Transitivity of normal subgroups of the mapping class groups on character varieties

Julien Marché and Maxime Wolff

Abstract. We prove that the action of any non-trivial normal subgroup of the mapping class group of a closed surface of genus $g \ge 2$ is almost minimal on the character variety $X(\pi_1 \Sigma_g, SU_2)$: the orbit of almost every point is dense.

1. Introduction

For every $g \ge 2$, let $\pi_1 \Sigma_g$ denote the fundamental group of a compact, connected, orientable surface of genus g, and $Mod(\Sigma_g)$ its mapping class group. In [10], Goldman proved that $Mod(\Sigma_g)$ acts ergodically on the character variety $X(\pi_1\Sigma_g, SU_2)$, and subsequently, Previte and Xia [16] proved that for every conjugacy class of representation $\rho: \pi_1 \Sigma_g \to SU_2$ with dense image, the orbit $Mod(\Sigma_g) \cdot [\rho]$ is dense in $X(\pi_1 \Sigma_g, SU_2)$.

Goldman then raised (see [11]) the question of whether smaller subgroups of $Mod(\Sigma_g)$ still act ergodically on $X(\pi_1 \Sigma_g, SU_2)$, and with Xia he proved [12] that when Σ is a twice punctured torus, the Torelli group acts ergodically on the relative SU2 character varieties. This question was addressed by Funar and Marché [7], who proved that the Johnson subgroup, generated by the Dehn twists along separating curves, acts ergodically on this character variety. Provided $g \ge 3$, Bouilly (see [1]) gave a simpler proof that the Torelli group acts ergodically on this character variety, and in fact on the topological components of the character variety $X(\pi_1 \Sigma_g, G)$ for any compact Lie group G.

It is natural to ask how small a subgroup of $Mod(\Sigma_g)$ acting ergodically on the character variety can be. We do not know, for example, if there exists a tower of subgroups $\Gamma_0 \supset \Gamma_1 \supset \cdots$ whose intersection is trivial and such that each term acts ergodically. Similar towers were investigated at the end of [7]. The strongest result we can imagine in this direction would be the existence of a single pseudo-Anosov element acting ergodically. Yet, such elements are known not to exist in the case of the relative character varieties of a one-holed torus, see [2, 6]; the question is open for the case of closed surfaces, see [10, Problem 2.8].

In this note, when a group Γ acts on a topological space X endowed with a Radon measure μ , we will say that the action is almost minimal if the orbit of almost every point

Mathematics Subject Classification 2020: 57M50 (primary); 57K20, 37E99 (secondary).

is dense. We say the action is minimal if every orbit is dense, and ergodic if for every measurable Γ -invariant set U, either U or its complement has measure 0. These two latter properties are independent in general, while both imply almost minimality.

The main result of this note is the following.

Theorem 1. Suppose $g \ge 2$. Let Γ be a noncentral, normal subgroup of $\operatorname{Mod}(\Sigma_g)$. Then the action of Γ on $X(\pi_1\Sigma_g, \operatorname{SU}_2)$ is almost minimal.

When $g \ge 3$, the centre of $\operatorname{Mod}(\Sigma_g)$ is trivial, while if g = 2, this centre is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, and generated by the hyperelliptic involution. The hypothesis "noncentral" simply rules out the cases when Γ is trivial or equal to this central $\mathbb{Z}/2\mathbb{Z}$ subgroup. Thus Theorem 1 applies, for example, to every term of the lower central series of $\operatorname{Mod}(\Sigma_g)$.

When Γ is normal, it follows from the ergodicity of the action of $\operatorname{Mod}(\Sigma_g)$ that the set of characters whose Γ -orbit is dense, has measure 0 or 1. This general observation does not give much hint about the *existence* of a dense orbit, which may be considered as the main result of this article.

The mapping class group $\operatorname{Mod}(\Sigma_g)$ is generated by Dehn twists, while the Torelli group is generated by products of the form $\tau_\gamma \tau_\delta^{-1}$, where (γ, δ) is a *bounding pair*, i.e., a pair of disjoint curves bounding a subsurface. Bouilly's approach to the ergodicity of the Torelli group uses the idea that, for almost every conjugacy class of representation $[\rho]$ and for every bounding pair (γ, δ) , the product $\tau_\gamma \tau_\delta^{-1}$ acts as a totally irrational rotation along a torus embedded in the character variety $X(\pi_1 \Sigma_g, \operatorname{SU}_2)$. Thus, for an appropriate sequence of powers, $\tau_\gamma^N \tau_\delta^{-N}$ approximates the effect of the Dehn twist τ_γ . This reduces the ergodicity properties of the Torelli group to those of the whole mapping class group, and these are well understood.

The key ingredient in the proof of Theorem 1 is Lemma 8 below. It consists of extending Bouilly's trick to the case when γ and δ are no longer disjoint. We manage to control the action of $\tau_{\gamma}^{n}\tau_{\delta}^{-n}$ for some sequences of integers n dictated by classical theorems in Diophantine approximation theory. This works for SU₂-characters, but our method does not extend to characters in higher rank compact Lie groups, as this would require a stronger (but false) result of Diophantine approximation (see Remark 4). At present, we do not know if Theorem 1 is true even for SU₂ × SU₂ or SU₃-characters.

2. Proof of Theorem 1

We first set up some notation.

2.1. Notation and reminders

The space $\operatorname{Hom}(\pi_1\Sigma_g, \operatorname{SU}_2)$ of morphisms from $\pi_1\Sigma_g$ to SU_2 is naturally endowed with the product topology and the *character variety* $X(\pi_1\Sigma_g, \operatorname{SU}_2)$ is the quotient of this representation space by the conjugation action of SU_2 . From now on, we will denote it simply by X.

The mapping class group $\operatorname{Mod}(\Sigma_g) = \pi_0(\operatorname{Diff}_+(\Sigma_g))$ is, by the Dehn–Nielsen–Baer theorem, isomorphic to an index two subgroup of $\operatorname{Out}(\pi_1\Sigma_g)$. It acts naturally on X, by setting, for $\phi \in \operatorname{Aut}(\Sigma_g)$ and $[\rho] \in X$, $\phi \cdot [\rho] = [\rho \circ \phi^{-1}]$: this descends to an action of $\operatorname{Out}(\pi_1\Sigma_g)$.

The mapping class group is generated by the Dehn twists: when $\gamma \subset \Sigma$ is a simple closed curve, we denote by τ_{γ} the Dehn twist along γ ; see, e.g., [5, Chapter 3] for a definition, and numerous properties. Given such a curve, we may choose a representant in $\pi_1\Sigma_g$: such a representant is well defined up to conjugacy and up to passing to the inverse. Yet, we will often use the same notation, γ for the corresponding elements of $\pi_1\Sigma_g$.

For every element $A \in SU_2$, we will write $\theta(A) = \frac{1}{\pi} \arccos(\frac{1}{2} \operatorname{tr}(A)) \in [0, 1]$. Note that this is also invariant by conjugation and by taking the inverse. Thus, when γ is an unoriented closed curve, or an element of $\pi_1 \Sigma_g$, we also define $\theta_\gamma \colon X \to [0, 1]$ by $\theta_\gamma([\rho]) = \theta(\rho(\gamma))$. This function is continuous, and smooth on $\theta_\gamma^{-1}((0, 1))$.

It is well known that the subspace of irreducible representations in X forms a Zariski open subset $X^{\rm irr}$, which is the smooth part of X. Moreover, there is a $\operatorname{Mod}(\Sigma_g)$ -invariant symplectic form on $X^{\rm irr}$ and the Hamiltonian flow of θ_γ on $X^{\rm irr} \cap \theta_\gamma^{-1}((0,1))$, denoted by Φ_γ^t , is 1-periodic. This flow can be extended to $\theta_\gamma^{-1}((0,1))$ and it satisfies the crucial identity

$$\tau_{\gamma}([\rho]) = \Phi_{\gamma}^{\theta_{\gamma}([\rho])}([\rho])$$

for all $[\rho] \in \theta_{\nu}^{-1}((0,1))$. We refer to [9,10] for all these facts.

2.2. Simultaneous Diophantine approximation

In the following definition, and subsequently in this note, for all $x \in \mathbb{R}/\mathbb{Z}$ we will denote by |x| its distance to 0 in \mathbb{R}/\mathbb{Z} .

Definition 2. A pair (x, y) of irrational elements of \mathbb{R}/\mathbb{Z} will be said *appropriately approximable* if there exists a strictly increasing sequence (q_n) of integers such that $q_n x$ converges to 0 faster than $\frac{1}{q_n}$ (i.e., $|q_n x| = o(\frac{1}{q_n})$) and $q_n y$ converges to y in \mathbb{R}/\mathbb{Z} .

A classical theorem of Khinchin [15] states that if (ψ_n) is a decreasing sequence of real numbers and if $\sum \psi_n$ diverges, then for almost every $x \in \mathbb{R}/\mathbb{Z}$ there are infinitely many integers q such that $|qx| \leq \psi_q$. In particular, for example, for almost every x, there are infinitely many integers q satisfying $|qx| \leq \frac{1}{q \ln q}$.

Now, a classical theorem of Hardy and Littlewood [13, Theorem 1.40] states that for every strictly increasing sequence of integers (q_n) , for almost every $y \in \mathbb{R}/\mathbb{Z}$ the set $\{q_n y, n \ge 0\}$ is dense in \mathbb{R}/\mathbb{Z} . In particular, for almost every y, the number y is an accumulation point of the sequence $(q_n y)$.

These two theorems together imply the following observation.

Observation 3. The set $App \subset (\mathbb{R}/\mathbb{Z})^2$ of appropriately approximable pairs has full measure.

Remark 4. Following our strategy (and, in particular, Lemma 8 below) with characters in a compact Lie group of rank d would lead to replace the approximable pairs by tuples $(x_1, \ldots, x_d, y_1, \ldots, y_d)$ with the property that there exists a sequence $(q_n)_{n \ge 1}$ such that $|q_n x_i| = o(\frac{1}{q_n})$ and $q_n y_i \to y_i \mod \mathbb{Z}$ for all $i = 1, \ldots, d$. But as soon as $d \ge 2$, this condition holds on a set of measure 0; see [3, Theorem II] or [8, Theorem 1].

We continue with some preliminary observations concerning mapping class groups and character varieties.

2.3. Preliminary observations

In the next statements, we denote by P the set of pairs (γ, δ) of isotopy classes of nonseparating and non-isotopic simple curves.

Observation 5. Let $\gamma \subset \Sigma_g$ be an unoriented, nonseparating simple closed curve. Then there exists $\varphi \in \Gamma$ such that $(\gamma, \varphi(\gamma)) \in P$.

Proof. Since Γ is not central, and since $\operatorname{Mod}(\Sigma_g)$ is generated by Dehn twists along nonseparating curves, there exist a nonseparating simple closed curve δ , and $\psi \in \Gamma$, such that ψ and the Dehn twist τ_δ do not commute. There exists $\phi \in \operatorname{Mod}(\Sigma_g)$ mapping δ to γ , so $\phi \tau_\delta \phi^{-1} = \tau_\gamma$. Now $\varphi = \phi \psi \phi^{-1}$ is in Γ since Γ is normal, and φ does not commute with τ_γ ; this implies the statement.

For every $(\gamma, \delta) \in P$, we denote by $\operatorname{Ind}(\gamma, \delta)$ the subset of X consisting of those $[\rho]$ such that $(\theta(\rho(\gamma)), \theta(\rho(\delta))) \in \operatorname{App.}$ As we will see below, this condition gives some *independence* of the traces of $\rho(\gamma)^n$ and $\rho(\delta)^n$ for large n.

Observation 6. Let $(\gamma, \delta) \in P$. Then $\operatorname{Ind}(\gamma, \delta)$ has full measure in X.

Proof. Consider the map $\Theta = (\theta_{\gamma}, \theta_{\delta}) \colon X \to [0, 1]^2$. We want to show that $\Theta^{-1}(\mathsf{App})$ has full measure in X. If Θ is a submersion at $[\rho]$, the implicit function theorem implies that $\Theta^{-1}(\mathsf{App})$ has full measure locally around $[\rho]$. Hence it suffices to show that Θ is a submersion in a dense Zariski open subset of X. As $t_{\gamma} = 2\cos(\pi\theta_{\gamma})$ is an algebraic function, all the reasonings below work as if θ_{γ} were itself algebraic. Consider the Zariski open set $U = \Theta^{-1}(0, 1)^2$: it is well known that $d\theta_{\gamma}$ and $d\theta_{\delta}$ are smooth non-vanishing forms on U. If γ and δ are disjoint, Θ can be extended to a system of action-angle coordinate, which implies that Θ is a submersion everywhere in U, see, for instance, [14]. If γ , δ do intersect, then it is known that their Poisson bracket does not vanish identically, see, for instance, [4, Corollary 5.2] where it is proved that $\{t_{\gamma}, t_{\delta}\} \neq 0$. As X is irreducible, it follows that $d\theta_{\gamma}$, $d\theta_{\delta}$ are linearly independent in a Zariski open subset of U, proving the lemma.

From the Observation 6, it follows that the set

$$\operatorname{Ind} = \bigcap_{(\gamma,\delta)\in P} \operatorname{Ind}(\gamma,\delta)$$

has full measure in X. It is obviously $\operatorname{Mod}(\Sigma_g)$ -invariant, and for any $[\rho] \in \operatorname{Ind}$ and any nonseparating simple curve γ , we have $\theta_{\gamma}(\rho) \in (0,1)$; in fact, $\theta_{\gamma}(\rho)$ is irrational.

2.4. The proof

Since the action of $Mod(\Sigma_g)$ on X is ergodic (by Goldman [10]), the set

$$D = \{ [\rho] \mid \operatorname{Mod}(\Sigma_{\sigma}) \cdot [\rho] \text{ is dense in } X \}$$

has full measure in X. In fact, this set is known explicitly from the work of Previte and Xia [16]; it is the set of those $[\rho]$ such that the image of ρ is dense in SU_2 . Thus, the set $D \cap Ind$ also has full measure, and Theorem 1 will follow from the following statement.

Proposition 7. For all $[\rho] \in D \cap \text{Ind}$, the set $\Gamma \cdot [\rho]$ is dense in X.

The proof resides on the following lemma.

Lemma 8. Let γ be a nonseparating simple closed curve, and let $[\rho] \in \text{Ind. Then } \tau_{\gamma} \cdot [\rho]$ is in the closure of $\Gamma \cdot [\rho]$.

Proof. Consider an element $\varphi \in \Gamma$ as in Observation 5 and set $\delta = \varphi(\gamma)$. We observe that for any $n \in \mathbb{N}$, $\tau_{\gamma}^{n} \tau_{\delta}^{-n} = \tau_{\gamma}^{n} \varphi \tau_{\gamma}^{-n} \varphi^{-1}$ belongs to Γ .

Write $\alpha = \theta_{\delta}(\rho)$ and $\beta = \theta_{\gamma}(\rho)$. As $\alpha \in (0, 1)$, the twist flow $(\Phi_{\gamma}^{s})_{s \in \mathbb{R}/\mathbb{Z}}$ is well defined on $\Phi_{\delta}^{-t}([\rho])$ for all t in a neighbourhood I of 0 in \mathbb{R}/\mathbb{Z} . We set $f(t) = \theta_{\gamma}(\Phi_{\delta}^{-t}([\rho]))$ and $F(t, s) = \Phi_{\gamma}^{s}\Phi_{\delta}^{-t}([\rho])$ for $(t, s) \in I \times \mathbb{R}/\mathbb{Z}$. From the identity $\tau_{\gamma} = \Phi_{\gamma}^{\theta_{\gamma}}$, we get for all n such that $n\alpha \in I$,

$$\tau_{\gamma}^{n}\tau_{\delta}^{-n}[\rho] = F(n\alpha, nf(n\alpha)).$$

As $\beta \in (0, 1)$, the function θ_{γ} is smooth at $[\rho]$ hence f is smooth at 0. To prove the lemma, it is sufficient to show that one has $(n\alpha, nf(n\alpha)) \to (0, \beta)$ for a sequence of n's going to infinity.

Since $(\alpha, \beta) \in \text{App}$, there exists a sequence (q_n) of integers as in Definition 2. We have $q_n \alpha \to 0$, so we consider the Taylor expansion of f at 0: since $|q_n \alpha| = o(\frac{1}{q_n})$, this gives

$$f(q_n\alpha) = f(0) + o\left(\frac{1}{q_n}\right),\,$$

so $q_n f(q_n \alpha) = q_n \beta + o(1)$. Now, $q_n \beta$ tends to β , by Definition 2.

We are ready to conclude the proof of Theorem 1.

Proof of Proposition 7. Recall that $D \cap \text{Ind}$ is $\text{Mod}(\Sigma_g)$ -invariant. Let $[\rho] \in D \cap \text{Ind}$, and let γ_1, γ_2 be two nonseparating simple closed curves. By Lemma 8, there exists a sequence (φ_n) of elements of Γ such that $\varphi_n \cdot [\rho] \to \tau_{\gamma_2} \cdot [\rho]$. For all n, we may apply Lemma 8 to $\varphi_n \cdot [\rho]$, and now we can apply a diagonal argument to show that $\tau_{\gamma_1} \tau_{\gamma_2} \cdot [\rho]$ is in the closure of $\Gamma \cdot [\rho]$. We proceed by induction: for all $[\rho] \in D \cap \text{Ind}$, and all curves $\gamma_1, \ldots, \gamma_n$, the representation $\tau_{\gamma_1} \cdots \tau_{\gamma_n} \cdot [\rho]$ is in the closure of $\Gamma \cdot [\rho]$.

We notice that Lemma 8 works equally well for τ_{γ}^{-1} instead of τ_{γ} , hence we deduce that the whole orbit $\text{Mod}(\Sigma_g) \cdot [\rho]$ (and hence, also its closure) is contained in the closure of $\Gamma \cdot [\rho]$. As $[\rho] \in D$, this implies that $\Gamma \cdot [\rho]$ is dense in X.

References

- Y. Bouilly, Ergodic actions of Torelli groups on character varieties and pure modular groups on relative character varieties and topological dynamics of modular groups. Ph.D. thesis, 2021, Université de Strasbourg, https://theses.hal.science/tel-03709650, visited on 8 January 2024
- R. J. Brown, Anosov mapping class actions on the SU(2)-representation variety of a punctured torus. Ergodic Theory Dynam. Systems 18 (1998), no. 3, 539–554 Zbl 0966.37008
 MR 1631712
- [3] J. W. S. Cassels, Some metrical theorems in Diophantine approximation. I. Proc. Cambridge Philos. Soc. 46 (1950), 209–218 Zbl 0035.31902 MR 36787
- [4] L. Charles and J. Marché, Multicurves and regular functions on the representation variety of a surface in SU(2). Comment. Math. Helv. 87 (2012), no. 2, 409–431 Zbl 1246.57022 MR 2914854
- [5] B. Farb and D. Margalit, A primer on mapping class groups. Princeton Math. Ser. 49, Princeton University Press, Princeton, NJ, 2012 Zbl 1245.57002 MR 2850125
- [6] G. Forni, W. Goldman, S. Lawton, and C. Matheus, Non-ergodicity on SU(2) and SU(3) character varieties of the once-punctured torus. 2022, arXiv:2206.14183
- [7] L. Funar and J. Marché, The first Johnson subgroups act ergodically on SU(2)-character varieties. J. Differential Geom. 95 (2013), no. 3, 407–418 Zbl 1294.30087 MR 3128990
- [8] P. Gallagher, Metric simultaneous diophantine approximation. J. Lond. Math. Soc. 37 (1962), 387–390 Zbl 0124.02902 MR 157939
- [9] W. M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations. *Invent. Math.* 85 (1986), no. 2, 263–302 Zbl 0619.58021 MR 846929
- [10] W. M. Goldman, Ergodic theory on moduli spaces. Ann. of Math. (2) 146 (1997), no. 3, 475–507 Zbl 0907.57009 MR 1491446
- [11] W. M. Goldman, Mapping class group dynamics on surface group representations. In *Problems on mapping class groups and related topics*, pp. 189–214, Proc. Sympos. Pure Math. 74, American Mathematical Society, Providence, RI, 2006 Zbl 1304.57025 MR 2264541
- [12] W. M. Goldman and E. Z. Xia, Action of the Johnson-Torelli group on representation varieties. Proc. Amer. Math. Soc. 140 (2012), no. 4, 1449–1457 Zbl 1244.57007 MR 2869130
- [13] G. H. Hardy and J. E. Littlewood, Some problems of diophantine approximation. *Acta Math.* 37 (1914), no. 1, 155–191 Zbl 44.0237.01 MR 1555098
- [14] L. C. Jeffrey and J. Weitsman, Toric structures on the moduli space of flat connections on a Riemann surface: Volumes and the moment map. Adv. Math. 106 (1994), no. 2, 151–168 Zbl 0836.58004 MR 1279216
- [15] A. Khintchine, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. *Math. Ann.* 92 (1924), no. 1–2, 115–125 Zbl 50.0125.01 MR 1512207

¹Alternatively, we may use the beautiful fact that $Mod(\Sigma_g)$ is *positively* generated by Dehn twists, see [5, §5.1.4].

[16] J. P. Previte and E. Z. Xia, Topological dynamics on moduli spaces. II. Trans. Amer. Math. Soc. 354 (2002), no. 6, 2475–2494 Zbl 1089.53059 MR 1885660

Received 22 July 2022.

Julien Marché

Institut de Mathématiques de Jussieu, UMR 7586 du CNRS, Sorbonne Université, 4 place Jussieu, Case 247, 75252 Paris, France; julien.marche@imj-prg.fr

Maxime Wolff

Institut de Mathématiques de Jussieu, UMR 7586 du CNRS, Sorbonne Université, 4 place Jussieu, Case 247, 75252 Paris; Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex 9, France; maxime.wolff@math.univ-toulouse.fr