.M/2 D .�/.

(ii) .a/C .b/ D .a/C .c/ D .d/C .b/ D .d/C .c/ D q.M/.

See Theorem 2.2 and [1, Remarks 2]. Thus, q induces an isomorphism from Quinn.G/
onto Cl.A/2, and so � ı q provides an embedding of Quinn.G/ into Cl. zA/.

As before, each ! 2E.G/ can be represented as ! D "Cs
t

, where s; t 2A and t divides
."q C s/."C s/ inA. The elementM acts as a Möbius transformation on ! by multiplying
the column vector

�
"Cs
t

�
on the left by the matrix M . It follows that JM.!/ is the zA-ideal

generated by a."C s/C bt and c."C s/C dt . Our next result, the most important in this
section, shows that the action of Quinn.G/ on Ell.G/ is equivalent to group multiplication
in ker xN .
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Theorem 4.7. With the above notation,

ŒJM.!/� D Œ�.q.M//J! � D Œ�.q.M//�ŒJ! � in ker xN:

Proof. From the above, it is clear that JM.!/ � q.M/J! . Since zA is a Dedekind domain,
there is an integral ideal I1 of zA such that

JM.!/ D q.M/J!I1:

By the same argument, there exists an integral ideal I2 of zA with

JM 2.!/ D q.M/JM.!/I2 D q.M/2J!I1I2 D �J!I1I2:

On the other hand, from part (i) of Corollary 2.3, we see that JM 2.!/ D �J! . Hence
I1 D I2 D zA, and the result follows.

An immediate consequence is the following.

Corollary 4.8. The group Quinn.G/ acts freely on Ell.G/. More precisely, a quasi-inner
automorphism that fixes an elliptic point in G n� must necessarily be inner.

Since
G! D G x! , ŒJx! � D ŒJ! � D ŒJ! �

�1;

we can identify Ell.G/D with �.Cl.A/2/ Š Quinn.G/. Combining Lemma 4.6 and Corol-
lary 4.8, we obtain the following result.

Theorem 4.9. The group Quinn.G/ acts freely and transitively on Ell.G/D.

Theorem 3.13 (ii), which holds for all ı, provides an alternative proof of Theorem 4.9.
Applying the former for the case of odd ı, the latter then follows from the existence of
a Quinn.G/-invariant one-to-one correspondence between Ell.G/D and ¹zv 2 vert.GnT / W
Gv Š GL2.Fq/º.

From the above, it is clear that jEll.G/j D nE jEll.G/Dj, where

nE D jker xN W �.Cl.A/2/j:

It follows that jEll.G/¤j D .nE � 1/jEll.G/Dj.
We recall that the building map [3, p. 41] restricts to a map

�W E.G/! vert.T /;

for whichG! �G�.!/. Let � be a quasi-inner automorphism. Then by [3, p. 44, item (iii)],

�.�.!// D �.�.!//:

Then � induces a map
Ell.G/ 7! vert T :
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By Lemma 4.2 (ii), Theorem 3.13 and [9, Proposition 3.4], this leads to two Quinn.G/-
invariant one-to-one correspondences,

Ell.G/D $ ¹zv 2 vert.GnT / W Gv Š GL2.Fq/º;

G D ¹¹G!;G x!º W G! ¤ G x!º $ V D ¹zv 2 vert.GnT / W Gv Š F�
q2
º:

Note that jG j D 1
2
jEll.G/¤j.

Lemma 4.10. Let G! 2 Ell.G/¤, and let � be a quasi-inner automorphism represented
byM 2N yG.G/. Then �.G!/DG x! if and only if Œ�.q.M//� D ŒJ! �

2 and ŒJ! � has order 4
in ker xN .

Proof. Let n > 2 be the order of ŒJ! � in ker xN . If �.G!/ D G x!, then by Theorem 4.7,

Œ�.q.M//�ŒJ! � D ŒJ! �
n�1:

Hence Œ�.q.M//�D ŒJ! �
n�2 D ŒJ! �

�2, and so nD 4. The converse is straightforward.

The following is an immediate consequence.

Lemma 4.11. Let zv 2 V , and let ¹G!;G x!º be the corresponding elliptic element of zv.
Then the length of the orbit of zv under the action of Quinn.G/ is 1

2
jQuinn.G/j if ŒJ! � has

order 4 in ker xN and jQuinn.G/j otherwise.

Proposition 4.12. Suppose that jEll.G/Dj < jEll.G/j. Then

(a) Quinn.G/ acts transitively on Ell.G/¤ if and only if nE D 2.

(b) Quinn.G/ acts transitively on V if and only if nE 2 ¹2; 3º.

(c) Quinn.G/ acts freely on V if and only if nE is odd.

(d) Quinn.G/ acts freely and transitively on V if and only if nE D 3.

Proof. (a) Since Quinn.G/ acts freely on Ell.G/¤, the action is transitive if and only if
jQuinn.G/j D jEll.G/Dj D jEll.G/¤j that is if nE D 2.

(b) If Quinn.G/ acts transitively on V , then jG j � jEll.G/Dj and so nE 2 ¹2;3º. When
nE D 2, (a) applies. When nE D 3, the two Quinn.G/-orbits represented by G! and G x!
are identified in G .

(c) By Lemma 4.10, the action of Quinn.G/ on G is not free if and only if there
exists ŒJ! � of order 4, and such an element exists if and only if nE is even.

(d) follows from (b) and (c).

Remark 4.13. Suppose that g.K/ D g > 0. The 2-torsion rank of an abelian variety of
dimension g is bounded by 2g. Applying this to Cl0. zK/ or Cl. zA/ (and using the fact that ı
is odd), it follows that

jEll.G/Dj � 22g :
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See [10, Chapter 11]. On the other hand by the Riemann hypothesis for function fields [13,
Theorems 5.1.15 (e) and 5.2.1],

jEll.G/j D LK.�1/ � .
p
q � 1/2g :

If nE D 2, then
22gC1 � .

p
q � 1/2g :

(a) If q � 16 (and g > 0), then Quinn.G/ cannot act transitively on Ell.G/¤.

Another consequence follows using an identical argument.

(b) If q � 23 (and g > 0), then Quinn.G/ cannot act transitively on V .

Remark 4.14. It is known [8, Corollary 2.12, Theorem 5.1] that a vertex zv of GnT is
isolated if and only if ı D 1 and Gv Š GL2.Fq/ or F�

q2
. Hence when ı D 1, therefore

Theorem 4.9, Proposition 4.12 and Remark 4.13 can be interpreted as statements about
the action of Quinn.G/ on the isolated vertices of GnT .

5. Action on cyclic subgroups

Our focus of attention in this section are the subgroups of G which are cyclic of order
q2 � 1. As distinct from Section 3, some of the results require ı to be odd.

Definition 5.1. A finite subgroup S ofG is maximally finite if every subgroup ofG which
properly contains it is infinite.

Lemma 5.2. Let C be a cyclic subgroup of G of order q2 � 1 which is not maximally
finite. Then there exists H 2 H which contains C . Moreover, H is unique if ı is odd.

Proof. By Lemma 3.1 (ii), there exists Gv which properly contains C . Hence Gv 2 H by
Lemma 3.2.

Suppose now that ı is odd. If H is not unique, then

C � Gv1 \Gv2 ;

where v1 ¤ v2. It follows that C fixes the geodesic in T joining v1 and v2, including all
its edges. This contradicts [8, Corollary 2.16].

Lemma 5.3. Let C , C0 be cyclic subgroups of order q2 � 1 contained in some H 2 H .
Then C , C0 are conjugate in H .

Proof. By Lemma 3.5, we may assume that H D GL2.Fq/. This then becomes a well-
known result. In the absence of a suitable reference, we sketch a proof which lies within
the context of this paper.
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By the proof of [8, Theorem 2.6] (based on [8, Lemma 1.4]), it follows that

C D F � D ¹g 2 GL2.Fq/ W g.�/ D �º

for some � 2 Fq2nFq . Let C0 D F �0 .
Now �0 D ˛�C ˇ for some ˛; ˇ 2 Fq , where ˛ ¤ 0. Then C0 D g0Cg�10 , where

g0 D

�
˛ ˇ

0 1

�
:

Definition 5.4. Let

C D ¹C � G W C; cyclic of order q2 � 1º;

Cmf D ¹C 2 C W C; maximally finiteº;

Cnm D CnCmf :

Clearly, every automorphism of G acts on both Cmf and Cnm.

Proposition 5.5. The quasi-inner automorphisms act transitively on all cyclic subgroups
of G of order q2 � 1 that are not maximally finite.

Proof. Let C 2 Cnm. Then by Lemmas 3.5 and 5.2, there exists g0 2 N yG.G/ such that

C g0 2 GL2.Fq/:

The rest follows from Lemma 5.3.

The next result follows from Proposition 5.5 and Theorem 3.13.

Proposition 5.6. If ı is odd, Quinn.G/ acts freely and transitively on the conjugacy
classes (in G) of cyclic subgroups of G of order q2 � 1 that are not maximally finite.

The restrictions on ı in Lemma 5.2 and Proposition 5.6 are necessary.

Example 5.7. Consider the case where g.K/ D 0, ı D 2. This case is studied in detail
in [7, Section 3]. By the exact sequence in Section 2, it is known that here

Cl.A/ D Cl.A/2 Š Quinn.G/ Š Z=2Z:

There exists a vertex v0 adjacent to the standard vertex vs and g0 2 N yG.G/nG such that

Gv0 D GL2.Fq/g0 and Gvs \Gv0 2 Cnm:

Hence the restriction on ı in part of Lemma 5.2 is necessary.
It is known [7, Theorem 3.3] that in this case,

G D GL2.Fq/�C GL2.Fq/g0 ;
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where C .D GL2.Fq/ \ GL2.Fq/g0/ 2 Cnm. It follows by Lemma 5.3 that there exists
g 2 GL2.Fq/ for which

C g D C g0 :

In this case, therefore Quinn.G/, which is non-trivial, fixes CG . The restriction on ı
in Proposition 5.6 is therefore necessary.

We conclude this section with some remarks about Cmf .

Lemma 5.8. Suppose that ı is odd. Then

C 2 Cmf , C D Gv Š F�
q2
:

Proof. Suppose that C D Gv Š F�
q2

and that C 2 Cnm. Then by Lemmas 3.1 and 3.3,
it follows that C � Gv \ Gv0 for some v0 ¤ v, which contradicts [8, Corollary 2.16].
The rest follows from Lemma 3.1.

When ı is odd, there is therefore a one-to-one correspondence

.Cmf /
G
$ V :

For the case where ı is odd, this shows that the results in Proposition 4.12 apply to the
action of Quinn.G/ on .Cmf /G .

Remark 5.9. As a Möbius transformation, every member of G fixes an element of C1.
Suppose now that ı is even and that C is a cyclic subgroup of order q2 � 1 (maxi-
mally finite or not). Then from the proof of [9, Proposition 2.3], it follows that C fixes
� 2 K:Fq2nK. In this case, however � 2 K1 as ı is even. So �, which is not in � and
not in K, can neither be an inner point nor a cusp of the Drinfeld modular curve Gn�.
We refer to � as pseudo-elliptic.

On the other hand, suppose that ı is odd. Let g be any element of infinite order in G,
and let g fix �. Then � 2 K1nK.

6. Action on cusps

As distinct from Section 4, the results here hold for all ı. Any element of yG acts
on P1.K/ D K [ ¹1º as a Möbius transformation. In this way, Quinn.G/ acts on
GnP1.K/D Cusp.G/. Every element of Cusp.G/ can be represented in the form .a W b/,
where a; b 2 A. Since A is a Dedekind ring, this gives rise to a one-to-one correspondence

Cusp.G/$ Cl.A/:

Hence the action of Quinn.G/ on Cusp.G/ translates to an action of Cl.A/2 on Cl.A/.
The principal result in this section is similar to but simpler than Theorem 4.7. It translates
this action into multiplication in the group Cl.A/. We sketch a proof.
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We can represent any cusp, c, by an element .x W y/ 2 P1.K/, where x; y 2 A. Let

Jc D xAC yA;

and let ŒJc � be its image in Cl.A/.
Now let � be a non-trivial element of Quinn.G/. Then as before by Theorem 2.2, � can

be represented by a matrix

M D

�
a b

c d

�
2 yG;

where we may assume that a;b; c;d 2A. Let q.M/ be theA-ideal generated by a, b, c, d .
The action of � on c is given by the action ofM multiplying the column vector

�
x
y

�
on

the left by M . In this way,

J�.c/ D JM.c/ D .ax C by/AC .cx C dy/A:

Theorem 6.1. Under the identification of Cusp.G/ with Cl.A/ and Quinn.G/ with
Cl.A/2, the action of Quinn.G/ on the cusps translates into multiplication in the group
Cl.A/. More precisely,

ŒJ�.c/� D Œq.M/Jc � D Œq.M/�ŒJc � in Cl.A/:

Proof. Since A is a Dedekind domain, there exists an A-ideal I1 such that

JM.c/ D q.M/JcI1:

By Corollary 2.3 (i), there exists an A-ideal I2 with

�Jc D JM 2.c/ D q.M/JM.c/I2 D q.M/2JcI1I2 D �JcI1I2;

where � D det.M/. Hence I1 D I2 D A, and the result follows.

As in the previous section, we have the following immediate consequence.

Corollary 6.2. If a non-trivial quasi-inner automorphism � fixes any cusp, then � reduces
to an inner automorphism. In particular, Quinn.G/ acts freely on Cusp.G/.

Remark 6.3. The group Quinn.G/ acts transitively on Cusp.G/ if and only if Cl.A/2 D
Cl.A/.

From the exact sequence in Section 2, a necessary condition for this is ı 2 ¹1; 2º.
If g.K/ D 0, this condition is also sufficient, as then Cl.A/ Š Z=ıZ.

But if g.K/ D g > 0, the action cannot be transitive for q > 9 by an argument very
similar to that used in Remark 4.13. The inequality

jCl0.K/j
jCl0.K/2j

�
.
p
q � 1/2g

22g

shows that for fixed q > 9, the number of orbits of Quinn.G/ on Cusp.G/ tends to 1
with g.K/.
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The cusp1 (D
�
1
0

�
) corresponds to the principal A-ideals. Its orbit under Quinn.G/

corresponds to the 2-torsion in Cl.A/ and in the sense of Theorem 6.1, the action of
Quinn.G/ on it translates into Cl.A/2 acting on itself by multiplication.

For every cusp c, represented by the ideal class ŒJc � in Cl.A/, there corresponds its
(group) inverse ŒJc ��1 in Cl.A/. We can partition Cl.A/ thus

Quinn.G/$ Cl.A/2 D ¹ŒJc � W ŒJc � D ŒJc ��1º;

Cl.A/nCl.A/2 D ¹ŒJc � W ŒJc � ¤ ŒJc ��1º:

Our next result follows from Theorem 6.1 in the same way as Lemma 4.10 follows
from Theorem 4.7.

Lemma 6.4. A quasi-inner automorphism �, represented byM 2N yG.G/, maps the cusp c
corresponding to ŒJc � in Cl.A/nCl.A/2, to the cusp corresponding to ŒJc ��1 if and only
if ŒJc � has order 4 and ŒJc �2 D q.M/.

In the next section, we will use the results of Sections 5 and 6, together with Theo-
rem 3.13 (ii), to examine in detail the action of Quinn.G/ on GnT .

7. Action on the quotient graph

The model used by Serre for T [11, Chapter II, Section 1.1] is based on two-dimensional
so called lattice classes. Since every quasi-inner automorphism, �g , can be represented by
a matrix in yG, it acts on T , and hence Quinn.G/ acts on GnT .

In this section, we investigate the action of a quasi-inner automorphism on the quotient
graph HnT , where H is a finite index subgroup of G. In the process, we extend a result
of Serre [11, p. 117, Exercise 2 (e)] which motivated our interest in this question. We
begin with a detailed account of Serre’s classical description of GnT . Serre’s original
proof [11, p. 106, Theorem 9] is based on the theory of vector bundles. For a more detailed
version which refers explicitly to matrices, see [5]. In addition, we use the results of the
previous sections to shed new light on the structure of GnT .

Definition 7.1. A ray R in a graph G is an infinite half-line, without backtracking. In ac-
cordance with Serre’s terminology [11, p. 104], we call R cuspidal if all its non-terminal
vertices have valency 2 (in G ).

Let ¹g1; : : : ; gsº � yG, where s � 1, be a complete system of representatives for
Cl.A/2 .Š N yG.G/=G:Z.K//. Let ci D gi .1/, 1 � i � s. We will assume that c1 D1.
If Cl.A/ D Cl.A/2, then ¹c1; : : : ; csº is a complete system of representatives for Cl.A/.
If Cl.A/ ¤ Cl.A/2, we can find further elements h1; : : : ; ht 2 yG, where t � 1 so that

� D ¹c1; : : : ; cs; d1; : : : ; dtº

is a complete set of representatives for Cl.A/, where dj D hj .1/, 1 � j � t .
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Theorem 7.2. There exists a complete system of representatives C (� P1.K/) for
Cusp.G/ (equivalently, Cl.A/) of the above type such that

GnT D X [
� [
1�i�s

R.ci /
�� [

1�j�t

R.dj /
�
;

where

(i) X is finite,

(ii) each R.ci /, R.dj / is a cuspidal ray (in GnT ), whose only intersection with X
consists of a single vertex,

(iii) the jCl.A/j cuspidal rays are pairwise disjoint.

Moreover, if R.e/ is any of these cuspidal rays, then it has a lift, R.e/, to T with the
following properties. Let vert.R.c// D ¹v1; v2; : : : º. Then

(i) Gvi � GviC1 , i � 1,

(ii)
S
i�1Gvi D G.c/, where G.c/ is the stabilizer (in G) of the cusp c.

For each j , let zdj be the element of ¹d1; : : : ; dtº corresponding to h�1j .1/. We may
relabel the latter set as ¹d1; zd1; : : : ; dt 0 ; zdt 0º, where t 0 D t

2
. We can use the results of

Section 3 to elaborate on the structure of the above cuspidal rays. We recall that

H D ¹H � G W H Š GL2.Fq/º:

Corollary 7.3. For the above set of jCl.A/j cuspidal rays,

(i) R1 D ¹R.c1/; : : : ;R.cs/º $ ¹zv 2 vert.GnT / W Gv 2 Hº $ Cl.A/2.

(ii) R2 D ¹R.dj /;R. zdj / W 1 � j � t
0º $ Cl.A/nCl.A/2.

Proof. Let zv 2 vert.GnT /, where Gv 2 H , and let H 2 H be any representative of its
stabilizer. Then, for some unique i ,

H D ggi .GL2.Fq//.ggi /�1;

where g 2 G, by Lemmas 3.5 and 3.6. Now let u be any unipotent element of H . Then u
fixes ggih.1/ for some h 2 GL2.Fq/. It follows that

u 2 G.c/ , c D g0ci ;

where g0 2 G. The rest follows from Corollary 3.9 together with Theorem 3.13.

Remark 7.4. Let zv 2 vert.GnT /, where Gv 2 H . Then it is shown in Corollary 7.3
that zv is adjacent in GnT to a vertex whose stabilizer (up to conjugacy in G) is contained
in G.ci /, for some unique i . In this way, zv can be thought of as closer in GnT to R.ci /

than to any other cuspidal ray. For the case ı D 1 (and only for this case), zv is isolated
in GnT by [8, Theorem 5.1]. As in Takahashi’s example [14], such a zv then appears as
a “spike” next to its associated cuspidal ray.
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For each subgroup H of G, we recall that the elements of HnT are

vert.HnT / D ¹Hv W v 2 vert.T /º and edge.HnT / D ¹He W e 2 edge.T /º:

Definition 7.5. Let H , H� be isomorphic subgroups of G. An isomorphism of graphs

�W HnT ! H�nT

is said to be stabilizer invariant if the following condition holds.
For any w 2 vert.T / [ edge.T /, let

�.Hw/ D H�w�

(where w� 2 vert.T / if and only if w 2 vert.T /). Then, for all u 2 Hw and u� 2 H�w�,

Hu Š H
�
u� :

As we shall see, it is easy to find examples of isomorphisms of quotient graphs which
are not stabilizer invariant.

Theorem 7.6. Let � D �g , where g 2 N yG.G/, and let H be a subgroup of G. Then the
map

x�H W HnT ! �.H/nT ;

defined by
x�H .Hw/ D H

0w0;

whereH 0 D Hg D gHg�1, w0 D g.w/ and w 2 vert.T /[ edge.T /, defines a stabilizer
invariant isomorphism of the quotient graphs

�.H/nT Š HnT :

Proof. Note that x�H is well defined since if �.x/ D g1xg�11 , where g1 2 N yG.G/, then
gg�11 2 Z.K/ and Z1, the set of scalar matrices in GL2.K1/, stabilizes every w. The
rest is obvious (since g acts on T ).

Let H be any finite index subgroup of G, and let M be the largest normal subgroup
of G contained in H . Then N D M \M g is the largest (finite index) subgroup of G,
contained in H , which is normalized by G, Z.K/ and g. (See Section 2.)

Corollary 7.7. Suppose that � is non-trivial (i.e., g … G:Z.K/). Let N be a finite index
normal subgroup of G normalized by �. Then the map

x�N W NnT ! NnT ;

defined as above, is a non-trivial stabilizer invariant automorphism whose order n is even.
Moreover, if Z � N , then n D 2m, where m divides jG W N j.
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Proof. To prove that x�N is non-trivial, it suffices to prove that x�G is not the identity map.
There exists v0 2 vert.T / for which (non-central) Gv0 � G.1/ [5, Lemma 3.2]. Suppose
to the contrary that x�G fixes Gv0. Then there exists g0 2 G such that g0 D gg0 2 G.1/
which implies that

g0 D

�
a b

0 c

�
:

We may assume that a; b; c 2 A. By Theorem 2.2, together with an argument used in the
proof of Theorem 2.4, it follows that

a2A D c2A D acA:

Hence a; c 2 Fq . Thus g0 2 G and so g 2 G:Z.K/.
For the second part, n is the smallest n (> 0) such that gn 2 N:Z.K/. Now g2 2

G:Z.K/ by Corollary 2.3 (i). If n is odd, then g 2 G:Z.K/. Hence n D 2m is even.
In addition, when Z � N , m divides jG:Z.K/ W N:Z.K/j D jG W N j.

A special case of Corollary 7.7, combined with Corollary 2.6, is the following.

Corollary 7.8. Suppose that jCl.A/j D jCusp.G/j is even. Then there exists a stabilizer
invariant automorphism of GnT of order 2.

Serre [11, p. 117, Exercise 2 (e)] states this result for the case where g.K/ D 0 (i.e.,
K D Fq.t/) and ı even. The restriction here is necessary. For the case g.K/ D 0, ı D 1,
in which case A D FqŒt � and jCl.A/j D 1, it is known by Nagao’s theorem [11, p. 87,
Corollary] that GnT is a cuspidal ray whose terminal vertex is isolated. Here then the
only (graph) automorphism is trivial.

Corollary 7.8 shows that Quinn.G/ acts non-trivially on GnT . This extends to an
action on its cuspidal rays which we now describe. We use the notation of Theorem 7.2.

Definition 7.9. Let R1, R2 be rays in a graph G . We write

R1 � R2

if and only if jRinR1 \R2j <1, i D 1; 2. This a well-known equivalence relation. The
equivalence class containing the ray R is called the end (of G ) determined by R. In the
notation of Theorem 7.2, we denote by E.e/ the end (inGnT ) determined by R.e/, where
e D ci ; dj .

Now let � D �g , where g 2 N yG.G/nG:Z.K/, be a non-trivial quasi-inner automor-
phism, and let y� be the corresponding (non-trivial) element of Quinn.G/. Now fix e 2 � .
Let e� D �.e/. Then by Corollary 6.2, e ¤ e�, and we may assume that e� 2 � .

As in Theorem 7.2,

vert.R.e// D ¹zv1; zv2; : : : º and vert.R.e�// D ¹zv�1 ; zv
�
2 ; : : : º:
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Recall that [
i�1

Gvi D G.e/;

and that Gvi � GviC1 , i � 1. In addition, it is known [8, Theorem 2.1 (a)] that there exists
a normal subgroup Ni of Gvi such that

Gvi =Ni Š F�q � F�q ;

where Ni Š V Ci , the additive group of an Fq-vector space of dimension ni . It is also
known that ni < niC1. Corresponding results hold for R.e�/.

Now let
mX D max¹jGvj W v 2 vert.X/º:

(Recall that X is finite.) Now choose any m > mX . By the definition of graph automor-
phism �G determined by the non-trivial element y� of Quinn.G/, together with Theo-
rem 7.2, there exists n > mX such that

x�G W zvmCi 7! zv
�
nCi

for all i � 0. This gives rise to a map

y�W E.e/ 7! E.e�/;

which in turn defines a Quinn.G/-action on the ends defined by the cuspidal rays in
GnT (Theorem 7.2). Since this action coincides precisely with the action of Quinn.G/ on
Cusp.G/, the following result is an immediate consequence of Theorem 3.13 (ii), Corol-
lary 6.2 and Lemma 6.4.

Corollary 7.10. With the notation of Theorem 7.2,

(i) Quinn.G/ acts (simultaneously) freely and transitively on

¹E.c1/; : : : ;E.cs/º and ¹zv 2 vert.GnT / W Gv Š GL2.Fq/º:

(ii) Quinn.G/ acts freely on

¹E.dj /;E. zdj / W 1 � j � t
0
º:

(iii) Quinn.G/ acts on
¹¹E.dj /;E. zdj /º W 1 � j � t

0
º:

(iv) Under the action of Quinn.G/, some E.dj / is mapped to E. zdj / if and only if dj
has order 4 in Cl.A/.

We recall from Proposition 4.12 that when ı is odd, Quinn.G/ also acts on ¹zv 2
vert.GnT / W Gv Š F�

q2
º.

Our final result in this section concerns the action of N yG.G/ on T . It is known [11,
p. 75, Corollary] that G acts without inversion (on the edges) of T .
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Proposition 7.11. Suppose that ı is odd. Then every �g acts without inversion on T , and
hence on every quotient graph HnT .

Proof. As in Theorem 2.2, we can represent �g with a matrixM in yG, and we can assume
that all its entries lie inA. Let�D det.M/. Then theA-ideal generated by� is the square
of an ideal inA, again by Theorem 2.2. It follows that, for all places v¤ v1, v.�/ is even.

By the product formula, then ıv1.�/ and hence v1.�/ is even. The result follows
from [11, p. 75, Corollary].

Example 7.12. To conclude this section, we consider the case where g.K/D 0 and ıD 2.
We recall that there exists a quadratic polynomial � 2 FqŒt �, irreducible over Fq , such that

A D
° f
�m
W f 2 FqŒt �; m � 0; degf � 2m

±
:

In this case, it is known that Cl.A/2 D Cl.A/ Š Quinn.G/ Š Z=2Z. It is well known
that GnT is a doubly infinite line, without backtracking. See [11, p. 113, §2.4.2 (a)] and,
for a more detailed description, [7, Section 3]. It is known that GnT lifts to a doubly
infinite line D in T , which we now describe in detail. For some g0 2 N yG.G/nG:Z.K/,
vert.D/ D ¹v0; v

�
0 ; v1; v

�
1 ; : : : º, where

(i) v�i D g0.vi /, i � 0,

(ii) Gv�i D .Gvi /
g0 , i � 0,

(iii) Gv0 D GL2.Fq/,

(iv) for each i � 1,

Gvi D

²�
˛ c��i

0 ˇ

�
W ˛; ˇ 2 F�q ; deg c � 2i

³
:

Then D maps onto (and is isomorphic to) GnT which has the following structure:

f f f f f```
v2 v1 v0 v�0 v�1 v�2

f
.

` ` `
The action of the (essentially only) non-trivial quasi-inner automorphism of GnT (repre-
sented by g0) is given by

vi $ v�i ; i � 0:

We note two features of D which are of interest relevant to this section.

(i) From the structure of D , it is clear that the non-trivial quasi-inner automorphism
determined by g0 inverts the edge joining v0 and v�0 , which shows that the restriction on ı
in Proposition 7.11 is necessary.

(ii) For this case, there is only one stabilizer invariant involution. However, the graph
GnT has many automorphisms. Infinitely many examples include translations (which
have infinite order) and reflections in any vertex (which are involutions).
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8. Two instructive examples

We conclude with two examples which demonstrate how our results apply to the structure
of the quotient graph GnT . Both are elliptic function fields K=Fq . We record some of
their basic properties.

Definition 8.1. A function field K=Fq is elliptic [13, p. 217] if g.K/ D 1 and K has
a place1 of degree 1.

Theorem 8.2. Suppose that K=Fq is elliptic. Then

(i) We have

K D Fq.x; y/;

where x, y satisfy a (smooth) Weierstrass equation F.x; y/ D 0 with

F.x; y/ D y2 C a1xy C a3y � x
3
� a2x

2
� a4x � a6 2 FqŒx; y�:

(ii) Cl0.K/ (Š Cl.A/) is isomorphic to E.Fq/, the group of Fq-rational points,
¹.˛; ˇ/ 2 Fq � Fq W F.˛; ˇ/ D 0º [ ¹.1;1/º. Here the group operation is point
addition˚ according to the chord-tangent law.

Proof. For item (i), see [13, Proposition 6.1.2]. For item (ii), see [13, Propositions 6.1.6
and 6.1.7].

Here a rational point .a; b/ 2 E.Fq/ corresponds to the ideal class of A.x � a/ C
A.y � b/.

We also require some “elliptic” properties of zK D K:Fq2 (which is a constant field
extension of K).

Corollary 8.3. Suppose that K=Fq is elliptic. Then zK=Fq2 is also elliptic and defined by
the same Weierstrass equation.

Proof. From the above, zK D Fq2.x; y/, where F.x; y/ D 0. The rest follows from [13,
Proposition 6.1.3].

With our choice of infinite place, we have

A D FqŒx; y� and zA D Fq2 Œx; y�;

where x and y satisfy the Weierstrass equation F.x; y/ D 0. In an analogous way,

Cl. zA/ Š Cl0. zK/ Š E.Fq2/:

We recall that the image of any ˛ 2 Fq2 under the Galois automorphism of Fq2=Fq is
denoted by x̨. For each rational point P D .˛; ˇ/ 2 E.Fq2/, we put xP D .x̨; ˇ/.



A. W. Mason and A. Schweizer 28

Corollary 8.4. Suppose that K=Fq is elliptic. Under the identifications of Cl0. zK/ (resp.
Cl0.K/) with E.Fq2/ (resp. E.Fq/), the norm map N WCl0. zK/! Cl0.K/ translates to
a map NE WE.Fq2/! E.Fq/ defined by

NE .P / D P ˚ xP ;

so that
P 2 kerNE , xP D �P:

Takahashi [14] has described in detail the quotient graph for an elliptic function field
over any field of constants. In all cases, GnT is a tree. Since ı D 1, for the case of a finite
field of constants, the isolated vertices of GnT are precisely those whose stabilizer is iso-
morphic to GL2.Fq/ or F�

q2
by [8, Theorem 5.1]. For each cusp c 2 Cl.A/2, the cuspidal

ray R.c/ in GnT has attached to its terminal vertex (appearing as a “spike”) an iso-
lated vertex with stabilizer isomorphic to GL2.Fq/. The remaining cuspidal rays consist
of 1

2
jCl.A/nCl.A/2j inverse pairs ¹R.c/;R.c�1/º which share a terminal vertex (appear-

ing in GnT as the “prongs” of a “fork”).
In both our examples q D 7 in which case the Weierstrass equation can be assumed to

take the short form
y2 D f .x/ D x3 C ax C b;

where a; b 2 Fq and f .x/ has no repeated roots.

Example 8.5. Let K D F7.x; y/, A D F7Œx; y� with y2 D x3 � 3x.
It can be easily shown that

E.F7/ D ¹.1;1/; .0; 0/; .2;˙3/; .3;˙2/; .6;˙3/º:

Since E is in the short Weierstrass form, the 8 points are listed as (additive) inverse pairs.
In particular, .0; 0/ is the only such 2-torsion point. It follows that Quinn.G/Š Cl.A/2 Š
Z=2Z and hence that Cl.A/ Š Z=8Z. Let � be a non-trivial quasi-inner automorphism
ofG representing the non-trivial element of Quinn.G/. InE.F7/, � is represented by .0;0/
and, by Theorem 6.1, its action on Cusp.G/ is determined by its action (via point addi-
tion ˚) in E.F7/. In a diagram of GnT , as described in [14], we wish to ensure that
its involution provided by �, Corollary 7.8, is given by the reflection in the vertical axis
(see Figure 1 below). We begin by labeling appropriately its 8 cuspidal rays (correspond-
ing to E.F7/). By Corollary 6.2, � acts freely on these. By Corollary 7.3 (i), it is clear
that � interchanges the cusps .1;1/ and .0; 0/. Attached to each of these is a “spike”
consisting of an isolated vertex whose stabilizer is isomorphic to GL2.F7/. Since � is
a graph automorphism, it interchanges these vertices, namely, g1 and g2. By means of the
duplication formula [12, p. 53], it is easily checked that the rational 4-torsion points are
.2;˙3/. Then � interchanges .2; 3/ and .2;�3/ by Lemma 6.4. For the remaining cusps,
� interchanges .3;˙2/ and .6;˙3/. To make this more precise, we use the addition for-
mulae [12, p. 53] which show that .0; 0/˚ .3; 2/ D .6; 3/. Hence � interchanges .3; 2/
and .6; 3/ by Theorem 6.1.
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Figure 1. Quotient graph for Example 8.5.

There remain the isolated vertices 1, 4 and 5, each of whose stabilizer is isomorphic
to F�49. We deal with these via their connection with elliptic points. We recall from Theo-
rem 4.4 and the above that there exists a one-to-one correspondence

Ell.G/$ kerNE D ¹.˛; ˇ/ 2 E.F49/ W .x̨; ˇ/ D .˛;�ˇ/º

since the Weierstrass equation is in the short form.
Now let i denote one of the two square roots of �1 in F�

q2
. Then

NE D ¹.�; "i/ 2 E.F49/ W �; " 2 Fqº:

We conclude then that Ell.G/ $ ¹.1;1/; .0; 0/; .1;˙3i/; .4;˙2i/; .5;˙3i/º. Here
Ell.G/ is identified with a subgroup of E.F49/ listed as (additive) inverse pairs. Since
there is only one 2-torsion point, Ell.G/Š Z=8Z. (In this case, jCl.A/j D jEll.G/j. How-
ever, this not a general feature. For this particularK, itsL-polynomial isLK.t/D 1C 7t2,
so that LK.1/ D LK.�1/.)

As with Cusp.G/, the free action (Corollary 4.8) of Quinn.G/ on Ell.G/ is represented
by the action of .0; 0/ in NE (by point addition).
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By identifications in Section 4, the pairs .1;˙3i/, .4;˙2i/, .5;˙3i/ correspond to the
vertices 1, 4 and 5, respectively. By means of the duplication formula, it is readily verified
that the two points of order 4 in Ell.G/ are .5;˙3i/. By Lemma 4.10, it follows that �
fixes vertex 5 and that � interchanges vertices 1, 4. For a more precise version of the latter
statement, we note that .0; 0/˚ .1; 3i/ D .4; 2i/, and so .0; 0/˚ .1;�3i/ D .4;�2i/.

It is of interest to use Theorem 2.2 to construct a matrix M which represents �.
We begin with the A-ideal, Ax C Ay whose square is Ax. In determining a possible M ,
we recall from the proof of Theorem 2.4 the observation of Cremona [1] that every row
and column of M generates q.M/. Two possibilities which arise are

M D

�
y x2

x y

�
or M D

�
y �x2

x �y

�
:

The latter is simpler since its square is a scalar matrix.

Example 8.6. Let K D F7.x; y/, A D F7Œx; y� with y2 D x3 � x.
It is easily verified that

E.F7/ D ¹.1;1/; .0; 0/; .1; 0/; .6; 0/; .4;˙2/; .5;˙1/º;

listed as (additive) inverse pairs. The 2-torsion points are .0; 0/, .1; 0/, .6; 0/, and so

Quinn.G/ Š Cl.A/2 Š Z=2Z˚ Z=2Z;

Cusp.G/ Š Cl.A/ Š Z=2Z˚ Z=4Z:

Let the non-trivial quasi-inner automorphisms �0, �1, �6 represent .0; 0/, .1; 0/, .6; 0/,
respectively, where �0 D �1�6. In the diagram representing GnT (see Figure 2), we label
the 8 cusps with the above rational points in such a way that (i) the action of �6 is the
reflection about the vertical axis, (ii) the action of �1 is the reflection about the horizon-
tal axis, and (iii) (consequently) the action of �0 is a rotation of 180 degrees about the
“central” vertex c.

There are 4 vertices whose stabilizers are isomorphic to GL2.F7/ which appear as
“spikes” attached to the 4 cusps given by the 2-torsion points in E.F7/, and so �6, �1
and �0 interchange the vertex pairs ¹g1; g2º, ¹g1; g4º and ¹g1; g3º, respectively.

In Cl.A/, there are 4 points of order 4, namely .4;˙2/ and .5;˙1/, and it is easily
verified that the square of each is .1; 0/. By Lemma 6.4, it follows that �1 interchanges
the cusps .4; 2/, .4;�2/ as well as .5; 1/, .5;�1/. On the other hand, �6 interchanges the
pairs .4;˙2/ and .5;˙1/. In more detail, �6 maps .5; 1/ to .4;�2/, since .6; 0/˚ .5; 1/D
.4;�2/.

There remain two vertices 2 and 3 whose stabilizers are cyclic order q2 � 1. As in
the previous example, we consider the elliptic function field zK D K:F49 D F49.x; y/:
y2 D x3 � x. As before, let i denote one of the square roots of �1 in F49. It can be
verified that Ell.G/$ NE D ¹.1;1/; .0; 0/; .1; 0/; .6; 0/; .2;˙i/; .3;˙2i/º, listed as
additive inverse pairs in E.F49/.
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Figure 2. Quotient graph for Example 8.6.

As before, jCl.A/j D jEll.G/j D 8. (Again this is purely coincidental becauseLK.t/D
1C 7t2.) By correspondences discussed in Section 4, the 2 vertices of interest here cor-
respond to the pairs .2;˙i/ and .3;˙2i/. It is easily verified that the squares of all 4 of
these points are .6; 0/. It follows from Lemma 4.10 that �6 fixes 2 and 3. On the other
hand, .1; 0/˚ .2; i/ D .3;�2i/ and so �1 interchanges 2 and 3.

Finally, using Theorem 2.2 the following matrices M0, M1, M6 D M0M1 represent
�0, �1, �6, respectively,

M0 D

�
y �x2

x �y

�
and M1 D

�
y �.x � 1/.x C 2/

x � 1 �y

�
:
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