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Abstract. The crowning achievement of this paper is the proof that round spheres are the only
complete, simply-connected surfaces embedded in R3 with nonzero constant mean curvature. Fun-
damental to this proof are new results including the existence of intrinsic curvature and radius
estimates for compact disks embedded in R3 with nonzero constant mean curvature. We also prove
curvature estimates for compact annuli embedded in R3 with nonzero constant mean curvature and
apply them to obtain deep results on the global geometry of complete surfaces of finite topology
embedded in R3 with constant mean curvature.
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1. Introduction

A longstanding problem in classical surface theory is to classify the complete, simply-
connected surfaces embedded in R3 with constant mean curvature. In the case the surface
is simply-connected and compact, this classification follows by work of either Hopf [15]
in 1951 or of Alexandrov [1] in 1956, who gave different proofs that a round sphere is the
only possibility.

In this paper we will prove that a complete, embedded simply-connected surface in R3

with nonzero constant mean curvature must be compact, which by Hopf’s or Alexandrov’s
theorem gives the next classification result.

Theorem 1.1. Complete, simply-connected surfaces embedded in R3 with nonzero con-
stant mean curvature are round spheres.

Theorem 1.1, together with results of Colding and Minicozzi [11] and Meeks and
Rosenberg [23] that show that the complete, simply-connected minimal surfaces embed-
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ded in R3 are planes and helicoids, finishes the classification of complete simply-con-
nected surfaces embedded in R3 with constant mean curvature.

In Section 2 we explain how the results in [26,28,30,31] lead to the following intrinsic
radius and curvature estimates for embedded disks in R3 with nonzero constant mean cur-
vature, where the radius of a compact Riemannian surface with boundary is the maximum
intrinsic distance of points in the surface to its boundary.

Theorem 1.2 (Radius estimates). There exists an R � � such that any compact disk
embedded in R3 of constant mean curvature H > 0 has radius less than R=H .

Theorem 1.3 (Curvature estimates). Given ı;H > 0, there existsK.ı;H / �
p
2H such

that any compact diskM embedded in R3 with constant mean curvatureH �H satisfies

sup
¹p2M jdM .p;@M/�ıº

jAM j � K.ı;H /;

where jAM j is the norm of the second fundamental form and dM is the intrinsic distance
function of M .

The radius estimate in Theorem 1.2 implies that a complete, simply-connected surface
embedded in R3 with nonzero constant mean curvature is compact. In this way Theo-
rem 1.1 follows from Theorem 1.2 and Hopf’s or Alexandrov’s theorem.

We wish to emphasize to the reader that the curvature estimates for embedded constant
mean curvature disks given in Theorem 1.3 depend only on the lower positive bound H

for their mean curvature. Other important examples of curvature estimates for constant
mean curvature surfaces, assuming certain geometric conditions, can be found in the lit-
erature; see for instance [3, 4, 6, 10, 11, 38–41, 45, 46].

Our investigation here is inspired by the pioneering work of Colding and Minicozzi
in the minimal case [7–10]; however, in the constant positive mean curvature setting our
work leads to the existence of radius and curvature estimates. Since the plane and the heli-
coid are complete simply-connected minimal surfaces properly embedded in R3, a radius
estimate does not hold in the minimal case. Moreover, rescalings of a helicoid give rise to
a sequence of embedded minimal disks with arbitrarily large norms of their second fun-
damental forms at points that can be arbitrarily far from their boundary curves; therefore
in the minimal setting, curvature estimates do not hold either.

For clarity of exposition, we will call an oriented surface M immersed in R3 an
H -surface if it is embedded, connected and it has positive constant mean curvature H .
We will call an H -surface an H -disk if the H -surface is homeomorphic to a closed disk
in the Euclidean plane.

The next corollary is an immediate consequence of Theorem 1.3.

Corollary 1.4. If M is a complete H -surface with positive injectivity radius r0, then

sup
M

jAM j � K.r0;H/:

Since there exists an " > 0 such that for any C > 0, every complete immersed sur-
face † in R3 with sup† jA†j < C has injectivity radius greater than "=C , Corollary 1.4
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implies that a necessary and sufficient condition for an H -surface to have bounded norm
of the second fundamental form is that it has positive injectivity radius.

Corollary 1.5. A complete H -surface has positive injectivity radius if and only if it has
bounded norm of the second fundamental form.

As complete H -surfaces of bounded norm of the second fundamental form are prop-
erly embedded in R3 by [24, Theorem 6.1], Corollary 1.4 implies the next result.

Corollary 1.6. A complete H -surface with positive injectivity radius is properly embed-
ded in R3.

In Section 3 we obtain curvature estimates for H -surfaces that are annuli; these esti-
mates are analogous to the curvature estimates in Theorem 1.3 forH -disks but necessarily
must also depend on the flux (see Definitions 3.2 and 3.3) of a given annulus. We then
apply these new curvature estimates to prove Theorem 1.7 below on the properness of
complete H -surfaces of finite topology.

Theorem 1.7. A complete H -surface with smooth compact boundary .possibly empty/
and finite topology has bounded norm of the second fundamental form and is properly
embedded in R3.

Earlier, as the main result in [11], Colding and Minicozzi proved the similar theorem
that complete minimal surfaces of finite topology embedded in R3 are proper, thereby
solving the classical Calabi–Yau problem in the minimal setting.

Theorem 1.7 shows that certain classical results forH -surfaces hold when the hypoth-
esis of “properly embedded” is replaced by the weaker hypothesis of “complete and
embedded.” For instance, in the seminal paper [17], Korevaar, Kusner and Solomon
proved that the ends of a properly embedded H -surface of finite topology in R3 are
asymptotic to the ends of surfaces of revolution defined by Delaunay [14] in 1841, and
that if such a surface has exactly two ends, then it must be a Delaunay surface. Earlier
Meeks [19] proved that a properly embedded H -surface of finite topology in R3 can-
not have exactly one end. In particular, this last result together with Theorem 1.7 gives
a generalization of Theorem 1.1; namely, a complete H -surface of finite topology can-
not have exactly one end, and so, if the H -surface is simply-connected, then it must be
compact.

The theory developed in this article also provides key tools for understanding the
geometry of H -disks in a Riemannian three-manifold, especially when the manifold is
locally homogeneous. These generalizations and applications are work in progress [33].
See [27] for applications of the present paper to obtain area estimates for closed
H -surfaces of fixed genus embedded in a flat 3-torus; see [12, 13, 37] for examples
that demonstrate that Theorem 1.7 does not hold in the hyperbolic 3-space H3 when
H 2 Œ0; 1/ and in the Riemannian product H2 �R whenH 2 Œ0; 1=2/. In contrast to these
aforementioned nonproperness results, we will show in [35] that complete H -surfaces
of finite topology in complete hyperbolic three-manifolds must be proper whenever
H � 1.
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2. The intrinsic curvature and radius estimates

In [28] we proved the following extrinsic curvature and radius estimates for compact disks
embedded in R3 with constant mean curvature.

Theorem 2.1 (Extrinsic curvature estimates). Given ı;H > 0, there exists a constant
K0.ı;H / such that for any H -disk D with H � H ,

sup
¹p2D jdR3 .p;@D/�ıº

jAD j � K0.ı;H /:

Theorem 2.2 (Extrinsic radius estimates). There exists a constant R0 > 0 such that any
H -disk D has extrinsic radius less than R0=H . In other words, for any point p 2 D ,

dR3.p; @D/ < R0=H:

Thus, Theorems 1.2 and 1.3 are immediate consequences of a chord-arc type result
from [26], namely Theorem 2.4 below, and Theorems 2.2 and 2.1.

Definition 2.3. Given a point p on a compact surface † � R3, †.p; R/ denotes the
closure of the component of † \ B.p;R/ passing through p, where B.p;R/ denotes the
extrinsic open ball in R3 of radius R centered at p.

Theorem 2.4 (Weak chord arc property). There exists a ı1 2 .0; 1=2/ such that the fol-
lowing holds. Let † be an H -disk in R3: Then for all closed intrinsic balls xB†.x; R/ in
† � @†,

(1) †.x; ı1R/ is a disk with piecewise smooth boundary @†.x; ı1R/ � @B.x; ı1R/;

(2) †.x; ı1R/ � B†.x;R=2/:

We begin by applying Theorem 2.4 to prove the intrinsic radius estimate.

Proof of Theorem 1.2. Without loss of generality, fixH D 1. Arguing by contradiction, if
the radius estimates were false, then for each n2N, there would exist a 1-disk†n contain-
ing an intrinsic closed ball xB†.E0;n/�†n n @†n. Theorem 2.4 implies thatB†.E0;n/�†n
contains a 1-disk centered at E0 of extrinsic radius ı1n. For n large enough, the existence
of such a 1-disk contradicts the extrinsic radius estimate and completes the proof of The-
orem 1.2.

We next prove the intrinsic curvature estimate.

Proof of Theorem 1.3. Let " D ı1ı, where ı1 2 .0; 1=2/ is given in Theorem 2.4, and let
K.ı;H / WD K0.";H /, where K0.";H / is given in Theorem 2.1. Let D be an H -disk
withH �H and let p 2D be a point with dD.p; @D/ � ı. By Theorem 2.4, the closure
of the component E of D \ B.p; "/ containing p is an H -disk in the interior of D with
@E � @B.p; "/. By Theorem 2.1,

jAE j.p/ � K0.";H / D K.ı;H /:

This completes the proof of Theorem 1.3.
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3. Curvature estimates for H -annuli and properness of H -surfaces with finite
topology

A classical conjecture in the global theory of minimal surfaces, first stated by Calabi in
1965 [5] and later revisited by Yau [47, 48], is the following:

Conjecture 3.1 (Calabi–Yau conjecture). There do not exist complete immersed minimal
surfaces in a bounded domain in R3.

Based on earlier work of Jorge and Xavier [16], Nadirashvili [36] proved the existence
of a complete, bounded, immersed minimal surface in R3, thereby disproving the above
conjecture. In contrast to these results, Colding and Minicozzi proved in [11] that com-
plete, finite topology minimal surfaces embedded in R3 are proper. Thus, the Calabi–Yau
conjecture holds in the classical setting of complete, embedded, finite topology minimal
surfaces.

In this section we will apply Proposition 3.4 below to obtain Theorem 1.7, a result
that generalizes the properness result of Colding and Minicozzi for embedded minimal
surfaces of finite topology to the setting of H -surfaces.

Recall the definition of flux of a 1-cycle in an H -surface; see for instance [17, 18, 42]
for further discussion of this invariant, specifically [42, Section 4] for the next definition.

Definition 3.2. Let  be a piecewise-smooth 1-cycle in an H -surface M . The flux vector
of  is

R

.H C �/ � P , where � is the unit normal to M along  and  is parameterized

by arc length.

The flux is a homological invariant and we say that M has zero flux if the flux vector
of any 1-cycle inM is zero; in particular, since the first homology group of a disk is zero,
the flux of an H -disk is zero.

Definition 3.3. Let E be an H -annulus. The flux F.E/ of E is the length of the flux
vector of either generator of the first homology group of E.

The next proposition implies that given a compact 1-annulus with a fixed positive (or
zero) flux, and given ı > 0, the injectivity radius function on this annulus is bounded away
from zero at points of distance greater than ı from its boundary.

Proposition 3.4. Given � > 0 and ı 2 .0; 1/ there exists a positive constant I0.�; ı/ such
that if E is a compact 1-annulus with F.E/ � � or with F.E/ D 0, then

inf
¹p2E j dE .p;@E/�ıº

IE � I0.�; ı/;

where IE WE ! Œ0;1/ is the injectivity radius function of E.

Proof. Arguing by contradiction, suppose there exist a � > 0 and a sequence E.n/ of
compact 1-annuli satisfying F.E.n// � � > 0 or F.E.n// D 0, with injectivity radius
functions InWE.n/! Œ0;1/ and points p.n/ in ¹q 2 E.n/ j dE.n/.q; @E.n// � ıº with

In.p.n// � 1=n:
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We next use the fact that the injectivity radius function on a complete Riemannian
manifold with boundary is continuous. For each p.n/ defined above consider a point
q.n/2 xBE.n/.p.n/;ı=2/where the following positive continuous function attains its max-
imum value:

f W xBE.n/.p.n/; ı=2/! .0;1/;

f .x/ D
dE.n/.x; @ xBE.n/.p.n/; ı=2//

In.x/
:

Let r.n/ D 1
2
dE.n/.q.n/; @ xBE.n/.p.n/; ı=2// and note that

ı=2

In.q.n//
�

2r.n/

In.q.n//
D f .q.n// � f .p.n// � nı=2:

Moreover, if x 2 xBE.n/.q.n/; r.n//, then by the triangle inequality,

r.n/

In.x/
�
dE.n/.x; @ xBE.n/.p.n/; ı=2//

In.x/
D f .x/ � f .q.n// D

2r.n/

In.q.n//
:

Therefore, for n large the Hn-surfaces

M.n/ D
1

In.q.n//
Œ xBE.n/.q.n/; r.n// � q.n/�;

with Hn D In.q.n//, satisfy the following conditions:

� IM.n/.E0/ D 1;

� dM.n/.E0; @M.n// � nı=4;

� IM.n/.x/ � 1=2 for any x 2 xBM.n/.E0; nı=4/.

By [26, Theorem 3.2], for any k 2 N, there exists an n.k/ 2 N such that the closure
of the component �.n.k// of M.n.k// \ B.k/ containing the origin is a compact Hn.k/-
surface with boundary in @B.k/ and the injectivity radius function of�.n.k// restricted to
points in �.n.k// \ B.k � 1=2/ is at least 1=2. By [29, Theorem 1.3], for k sufficiently
large, �.n.k// contains a simple closed curve �.n.k// with the length of its nonzero
flux vector bounded from above by some constant C > 0. Since the curves �.n.k// are
rescalings of simple closed curves z�.n.k// � E.n.k//, the z�.n.k// are simple closed
curves with nonzero flux. Hence these simple closed curves are generators of the first
homology group of the annuli E.n.k//. This immediately gives a contradiction in the
case that F.E.n.k/// D 0. If F.E.n.k/// � � > 0, we have

C � jF.�.n.k///j D

ˇ̌̌̌
F

�
1

In.k/.q.n.k///
z�.n.k//

�ˇ̌̌̌
D
jF.z�.n.k///j

In.k/.q.n.k///

D
F.E.n.k///

In.k/.q.n.k///
�

�

In.k/.q.n.k///
� �n.k/:

These inequalities lead to a contradiction for n.k/ > C=�, which completes the proof of
the proposition.
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An immediate consequence of Proposition 3.4 and the intrinsic curvature estimates
for H -disks is the following result.

Corollary 3.5. Given � > 0 and ı 2 .0; 1/ there exists a positive constant A0.�; ı/ such
that if E is a compact 1-annulus with F.E/ � � or with F.E/ D 0, then

sup
¹p2E jdE .p;@E/�ıº

jAE j � A0.�; ı/:

When M has finite topology, the flux of each of its finitely many annular ends is
either zero or bounded away from zero by a fixed positive number. Thus, Proposition 3.4
implies that the injectivity radius function of M is positive, and so the norm of its second
fundamental form is bounded by Theorem 1.3. The next corollary is a consequence of
this last property and the fact that a complete nonflat H -surface of bounded norm of the
second fundamental form is properly embedded in R3; see [24, Theorem 6.1] or [25,
Corollary 2.5 (1)] for this properness result.

Corollary 3.6. A complete surface M with finite topology embedded in R3 with nonzero
constant mean curvature has bounded norm of the second fundamental form and is prop-
erly embedded in R3.

Remark 3.7. With slight modifications, the proof of the above corollary generalizes to
the case where the H -surface M above is allowed to have smooth compact boundary.
Thus, Theorem 1.7 holds as well.

4. Generalizations and open problems

Corollary 3.6 motivates Conjecture 4.1 below concerning the properness and at most cubi-
cal area growth estimates for complete H -surfaces M embedded in R3 with finite genus
and constant mean curvature.

Conjecture 4.1. A complete connected surface M of finite genus embedded in R3 with
constant mean curvature has at most cubical area growth in the sense that such an M has
area less than CR3 in ambient balls of radius R � 1 for some C depending on M . In
particular, every such surface is properly embedded in R3.

Conjecture 4.1 holds for complete, nonflat H -surfaces embedded in R3 with a count-
able number of ends and finite genus. In the case of minimal surfaces this cubical volume
growth result follows from the properness of such minimal surfaces (by Meeks, Perez
and Ros [22]), because properly embedded minimal surfaces in R3 of finite genus have
bounded norm of the second fundamental form (by Meeks, Perez and Ros [20]) and
because connected, properly embedded minimal surfaces in R3 with bounded norm of
the second fundamental form have at most cubical volume growth (by Meeks and Rosen-
berg [24]). In the case of 1-surfaces this cubical area growth result follows from [29],
where we prove that 1-surfaces embedded in R3 with a countable number of ends and
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finite genus are proper and, secondly, any properly embedded 1-surface in R3 with a uni-
form estimate on its genus in ambient balls of any fixed radius have at most cubical area
growth. These last results in [29] are based on a general structure theorem for compact
1-surfaces in R3 with boundary curves on the boundary of balls in R3, and the proof of
this general structure theorem depends on the main results mentioned in the introduction
of the present paper.

Many of the results in this paper can be generalized to the Riemannian three-manifold
setting. In [33], we will prove the existence of intrinsic curvature estimates for .H > 0/-
disks in complete locally homogeneous three-manifolds, a result that generalizes Theo-
rem 1.3. As in the present paper, the existence of these universal curvature estimates plays
an essential role in understanding global properties of H -surfaces of locally bounded
genus in Riemannian three-manifolds. For other important applications see our forthcom-
ing papers [32–35].
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