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Abstract. We consider the nonlinear Schrödinger equation (NLS) on a torus of arbitrary dimension.
The equation is studied the in presence of an external potential field whose time-dependent ampli-
tude is taken as control. Assuming that the potential satisfies a saturation property, we show that
the NLS equation is approximately controllable between any pair of eigenstates in arbitrarily small
time. The proof is obtained by developing a multiplicative version of a geometric control approach
introduced by Agrachev and Sarychev. We give an application of this result to the study of the large
time behaviour of the NLS equation with random potential. More precisely, we assume that the
amplitude of the potential is a random process whose law is 1-periodic in time and nondegenerate.
Combining the controllability with a stopping time argument and the Markov property, we show
that the trajectories of the random equation are almost surely unbounded in regular Sobolev spaces.

Keywords: nonlinear Schrödinger equation, approximate controllability, geometric control theory,
growth of Sobolev norms, random perturbation.

0. Introduction

In this paper, we study the controllability and the growth of Sobolev norms for the fol-
lowing nonlinear Schrödinger (NLS) equation on the torus Td D Rd=2�Zd :

i@t D �� C V.x/ C �j j
2p C hu.t/;Q.x/i : (0.1)

We assume that V W Td ! R is an arbitrary smooth potential, Q W Td ! Rq is a given
smooth external field subject to some geometric condition, d;p � 1 are arbitrary integers,
and � is an arbitrary real number. The role of the control (or the random perturbation) is
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played by the Rq-valued function (or the random process) u which is assumed to depend
only on time. Equation (0.1) is equipped with the initial condition

 .0; x/ D  0.x/ (0.2)

belonging to a Sobolev space H s D H s.Td IC/ of order s > d=2, so that the problem is
locally well-posed.

The purpose of this paper is to study the NLS equation (0.1) when the driving force u
acts multiplicatively through only few low Fourier modes. Referring the reader to the
subsequent sections for the general setting, let us formulate in this Introduction some
particular cases of our main results. Let K � Zd� be the set of d vectors defined by

K D ¹.1; 0; : : : ; 0/; .0; 1; : : : ; 0/; : : : ; .0; 0; : : : ; 1; 0/; .1; : : : ; 1/º; (0.3)

and assume that the field Q D .Q1; : : : ;Qq/ is such that

¹1; sin hx; ki; cos hx; ki W k 2 Kº � span ¹Qj W j D 1; : : : ; qº: (0.4)

Let sd be the least integer strictly greater than d=2.

Theorem A. The problem (0.1), (0.2) is approximately controllable in the following
sense: for any integer s � sd , " > 0, ~ > 0,  0 2 H s , and � 2 C1.Td IR/, there is a
time T 2 .0; ~/, a control u 2 C1.Œ0; T �IRq/, and a unique solution  2 C.Œ0; T �IH s/

of (0.1), (0.2) such that
k .T / � ei� 0kH s < ":

A more general formulation of this result is given in Theorem 2.2, where the controlla-
bility is proved under an abstract saturation condition for the fieldQ (see Condition (C1)).
Note that the time T may depend on the initial condition  0, the target ei� 0, and the
parameters in the equation. In the second result, we show that, when the initial condi-
tion  0 is an eigenstate �l .x/ D .2�/�d=2eihx;li; l 2 Zd , of the Laplacian and V D 0,
the system can be controlled in any fixed time T > 0 to any L2-neighbourhood of any
target of the form ei��m, m 2 Zd .

Theorem B. For any integer s � sd ; " > 0, l;m 2Zd , � 2 C1.Td IR/, and T > 0, there
is a control u 2 C1.Œ0; T �IRq/ and a unique solution  2 C.Œ0; T �IH s/ of (0.1), (0.2)
with V D 0 and  0 D �l such that

k .T / � ei��mkL2 < ":

The controllability of the Schrödinger equation with time-dependent bilinear (mul-
tiplicative) control has attracted a lot of attention during the last fifteen years. In the
one-dimensional case, local exact controllability results have been established by
Beauchard, Bournissou, Coron, Laurent, Teismann, and the present authors [5,6,9,10,14,
15, 20]. There is a vast literature on approximate controllability in the multidimensional
case. For the first achievements, we refer the reader to the papers by Boscain, Caponigro,
Chambrion, Mason, and Sigalotti [11, 17], Mirrahimi [29], and the second author [31].
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Except [9, 10, 20], all the papers consider the linear Schrödinger equation, i.e., the one
obtained by taking � D 0 in (0.1); note that in that case the control problem is still non-
linear in u.

Theorems A and B are the first to deal with the problem of bilinear approximate
controllability of the NLS equation. Let us emphasise that controllability between any pair
of eigenstates in arbitrarily small time is new even in the linear case � D 0. It is interesting
to note that Theorem B complements results by Beauchard, Coron, and Teismann [7, 8],
who prove that, for some choice of Q, there is a positive minimal time for approximate
controllability to some particular states.

The approach used to prove Theorems A and B is quite different from the ones
usually applied in the literature to study bilinear control systems. We proceed by devel-
oping Agrachev–Sarychev type arguments which were previously employed in the case
of additive controls. Let us recall that Agrachev and Sarychev [2,3] considered the global
approximate controllability of the 2D Navier–Stokes and Euler systems. Their approach
has been further extended by many authors to different equations. Let us mention, for
example, the papers [35,36] by Shirikyan who considered the approximate controllability
of the 3D Navier–Stokes system, Rodrigues [33] who studied the 2D Navier–Stokes sys-
tem on a rectangle with Lions boundary conditions, and Sarychev [34] who considered
the 2D defocusing cubic Schrödinger equation. The configuration we use in the present
paper is closer to the one in the recent paper [32], where parabolic PDEs are studied with
polynomial nonlinearities. We refer the reader to the reviews [1,37] and the paper [32] for
more references and discussions.

The present paper is the first to deal with Agrachev–Sarychev type arguments in a
bilinear setting. To explain the scheme of the proof of Theorem A, let us denote by
Rt . 0; u/ the solution of the problem (0.1), (0.2) defined up to some maximal time.
A central role in the proof is played by the limit

e�iı
�1=2'Rı.e

iı�1=2' 0; ı
�1u/! e�i.B.'/Chu;Qi/ 0 in H s as ı ! 0C; (0.5)

which holds for any  0 2 H s , ' 2 C1.Td IR/, and constant u 2 Rq . Here we denote
B.'/.x/ D

Pd
jD1.@xj '.x//

2. The limit (0.5) specifies the asymptotic behaviour of the
solution of the NLS equation in small time under appropriately scaled large control and
rapidly oscillating initial condition. Applying this limit with ' D 0 and using the assump-
tion (0.4), we see that the equation can be controlled in small time from any initial
point  0 to an arbitrary neighbourhood of ei� 0 for any � in the vector space

H 0 D span ¹1; sin hx; ki; cos hx; ki W k 2 Kº:

Applying again the limit (0.5) with functions ' D �j 2 H 0, j D 0; : : : ; n, we add more
directions in � . That is, we show that the system can be steered from  0 close to ei� 0,
where � now belongs to a larger vector space H 1 whose elements are of the form

�0 �

nX
jD1

B.�j /:
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We iterate this argument and construct an increasing sequence ¹Hj º of subspaces such
that the equation can be approximately controlled to any target ei� 0 with any � 2 Hj

and j � 1. Using trigonometric computations, we show that the union
S1
jD1Hj is dense

in C k.Td IR/ for any k � 1 (in other words, H 0 is a saturating space for the NLS equa-
tion, see Definition 2.1). This completes the proof of Theorem A.

Theorem B is derived from Theorem A by noticing that the eigenstate �l can be
approximated in L2 by functions of the form ei��m and that the eigenstates are constant
solutions1 of (0.1) corresponding to some control. This allows to appropriately adjust the
controllability time and to choose it the same for any initial condition and target.

As an application of Theorem A, we study the large time behaviour of trajectories of
the random NLS equation. We show that if a random process perturbs the same Fourier
modes as in the above controllability results, then the energy is almost surely transferred
to higher modes resulting in the unboundedness of trajectories in regular Sobolev spaces.
More precisely, we replace the control u by an Rq-valued random process � of the form

�.t/ D

1X
kD1

IŒk�1;k/.t/�k.t � k C 1/; (0.6)

where IŒk�1;k/ is the indicator function of the interval Œk � 1; k/ and ¹�kº are independent
identically distributed random variables in L2.Œ0; 1�IRq/ with nondegenerate law (see
Condition (C2)). The solution of the problem (0.1), (0.2), (0.6) will be a random process
in H s . We prove the following result.

Theorem C. For any s > sd and any nonzero  0 2 H s , the trajectory of (0.1), (0.2),
(0.6) is almost surely unbounded in H s .

The idea of constructing unbounded solutions by using random perturbations is not
new. Such results have been obtained by Bourgain [12] and Erdoğan et al. [21] for linear
one-dimensional Schrödinger equations. They also provided polynomial lower bounds
for the growth. Unboundedness of trajectories for multidimensional linear Schrödinger
equations is obtained in [30]. In that paper, the assumptions on the law of the random
perturbation are rather general and no estimates for the growth are given; Theorem C is a
generalisation of that result to the case of the NLS equations. There are also examples of
linear Schrödinger equations with various deterministic time-dependent potentials which
admit unbounded trajectories: e.g., see the papers by Bambusi et al. [4], Delort [19], Haus
and Maspero [25, 28], and the references therein.

There are only a few results in the case of unperturbed NLS equations. For cubic
defocusing Schrödinger equations on bounded domains or manifolds, the existence of
unbounded trajectories in regular Sobolev spaces is a challenging open problem (see
Bourgain [13]). In different situations, existence of trajectories with arbitrarily large finite
growth has been shown by Kuksin [27], Colliander et al. [18], Guardia and Kaloshin [23],

1This follows immediately from the assumptions that V D 0 and 1 2 H0.
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and others. Hani et al. [24] prove the existence of unbounded trajectories in the case of
the cubic defocusing Schrödinger equation on the infinite cylinder R�Td . In the case of
the cubic Szegő equation on the circle, Gérard and Grellier [22] show that the trajectories
are generically unbounded in Sobolev spaces. Moreover, they exhibit the existence of a
family of solutions with superpolynomial growth.

Theorem C is proved by generalising the ideas of [30]. In this nonlinear case, the
main difficulties come from the weaker controllability properties of the equation and the
fact that the nonlinear equation is not necessarily well-posed in negative Sobolev spaces.
Let us give a brief and not entirely accurate description of the main ideas of the proof
of Theorem C. Starting from any initial point  0 2 H s , Theorem A allows appropriately
to increase the Sobolev norms of solutions by choosing the control. This, together with a
compactness argument and the assumption that the law of the process � is nondegenerate,
leads to a uniform estimate of the form

cM D sup
 02H s

P
°

sup
t2Œ0;1�

k .t/kH s �M
±
< 1

for any M > 0. Combining the latter with the Markov property, we show that

P
°

sup
t2Œ0;n�

k .t/kH s �M
±
� cnM

for any  0 2H s . Then, the Borel–Cantelli lemma implies that the norm of any trajectory
becomes almost surely larger than M in some random time that is almost surely finite.
As M is arbitrary, this proves the required result.

The paper is organised as follows. In Section 1, we discuss the local well-posedness
and some stability properties of the NLS equation. In Section 2, we formulate more gen-
eral versions of Theorems A and B and give their proofs. Section 3 is devoted to the
derivation of the limit (0.5). In Section 4, we establish a general criterion for the validity
of the saturation property. Finally, in Section 5, we prove Theorem C.

Notation. In what follows, we use the following notation.

� h�; �i is the Euclidian scalar product in Rq and k � k is the corresponding norm.

� H s D H s.Td IC/; s � 0 and Lp D Lp.Td IC/, p � 1, are the standard Sobolev and
Lebesgue spaces of functions f W Td ! C endowed with the norms k � ks and k � kLp .
The space L2 is endowed with the scalar product

hf; giL2 D

Z
Td
f .x/g.x/ dx:

� C s D C s.Td IC/ for s 2 N [ ¹1º is the space of s-times continuously differentiable
functions f W Td ! C.

� LetX be a Banach space. We denote byBX .a; r/ the closed ball of radius r > 0 centred
at a 2 X .

� We write JT instead of Œ0; T � and J instead of Œ0; 1�.
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� C.JT IX/ is the space of continuous functions f W JT ! X with the norm

kf kC.JT IX/ D max
t2JT
kf .t/kX :

� Lp.JT IX/; 1 � p <1, is the space of Borel-measurable functions f W JT ! X with

kf kLp.JT IX/ D

�Z T

0

kf .t/k
p
X dt

�1=p
<1:

� sd is the least integer strictly greater than d=2.

� 1 is the function identically equal to 1 on Td .

1. Preliminaries

In this section, we consider the NLS equation (0.1), where u is a deterministic Rq-valued
function and V W Td ! R and Q W Td ! Rq are arbitrary smooth functions. In what
follows, we shall always assume that the parameters d � 1, p � 1, and � 2R are arbitrary.
Here we formulate two propositions that will be used in the proofs of our main results.
The first one gathers some well-known facts about the local well-posedness and stability
of the NLS equation in regular Sobolev spaces.

Proposition 1.1. For any s > d=2, O 0 2 H s , and Ou 2 L2loc.RCIR
q/, there is a max-

imal time T D T . O 0; Ou/ > 0 and a unique solution O of the problem (0.1), (0.2)
with . 0; u/ D . O 0; Ou/ whose restriction to the interval JT belongs to C.JT IH s/ for
any T < T . If T <1, then k O .t/ks !1 as t ! T �. Furthermore, for any T < T ,
there are constants ı D ı.T;ƒ/ > 0 and C D C.T;ƒ/ > 0, where

ƒ D k O kC.JT IH s/ C k OukL2.JT IRq/;

such that the following properties hold:

(i) For any  0 2 H s and u 2 L2.JT IRq/ satisfying

k 0 � O 0ks C ku � OukL2.JT IRq/ < ı; (1.1)

the problem (0.1), (0.2) has a unique solution  2 C.JT IH s/:

(ii) Let R be the resolving operator for (0.1), i.e., the mapping taking a couple . 0; u/
satisfying (1.1) to the solution  . Then

kR. 0; u/ �R. O 0; Ou/kC.JT IH s/ � C.k 0 �
O 0ks C ku � OukL2.JT IRq//:

The proof of this proposition is rather standard, so we omit it (e.g., see [38, Sec-
tion 3.3] or [16, Section 4.10] for similar results). Let S be the unit sphere in L2. As the
functions V;Q, and u are real-valued, the solution  belongs to S throughout its lifespan
provided that  0 2 S \H s .
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Before formulating the second proposition, let us introduce some notation.
For any  0 2 H s and T > 0, let ‚. 0; T / be the set of functions u 2 L2.JT IRq/ such
that the problem (0.1), (0.2) has a solution in C.JT IH s/. By the previous proposition,
the set ‚. 0; T / is open in L2.JT IRq/. For any ' 2 C 1.Td IR/, let

B.'/.x/ D
dX
jD1

.@xj '.x//
2: (1.2)

The following asymptotic property plays a key role in this paper.

Proposition 1.2. For any integer s � sd ,  0 2 H s , u 2 Rq , and ' 2 C r .Td I R/,
where r D s C 2, there is a constant ı0 > 0 such that, for any ı 2 .0; ı0/, we have2

ı�1u 2 ‚.eiı
�1=2' 0; ı/ and

e�iı
�1=2'Rı.e

iı�1=2' 0; ı
�1u/! e�i.B.'/Chu;Qi/ 0 in H s as ı ! 0C: (1.3)

Here Rı is the restriction of the solution at time t D ı.

The proof of this proposition is postponed to Section 3. The limit (1.3) is a multiplica-
tive version of a limit established in [32, Proposition 2] in the case of parabolic PDEs with
additive controls.

2. Approximate controllability

In what follows, we assume that s � sd is an integer and denote r D s C 2 as in Proposi-
tion 1.2. We start this section with a definition of a saturation property inspired by [3,35].
Let H be a finite-dimensional subspace of C r .Td IR/, and let F .H/ be the largest sub-
space of C r .Td IR/ whose elements can be represented in the form

�0 �

nX
jD1

B.�j /

for some integer n� 1 and functions �j 2H , j D 0; : : : ;n, where B is given by (1.2). As B
is quadratic, F .H/ is well-defined and finite-dimensional. Let us define a nondecreasing
sequence ¹Hj º of finite-dimensional subspaces byH 0 DH andHj D F .Hj�1/, j � 1,
and denote

H1 D

1[
jD1

Hj : (2.1)

Definition 2.1. A finite-dimensional subspace H � C r .Td IR/ is said to be saturating
if H1 is dense in C r .Td IR/.

2For any vector u2Rq , with a slight abuse of notation, we denote by the same letter the constant
function equal to u.
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We assume that the following condition is satisfied:

(C1) The field Q D .Q1; : : : ;Qq/ is saturating, i.e., the subspace

H D span ¹Qj W j D 1; : : : ; qº

is saturating in the sense of Definition 2.1.

In this section, we prove the following result. As we will see below, it implies Theo-
rems A and B formulated in the Introduction.

Theorem 2.2. Assume that Condition (C1) is satisfied. Then for any ">0, ~>0, 02H s ,
and � 2C r .Td IR/, there is a time T 2 .0;~/ and a control u 2‚. 0;T /\C1.JT IRq/
such that

kRT . 0; u/ � e
i� 0ks < ": (2.2)

Proof. Using an induction argument in N , we show that the approximate controllability
property in this theorem is true for any � 2HN and N � 0. More precisely, we prove the
following property:

(PN ) For any � 2 HN and  0 2 H s , there is a family ¹u�º�>0 � L2.J1IRq/ such that
u� 2 ‚. 0; �/ for sufficiently small � > 0 and

R� . 0; u� /! ei� 0 in H s as � ! 0C: (2.3)

Combined with the saturation hypothesis, this leads to approximate controllability for
any � 2 C r .Td IR/.

Step 1. Case N D 0. Applying Proposition 1.2 with ' D 0 and u 2 Rq such that � D
�hu;Qi, we obtain

Rı. 0; ı
�1u/! ei� 0 in H s as ı ! 0C:

This implies (2.3) with � D ı and u� D ı�1u.

Step 2. CaseN � 1. We assume that Property (PN�1) is true. Let Q� 2HN be of the form

Q� D �0 �

nX
jD1

B.�j /;

where n � 1 and �j 2 HN�1, j D 0; : : : ; n. Applying Proposition 1.2 with ' D �1 and
u D 0, we get

e�iı
�1=2�1Rı.e

iı�1=2�1 0; 0/! e�iB.�1/ 0 in H s as ı ! 0C: (2.4)

The fact that �1 2 HN�1 and the induction hypothesis imply that, for any ı > 0, there
are families of controls ¹u1

�;ı
º � L2.J1IRq/ and ¹u2

�;ı
º � L2.J1IRq/ such that u1

�;ı
2

‚. 0; �/ and u2
�;ı
2 ‚.Rı.e

iı�1=2�1 0; 0/; �/ for sufficiently small � > 0 and

R� . 0; u
1
�;ı/! eiı

�1=2�1 0; (2.5)
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R� .Rı.e
iı�1=2�1 0; 0/; u

2
�;ı/! e�iı

�1=2�1Rı.e
iı�1=2�1 0; 0/ (2.6)

in H s as � ! 0C. Combining these controls and using Proposition 1.1, we construct a
new family ¹u1� º � L

2.J1IRq/ such that u1� 2 ‚. 0; �/ for sufficiently small � > 0 and

R� . 0; u
1
� /! e�iB.�1/ 0 in H s as � ! 0C:

Iterating this argument with �j 2 HN�1, j D 0; : : : ; n, we obtain a family ¹un� º �
L2.J1IRq/ such that un� 2 ‚. 0; �/ for small � > 0 and

R� . 0; u
n
� /! ei.�0�

Pn
jD1 B.�j // 0 D e

i Q� 0 in H s as � ! 0C:

As Q� 2 HN is arbitrary, this proves the required Property (PN ) for N .

Step 3. Conclusion. Finally, let � 2C r .Td IR/ be arbitrary. By the saturation hypothesis,
H1 is dense in C r .Td IR/. This implies that we can find N � 1 and Q� 2 HN such that

kei� 0 � e
i Q� 0ks < ":

Applying Property (PN ) for Q� 2HN , we find T 2 .0;~/ and u 2‚. 0; T / such that (2.2)
holds. Proposition 1.1 and a density argument show that we can take u 2 ‚. 0; T / \
C1.JT IRq/.

As a consequence of this result, we have the following two theorems.

Theorem 2.3. Under the conditions of Theorem 2.2, for any M > 0, ~ > 0, and nonzero
 0 2 H

s , there is a time T 2 .0; ~/ and a control u 2 ‚. 0; T / such that

kRT . 0; u/ks > M:

Proof. It suffices to apply Theorem 2.2 by choosing � 2 C r .Td IR/ such that

kei� 0ks > M:

To find such � , we take any �1 2 C r .Td IR/ satisfying kei�1 0k1 ¤ 0, put � D ��1 with
sufficiently large � > 0, and use the inequality k � k1 � k � ks :

Theorem 2.4. Assume that the conditions of Theorem 2.2 are satisfied and

1 2 span ¹Qj W j D 1; : : : ; qº and V D 0: (2.7)

Then, for any " > 0, l; m 2 Zd , � 2 C r .Td IR/, and T > 0, there is a control u 2
‚.�l ; T / \ C

1.JT IRq/ such that

kRT .�l ; u/ � e
i��mkL2 < ": (2.8)

Proof. Let us take any � 2 C r .Td IR/ and let �1 2 C r .Td IR/ be such that

kei�1�l � e
i��mkL2 < "=2: (2.9)



A. Duca, V. Nersesyan 10

Applying Theorem 2.2, we find a time T1 2 .0; T / and a control u1 2 ‚.�l ; T1/ such that

kRT1.�l ; u/ � e
i�1�lks < "=2: (2.10)

Combining this with (2.9), we arrive at

kRT1.�l ; u/ � e
i��mkL2 < ":

Now, notice that �l is a stationary solution of (0.1) corresponding to a control u0 2
L2loc.RCIR

q/ satisfying the relation

hu0.t/;Q.x/i D �jl j
2
� �.2�/�dp for any t � 0 and x 2 Td :

Such a choice of u0 is possible in view of assumption (2.7). Thus, u0 2 ‚.�l ; t / and
�l D Rt .�l ; u0/ for any t � 0. Setting

u.t/ D

´
u0.t/ for t 2 Œ0; T � T1�;

u1.t � T C T1/ for t 2 .T � T1; T �;

we get (2.8). Perturbing u, we obtain a control in ‚.�l ; T / \ C1.JT IRq/ that still sat-
isfies (2.8).

Remark 2.5. It is not clear how to generalise Theorem 2.4 to the case of theH s Sobolev
norm. It is tempting to try to choose �1.x/ D �.x/C hx;m � li in (2.10); however, the
function �1 is not periodic, so Theorem 2.2 cannot be applied.

Let us close this section with an example of a saturating subspace. Let I � Zd� be a
finite set and let

H D H.I/ D span ¹1; sin hx; ki; cos hx; ki W k 2 I º: (2.11)

Recall that I is a generator if any vector of Zd is a linear combination of vectors of I
with integer coefficients. We write m ? l when the vectors m; l 2 Rd are orthogonal and
m 6? l when they are not. The following proposition is proved in Section 4.

Proposition 2.6. The subspace H.I/ is saturating in the sense of Definition 2.1 if and
only if I is a generator and for any l; m 2 I , there are vectors ¹nj º�jD1 � I such that
l 6? n1, nj 6? njC1 for j D 1; : : : ; � � 1; and n� 6? m.

Clearly, the set K � Zd� defined by (0.3) satisfies the condition in this proposition.
Therefore, the subspace H.K/ is saturating, and Theorems A and B follow from Theo-
rems 2.2 and 2.4, respectively.

3. Proof of Proposition 1.2

Let us fix anyR > 0 and assume that  0 2H s , ' 2 C r .Td IR/, and u 2 Rq are such that

k 0ks C k'kC r C kukRq � R: (3.1)
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For any ı > 0, we denote �.t/ D e�iı
�1=2'Rt .e

iı�1=2' 0; ı
�1u/. According to Propo-

sition 1.1, �.t/ exists up to some maximal time T ı D T .eiı
�1=2' 0; ı

�1u/, and

keiı
�1=2'�.t/ks !1 as t ! T ı� if T ı <1.

We need to show that

(a) there is a constant ı0 > 0 such that T ı > ı for any ı < ı0;

(b) �.ı/! e�i.B.'/Chu;Qi/ 0 in H s as ı ! 0C.

To prove these properties, we introduce the functions

w.t/ D e�i.B.'/Chu;Qi/t ı0 ; v.t/ D �.ıt/ � w.t/; (3.2)

where  ı0 2 H
r is such that3

k ı0ks � C for ı � 1; (3.3)

k ı0kr � Cı
�1=4 for ı � 1; (3.4)

k 0 �  
ı
0ks ! 0 as ı ! 0C:

For example, we can define  ı0 by using the heat semigroup:  ı0 D eı
1=4� 0. In view

of (3.1)–(3.4), we have

kw.t/ks � C; t � 0; (3.5)

kw.t/kr � Cı
�1=4; t � 0: (3.6)

Furthermore, v.t/ is well-defined for t < ı�1T ı and satisfies the equation

i@tv D �ı�.v C w/C ıV .v C w/C ı�jv C wj
2p.v C w/

� iı1=2D.v C w; '/C B.'/v C hu;Qiv; (3.7)

and the initial condition
v.0/ D  0 �  

ı
0 ; (3.8)

where

D.v C w; '/ D .v C w/�' C 2
dX
jD1

@xj .v C w/@xj ':

Let ˛ D .˛1; : : : ; ˛d / 2 Nd be such that j˛j D j˛1j C � � � C j˛d j � s. We take the scalar
product of (3.7) with @2˛v in L2 and integrating by parts, we obtain

@tk@
˛vk2

L2
� C

�
ıjh�w; @2˛viL2 j C ıjhV.v C w/; @

2˛viL2 j

C ıjhjv C wj2p.v C w/; @2˛viL2 j C ı
1=2
jhD.v C w; '/; @2˛viL2 j

C jhB.'/v C hu;Qiv; @2˛viL2 j
�
D

5X
jD1

Ij : (3.9)

3In what follows, C denotes positive constants which may change from line to line. These
constants depend on the parameters R; V;Q; �; p; d; s, but not on ı.
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We estimate the terms I1; I2; I3; and I5 by integrating by parts and by using (3.1), (3.5),
and (3.6):

jI1j � Cıkwkrkvks � Cı
3=4
kvks;

jI2j � Cıkv C wkskvks � Cıkvk
2
s C Cıkvks;

jI3j � Cıkv C wk
2pC1
s kvks � Cıkvk

2.pC1/
s C Cıkvks;

jI5j � Ckvk
2
s :

We estimate I4 as follows:

jI4j � Cı
1=2
kvk2s C Cı

1=2
kwksC1kvks � Cı

1=2
kvk2s C Cı

1=4
kvks :

In the last relation, we have used again integration by parts, the identities (3.1), (3.5) and
(3.6), and the equality

h@xj '@xj @
˛v; @˛viL2 D

1
2
h@xj '; @xj j@

˛vj2iL2 D �h@
2
xj
'; j@˛vj2iL2 :

Summing up inequalities (3.9) for all ˛ 2Nd , j˛j � s, combining the resulting inequality
with the estimates for Ij and the Young inequality, and recalling that ı � 1, we obtain

@tkvk
2
s � Cı

1=2
C C.1C ı1=2/kvk2s C Cıkvk

2.pC1/
s ; t � ı�1T ı :

This inequality, together with (3.8) and the Gronwall inequality, implies that

kv.t/k2s � e
C.1Cı1=2/t

�
Cı1=2t C k 0 �  

ı
0k
2
s C Cı

Z t

0

kv.y/k2.pC1/s dy
�

(3.10)

for t � ı�1T ı . Let us take ı0 2 .0; 1/ so small that, for ı < ı0,

k 0 �  
ı
0k
2
s < 1; (3.11)

eC.1Cı
1=2/.Cı1=2 C k 0 �  

ı
0k
2
s / < 1=2; (3.12)

and denote
�ı D sup ¹t < ı�1T ı W kv.t/ks < 1º:

From (3.8) and (3.11) it follows that �ı > 0 for ı < ı0. Let us show that �ı > 1 provided
that

ı0 < .2Ce
2C /�1: (3.13)

Assume, to reach a contradiction, that �ı � 1. Let t D �ı in (3.10). By using (3.12)
and (3.13), we obtain

1 D kv.�ı/k2s <
1

2
C
1

2

Z �ı

0

kv.y/k2.pC1/s dy � 1:

This contradiction shows that �ı > 1 for ı < ı0, hence also 1 < ı�1T ı . Thus, property
(a) is proved. Taking t D 1 in (3.10), we arrive at

kv.1/k2s � e
C.1Cı1=2/.Cı1=2 C k 0 �  

ı
0k
2
s C Cı/! 0 as ı ! 0C:

This implies (b) and completes the proof.
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4. Saturating subspaces

Proof of Proposition 2.6. The proof is divided into four steps.

Step 1. First, let us assume that I � Zd� is an arbitrary finite set, H 0.I / D H.I/ is
the subspace defied by (2.11), Hj .I / D F .Hj�1.I // for j � 1, and H1.I / is defined
by (2.1).

Step 1.1. Let us show that, if

cos hx;mi; sin hx;mi 2 H1.I / for some m 2 Zd� ;

then
B.cos hx;mi/; B.sin hx;mi/ 2 H1.I /:

Indeed, assume that

cos hx;mi; sin hx;mi 2 HN .I / for some N � 0: (4.1)

The equalities

cos hx; 2mi D 1 �
2

jmj2
B.cos hx;mi/ D

2

jmj2
B.sin hx;mi/ � 1; (4.2)

the assumptions 1 2 H.I/ and (4.1), and the definition of F imply that

cos hx; 2mi 2 HNC1.I /: (4.3)

As a consequence of (4.2) and (4.3), we have

B.cos hx;mi/ D
jmj2

2
.1 � cos hx; 2mi/ 2 HNC1.I /;

B.sin hx;mi/ D
jmj2

2
.1C cos hx; 2mi/ 2 HNC1.I /;

which implies the required result.

Step 1.2. Let us show that, if

cos hx;mi; sin hx;mi; cos hx; li; sin hx; li 2 H1.I /

for some m; l 2 Zd� such that m 6? l , then

cos hx;mC li; sin hx;mC li 2 H1.I /:

Indeed, this follows immediately from the equalities

cos hx;mC li D ˙
1

hm; li

�
B.sin hx;mi ˙ sin hx; li/C B.cos hx;mi � cos hx; li/

� B.sin hx;mi/ � B.sin hx; li/ � B.cos hx;mi/ � B.cos hx; li/
�
;

sin hx;mC li D ˙
1

hm; li

�
B.sin hx;mi � cos hx; li/C B.cos hx;mi � sin hx; li/

� B.sin hx;mi/ � B.sin hx; li/ � B.cos hx;mi/ � B.cos hx; li/
�

and the result of Step 1.1.
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Step 2. Now, let us suppose that I � Zd� is a finite set such that, for any l; m 2 I , there
are vectors ¹nj º�jD1 � I satisfying l 6? n1, nj 6? njC1 for j D 1; : : : ; � � 1; and n� 6?m.
Let N D card.I / and I D ¹m1; : : : ; mN º. Arguing by induction on N , we show in this
step that

cos hx; a1m1 C � � � C aNmN i; sin hx; a1m1 C � � � C aNmN i 2 H1.I / (4.4)

for any a1; : : : ; aN 2 Z.

Step 2.1. Let I D ¹m1; m2º � Zd� with m1 6? m2. By the result of Step 1.2, we have

cos hx; a1m1i; sin hx; a1m1i; cos hx; a2m2i; sin hx; a2m2i 2 H1.I /

for any a1; a2 2 Z. Again, in view of Step 1.2, this implies that

cos hx; a1m1 C a2m2i; sin hx; a1m1 C a2m2i 2 H1.I /

for any a1; a2 2 Z.

Step 2.2. Assume that the required property is true if the cardinality of the set I is less
than or equal to N � 1. Let I � Zd� be such that N D card.I / and I D ¹m1; : : : ; mN º.
Without loss of generality, we can assume mN�1 6? mN and the set ¹m1; : : : ;mN�1º sat-
isfies the condition formulated at the beginning of Step 2. Let us take any a1; : : : ; aN 2 Z
and k � 1 and write

a1m1 C � � � C aNmN D .a1m1 C � � � C aN�2mN�2 C .aN�1 � k/mN�1/

C .kmN�1 C aNmN /: (4.5)

Then

ha1m1 C � � � C .aN�1 � k/mN�1; kmN�1 C aNmN i D .aN�1 � k/kkmN�1k
2

CO.k/ as k !1.

As mN�1 ¤ 0, for sufficiently large k � 1 we have

a1m1 C � � � C aN�2mN�2 C .aN�1 � k/mN�1 6? kmN�1 C aNmN : (4.6)

Relation (4.4) is proved by combining (4.5) and (4.6), the induction hypothesis, and the
assumption that mN�1 6? mN .

Step 3. We conclude from Step 2 that, if I � Zd� is a set satisfying the conditions of
Proposition 2.6, then

cos hx;mi; sin hx;mi 2 H1.I / for any m 2 Zd� .

This implies thatH1.I / is dense in C r .Td IR/ for any r � 0, henceH.I/ is saturating.

Step 4. Finally, let us assume that the conditions of the proposition are not satisfied
for I � Zd� . We distinguish between two cases.
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Step 4.1. If I is not a generator, we can find a vector n 2 Zd� which does not belong to
the set QI of linear combinations of vectors of I with integer coefficients. It is easy to see
that

H1.I / � span ¹sinhx;mi; cos hx;mi W m 2 QI º:

Thus, the functions sin hx; ni and cos hx; ni are orthogonal to the vector space H1.I /
in the Sobolev spaces H j .Td IR/ for any j � 0. We conclude that H1.I / is not dense
in C r .Td IR/, thus the subspace H.I/ is not saturating.

Step 4.2. If I does not satisfy the second condition in the theorem, then it is of the form

I D

k[
jD1

¹m
j
1 ; : : : ; m

j
nj
º;

where k � 2 and mj1i1 ? m
j2
i2

for any integers 1 � j1 < j2 � k; 1 � i1 � nj1 ; and 1 �
i2 � nj2 . Using the arguments of Steps 1 and 2, it is easy to verify that the function
cos hx; mj11 C m

j2
2 i is orthogonal to H1.I / in H j .Td IR/ for any j � 0. Thus, the

space H1.I / is not dense in C r .Td IR/.

5. Growth of Sobolev norms

Let us consider the NLS equation

i@t D �� C V.x/ C �j j
2p C h�.t/;Q.x/i ; (5.1)

 .0/ D  0 (5.2)

with potential V and parameters d; p; � as in the previous sections. We assume that the
field Q satisfies Condition (C1) and � is a random process of the form (0.6) with the
following condition satisfied for the random variables ¹�kº. We denote J D Œ0; 1� and
E D L2.J IRq/.

(C2) ¹�kº are independent random variables in E with common law ` such thatZ
E

kyk2E `. dy/ <1 and supp ` D E:

For example, this condition is satisfied if the random variables ¹�kº are of the form

�k.t/ D

1X
jD1

bj �jkej .t/; t 2 J;

where ¹bj º are nonzero real numbers satisfying
P1
jD1 b

2
j <1; ¹ej º is an orthonormal

basis in E, and ¹�jkº are independent real-valued random variables. Furthermore, the law
of �jk should be assumed to have a continuous density �j with respect to the Lebesgue
measure such thatZ 1

�1

x2�j .x/ dx D 1; �j .x/ > 0 for all x 2 R and j � 1.
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By Proposition 1.1, the problem (5.1), (5.2) is locally well-posed in H s for any
s > d=2 up to some (random) maximal time T D T . 0; �/ > 0. Let P 0 be the probability
measure corresponding to the trajectories issued from  0 (e.g., see [26, Section 1.3.1]).
Recall that S is the unit sphere in L2.

Theorem 5.1. Under the Conditions (C1) and (C2), for any s > sd and any 0 2H s \ S ,
we have

P 0

°
lim sup
t!T�

k .t/ks D1
±
D 1: (5.3)

By the blow-up alternative, equality (5.3) gives new information in the case
T . 0; �/ D1:

Proof. Step 1. Reduction. Together with (5.1), let us consider the following truncated NLS
equation:

i@t D �� C V.x/ C ��R.k ks/j j
2p C h�.t/;Q.x/i ; (5.4)

where R > 0 and �R 2 C10 .R/ is such that 0 � �R.x/ � 1 for x 2 R and �R.x/ D 1
for jxj � R. Let F k , k � 1, be the � -algebra generated by the family ¹�j ºkjD1. The prob-
lem (5.4), (5.2) is globally well-posed. The following proposition is proved at the end of
this section.

Proposition 5.2. For any  0 2 H s and R > 0, the problem (5.4), (5.2) has a unique
solution  R 2 C.RCIH s/. Moreover, for any 0 2 C.J IH

s/, define a C.J IH s/-valued
process  Rk by

 R0 D  0;  Rk D  
R.k � 1C �/jJ ; k � 1; (5.5)

where  R.�/ is the solution of (5.4), (5.2) with  0 D  R0 .1/. Then the process  Rk is
Markov with respect to the filtration F k .

Let us fix any 0 < M < R and consider the stopping time

�M;R D min ¹k � 0 W k Rk kC.J IH s/ > M º;  0 2 C.J IH
s/;

where the minimum over an empty set is1. Assume we have shown that

P 0¹�M;R <1º D 1;  0 2 C.J IH
s
\ S/: (5.6)

Since R > M , this implies that

P 0¹�M <1º D 1;  0 2 H
s
\ S; (5.7)

where
�M D min

°
k � 0 W sup

t2J; kCt<T

k .k C t /ks > M
±

and again the minimum over an empty set is1. As M > 0 is arbitrary, we conclude that
(5.3) holds.
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Step 2. Proof of (5.6). Assume that

c D c.M;R/ D sup
 02C.J IH

s\S/

P 0¹�M;R � 1º < 1: (5.8)

Combining this with the Markov property, we obtain

P 0¹�M;R � nº D E 0.I¹�M;R�n�1ºP�¹�M;R � 1ºj�D R
n�1
/

� c P 0¹�M;R � n � 1º;

where E 0 is the expectation corresponding to P 0 . Iterating this inequality, we get

P 0¹�M;R � nº � c
n:

This, together with the Borel–Cantelli lemma, implies (5.6).

Step 3. Proof of (5.8). By Theorem 2.3, for any  0 2 H sd \ S , there is a control u 2 E
such that

sup
t2J; t<T

k .t/ksd > M: (5.9)

On the other hand, Condition (C2) implies that

P¹ku � �kE < ıº > 0

for any ı > 0. Combining this with Proposition 1.1 and inequality (5.9), we see that there
is a number ı > 0 such that

inf
 0
0
2B
H
sd . 0;ı/\S

P 0
0

°
sup

t2J; t<T 0
k .t/ksd > M

±
> 0;

where T 0 D T . 00; �/. As R > M , we also have

inf
 0
0
2B
H
sd . 0;ı/\S

P 0
0

°
sup
t2J

k R.t/ksd > M
±
> 0:

Since the ball BH s .0;M/ is compact in H sd and k � ksd � k � ks , we derive

inf
 02BHs .0;M/\S

P 0

°
sup
t2J

k R.t/ks > M
±
> 0:

The latter and the fact that

P 0¹�M;R D 0º D 1 if k 0kC.J IH s\S/ > M

imply (5.8). This completes the proof of the theorem.

Proof of Proposition 5.2. The local well-posedness of (5.4), (5.2) is proved by standard
arguments. As the H s-norm of the solution remains bounded on any bounded time inter-
val, the solution can be extended to any t > 0. For any k � 1 and  0 2 C.J IH

s/,
let  Rk . 0; �1; : : : ; �k/ be the C.J IH s/-valued process defined by (5.5). Let us show
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that it is Markov. Indeed, we have

 RkCn. 0; �1; : : : ; �kCn/ D  
R
n . 

R
k . 0; �1; : : : ; �k/; �kC1; : : : ; �kCn/:

As ¹�j ºj�kC1 is independent of F k and  Rk is F k-measurable, the following equality
holds:

E
�
f . RkCn. 0; �1; : : : ; �kCn//

ˇ̌
F k
�

D .Ef . Rn . ; �kC1; : : : ; �kCn///j D Rk . 0;�1;:::;�k/
(5.10)

for any bounded measurable function f W C.J IH s/ ! R. The vectors .�1; : : : ; �n/
and .�kC1; : : : ; �kCn/ have the same law, so

Ef . Rn . ; �kC1; : : : ; �kCn// D Ef . Rn . ; �1; : : : ; �n//:

Combining this and (5.10), we arrive at the required result.
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