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Abstract. Ren and the second author established that the weakly optimal subvarieties (e.g. maximal
weakly special subvarieties) of a subvariety V of a Shimura variety arise in finitely many families. In
this article, we refine this theorem by (1) constructing a finite collection of algebraic families whose
fibres are precisely the weakly optimal subvarieties of V ; (2) obtaining effective degree bounds
on the weakly optimal locus and its individual members; (3) describing an effective procedure to
determine the weakly optimal locus.
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1. Introduction

This article is concerned with effective results on the (geometric side of the) Zilber–Pink
conjecture for (pure) Shimura varieties. The conjecture itself is as follows.

Conjecture 1 (Zilber–Pink). Let S be a Shimura variety and let V be a Hodge generic,
irreducible, algebraic subvariety of S . Then the intersection of V with the union of the
special subvarieties of S of codimension at least dimV C 1 is not Zariski dense in V .

By [2, Theorem 12.4], Conjecture 1 is equivalent to the seemingly stronger variations
involving atypical intersections and optimal subvarieties, the latter of which states that V
contains only finitely many optimal subvarieties. We state this version and the necessary
definitions in Section 3.3.

In [9], Ren and the second author outline a Pila–Zannier strategy for proving Conjec-
ture 1, applying the familiar combination of o-minimality, functional transcendence, and
arithmetic (see, in particular, [15]). The unconditional aspect of that strategy is what might
be considered the geometric Zilber–Pink conjecture for Shimura varieties. Gao [12] refers
to its generalization to mixed Shimura varieties as a finiteness result à la Bogomolov. The
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statement is as follows. We refer to Section 3.4 for the relevant facts and definitions, recall-
ing here only that an optimal subvariety is, in particular, a weakly optimal subvariety.

Theorem 2 ([9, Proposition 6.3]). Let S D �nX be a Shimura variety and let V be an
irreducible algebraic subvariety of S . There exists a finite set † of pairs .XH; X1 � X2/

with XH a pre-special subvariety of X and XH D X1 �X2 a Q-splitting of XH such that,
for any weakly optimal subvariety W of V , the weakly special closure of W in S is equal
to the image in S of X1 � ¹x2º for some .XH; X1 �X2/ 2 † and some x2 2 X2.

In this article, we give a refined version of this theorem (see Theorem 19). We summa-
rize this refinement as follows. We denote by P the so-called standard principal bundle
associated with S and, by �, a Chow variety parametrizing certain subvarieties of the
compact dual LX of X (see Sections 4.1, 5.1, and 6 for the details). Similarly, for a triple
T D .XH; X1 �X2/ as above, we denote by PT the standard principal bundle associated
with a Shimura variety ST corresponding toXH, and by�T a Chow subvariety contained
in � parametrizing certain subvarieties of LXH. As such, we obtain algebraic morphisms

PT ��T P ��

S2 ST S

�T

�PT

�T

where S2 is a Shimura variety corresponding to X2. For a subset … of P � �, we
denote by …T the union of the Zariski closures of the fibres of the map �T restricted
to �T .��1PT

.…//.

Theorem 3. Let S be a Shimura variety and let V be an irreducible algebraic subvariety
of S . For every d 2 N, there exists a locally closed algebraic subset ….d/ of P � �
and, for each of the irreducible components ….d/ı of ….d/, an associated triple T D
.XH; X1 �X2/ such that the following holds:

(i) Let ….d/ı be an irreducible component of ….d/ and let T be its associated triple.
Then ….d/ıT is constructible.

(ii) Let W be a weakly optimal subvariety of V of weakly special defect d . Then there
exists an irreducible component ….d/ı of ….d/ .with its associated triple T / such
that W is the image in S of some irreducible component of a fibre of �T j….d/ı

T
.

(iii) Let ….d/ı denote an irreducible component of ….d/ .with its associated triple T /.
If W is an irreducible component of a fibre of �T j….d/ı

T
, then the image in S of W

is a weakly optimal subvariety of V of weakly special defect d .

In short, we show that the weakly optimal subvarieties of V are precisely the fibres of
finitely many constructible families.

However, our construction allows us to go further, applying estimates from differential
algebraic geometry to obtain effective upper bounds for the degrees of the families….d/,
as well as the individual weakly optimal subvarieties. Moreover, our construction also
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produces an effective description of this unlikely intersection locus, in the form of an
explicit system of algebraic equations.

To formulate such a result explicitly, we fix a coordinate system on the set P �� as
follows. Let U � S denote an open dense subset such that P trivializes over U (that is,
if G is the algebraic group over Q associated with S , then P jU ' U �G.C/). Fixing a
faithful representation of G we may realize it as a subvariety of some affine space. We use
(1) a very-ample power of the Baily–Borel line bundle for a set of projective coordinates
on U ; (2) the matrix entries as coordinates on G.C/; (3) the standard Chow coordinates
on the Chow variety �. All degrees on U � G.C/ �� below are taken with respect to
the Segre product of these three coordinate systems.

IfX is a locally closed subset of U �G.C/��, then it is of the form Y nZ, where Y
andZ are Zariski closed. We define the complexity ofX to be deg.Y /C deg.Z/. We give
a bound for the complexity of the sets ….d/, as well as a procedure for computing the
equations and inequations defining ….d/, in terms of the equations defining V . The con-
struction depends on certain data associated with S , namely, (1) the equations describing
the projective embedding ofU �G.C/�� and (2) the equations describing the canonical
connection r on P (written in the chosen coordinate system on U �G.C/). Throughout
the paper, with the exception of Section 9, our effective bounds are assumed to depend
on this data (we simply say depending only on S ). In the final Section 9, we address the
issue of obtaining fully effective computations in the case S D Ag using Gauss–Manin
connections.

Theorem 4. The complexity of ….d/ is bounded by fS .deg.V // for some polynomial fS
depending only on S . Moreover, we produce an explicit system of equations and inequa-
tions for ….d/ of degree bounded by fS .deg.V //.

According to Theorem 3, the sets ….d/ provide a complete parametrization for all
families of weakly optimal subvarieties of V of weakly special defect d . Theorem 4
therefore provides a method for explicitly computing these families and controlling their
degrees. From this, we obtain degree bounds on individual weakly optimal subvarieties.

Theorem 5. Let d 2N and letW be a weakly optimal subvariety of V of weakly special
defect d . Then

deg.W / � fS .deg.V //

for some polynomial fS depending only on S .

1.1. Fully effective computation

Even though our main construction is effective, to carry out this procedure in practice one
would need to obtain

(1) an explicit system of equations for the projective embedding of S with respect to
(some power of the) Baily–Borel line bundle;

(2) an explicit description of the canonical connection r with respect to a prescribed
trivialization of the corresponding bundle P ;



G. Binyamini, C. Daw 4

(3) an explicit system of equations for the subvariety V with respect to the projective
embedding.

Computing the first two of these items for a given Shimura variety S appears to be
a non-trivial task. Moreover, computing equations for some subvariety V of interest is
by itself a non-trivial problem. For example, consider the case S D Ag , the space of
principally polarized abelian varieties of dimension g, and V the closure Tg of the open
Torelli locus T ıg � Ag . Computing the weakly special locus is a problem of significant
interest due to its relation to the Coleman–Oort conjecture on the finiteness of the set of
isomorphism classes of genus-g Jacobians with complex multiplication. We refer to [24]
for an excellent survey and simply recall here that it is conjectured that for g � 1 the set
of positive-dimensional special subvarieties of Tg intersecting T ıg is empty. In combina-
tion with the André–Oort conjecture for Ag (established by Tsimerman [27]), this would
imply the Coleman–Oort conjecture. Note, however, that computing a set of equations
for V in this case is the famous Schottky problem, a subject of substantial independent
study, still not fully resolved.

Fortunately, taking advantage of the functoriality of the canonical connections on
Shimura varieties, we are able to alternatively carry out the computation for V � S
described via a moduli interpretation instead of an explicit projective embedding. We
focus our attention on the case S D Ag . In light of the moduli interpretation of Ag , it
is natural to describe a subvariety V � Ag as a family of genus-g principally polarized
abelian varieties, or the Jacobians of a family of genus-g curves. In this case, the com-
putation of the canonical connection translates into the computation of the Gauss–Manin
connection for the corresponding family. This is a classical problem and it is well known,
going back to the work of Manin [19], that it can be carried out explicitly.

We will focus here on the case of families of Jacobians, which lends itself more readily
to effective computation, as curves are relatively simple to describe using explicit equa-
tions. This is also the case required in principle to treat the Coleman–Oort conjecture and
related problems on the Torelli locus. Our methods could in principle also be used to carry
out explicit computations with more general constructions, such as Prym varieties, or even
with general families of polarized abelian varieties presented by explicit equations. How-
ever, since it is far less common to present general abelian varieties in this way, we do not
pursue this matter explicitly.

Let V denote an algebraic variety, which we assume for simplicity to be smooth. Let
T ! V denote a smooth curve over V , by which we mean that T is smooth and the map
T ! V is submersive.

To coincide with our general formalism, we should work with a neat subgroup � �
GSp2g.Z/. We therefore denote by f W QV ! V an étale cover, QT ! QV the base change
of T by f , and choose f such that QT is compatible with an N -level structure (say for
N D 3). We denote by � W QV ! Ag;N the corresponding moduli map.

Theorem 6. Given an explicit system of equations for .a projective embedding of / the
family T ! V , one can explicitly construct an affine cover ¹V˛ � V º such that for each
V 0 D V˛:
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(1) ��P jf �1.V 0/ ' V
0 �GSp.C/,

(2) for each d , one can explicitly construct a system of algebraic equations and inequa-
tions for sets …0.d/ � V 0 �GSp.C/ such that f �…0.d/ D ��….d/jf �1.V 0/.

Theorem 6 in principle provides an effective method for deciding whether weakly
special subvarieties exist within the open Torelli locus T ıg for any given g. One first has
to explicitly write down equations for a family T ! V parametrizing all genus-g curves.
One then computes explicitly the equations for the defect-zero set ��….0/ corresponding
to families of weakly special subvarieties contained in V . Finally, one may use effec-
tive commutative algebra methods (for instance, Gröbner basis algorithms) to determine
whether the family is empty.

Remark 7. In the particular case of checking for the existence of weakly special subvari-
eties, the smoothness assumption on V can be dropped. One can first effectively construct
a smooth open dense subset V 0 � V and apply the preceding process to V 0, and then
proceed by induction on dimension with V n V 0.

One may apply a similar process to look for weakly special or weakly optimal subva-
rieties of other families of interest, for instance, the family of (Jacobians of) hyperelliptic
curves of a given genus g. We stress that, to perform this computation using Theorem 4,
one would need to obtain an explicit description of the hyperelliptic locus V �Ag , which
is a non-trivial problem.

1.2. Literature review

Effective results on the André–Oort and the Zilber–Pink conjectures are still relatively
sparse. This work improves upon a previous work of the second author with Javanpeykar
and Kühne [7] which, by entirely different methods, gave effective degree bounds for
so-called non-facteur maximal special subvarieties. We refer to the introduction of the
latter for references to several earlier works. More recently, the first author has obtained
effective results on the André–Oort conjecture for products of modular curves [3] and,
with Masser, for Hilbert modular varieties [4]. In May 2021, Pila and Scanlon announced
effective results for function field versions of the Zilber–Pink conjectures for varieties
supporting a variation of Hodge structures, also using differential-algebraic methods [25].
In September 2021, Urbanik released an algorithm capable of computing the set of all
weakly special subvarieties of degree at most d of any smooth quasi-projective algebraic
variety equipped with a polarizable variation of Hodge structures [30].

2. Generalities

2.1. Analytic and algebraic sets

For a complex analytic set X and x 2 X , we write dimx X for the dimension of X at x,
as defined in [13]. We write dimX for the supremum of dimx X for all x 2 X . We recall
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that, if X is irreducible, dimx X is constant on X . If X is (explicitly) an algebraic variety,
then dimX will refer to its dimension as an algebraic variety. All algebraic subvarieties
are assumed to be (Zariski) closed, unless stated otherwise.

2.2. Degrees

If X is a complex algebraic variety and k 2 N, we denote by AkX the group of k-cycles
modulo rational equivalence on X (see [10, Section 1.3]). We define the degree deg.˛/ of
˛ 2 AkX as in [10, Definition 1.4]. In particular, deg.˛/D 0 if k > 0. If ˛ 2 AkX and L
is a line bundle on X , we obtain, for any positive integer d � k, a class

c1.L/
d
\ ˛ 2 Ak�dX

(see [10, Definition 2.5]). If V is an irreducible subvariety of X , we define the degree
degL.V / of V with respect to L to be the degree of

c1.L/
dimV

\ ŒV � 2 A0X

where ŒV � 2 AdimVX denotes the class of the dim V -cycle given by V . If V is a (not
necessarily irreducible) subvariety of X , we define the degL.V / to be the sum of the
degL.Vi / as Vi varies over the irreducible components of V .

2.3. Algebraic groups

For an algebraic group G, we denote by Gı the connected component (in the Zariski
topology) of G containing the identity, and we denote by the corresponding mathfrak
letter g its Lie algebra.

We include “connected” in our definitions of reductive and semisimple algebraic
groups. For a reductive algebraic group G, we denote by Gad the quotient of G by its
centre Z.G/, and we denote by Gder the derived subgroup of G. If G is defined over
(a field containing) R, we denote the connected component (in the archimedean topology)
G.R/C of G.R/ containing the identity by the italic letter G, retaining any superscripts
or subscripts, and we write G.R/C for the inverse image of Gad under the natural map
G.R/! Gad.R/. We write G.Q/C for G.R/C \G.Q/.

If G is a reductive algebraic group over a field of characteristic zero, and H is a
reductive algebraic subgroup of G, then we write NG.H/ (resp. ZG.H/) for the normalizer
(resp. the centralizer) of H in G. We recall that NG.H/ı and ZG.H/ı are both reductive.
We have an almost direct product decomposition NG.H/ı D H � ZG.H/ı.

2.4. Arithmetic groups

Let G denote a reductive algebraic group over Q and, via a faithful representation, con-
sider G as a subgroup of GLn for some n 2N. The definitions that follow are independent
of this representation, and hence we can and do make use of them without reference to
such a representation.
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An arithmetic subgroup of G.Q/ is any subgroup commensurable with G.Q/ \
GLn.Z/. An element of G.Q/ is neat if the subgroup of NQ generated by its eigenval-
ues (considering it as an element of GLn. NQ/) is torsion free. A subgroup of G.Q/ is neat
if all of its elements are neat. In particular, a neat subgroup is torsion free.

3. Shimura varieties and the Zilber–Pink conjecture

3.1. Shimura data

Let S denote the Deligne torus (that is, the Weil restriction from C to R of Gm). By a
Shimura datum, we refer to a pair .G;X/, where G is a reductive algebraic group defined
over Q and X is a G.R/-conjugacy class of morphisms S! GR such that the conditions
SV1, SV2, and SV3 of [21, p. 50] hold. Furthermore, we impose the condition

(SV0) G is the generic Mumford–Tate group on X.

Condition (SV0) means that G is the smallest algebraic subgroup H of G defined
over Q such that x.S/ is contained in HR for all x 2 X. We recall that X is naturally
a disjoint union of hermitian symmetric domains. We refer the reader to [21] for more
details regarding the theory of Shimura varieties.

In this article, in order to simplify technical issues, we will assume that our ambient
Shimura datum .G;X/ satisfies the condition that Z.G/.R/ is compact.

3.2. Shimura varieties

Let .G;X/ be a Shimura datum such that Z.G/.R/ is compact and let X be a connected
component of X. As in [8], we refer to the pair .G; X/ as a Shimura datum component.
Let � be an arithmetic subgroup of G.Q/ contained in G.Q/C. Then � acts onX and, by
the theorem of Baily–Borel [1], the quotient S D �nX naturally possesses the structure
of an irreducible quasi-projective complex algebraic variety. Indeed, by [1, Lemma 10.8],
the line bundle of holomorphic forms of maximal degree on X descends to an ample line
bundle L� on S . Note that, if � is neat, then S is non-singular (see [26, Facts 2.3]). We
let k� denote the smallest integer such that L˝k�

� is very ample.
We will refer to the irreducible variety S as the Shimura variety associated with

.G; X/ and � . We will denote by � the natural complex analytic map X ! S .

3.3. Special subvarieties and the Zilber–Pink conjecture

Recall the situation described in Section 3.2. Let .H;XH/ denote a Shimura subdatum of
.G;X/ (in particular, H is the generic Mumford–Tate group on XH), and let XH denote
a connected component of XH contained in X . For any arithmetic subgroup �H of H.Q/
contained in H.Q/C, we obtain a Shimura variety SH D �HnXH and, when �H is con-
tained in � , the natural complex analytic map �HnXH ! �nX is a finite (hence closed)
morphism of algebraic varieties (see [26, Facts 2.6]). We refer to the image of any such
map as a special subvariety of S .
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It is straightforward to show that the intersection of two special subvarieties is a finite
union of special subvarieties. In particular, for any subvarietyW of S , there exists a small-
est special subvariety hW i of S containing W . In light of this, we define the defect ı.W /
of W by

ı.W / D dim hW i � dimW:

Now fix a subvariety V of S . We define an irreducible subvariety W of V to be
optimal in V if, whenever W ¨ Y for some other irreducible subvariety Y of V , we have
ı.W / < ı.Y /. (In particular, V is an optimal subvariety of V itself.)

Note that an optimal subvarietyW of V such that ı.W /D 0 is a maximal special sub-
variety of V . Observe also that an optimal subvarietyW of V is necessarily an irreducible
component of hW i \ V .

We denote by Opt.V / the set of optimal subvarieties of V . The central problem in the
area of unlikely intersections in Shimura varieties is (equivalent to) the following (see [9]).

Conjecture 8 (Zilber–Pink). Let V be a subvariety of a Shimura variety S . Then the set
Opt.V / is finite.

3.4. Weakly special and weakly optimal subvarieties

Recall the situation described in Section 3.2. Let .H;XH/ denote a Shimura subdatum
of .G;X/ and let XH denote a connected component of XH contained in X . Then the
image SH of XH in S is a special subvariety. Decompose Had as a product H1 � H2

of two (permissibly trivial) normal Q-subgroups. In this way, we obtain a decomposition
XHDX1 �X2, and we will refer to a decomposition of this form as a Q-splitting. For any
x2 2 X2, the image SH;x2

of X1 � ¹x2º in S is a closed irreducible algebraic subvariety
and we refer to any subvariety of this form as a weakly special subvariety of S . We remark
that any special subvariety is weakly special, whereas SH;x2

is special if and only if the
Mumford–Tate group of x2 is a torus (or, equivalently, if x2 is a pre-special point of X2,
to use another terminology).

It is straightforward to show that the intersection of two weakly special subvarieties
is a finite union of weakly special subvarieties. In particular, for any subvariety W of S ,
there exists a smallest weakly special subvariety hW iws of S containing W . In light of
this, we define the weakly special defect ıws.W / of W by

ıws.W / D dim hW iws � dimW:

Now fix a subvariety V of S . We define an irreducible subvarietyW of V to be weakly
optimal in V if, whenever W ¨ Y for some other irreducible subvariety Y of V , we have
ıws.W / < ıws.Y /. (In particular, V is a weakly optimal subvariety of V itself.)

Note that a weakly optimal subvariety W of V such that ıws.W / D 0 is a maximal
weakly special subvariety of V . Observe also that a weakly optimal subvariety W of V is
necessarily an irreducible component of hW iws \ V . By [9, Corollary 4.5], any optimal
subvariety of V is weakly optimal.
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Remark 9. Note that any point z 2 S is a weakly special subvariety (according to our
convention, at least). In particular, ıws.z/ D 0. Hence, z 2 V is a weakly optimal sub-
variety of V if and only if it is not contained in a positive-dimensional weakly special
subvariety contained in V .

4. The (weak) hyperbolic Ax–Schanuel conjecture

4.1. Subvarieties of X

Recall the situation described in Section 3.1 and let X be an irreducible component of X.
Recall that X is a G-conjugacy class of homomorphisms S! GR. By extending scalars
to C and pre-composing with Gm!G2

mŠ SC , where the first map is given by z 7! .z;1/,
we obtain from each point x 2 X a cocharacter �x W Gm ! GC such that

.�/ in the action of Gm on Lie.GC/, obtained via restriction of the adjoint representation,
only the characters z, 1, and z�1 occur.

In this way, we obtain an embedding ofX into a G.C/-conjugacy classX co of cochar-
acters of GC satisfying .�/. For each � 2 X co and r 2 ¹1; 0;�1º, we define V r� to be
the character subspace of Lie.GC/ on which Gm acts (according to the action obtained
from �) via the character zr . Then Lie.GC/ D

L
r V

r
� , and we obtain a filtration F�

of Lie.GC/ by setting F p� D
L
r�p V

r
� . In this way, we obtain a G.C/-invariant surjec-

tive map � 7! F� from X co to a G.C/-orbit of filtrations LX . Note that LX is a complex
projective flag variety known as the compact dual of X . The composite map X ! LX is a
complex analytic G.R/C-invariant embedding, known as the Borel embeddding ofX , and
we identifyX with its image, which is an open subset of LX . In particular, dim LX D dimX .
We define a subvariety of X to be any irreducible analytic component of X \ Y for any
algebraic subvariety Y of LX . As noted in [9, paragraph following Theorem 5.4], this def-
inition agrees with the definition therein.

4.2. Pre-special and pre-weakly special subvarieties

Recall the situation described in Section 3.1 and let X be an irreducible component of X.
If .H;XH/ is a Shimura subdatum of .G;X/ and XH is a connected component of XH

contained in X , we obtain a commutative diagram of complex analytic H.R/C-invariant
embeddings

XH //

��

LXH

��
X // LX

and we identify all objects with their images in LX .

Lemma 10. We have X \ LXH D XH.
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Proof. By [14, Proposition VI.B.11], the intersection is contained in X \XH. Therefore,
let x1; x2 2 X \ XH and let Xi denote the H -orbit of xi in X (in other words, the con-
nected component of XH containing xi ). Let Ki denote the maximal compact subgroup
of G stabilizing xi and let G D PiKi denote the corresponding Cartan decomposition.
We also have Cartan decompositions H D .Pi \H/.Ki \H/.

Writing x2 D ˛x1 for some ˛ 2 G, we have K2 D ˛K1˛
�1 and P2 D ˛P1˛

�1.
Since Cartan decompositions are conjugate, we also have K2 \ H D h.K1 \ H/h

�1

and P2 \H D h.P1 \H/h�1 for some h 2 H .
We set  D h�1˛ and write  D pk for some p 2 P1 and some k 2 K1. We

deduce that K1 \ H D pK1p
�1 \ H and (trivially) P1 \ H D pP1p

�1 \ H . Using
[28, Lemme 3.11], as in the proof of [29, Lemma 3.7] we deduce that p2 centralizes H .
SinceH is Zariski dense in HR, it follows that p2 2 ZG.H/.R/. Therefore, since p2 2G,
we conclude that p2 2 K1 and so p2 is trivial. It follows that p is fixed by the Cartan
involution associated withK1 and so p D 1. We conclude that x2 D hx1 and so x2 2 X1,
which finishes the proof.

In particular, XH is a subvariety of X , and we call such a subvariety a pre-special
subvariety. A similar discussion shows that, for a Q-splittingXH DX1 �X2 as above and
a point x2 2 X2, the set XH;x2

D X1 � ¹x2º is again a subvariety of X (we define LXH;x2

analogously), and we refer to such a subvariety as a pre-weakly special subvariety of X .

Remark 11. It is an easy consequence of [29, Lemma 3.7] and the fact that GR possesses
only finitely many G.R/-conjugacy classes of semisimple subgroups that the pre-weakly
special subvarieties of X belong to finitely many G.R/-orbits. It follows that, for a given
embedding of LX into projective space, there exists aD 2N such that, for any pre-weakly
special subvariety XH;x2

of X , the degree of LXH;x2
is at most D.

4.3. Intersection components

Recall the situation described in Section 3.2 and let V be an irreducible subvariety of S .
We define an intersection component of ��1.V / to be an irreducible analytic component
of the intersection of ��1.V / with a subvariety of X . For any intersection component A
of ��1.V /, there exists a smallest subvariety hAiZar of X containing A (from which it
follows that A is automatically an irreducible analytic component of hAiZar \ �

�1.V /).
In light of this, we define the Zariski defect ıZar.A/ of A by

ıZar.A/ D dim hAiZar � dimA:

We say that A is Zariski optimal in ��1.V / if, whenever A ¨ B for some other intersec-
tion component B of ��1.V /, we have ıZar.A/ < ıZar.B/. The weak hyperbolic Ax–
Schanuel conjecture, which follows (see [9, Lemma 5.16]) from the hyperbolic Ax–
Schanuel conjecture, proven by Mok–Pila–Tsimerman [23], is the following.

Theorem 12 (weak hyperbolic Ax–Schanuel). Let A be a Zariski optimal intersection
component of ��1.V /. Then hAiZar is pre-weakly special.
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5. Standard principal bundles and canonical foliations

5.1. Standard principal bundles

Recall the situation described in Section 3.2 and suppose that � is neat. Since Z.G/.R/
is compact, the stabilizer in G.R/ of any point in X is compact. Therefore, since � is
torsion free, it acts without fixed points on X . It follows that � is (isomorphic to) the
fundamental group �1.S/ of S and that

P D �n.X �G.C//

is a principal complex analytic G.C/-bundle over S . (The action of � on X � G.C/ is
diagonal and on the left, and the action of G.C/ is given by h � Œx; g� D Œx; gh�1�, where
we use Œx; g� to denote the class of .x; g/ 2 X � G.C/ in P .) Furthermore, there is a
canonical flat connection r on P .

Following convention, we refer to P D .P;r/ as the standard principal bundle asso-
ciated with .G; X/ and � . By [20, Proposition 3.2], P is complex algebraic as a bundle
over the algebraic variety S . We let �P W P ! S denote the natural (complex algebraic)
morphism Œx; g� 7! �.x/.

Note that there is also a natural G.C/-equivariant algebraic map ˇ W P ! LX defined
by

ˇ.Œx; g�/ D g�1F�x
:

We observe that the composite of ˇ with the natural embedding X ! P given by x 7!
Œx; 1� yields the Borel embedding of X into LX .

5.2. Trivializations

Recall the situation described in Section 5.1. Let p D Œx; g� 2 P and let U � X be an
open neighbourhood of x such that

 2 � and U \ U ¤ ; H)  D 1:

Such a U exists by [22, Proposition 2.5] and the fact that � is torsion free. It follows
immediately that �U W U ! �.U / is biholomorphic and we obtain a (complex analytic)
trivialization

'U W �.U / �G.C/! ��1P .�.U //

of P over �.U / defined by .s; g/ 7! Œ��1U .s/; g�.

5.3. Flat structures

Recall again the situation described in Section 5.1. Choose an open covering C of X ,
stable under translation by � and such that each point x 2 X is contained in an arbitrarily
small U 2 C . We claim that we can choose C such that

U1; U2 2 C and U1 \ U2 ¤ ; H) U1 \ U2 D ; for all  2 � n ¹1º: (1)
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To see this, equipX with its usual metric d WX �X!R, and consider f WX �G.R/C!
X � X defined by .x; g/ 7! .x; gx/. Recall that both d and f are proper maps. In par-
ticular, for a compact interval I � R, the preimage .d ı f /�1.I / is a compact subset of
X �G.R/C and, therefore, so too is its projection‚ to G.R/C. Since � is a discrete sub-
group of G.R/C, we conclude that � \‚ is finite. Therefore, since � acts freely on X ,
there exists C > 0 such that

 ¤ 1 H) d.x; x/ > C for all x 2 X:

Therefore, in order to define C , choose around each point x 2 X a system of arbitraily
small relatively compact open neighbourhoods U such that

x; y 2 U H) d.x; y/ < C=2;

and such that C is stable under translation by � . Now let U1; U2 2 C and suppose that
x1 2 U1 \ U2. Furthermore, suppose that x2 2 U1 \ U2 for some  2 � n ¹1º. We
conclude that

C < d.x1; x1/ � d.x1; x2/C d.x2; x1/ < C=2C C=2 D C;

which is a contradiction, yielding the claim.
Note that condition (1) with U2 D U1 D U implies that we have trivializations

'U W �.U / �G.C/! ��1P .�.U //

as before, for any U 2 C . Now suppose that �.U1/ \ �.U2/ ¤ ; for U1; U2 2 C . We
obtain a transition map

'�1U2
ı 'U1

W �.U1/ \ �.U2/ �G.C/! �.U1/ \ �.U2/ �G.C/;

which sends .s; g/ to .s; �1s g/, where s 2 � is the unique element such that

��1U1
.s/ D s�

�1
U2
.s/ 2 U1 \ sU2:

However, by (1),  D s is constant on �.U1/ \ �.U2/.
We refer to a covering C of X satisfying the properties above as a flat structure for P .

In particular, a flat structure C comes with an associated set ¹'U ºU2C of trivializations.
Note that, if C and C 0 are both flat structures for P , then C \ C 0 (whose members are
precisely those of the form U \ U 0 for U 2 C and U 0 2 C 0) is also a flat structure for P .

5.4. The canonical foliation

Recall again the situation described in Section 5.1. By [18, Section 1B], we obtain a
canonical foliation F of P . For any p 2 P , we can obtain the leaf Lp of F through p
as follows. Let C be a flat structure for P , write p D Œx; gp�, and let U 2 C be such that
x 2 U . Then

'�1U .Lp \ �
�1
P .�.U /// D �.U / � ¹gpº:

In other words, Lp is given locally by the images of the horizontal sections.
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5.5. Intersection dimensions

Recall the situation described in Section 5.4 and, for a point p 2 P , let Lp denote the leaf
of F through p. Let V denote an irreducible subvariety of S . We will make repeated use
of the following lemma.

Lemma 13. Let p 2 P and let Y denote a subvariety of LX such that p 2 ��1P .V / \

ˇ�1.Y /. For any choice of representation p D Œx; gp�, we have

dimp.Lp \ ˇ�1.Y / \ ��1P .V // D dimx.gpY \ �
�1.V //:

Proof. Write p D Œx; gp�. By definition, x 2 gpY \ ��1.V /. Fix a flat structure C for P
and consider U 2 C such that x 2 U . From Section 5.4, we have

'�1U .Lp \ �
�1
P .�.U /// D �.U / � ¹gpº (2)

and, from the definitions, we have

'�1U
�
��1P .V / \ ��1P .�.U //

�
D .�.U / \ V / �G.C/: (3)

Finally, we claim that

'�1U
�
ˇ�1.Y / \ ��1P .�.U //

�
D ¹.�.gy/; g/ W y 2 LY ; g 2 G.C/; gy 2 U º: (4)

To see (4), first note that

ˇ�1.Y / D ¹Œgy; g� W y 2 Y; g 2 G.C/º:

In particular,

ˇ�1.Y / \ ��1P .�.U // D ¹Œgy; g� W y 2 Y; g 2 G.C/; �.gy/ 2 �.U /º:

Now, if �.gy/ 2 �.U /, then gy 2 U for some  2 � . That is, �1gy D ��1U .�.gy//

and so
'�1U .Œgy; g�/ D .�.gy/; �1g/ D .�.�1gy/; �1g/;

which is an element belonging to the set on the right hand side of (4). On the other hand, if
y 2 Y , g 2G.C/, and gy 2 U , then Œgy;g� 2 ˇ�1.Y /\ ��1P .�.U //maps to .�.gy/; g/.
This establishes (4).

Combining (2)–(4), we conclude that '�1U .Lp \ ˇ
�1.gY / \ ��1P .V / \ ��1P .�.U ///

is equal to the set of tuples .�.gpy/; gp/, where y 2 Y is such that gpy 2 U \ ��1.V /.
Therefore, applying ��1U to the first factor, we obtain

'�1U
�
Lp \ ˇ

�1.Y / \ ��1P .V / \ ��1P .�.U //
�
Š gpY \ U \ �

�1.V /; (5)

which proves the result.

6. The main construction

Recall the situation described in Section 5.5:

� .G; X/ is a Shimura datum component such that Z.G/.R/ is compact;
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� � is a neat arithmetic subgroup of G.Q/ contained in G.Q/C equal to �1.S/, where S
is the Shimura variety associated with .G; X/ and �;

� V is an irreducible subvariety of S ;

� P is the standard principal bundle associated with .G; X/ and �;

� � W X ! S and �P W P ! S denote the natural maps;

� ˇ W P ! LX denotes the map defined in Section 5.1;

� F denotes the canonical foliation of P (see Section 5.4);

� Lp denotes the leaf of F through p 2 P .

Fix an embedding of LX into projective space and let D 2 N be as in Remark 11. Let
�.k/ D �. LX; k;DkC1/ denote the (quasi-projective) Chow variety of closed irreducible
complex subvarieties of LX of codimension at most k and degree at most DkC1. Let

� D

dim LX[
kD0

�.k/:

Consider the algebraic subvariety ‚ D ‚.V / of P � � consisting of the tuples .p; Y /
such that p 2��1P .V /\ˇ�1.Y /. Here we slightly abuse notation by using Y to denote the
Chow coordinate representing an irreducible variety as well as the variety itself. However,
the correspondence between the Chow coordinate of Y and the points of Y is of course
algebraic, and ‚ is indeed Zariski closed. Note that there is a natural morphism ‚! S

given by the projection to P composed with �P .
We define a function

d D d.V / W ‚! N [ ¹0º

by setting d.p; Y / D dimp.Lp \ ˇ�1.Y / \ ��1P .V //.
For any .p; Y1/ 2 ‚, we let ı1.p; Y1/ be the statement that

dimY1 � d.p; Y1/ < dimY2 � d.p; Y2/

for all Y2 2 � such that Y1 ¨ Y2. Similarly, we let ı2.p; Y1/ be the statement that

d.p; Y2/ < d.p; Y1/

for all Y2 2 � such that ˇ.p/ 2 Y2 ¨ Y1.
We define … D ….V / to be the set of tuples .p; Y / 2 ‚ for which ı1.p; Y / and

ı2.p; Y / hold. For any d 2 N, we let ….d/ denote the set of tuples .p; Y / 2… such that

dimY � d.p; Y / D d: (6)

Recall the notion of complexity of locally closed sets introduced before Theorem 4.
The proof of the following results relies on differential-algebraic tools developed in Sec-
tion 7, and is presented below to avoid breaking the logical flow of the paper. However,
the reader may easily verify that the contents of Section 7 are self-contained and do not
rely on Proposition 14.
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Proposition 14. The sets ….d/ for d 2 N are locally closed subsets of ‚. The complex-
ity of ….d/ is bounded by fS .deg.V // for some polynomial fS depending only on S .
Moreover, one can derive an explicit system of equations and inequations for ….d/, as
described in Theorem 4.

The .algebraic, left/ action of G.C/ on P �� defined by g.p; Y / D .gp; gY / pre-
serves the ….d/ and their irreducible components.

Proof. Consider the foliation F0 onP �� given by the direct product of (1) the canonical
foliation of P and (2) the trivial foliation by zero-dimensional leafs on �.

Applying Proposition 20 below to the sets †.‚;F0; k/ we conclude that the sets

A.k/ WD ¹.p; Y / 2 ‚ W d.p; Y / � kº (7)

are Zariski closed with degrees bounded by a polynomial as claimed, and that it is possible
to effectively compute equations for these sets. (This is our principal ingredient from
differential algebra, and we will apply this below to deduce the same result for the sets
….d/.)

Let d 2 N. Since � is a disjoint union of Chow varieties corresponding to different
dimensions and degrees, it will be enough to consider each of these components sepa-
rately. We now restrict, therefore, to one of these Chow varieties and assume that dim Y

and deg.Y / are fixed.
The set�.d/� P �� defined by (6) is given by A.dimY � d/ nA.dimY � d C 1/.

It is therefore locally closed. We claim further that the condition ı1.p;Y / is open in�.d/.
To see this, let N� denote the projective closure of � and consider

�1 WD ¹.p; Y1; Y2/ 2 P ��
0
� N� W Y1 ¨� Y2; d � dimY2 � d.p; Y2/º:

Here we write Y1 ¨� Y2 to mean that Y1 is strictly contained in each component of the
support of Y2. This is a Zariski closed condition, and �1 is therefore closed for the same
reason that A.k/ is closed (with similar degree bounds, etc.). Since N� is projective, the
projection �‚.�1/ is closed as well and the standard resultant constructions from elimi-
nation theory produce effective systems of equations for this set as well.

By definition, in �.d/ the condition ı1.p; Y / essentially agrees with the complement
of �‚.�1/, except for a minor technicality: in ı1.p; Y / we quantify over Y2 in the open
Chow variety �, whereas in the definition of �1 we used the closed N�. It is, however,
easy to see that quantifying over N� gives an equivalent condition. Indeed, the points of
the closed Chow variety N� represent effective cycles. If there exists Y2 2 N�with Y1 ¨� Y2
such that

dimY1 � d.p; Y1/ < dimY2 � d.p; Y2/;

then the same must be true for one of the irreducible components of the support of Y2
(note that here it is crucial that we used the refined relation ¨�). To conclude, in�.d/ the
condition ı1.p;Y / is given by the complement of �‚.�1/, and is therefore locally closed
with the stated degree bounds and explicit equations.
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In an entirely analogous way, one checks that ı2.p;Y / is open in�, and this concludes
the proof of the local closedness, as well as the degree bounds for ….d/.

The fact that G.C/ preserves the….d/ is immediate from the definitions. Considering
the action as a morphism G.C/ � P ��! P �� yields the remaining claims.

Lemma 15. Let d 2 N, let .p; Y / 2 ….d/, and write p D Œx; gp�. Then

(i) x 2 gpY \ ��1.V /;

(ii) if A denotes an irreducible analytic component of gpY \ ��1.V / passing through
x such that

dimA D dimx.gpY \ �
�1.V //;

A is a Zariski optimal intersection component of ��1.V /;

(iii) writing XA for the pre-weakly special subvariety hAiZar of X .see Theorem 12/, we
have gpY D LXA;

(iv) ıZar.A/ D d .

Proof. We will imitate the proof of [9, Lemma 6.14]. The fact that x 2 gpY \ ��1.V /
follows from the definition of …. Note also that

dimx.gpY \ �
�1.V // D d.p; Y /

by (5). Therefore, let A be as in (ii). By definition, A is an intersection component and
hAiZar is contained in gpY . Therefore, since .p; Y / 2 ….d/, we have

ıZar.A/ � dimgpY � dimA D dimY � d.p; Y / D d:

Let B be an intersection component of ��1.V / containing A such that ıZar.B/ �

ıZar.A/. We can and do assume that B is Zariski optimal, and therefore, by Theorem 12,
hBiZar is equal to a pre-weakly special subvariety XB of X .

Let Z be an irreducible component of gpY \ LXB containing A. Observe that either
Z D gpY , Z D LXB , or codimZ > codim gpY . In all cases, the degree of Z in LX is at
most DcodimZC1 and so Z 2 �. However, ˇ.p/ 2 g�1p Z � Y , and

d.p; g�1p Z/ D dimx.Z \ �
�1.V // D dimA D d.p; Y /:

Therefore, since ı2.p; Y / holds, we conclude that Z D gpY . In particular, gpY is con-
tained in LXB .

On the other hand,

dim LXB � d.p; g�1p LXB/ D dim LXB � dimx. LXB \ �
�1.V //

� ıZar.B/ � ıZar.A/ � dimY � d.p; Y /;

and since ı1.p; Y / holds, it follows that gpY D LXB . Therefore, B D A and

ıZar.B/ D dimY � d.p; Y / D d:
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Lemma 16. Let A be a Zariski optimal intersection component of ��1.V / and let d D
ıZar.A/. Let XA denote the pre-weakly special subvariety hAiZar of X .see Theorem 12/.
Then, for any p D Œx; 1� with x 2 A satisfying

dimx. LXA \ �
�1.V // D dimA;

we have .p; LXA/ 2 ….d/.

The proof of Lemma 16 is very similar to the proof of [9, Lemma 6.13]. However, note
that there is an error in the statement of [9, Lemma 6.13]: the term “pre-weakly special”
should be replaced by “Zariski optimal”. This also occurs in [9, Proposition 6.10] and its
proof.

Proof of Lemma 16. Let p D Œx; 1� with x 2 A satisfying

dimx. LXA \ �
�1.V // D dimA:

Since, XA is pre-weakly special, .p; LXA/ 2 ‚ and we will now show that .p; LXA/ 2 ….
To that end, suppose that ı1.p; LXA/ does not hold. Therefore, there exists Y 2� such

that LXA ¨ Y and
dim LXA � d.p; LXA/ � dimY � d.p; Y /: (8)

Recall that d.p; LXA/ D dimx. LXA \ �
�1.V // D dimA. Let B be an irreducible analytic

component of Y \ ��1.V / passing through x such that dimB D dimx.Y \ �
�1.V //. In

other words,

d.p; Y / D dimp.Lp \ ˇ�1.Y / \ ��1P .V // D dimx.Y \ �
�1.V // D dimB;

and we obtain ıZar.B/ � ıZar.A/. It follows, as in the proof of [9, Lemma 6.13], that
B D A. However, this contradicts (8), and so ı1.p; LXA/ holds.

Now suppose that ı2.p; LXA/ does not hold. Therefore, there exists Y 2 � such that
Y ¨ LXA and d.p; Y / D d.p; LXA/. However, this implies that

dimx.Y \ �
�1.V // D dimx. LXA \ �

�1.V //;

from which it follows that A is contained in Y ¨ LXA. However, this contradicts the fact
that XA D hAiZar, and so ı2.p; LXA/ holds.

Finally, since d.p; LXA/ D dimA, we have

dim LXA � d.p; LXA/ D dimXA � dimA D d;

and so .p; LXA/ 2 ….d/.

Lemma 17. Let …ı denote an irreducible component of …. There exists a pre-special
subvariety XH of X and a Q-splitting XH D X1 � X2 such that, for any .p; Y / 2 …ı, if
we write p D Œx; g�, then gY D  LXH;x2

for some  2 � and some x2 2 X2.
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Proof. Fix a flat structure C for P and let .p0; Y0/ 2 …ı. Write p0 D Œx0; g0� and let
U0 2 C be such that x0 2 U0. We have a biholomorphic map

QU0 D �
�1
P .�.U0// ��

fU0
��! �.U0/ �G.C/ ��

given by .p; Y / 7! .'�1U0
.p/; Y /. We write …ıU0

D …ı \ QU0.
Observe that, for any pre-special subvariety XH of X and any Q-splitting X1 � X2

of XH, the set R.XH;X1;X2/ of points .s; g; Y / 2 S �G.C/�� such that gY D LXH;x2

for some x2 2 LX2 is a closed algebraic subvariety. To see this, let �.XH; X1; X2/ denote
the closed algebraic subvariety of tuples

.y; g; Y; x2/ 2 LX �G.C/ �� � LX2

such that y 2 gY \ LXH;x2
and let f denote the natural projection from �.XH;X1;X2/ to

G.C/ �� � LX2. Observe that the set of points .g; Y; x2/ 2 G.C/ �� � LX2 satisfying

dimf �1..g; Y; x2// � max ¹dimY; dimX1º

constitutes a closed algebraic subvariety (to simplify the exposition, one may assume that
dim Y is constant on �). Now the observation follows from the fact that, because LX2 is
projective, the natural projection from G.C/ �� � LX2 to G.C/ �� is closed.

By Lemma 15, fU0
.…ıU0

/ is contained in the union of the R.XH;X1;X2/ asXH varies
over the pre-special subvarieties of X and X1 � X2 varies over the Q-splittings of XH.
Furthermore, after possibly replacing U0 with a subset (also belonging to C ), we may
assume that fU0

.…ıU0
/ is connected. Therefore, since their union is countable, fU0

.…ıU0
/

is contained in one of the R.XH; X1; X2/, which we denote R.
By definition, P �� is covered by the union of the QU as U varies over the elements

of C . Therefore, since …ı is path-connected and the transition functions associated with
the trivializations of P are given by elements of � , we conclude that there exists a pre-
special subvariety XH of X and a Q-splitting XH D X1 �X2 such that, for any .p; Y / 2
…, if we write p D Œx; g�, then gY D  LXH;x2

for some  2 � and some x2 2 LX2. To
conclude the proof, we recall that x 2 gY . Hence, x 2 X \  LXH;x2

and so x2 2 X2, by
Lemma 10.

With each d 2 N and each irreducible component ….d/ı of ….d/, we associate a
triple T D .XH; X1; X2/, where XH is a pre-special subvariety XH of X and XH D

X1 � X2 is a Q-splitting, such that Lemma 17 holds for all .p; Y / 2 ….d/ı. With the
triple T we associate the standard principal bundle PT D �Hn.XH � H.C// associated
with .H; XH/ and �H D � \H.Q/C. (This is indeed a principal bundle since �H is neat
and, by [29, Remark 2.3], Z.H/.R/ is compact.) We let �T denote the subvariety of �
comprising the subvarieties of LX of the form LXH;x2

for some x2 2 LX2. By [20, Section 3],
the natural map

PT ��T
�PT
��! P ��
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is algebraic, and it is easy to check that it is injective. We let ….d/T denote the locally
closed subset

��1PT
.….d/ı/ � PT ��T ;

and we let ….d/ST
denote its image in ST D �HnXH under the natural map.

If we let H1 � H2 denote the decomposition of Had giving rise to the Q-splitting
XH D X1 �X2, and we let �2 denote the image of �H in H2.Q/, we obtain a diagram

X2 XH X

�2nX2 ST S

�T;2 �T �

�T �T

We let ….d/ST
denote the union of the Zariski closures of the fibres of the map �T

restricted to ….d/ST
and we let �T;d denote the map

….d/ST
! �T .….d/ST

/:

Lemma 18. The sets ….d/ST
are constructible.

Proof. It is a general fact that for any constructible map f W X ! Y , the union of the
Zariski closures of the fibres is constructible. Since we did not find a suitable reference
we give the details below.

Up to taking affine covers one may assume that X and Y are affine. The union of the
Zariski closures can be defined by

¹x 2 X W 8P2CŒX�Œ.8x02f �1.f .x// P.x
0/ D 0/) P.x/ D 0�º: (9)

This would be constructible if one could restrict to quantifying over P 2 CŒX� of degree
bounded by someN 2N, that is, if one could show that the Zariski closures of f �1.y/ are
set-theoretically cut out by some polynomials of uniformly bounded degree. Equivalently,
it suffices to show that the Zariski closures of these sets have uniformly bounded degrees,
which is standard.

We have the following structure theorem for weakly optimal subvarieties.

Theorem 19. Let d 2 N.

(i) LetW be a weakly optimal subvariety of V such that ıws.W / D d . Then there exists
an irreducible component ….d/ı of ….d/ such that, if T denotes the triple associ-
ated with ….d/ı, then W D �T .WT / for some irreducible component WT of a fibre
of �T;d .

(ii) Let ….d/ı denote an irreducible component of ….d/ and let T D .XH; X1; X2/

denote the triple associated with….d/ı. If W is an irreducible component of a fibre
of �T;d , then �T .W / is a weakly optimal subvariety of V such that ıws.W / D d and
hW iws D �.XH;x2

/ for some x2 2 X2.



G. Binyamini, C. Daw 20

Proof of (i). Let A be an irreducible analytic component of ��1.W /. By [9, Proposi-
tion 6.9], A is a Zariski optimal intersection component of ��1.V / and so, by Theo-
rem 12, hAiZar is a pre-weakly special subvariety XA of X . A simple calculation shows
that �.XA/ D hW iws and so ıZar.A/ D ıws.W / D d .

By Lemma 16, for any p D Œx; 1� with x 2 A satisfying

dimx. LXA \ �
�1.V // D dimA; (10)

we have .p; LXA/ 2 ….d/. Since (10) defines an open subset of A, there exists an open
subset U of A and an irreducible component ….d/ı of ….d/ such that .p; LXA/ 2 ….d/ı

for all p D Œx; 1� with x 2 U .
Let T D .XH; X1; X2/ be the triple associated with ….d/ı. Then LXA D  LXH;x2

for
some  2 � and some x2 2 X2. Therefore, .p; �1 LXA/ 2 PT ��T for all p D Œ�1x; 1�
with x 2 U . In fact, by Proposition 14, these points also belong to ….d/ı as they belong
to the G.C/-orbits of the points above.

LetWT denote the irreducible component �T .�1A/ of ��1T .W /. ThenWT is a weakly
optimal subvariety of VT D ��1T .V / and hWT iws is equal to SH;x2

D �T .XH;x2
/. In partic-

ular, WT is an irreducible component of SH;x2
\ VT , which is the fibre of VT ! �T .VT /

over the point z2 D �T;2.x2/. However, since ….d/ST
contains �T .�1U/, we deduce

that WT is contained in ….d/ST
, and therefore is an irreducible component of the fibre

of �T;d over z2.

Proof of (ii). Let z 2 ….d/ST
\W (observe that ….d/ST

\W is Zariski dense in W ,
and in particular is non-empty). Write z D �T .x/ for some x D .x1; x2/ 2XH DX1 �X2
(in particular, W is an irreducible component of the fibre of �T;d over �T;2.x2/) and
choose .p; Y / 2 ….d/T lying above z. Clearly, we can choose p D Œx; h� for some
h 2H.C/, and so hY D LXH;y2

for some y2 2 X2. In fact, since x 2 hY , we conclude that
y2 D x2.

Let B denote an irreducible analytic component of hY \ ��1.V / containing x such
that

dimB D dimx.hY \ �
�1.V //:

By Lemma 15,B is a Zariski optimal intersection component of ��1.V / such that ıZar.B/

D d and, writing XB for the pre-weakly special subvariety hBiZar of X , we have hY D
LXH;x2

D LXB . By [9, Proposition 6.9], WB D �.B/ is a weakly optimal subvariety of V ,
and we see that ıws.WB/ D d and hWBiws D �.XH;x2

/.
Since ….d/ST

\W is Zariski dense in W , we conclude that �T .W / is contained in
the union of the WB as obtained above. This is a finite union since each WB is a weakly
optimal subvariety of V with weakly special closure �.XH;x2

/, and �.XH;x2
/ does not

depend on z. Since �T .W / is irreducible, it is contained in one such subvariety, and we
conclude that

dimW � dimB D dimX1 � d: (11)

On the other hand, since ….d/ is locally closed, ….d/ı contains a Zariski open sub-
set U that is disjoint from the other irreducible components of….d/. Then UT D ��1PT

.U /
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is Zariski open in….d/T and so, since it is dense and constructible, the image UST
of UT

in ….d/ST
contains an open subset of ….d/ST

.
Suppose then that z 2 UST

and .p; Y / 2 UT . By Lemma 16, for any y 2 B such that

dimB D dimy.hY \ ��1.V //

and p D Œy; 1�, we have .p; hY / 2 ….d/. Since this condition defines an open subset
of B containing x, we conclude that there exists an open subset UB of B containing x
such that, for any y 2 UB and p D Œy; 1�, we have .p; hY / 2 ….d/T . It follows that
�T .B/ is contained in the fibre of �T;d over �X2

.x2/.
Therefore, since UST

contains an open subset of….d/ST
, the irreducible components

of the fibres of �T;d are of dimension at least dimB D dimX1 � d . Hence, we conclude
from (11) that they are pure of dimension dimX1 � d and this concludes the proof.

Observe that Theorem 19 implies [9, Proposition 6.3], which establishes that the
weakly optimal subvarieties of V come from finitely many triples .XH; X1; X2/. The
novelty in Theorem 19 is that the fibres of the �T;d are precisely the weakly optimal
subvarieties of V of weakly special defect d .

We recall that [9, Theorem 7.2] established that the union V an of the positive-dimen-
sional weakly optimal subvarieties of V of weakly special defect at most d is a Zariski
closed subset of V . If V an is strictly contained in V , the Zilber–Pink conjecture can be
reduced to arithmetic (see [9, Theorem 14.3]).

7. Ingredients from differential-algebraic geometry

7.1. The main statement

Let NX denote a proper smooth complex algebraic variety of dimension d , and let X � NX
denote an open dense subset. Let L denote a very ample line bundle on NX . In this section,
the degree deg.Y / of a subvariety Y �X is taken to mean the degree of the Zariski closure
NY � NX with respect to L.

Let F denote a non-singular n-dimensional foliation of X . We further assume for
simplicity that X is affine and that F is generated by n commuting regular vector fields
� D .�1; : : : ; �n/. We may thus think of regular/rational functions P on X as restrictions
of polynomials/rational functions on a suitable AN and we use deg.P / to denote the
(minimal) degree of such a representative. Similarly, we denote by deg.�/ the maximum
among the degrees of the coefficients of �1; : : : ; �n thought of as fields �i W X ! TAN .

The assumption above can always be achieved by passing to an affine cover of X .
Identifying X as an affine subvariety of AN and choosing generic linear coordinates
x1; : : : ; xN on AN , there are unique rational vector fields �1; : : : ; �n tangent to F of
the form

�i D
@

@xi
C

NX
jDnC1

cij .x/
@

@xj
(12)
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where cij are rational functions. Moreover, Œ�i ; �j � D 0 by the Frobenius theorem. The
results below can be applied, after this affine covering process, to any foliation F as
above.

For any algebraic subvariety V � X and k 2 N, let

†.V;F ; k/ D ¹p 2 V W dim.Lp \ V / � kº:

Our main tool is the following.

Proposition 20. Let V � X be an algebraic subvariety. Then

deg.†.V;F ; k// � PN
�
deg.X/; deg.V /; deg.�/

�
for some explicit polynomial PN depending on N . Moreover, equations for †.V;F ; k/
can be effectively computed from the equations defining X; V and �.

Remark 21. The explicit choice of affine coordinates is not strictly necessary to state the
degree bound in Proposition 20. However, it is convenient for establishing the effective
nature of our construction (i.e. to clarify the sense in which equations for †.V;F ; k/ are
to be effectively computed).

We prove Proposition 20 below after describing how it relates to our concrete context
involving flat connections on a Shimura variety.

7.2. Flat connections and foliations

Recall the situation described in Section 5.1. Let U be an affine Zariski open subset
of S such that ��1P .U / Š U � G.C/ and suppose that x1; : : : ; xn is a system of étale
coordinates on U . The connection r 2 �1.P; gC/ can be written, with respect to these
coordinates, as

r D

nX
iD1

�idxi

where�i is an algebraic morphism U!gC . Choosing a faithful representation g!glM ,
we may write the �i as matrices with entries given by polynomials in the x1; : : : ; xn.

The vector fields @
@xi

on U lift to vector fields �i on ��1P .U /, which in our choice of
coordinates can be written

�i D
@

@xi
C�i � g:

The vector fields �i commute by the flatness of r. By definition, their integral manifolds
Lp at a point p 2 P are given by (germs of) horizontal sections of r.

7.3. Multiplicity estimates

In order to prove Proposition 20, we will require the following multiplicity estimate due
to Gabrielov–Khovanskii [11].
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Theorem 22 ([11, Theorem 1]). Let P D .P1; : : : ;Pn/ 2 O.X/n and let p 2 X . Suppose
that the restriction of P to the leaf Lp of F through p has an isolated zero at p. Then

multp P jLp
< fN .deg.�/; deg.P //

for some explicit polynomial fN .

We will use this result to characterize the locus of points where the intersection of Lp
with the vanishing locus of P is positive-dimensional. For this purpose, we are interested
in expressing the condition that a tuple of functions admits a common zero of multiplicity
at least k by means of differential-algebraic conditions.

Let F D .F1; : : : ; Fn/ denote an n-tuple of holomorphic functions in some domain
� � Cn. The problem above is addressed in [5] by means of a collection ¹M ˛º of
“multiplicity operators” of order k. These are polynomial partial differential operators
of order k, i.e. polynomial combinations of F1; : : : ; Fn and their first k derivatives. We
will usually denote a multiplicity operator of order k by M .k/ and write M .k/

p F for
ŒM .k/.F /�.p/.

Proposition 23 ([5, Proposition 5]). We have multp F > k if and only if M .k/
p F D 0 for

all multiplicity operators of order k.

For every p 2 X , we let �p W B ! Lp denote the germ of a holomorphic map, for
some open ball B � Cn centred at the origin, satisfying @�p=@xi D �i for i D 1; : : : ; n.
We refer to this map as the �-chart on Lp . When P D .P1; : : : ; Pn/ 2 O.X/n we may
apply the multiplicity operator M .k/ to P by evaluating the derivatives along �1; : : : ; �n,
which amounts to computing, for each point p 2 X , the multiplicity operator of P jLp in
the �-chart.

Lemma 24. For any multiplicity operator M .k/ of order k we have

deg.M .k/P / � fN .deg.P /; deg.�/; k/

for some explicit polynomial fN .

Proof. This follows easily since M .k/ is defined by expanding a determinant, of size
polynomial in k, with entries defined in terms of P and its �i -derivatives up to order k.

7.4. Proof of Proposition 20

Recall the situation described in Section 7.1. It is classical that V � X is then cut out by
polynomials of degree at most deg.V /. Denote the set of these polynomials by P . Then
we have

†.V;F ; k/ D
\

P 0�P
#P 0Dn�kC1

†.V.P 0/;F ; k/:

Indeed, the inclusion� is obvious. For the other inclusion, suppose p 62†.V;F ;k/ so that
dim.V \Lp/ < k. In particular, Lp 6� V , so there exists an equation P1 2 P not identi-
cally zero on Lp . If n� k > 1 then, similarly, no component of the intersection of Lp with
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the vanishing locus of P1 is contained in V , so there exists P2 not vanishing on any of
these components. Reiterating n� k steps of this form, we obtain P 0D ¹P1; : : : ;Pn�kC1º

with dim.V .P 0/ \Lp/ D k � 1, so p 62 †.V.P 0/;F ; k/.
By Bézout’s Theorem, deg.†.V;F ; k// is bounded by a polynomial in the maximum

of the deg.†.V.P 0/;F ; k// for P 0 as above. Hence, it is enough to prove Proposition 20
assuming that V is a complete intersection defined by P D .P1; : : : ; Pn�kC1/.

We now make a similar reduction involving the foliation F . Namely,

†.V;F ; k/ D
\

F 0�F
dim F 0Dn�kC1

†.V;F 0; 1/; (13)

where the intersection is taken over foliations F 0 generated by linear combinations of
n � k C 1 of the vector fields comprising �. Again the inclusion � is obvious. For the
other inclusion, suppose p 62 †.V;F ; k/, so that dim.V \ Lp/ < k. Intersecting with
linear hyperplanes passing through the origin in the �-chart on Lp , we find, similarly to
the previous step, k � 1 such hyperplanes defining a subleaf L0p with dim.V \L0p/ D 0.
Noting that L0p is a leaf of a subfoliation F 0 as above finishes the proof.

By Bézout’s Theorem, as above, it suffices, replacing F by the F 0, to prove Proposi-
tion 20 in the case k D 1. In this case we have

†.V;F ; 1/ D ¹p 2 V W dim.Lp \ V / � 1º

D ¹p 2 V W multp P jLp
D1º

D ¹p 2 V W multp P jLp
� �º;

where � is the multiplicity bound of Theorem 22. Finally, according to Proposition 23,
the right hand side is the zero locus of all multiplicity operatorsM .�/

p P taken with respect
to the foliation F . The degrees of all of these polynomials are bounded by Lemma 24.
Applying Bézout’s Theorem concludes the proof of the degree bound.

Finally, we indicate how to effectively obtain a system of equations for †.V;F ; k/.
The only step above which is not effective a priori is (13), where one intersects an infinite
collection of sets. To deal with this, we first note that it would suffice to consider F 0 in
some open-dense subset of the Grassmannian of n� k C 1-dimensional subspaces of the
span of �. We can generate such F 0.c/ as the span of � 01.c/; : : : ; �

0
n�kC1

.c/ with

� 0i D �i C

nX
jDn�kC2

cij �j (14)

and .cij / 2 A.n�kC1/.k�1/. Repeating the construction above with F 0.c/ and treating cij
as independent variables, we obtain a system of equationsE1.x; c/D � � � DEQ.x; c/D 0
such that x 2†.V;F ; k/ if and only if the equations vanish at .x; c/ for every c. It is then
clear that †.V;F ; k/ is cut out by the coefficients of E1; : : : ; EQ viewed as polynomials
in the c-variables.
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8. Effective bounds for degrees of weakly optimal subvarieties

Recall the situation described in Section 6. For i D 1; : : : ; n, let Ui denote a Zariski open
subvariety of S such that

Sn
iD1Ui D S and ��1P .Ui /ŠUi �G.C/ is trivial. Furthermore,

we can and do assume that, under the embedding S ! PN given by L˝k�

� , each Ui
is contained in one of the standard affine charts. Similarly, let �i denote Zariski open
subvarieties of � (already considered as a subvariety of some PM ), each contained in a
standard affine chart, such that � D

Sn
iD1�i . Fix an embedding of G into some affine

space AL. For i; j D 1; : : : ; n, let Uij denote the Zariski open subset Ui �G.C/ ��j of
P ��. The following is an immediate corollary of Proposition 14.

Lemma 25. Let d 2N and let….d/ı denote an irreducible component of….d/. For any
i; j 2 ¹1; : : : ;nº, the degree of the Zariski closure of the locally closed subsetUij \….d/ı

of P ��, considered as a subvariety of ANCLCM , is bounded by fS .deg
L
˝k�
�

.V // for

some polynomial fS depending only on S .

The main result of this section is the following.

Theorem 26. Let d 2 N and let W be a weakly optimal subvariety of V such that
ıws.W / D d . Then

deg
L
˝k�
�

.W / � fS .deg
L
˝k�
�

.V //

for some polynomial fS depending only on S .

Proof. Since k� depends only on S , we may replace L˝k�

� with L� .
Recall the situation reached at the end of the proof of Theorem 19 (i). Let ….d/S

denote the image of ….d/ı in S and let V0 denote its Zariski closure. Let VT;0 denote
the Zariski closure of ….d/ST

in ST . Observe that �T .VT;0/ is closed as �T extends to a
(projective) morphism on the Baily–Borel compactifications.

We will prove the theorem in a succession of lemmas. The following lemma will be
used in the proofs of Lemma 28 (ii, iii).

Lemma 27. The subvariety VT;0 is irreducible and �T .VT;0/ D V0.

Proof. We appeal to the commutative diagram of natural morphisms

PT ��T ��T .P ��/ P ��

ST S

fT

�PT

gT
f

�T

where ��T .P ��/ is the pullback of P �� to ST . Recall that �PT
is injective.

First observe that the G.C/-orbit of (the image of)….d/T in P �� is….d/ı. Indeed,
the left-right inclusion is clear from Proposition 14. Therefore, let .p; Y / 2 ….d/ı and
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write p D Œx; g�. Then gY D  LXH;x2
for some  2 � and some x2 2 X2. We rewrite

p D Œ�1x; �1g� and we see that �1g.p; Y / 2 PT ��T , which proves the claim.
LetZT denote the Zariski closure of (the image of)….d/T in ��T .P ��/. Then, by the

preceding paragraph, (the image of) G.C/ZT is a Zariski dense subset of ….d/ı. Let YT
denote an irreducible component of ZT such that G.C/YT is also dense in ….d/ı. Then,
since the Zariski closure of f .….d/ı/ is V0, we see that f .G.C/YT / D f .YT / is dense
in V0 and, by the commutativity of the diagram, equal to �T .YST

/, where YST
D gT .YT /.

Now let Y 0T denote another irreducible component of ZT . We claim that gT .Y 0T / is
contained in the Zariski closure of YST

. To see this, observe that Y 0T is contained in the
Zariski closure of G.C/YT in ��T .P ��/. Therefore, gT .Y 0T / is contained in the Zariski
closure of gT .G.C/YT / D gT .YT /.

It follows that the Zariski closure of YST
is equal to VT;0. Hence, VT;0 is irreducible.

The fact that �T .VT;0/ D V0 now follows easily from the facts that �T is closed and V0 is
equal to the Zariski closure of f .….d/ı/.

The following lemma will reduce the proof to Lemma 30 below.

Lemma 28. (i) degL�
.V0/ � fS .degL�

.V // for some polynomial fS depending only
on S ;

(ii) degL�H
.VT;0/ � r

3
G degL�

.V0/, where rG denotes the rank of G;

(iii) degL�
.W / � r3G degL�H

.WT /.

Proof. There exist i; j 2 ¹1; : : : ; nº such that the Zariski closure of Uij \….d/ı domi-
nates V0. Therefore, (i) follows easily from Lemma 25.

(ii) follows immediately from Lemma 27, [7, Lemma 4.1] (a corollary of [17, Propo-
sition 5.3.10]) and [7, Lemma 4.2]; and (iii) follows from (ii).

The following lemma will be used in the proof of Lemma 30.

Lemma 29. (i) WT is an irreducible component of the fibre of VT;0!�T .VT;0/ over z2;

(ii) dimWT D dimX1 � d is the generic dimension of the fibres of VT;0 ! �T .VT;0/.

Proof. (i) Observe that VT;0 is contained in VT and WT is contained in VT;0. Therefore,
since WT is an irreducible component of the fibre of VT ! �T .VT / over z2, the claim
follows.

(ii) First observe that the Zariski closures of ….d/ST
and ….d/ST

coincide, that is,
they are both VT;0. Also, �T .VT;0/ is contained in the Zariski closure of �T .….d/ST

/.
However, �T .VT;0/ is closed and contains �T .….d/ST

/. Therefore, �T .VT;0/ is equal to
the Zariski closure of �T .….d/ST

/. Since, by Theorem 19, the fibres of �T;d are pure of
dimension dimX1 � d , the claim follows.

It remains to prove the following lemma.

Lemma 30. We have
degL�H

.WT / � degL�H
.VT;0/:
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Proof. In order to simplify notation, we will, for the remainder of the proof, replace
�H with � , ST with S , VT;0 with V , WT with W , and dimW with d (as opposed to
dimX1 � d ). We will also reassign � to be the (proper) closed embedding V ! S . Finally,
for i D 1; 2, we let �i denote the image of � in Hi .Q/, we let f denote the natural mor-
phism S ! S1 � S2, where Si D �inXi is the Shimura variety associated with .Hi ; Xi /

and �i , and we let �i denote the projection S ! Si (which factors as f composed with
the natural projection fi from S1 � S2 to Si ).

By the projection formula, the degree of c1.L�/d \ Œ�.V /� is equal to the degree of
c1.�
�L�/

d \ ŒV � 2 A0.V /. Let V2 D �2.�.V //, which, as explained above, is closed.
There exists a Zariski open subset U2 � V2 such that, if U D .�2 ı �/

�1.U2/, then
.�2 ı �/jU is flat. In particular, its fibres are equidimensional, of dimension d (by
Lemma 29 (ii)).

Now consider the excision exact sequence

A0.V n U/
i�
�! A0.V /

j�

�! A0.U /

where i� is the pushforward associated with the (proper) closed embedding i W V nU!V ,
and j � is the pullback associated with the (flat) inclusion j W U ! V . We see that the
degree of c1.��L�/dimV \ ŒV � is at least the degree of

j �.c1.�
�L�/

dimV
\ ŒV �/ D c1.j

���L�/
dimV

\ ŒU � 2 A0.U /:

Next, as in [17, Proposition 5.3.2 (1)], we have

L� D f
�.L�1

� L�1
/ D f �.f �1 L�1

˝ f �2 L�2
/ D ��1L�1

˝ ��2L�2
:

Therefore,
j ���L� D j

�����1L�1
˝ j �����2L�2

;

and so

c1.j
���L�/

dimV
\ ŒU �

D

dimVX
rD0

�
dimV

r

� �
c1.j

�����1L�1
/r \

�
c1.j

�����2L�2
/dimV�r

\ ŒU �
��
:

Since �2 ı � ı j is flat,

c1.j
�����2L�2

/dimV�r
\ ŒU � D j �����2 .c1.L�2

/dimV�r
\ ŒU2�/ 2 Ar .U /;

where j �����2 is the flat pullbackA0.U2/!Ar .U /. Therefore, sinceL�2
is ample, these

classes can be represented by non-negative sums of r-cycles (which are zero if r > d ).
Hence, since L�1

is ample, each summand of the above sum can be represented by a non-
negative sum of 0-cycles. In particular, c1.j �����2L�2

/dimV�d \ ŒU � can be represented
by the cycle associated to finitely many fibres of .�2 ı � ı j /jU . For such a fibre F , we
have

c1.j
�����1L�1

/d \ ŒF � D c1.j
���L�/

d
\ ŒF � D degj���L�

.F / D degL�
.�.j.F ///



G. Binyamini, C. Daw 28

where the first equality can be deduced from a binomial expression as above. Therefore,
since .�2 ı � ı j /jU is flat, and all fibres of a flat family of subschemes of a projective space
have the same Hilbert polynomial, we conclude that, if W is an irreducible component of
.�2 ı � ı j /

�1.z/ for some z 2 U2, then

degL�
.W / � degL�

.V /;

as claimed.
Therefore, by Lemma 29 (i), it remains to deal with the case whenW is an irreducible

component of .�2 ı �/�1.z/ for some z 2 V2 n U2. To that end, let C be an irreducible
algebraic curve in V2 passing through z such that C \ U2 ¤ ; (just choose a point in U2
and use the fact that, for any two points x and y in an irreducible algebraic variety Z,
there exists an irreducible algebraic curve C � Z such that x; y 2 C ). Let Y denote an
irreducible component of .�2 ı �/�1.C / containing W . Note that W ¨ Y as

dimY � dimV � dimV2 C 1 D d C 1 > dimW:

Therefore, the morphism Y ! C is dominant. Let QC denote the normalization of C ,
and let QY denote the fibre product Y �C QC . Note that QY is irreducible and QY ! QC is
dominant. Since QC is regular, it follows from [16, Proposition 9.7] that QY ! QC is flat. As
such, its fibres all have the same degree with respect to ��L� .

Let � W QY ! Y denote the natural map. It is finite and surjective. Therefore, if we let
QW denote an irreducible component of ��1.W /, we have

degL�
.W / � deg��L�

. QW /

and, since QW is a fibre of QY ! QC and C passes through U2, the claim follows.

The theorem now follows immediately, combining Lemmas 28 (i)–(iii) and 30.

9. Effective determination of the weakly optimal locus

Recall the setup described in Section 1.1. This section is devoted to the proof of Theo-
rem 6.

Throughout the proof, we think of the family T as embedded in projective space with
respect to the prescribed embedding. We begin by computing an affine cover ¹V˛º of V ,
such that over each V˛ once can select an explicit set of sections !1; : : : ; !g for the sheaf
of relative differentials �1

T=V
and an additional set of meromorphic differentials of the

second kind (i.e. with vanishing residues) !gC1; : : : ; !2g for the sheaf �1
T=V

.N � D/

whereD is a hyperplane divisor andN � 1, such that !1; : : : ; !2g are pointwise linearly
independent everywhere. Such a choice of differentials can be computed explicitly for
(families of) algebraic curves by classical methods. For the holomorphic differentials, see
e.g. [6, Theorem 9.3.1] where the explicit computation is attributed to Abel and Riemann.
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For meromorphic differentials of the second type see e.g. [6, Propositions 9.3.8, 9.3.9].
Below we continue with V replaced by one of the V˛ , and assume that the sections above
are pointwise linearly independent over V .

Having computed a base for the de Rham cohomology H 1.T=V / we may now com-
pute the Gauss–Manin connection r WH 1.T=V /!H 1.T=V /˝�1V explicitly. The fact
that the Gauss–Manin connection admits a purely algebraic construction is essentially due
to Manin [19]. The approach of Manin is fully explicit and there is no difficulty in prin-
ciple carrying it out computationally.

The sections !1; : : : ; !2g provide a trivialization of H 1.T=V /. Thinking of
V � GL2g.C/ as a principal GL2g.C/-bundle with respect to the action g.v; …/ D
.v;…g�1/, we may express r as a flat connection on this trivial bundle as follows:

d… D � �…; � 2 gln.ƒ
1
V /: (15)

In fact, the construction that follows could be expressed in terms of this GL2g.C/-
connection. However, to stress the relationship with the general formalism of Shimura
varieties considered in the first part of the paper, we show that one can explicitly compute
a GSp2g.C/-bundle P � V �GL2g.C/ compatible with r.

The existence of such a bundleP follows from the fact thatr preserves the symplectic
form on H 1.T=V / induced by duality from the intersection form on H1.T=V;Z/. More
explicitly, let ı1.v/; : : : ; ı2g.v/ denote a (possibly multivalued) choice of symplectic basis
of H1.T=V;Z/, i.e. with the intersection form .ıi ; ıj / given by

J D

�
0 Ig
�Ig 0

�
: (16)

Then

….v/ D

0BB@
H
ı1.v/

!1 � � �
H
ı2g.v/

!1
:::

: : :
:::H

ı1.v/
!2g � � �

H
ı2g.v/

!2g

1CCA D �A.v/ B.v/

C.v/ D.v/

�
(17)

is a section of r and…J…T Dƒ defines a regular mapping from V to GL2g.C/ (single-
valuedness follows from the fact that the monodromy of ….v/ respects the intersection
form, and regularity then follows from GAGA). Thus the subset of V �GL2g.C/ defined
by …J…T D ƒ is a r-invariant principal Sp2g.C/-bundle with respect to the action

g � .v;…/ D .v;… � g�1/; g 2 Sp2g.C/: (18)

However, as we will see below, this bundle is not defined over a number field, and we
will show instead how to construct the corresponding GSp2g.C/-bundle explicitly over a
number field.

By definition, ƒ.v/ij D .!i ; !j /v is the matrix representing the symplectic form
on H 1.Xv/. The explicit computation of this form reduces to the following bilinear rela-
tion for meromorphic differentials of the second kind.
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Lemma 31. Let !; � be two meromorphic differentials of the second kind. Then

1

2�i

� gX
jD1

I
ıj

!

I
ıjCg

� �

I
ıjCg

!

I
ıj

�

�
D

X
P

resP .f �/ (19)

where P ranges over the poles of ! and �, and f is any primitive of !. Note that since �
has no residues, resP .f �/ is independent of the choice of the primitive.

The left hand side of (19) is, by definition, the symplectic pairing .!; �/ up to the
constant 2�i . The right hand side can be explicitly computed in local coordinates around
P 2 V , i.e. it depends only on finitely many Laurent coefficients of !; � in local coordi-
nates around the poles. Using this, one may explicitly compute each entry of 2�ƒ.v/ as
a regular function on V .

Having computed 2�ƒ.v/, we further simplify the computation as follows. The Rie-
mann bilinear relations imply that !1; : : : ; !g span an isotropic space, and ƒ.v/ defines
a non-degenerate pairing between this space and the span of !gC1; : : : ; !2g . By elemen-
tary linear algebra, one may now replace each section !gCj by a linear combination !0gCj
such that !1; : : : ; !g and !0gC1; : : : ; !

0
2g form a standard symplectic basis. Assume with-

out loss of generality that we have made such a choice, so that ƒ.v/ � 2�J . With this
choice, r restricts to a connection on the trivial bundle P D V � GSp2g.C/ with the
connection equation

d… D � �…; � 2 sp2g.ƒ
1
V /; (20)

and the left GSp2g.C/-action given as before by g.s;…/ D .s;…g�1/.
Denote by X D Hg the Siegel upper half-space, by LX the compact dual, and by

X 0 � LX the set of symmetric g � g matrices. We have a GSp2g.C/-equivariant rational
map ˇ W P ! X 0 given by ˇ.v;…/ D B�1A where A and B are the blocks given in (17).
One can verify that, since … 2 GSp2g.C/, the image of ˇ, when defined, is an element
of X 0. The map ˇ extends to a regular map ˇ W P ! LX .

Recall that we denote by f W QV ! V an étale cover, QT ! QV the base change of T
by f , and choose f such that QT is compatible with an N -level structure (say for N D 3).
We denote by � W QV ! Ag;N the corresponding moduli map.

Proposition 32. We have f �.P;r/ ' ��.P ;r0/ where P denotes the canonical bundle
on Ag;N and r0 its canonical connection.

Proof. By functioriality of the Gauss–Manin connection, if Qr denotes the connection on
QP ! QV then Qr D f �r. It will therefore suffice to prove that . QP ; Qr/ ' ��.P ;r0/. Thus,

we may assume, without loss of generality, that the family T ! V already respects the
N -level structure and that we have a map � W V ! S DAg;N . Denote by � � GSp2g.Z/
the neat subgroup corresponding to the N -level structure.

Choose a generic v0 2 V and consider the period map….v/ defined by (17) around v0.
Since ı1; : : : ; ı2g form a symplectic basis, the Riemann bilinear relations imply that
….v/ 2 X globally (i.e. after arbitrary analytic continuation). By definition of the moduli
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interpretation, � is given by

�.v/ D �.ˇ.v;….v///; � W X ! �nX: (21)

Indeed, ….v/ is the period matrix of the fibre Tv . Hence, the Jacobian of Tv is given
by the lattice spanned by the columns of .A B/, and ˇ.v;….v// D B�1.v/A.v/ 2 X is
the point representing this Jacobian in X . In particular, write x0 D ˇ.v0; ….v0// so that
�.x0/ D �.v0/.

We will show that .P; r/ ' ��.P ; r0/ by showing that they define the same �-
representation of �0.V; v0/. Let  2 �0.V; v0/ be a closed loop, and let X � X be the
curve obtained by lifting  toX . Then the endpoint of X is a point g � x0 for some g 2 � .
According to (21) and the equivariance of ˇ, the monodromy of r along  is g, as it is
the unique element of � mapping x0 to g � x0. On the other hand, the monodromy of ��r0
along  is the monodromy of r0 along �./, which equals g for the same reason. This
shows that the representations are indeed the same.

One can repeat the proof of Proposition 14 with the bundle .P;r/ in place of .P ;r0/
to define sets …0.d/ � P . By Proposition 32 it follows that f �…0.d/ D ��….d/ over
f �1.V / as claimed.
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