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Abstract. We adapt the work of Jabin and Wang (2018) to show the first result of uniform in time
propagation of chaos for a class of singular interaction kernels. In particular, our models contain the
Biot–Savart kernel on the torus and thus the 2D vortex model.
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1. Introduction

1.1. Framework

Our main subject is the convergence of the law of a stochastic particle system with mean
field singular interactions towards its non-linear limit. More precisely, we will establish
the first quantitative bounds on the distance in the number of particles uniformly in time.
Let K W Td ! Rd be an interaction kernel on the d -dimensional (d � 2) 1-periodic
torus Td (represented as Œ�1=2; 1=2�d ), on which we will specify some assumptions
later. In this paper, we consider the non-linear stochastic differential equation of McKean–
Vlasov type ´

dXt D
p
2 dBt CK � N�t .Xt /dt;

N�t D density of Law.Xt /;
(1.1)

where Xt 2 Td , .Bt /t�0 is a d -dimensional Brownian motion and

f � g.x/ D

Z
Td

f .x � y/g.y/ dy
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stands for the convolution operation on the torus. The density N�t satisfies

@t N�t D �r � . N�t .K � N�t //C� N�t : (1.2)

In other words, the non-linear equation (1.2) has the following natural probabilistic inter-
pretation: the solution N�t is the density of the law at time t of the Td -valued process
.Xt /t�0 evolving according to (1.1). As we understand (1.1) to be the motion of a particle
interacting with its own law, (1.2) thus describes the dynamic of a cloud of charged par-
ticles (where .Xt /t�0 would be one particle). In particular, it is of importance in plasma
physics [31]. We also consider the associated system of particles, describing the motion
of N particles interacting with one another through the interaction kernel K:

dX it D
p
2 dB it C

1

N

NX
jD1

K.X it �X
j
t /dt; (1.3)

where X it 2 Td is the position at time t of the i -th particle, and .B it ; 1 � i � N/ are
independent Brownian motions in Td . We assume that .X i0/iD1;:::;N are exchangeable,
i.e. have a law which is invariant under permutation of the particles, so that this property
is true for all times. We denote by �N the density of the law of the system of particles,
formally satisfying

@t�N D �

NX
iD1

rxi
�

��
1

N

NX
jD1

K.xi � xj /

�
�N

�
C

NX
iD1

�xi
�N : (1.4)

We define �kN to be the density of the law of the first k marginals of theN -particle system,

�kN .t; x1; : : : ; xk/ D

Z
T .N�k/d

�N .t; x1; : : : ; xN / dxkC1 : : : dxN ;

which is also, thanks to the exchangeability of particles, the density of the law of any k
marginals. More precisely, in this work, we focus on equation (1.4) and we will not
address the question of well-posedness of the stochastic equation (1.3).

Here, although we will consider general assumptions on K, the main example moti-
vating our work is the singular interaction kernel known as the Biot–Savart kernel, defined
in R2 by

K.x/ D
1

2�

x?

jxj2
D

1

2�

�
�
x2

jxj2
;
x1

jxj2

�
: (1.5)

Consider the 2D incompressible Navier–Stokes system on R2,

@tu D �u � ru � rp C�u;

r � u D 0;

where p is the local pressure. Taking the curl of the equation above, we find that !.t;x/D
r � u.t; x/ satisfies (1.2) with K given by (1.5) (see for instance [24, Chapter 1]).
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One can see equation (1.3) as an approximation of equation (1.1), where the law N�t
is replaced by the empirical measure 1

N

PN
iD1 ıX i

t
. It is well known, at least in a setting

where the interaction kernel K is Lipschitz continuous [25, 30], that, under some mild
conditions onK, for all fixed k 2N and all t � 0, �kN .t; �/ converges toward N�k.t; �/D N�˝kt
as N !1, where N�t is the density of the law of Xt solving (1.1). Thus, provided the
particles start independent, they will stay (more or less) independent, as the law of any k-
uplet of particles converges toward a tensorized law. The expression propagation of chaos
to describe this behavior was coined by Kac [20]), and we refer to Sznitman [30] for a
landmark study of the phenomenon. Of course there is a huge literature on propagation of
chaos, but limited to uniform in time results, and always when the interaction potential is
regular; see Malrieu [23] for an example treated by a coupling approach under convexity
conditions and the recent work of Durmus et al. [12] via reflection coupling allowing non-
convexity but where the interaction is considered small and acts mainly as a perturbation.
For more recent results we refer to [21] (and its uniform in time extension in [22]) for
a nice new approach to propagation of chaos furnishing better speed but under strong
assumptions on the interactions (regularity, integrability), including a nice survey of the
existing results, and [11] using Lions derivatives for uniform in time results on the torus
but also under regularity assumptions on the interaction kernel.

Hence, neither these classical nor the recent results apply to the Biot–Savart kernel,
which is singular at 0. For convergence without rate, and specific to the vortex 2D equa-
tion, a first striking result appeared in [15], relying on proving that close encounters of
particles are rare and that the possible limits of the particle system are made up of solu-
tions of the non-linear SDE. As a second step, in the recent work [18], Jabin and Wang
have proven that propagation of chaos still holds in this case with a quantitative rate. The
goal of the present paper is to extend their works and show a quantitative propagation of
chaos uniform in time. We refer to [6–8, 15, 18] for detailed discussions on the literature
concerning propagation of chaos with singular kernels, which is still at its beginnings as
regards quantitative rates. Shortly after this work was submitted, an alternative approach
to global in time estimates was developed in [28]; see also the very recent preprint [10].

Obtaining uniform in time estimates for propagation of chaos is an important chal-
lenge. One of its applications concerns the use of the particle system, which can easily
be simulated numerically, to approximate the solution of a non-linear physics motivated
problem, such as here the vorticity equation arising from fluid mechanics. Likewise, it
provides a framework for studying noisy gradient descent used in machine learning (see
the recent [9]) and thus attracts some attention.

The approach of Jabin and Wang [18] is to compute the time evolution of the rela-
tive entropy of �N with respect to N�N and then to use integration by parts to deal with
the singularity of K thanks to the regularity of the probability density N�t . In order to
improve this argument to get uniform in time propagation of chaos, our main contribution
is the proof of time-uniform bounds for N�t , in Lemma 2.2, from which a time-uniform
logarithmic Sobolev inequality is deduced. From the latter, in the spirit of the work of
Malrieu [23] in the smooth convex case, the Fisher information appearing in the entropy
dissipation yields control on the relative entropy itself, inducing time uniformity. How-



A. Guillin, P. Le Bris, P. Monmarché 4

ever, a major difficulty is that these quantities are expressed in terms of the solution of a
non-linear equation. We then have to prove a logarithmic Sobolev inequality, uniformly
in time, for N�t , and sufficient decay of the derivatives of N�t . This requires new estimates
on regularity and a priori bounds of the solutions of a non-linear 2D vortex equation.
Indeed, we prove that the bounds on the derivative of N�t decay sufficiently fast (see again
Lemma 2.2) to ensure uniform in time convergence without smallness assumption on the
interaction. Finally, the remaining error term in the entropy evolution due to the difference
between (1.2) and (1.4) is tackled thanks to a law of large numbers already used in [18].
Compared to [15] we thus obtain a quantitative and uniform in time result.

The organization of the article is as follows. In the remainder of this section, we state
the main theorem as well as the various assumptions on both the initial condition and the
interaction kernel K. In Section 2 we gather various tools that will be useful later on: we
state the regularity of the solutions, the existence of uniform in time bounds on the density
and its derivatives, and we prove a logarithmic Sobolev inequality. Finally, in Section 3,
we prove the uniform in time propagation of chaos following the method of [18].

1.2. Main results

First, let us describe the assumptions on the initial condition. Unless otherwise specified,
Lp and Hp respectively refer to the spaces Lp.Td / and Hp.Td /. Given � > 1, we
denote by C1

�
.X/ the set of functions f in C1.X/ such that 0 < 1=� � f � � <1,

and C1>0.X/D
S
�>1C1

�
.X/, which is simply the set of positive smooth functions when

X is compact. We make the following assumptions on N�0:

Assumption 1.1. � There is � > 1 such that N�0 2 C1
�
.Td /.

� For all n � 1, C 0n WD kr
n N�0kL1 <1.

Remark 1.2. Let us discuss the smoothness assumption on the initial condition. Via The-
orem 2.1 below, which follows from the result of [3], this will ensure the smoothness
of N�t . This fact (and the fact that we consider, as we will see later, a smooth solution �N
of (1.4)) allows us to justify all calculations in a comfortable way. This could however be
improved. First, as in [18], the calculations should hold for any entropy solution of (1.4).
Second, it is also shown in [3], in the case of the vorticity equation, that an initial con-
dition in L1 yields existence and uniqueness of a solution of (1.2) which is smooth for
positive times. One could thus think of using the non-uniform in time result of [18] on a
small time interval Œ0; "�, and then complete the proof on Œ";1Œ with our result. We would
then require some bounds on N�" and its derivatives of a sufficient order (depending on the
Sobolev embedding – see the proof of Lemma 2.2 below) that we could propagate in time.

For the sake of clarity and conciseness, however, we choose not to go in this direction.

Let us describe the assumptions on the interaction kernel K. Below, r� stands for the
divergence operator. We make the following assumptions on K:

Assumption 1.3. � kKkL1 <1.

� In the sense of distributions, r �K D 0.
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� There is a matrix field V 2 L1 such that K D r � V , i.e. K˛ D
Pd
ˇD1 @ˇV˛;ˇ for

1 � ˛ � d .

The problem of finding a matrix field V 2L1.Td / such thatK Dr � V for a givenK
is a complex mathematical question. We refer to [5, 27] and the references therein for a
more detailed discussion of the literature. As noted in [18, Proposition 2], such a matrix V
exists for any kernel K 2 Ld (by the results of [5]), and for any kernel K such that

9M > 0; 8x 2 Td ; jK.x/j �M=jxj

(in view of the results of [27]).

Remark 1.4. If a function a satisfies r � a D 0, then for  W Td ! R we have

r � .a / D .a � r/ :

Suppose QK is an interaction kernel in Rd (such as the Biot–Savart kernel). One can
periodize QK on the torus as follows. For a function f on the torus (identified with a 1-
periodic function on Rd ), writing f �X g.x/D

R
X
f .x � y/g.y/dy for the convolution

on a space X, we have

QK �Rd f .x/ D

Z
Rd

QK.x � y/f .y/ dy D
X
k2Zd

Z
Td

QK.x � y C k/f .y � k/ dy

D

Z
Td

� X
k2Zd

QK.x � y C k/
�
f .y/ dy;

and thus QK �Rd f .x/ D K �Td f .x/, where K.x/ D
P
k2Zd

QK.x C k/. In particular,
the periodized Biot–Savart kernel obtained by taking QK from (1.5) reads

K.x/ D
1

2�

x?

jxj2
C

1

2�

X
k2Z2; k¤0

.x � k/?

jx � kj2
DW QK.x/CK0.x/: (1.6)

It has been shown that the sum defining K0 converges (in the sense that
K0.x/ D limN!1

P
jkj2�N;k¤0

.x�k/?

jx�kj2
) in C1 (see for instance [29]). It is straightfor-

ward to check that K is periodic, bounded in L1, and divergence free. Finally, Proposi-
tion 2 of [18] yields the existence of V 2 L1 such that K D r � V . As a consequence,
Assumption 1.3 holds for the periodized Biot–Savart kernel.

Remark 1.5. Notice that, for the Biot–Savart kernel on the whole space R2,

QK.x/ D
1

2�

x?

jxj2
;

a matrix field QV such that QK D r � QV can be chosen explicitly:

V.x/ D
1

2�

�
� arctan.x1=x2/ 0

0 arctan.x2=x1/

�
:
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One could also consider collision-like interactions, as mentioned in [18]. Let � 2 L1

be a function on the torus, M be a smooth antisymmetric matrix field and consider the
kernelK D r � .M1�.x/�0/. By construction,K is the divergence of an L1 matrix field,
and since M is antisymmetric, K is divergence free.

Example 1.6. Consider in dimension 2 the function � W x 7! jxj2 � .2R/2 for a given
radius R > 0 and the matrix

M D

�
0 �1

1 0

�
;

which yield
K.x/ D 2x?ı�.x/D0:

This interaction kernel models particles, seen as balls of radius R, interacting via some
form of collision.

The well-posedness of equations (1.2) and (1.4) under Assumptions 1.1 and 1.3 will
be discussed respectively in Sections 2.1 and 3.5. In particular, we will see in Theorem 2.1
that N�t is in C1

�
.RC � Td /.

The comparison between the law of the system of N interacting particles and the law
of N independent particles satisfying the non-linear equation (1.1) is stated in terms of
relative entropy.

Definition 1.7. Let � and � be two probability densities on TdN . We consider the
rescaled relative entropy

HN .�; �/ D

´
1
N

E�
�
�
�

log �
�

�
if � � �;

C1 otherwise.
(1.7)

For brevity, for all k 2 N and t � 0, we denote �N .t/ W TdN 3 x 7! �N .t; x/ and
N�N .t/ W TdN 3 x 7! N�˝Nt .x/. The main result is the following.

Theorem 1.8. Under Assumptions 1.1 and 1.3, there are constants C1, C2 and C3 such
that for all N 2 N and every exchangeable density probability �N .0/ 2 C1>0.T

dN / there
exists a weak solution �N of (1.4) such that for all t � 0,

HN .�N .t/; N�N .t// � C1e
�C2tHN .�N .0/; N�N .0//C C3=N : (1.8)

In particular, if �N .0/D N�N .0/, the first term of the right-hand side vanishes, and this
property has been called entropic propagation of chaos; see for example [17].

1.3. Strong propagation of chaos

We show that Theorem 1.8 yields strong propagation of chaos, uniform in time. For � and
� two probability measures on Tdk , denote by….�;�/ the set of couplings of� and �, i.e.
the set of probability measures � on Tdk �Tdk with �.A�Tdk/D�.A/ and �.Tdk �

A/D �.A/ for all Borel subsetsA of Tdk . Let us define the usualL2-Wasserstein distance
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by

W2.�; �/ D

�
inf

�2….�;�/

Z
Tdk

dTdk .x; y/2 �.dxdy/

�1=2
;

where dTdk is the usual distance on the torus. For x D .xi /i2J1;N K 2 TdN , we write
�.x/ D 1

N

PN
iD1 ıxi

for the associated empirical measure.

Corollary 1.9. Under Assumptions 1.1 and 1.3, assuming moreover that �N .0/D N�N .0/,
there is a constant C such that for all k � N in N and all t � 0,

k�kN .t/ � N�k.t/kL1 CW2.�
k
N .t/; N�k.t// � C.bN=kc/

�1=2

and
E�N .t/.W2.�.X/; N�t // � C˛.N/;

where ˛.N / D N�1=2 log.1CN/ if d D 2 and ˛.N / D N�1=d if d > 2.

As shown in [4], the last result yields a confidence interval in uniform norm when
estimating N�t with �.XNt / convoluted with a smooth kernel.

We postpone the proof as it will rely on results shown later. It will, however, be
a direct corollary of Theorem 1.8 and of the logarithmic Sobolev inequality proven in
Corollary 2.6, which is a crucial ingredient in the proof of Theorem 1.8.

2. Preliminary work

2.1. First results on the non-linear PDE

We have the following result concerning the solution of (1.2).

Theorem 2.1. Under Assumption 1.3, let �0 2 C1
�
.Td /. Then the system´

@t N�t D �r � ..K � N�t / N�t /C� N�t in RC � Td ;

N�0 D �0;
(2.1)

has a unique bounded solution N�.t; x/ 2 C1
�
.RC � Td /.

Proof. The existence, uniqueness and smoothness can be proven by following closely the
proof of Ben-Artzi [3]. For the sake of completeness, this is detailed in Appendix A. Note
that a similar result has also been recently proven in [32], where the Ck regularity of N�t
for any given k and t is shown. The proof relies heavily on the fact that the kernel K is
divergence free, that the convolution operation tends to keep the regularity of the most
regular term, and that the Fokker–Planck equation has a smoothing effect.

Let us now prove the time-uniform bounds on N�t . Assume that �0 2 C1
�
.Td /, which

by definition implies 1=�� �0 � �, and consider the unique solution N�t of (2.1). We start
by proving that K � N�t is in C1. By definition

K � N�t .x/ D

Z
Td

K.x � y/ N�t .y/ dy D �

Z
Td

K.y/ N�t .x � y/ dy:
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Then

K � N�t .x/ D �

Z
Td

r � V.y/ N�t .x � y/ dy D �

Z
Td

V.y/ry N�t .x � y/ dy:

Since V 2 L1.Td / and N� 2 C1.RC � Td /, we easily deduce that K � N�, and all its
derivatives, are Lipschitz continuous on Œ0; T � � Td for all T > 0. Hence K � N� is C1.
Moreover, usingr �K D 0 (in the sense of distributions), we immediately getr � .K � N�t /
D 0 for all t � 0.

For t � 0 and x 2 Td , let Zs be the strong solution of the following stochastic differ-
ential equation for s 2 Œ0; t �:

dZs D
p
2 dBs �K � N�t�s.Zs/ ds; Z0 D x;

which exists, is unique and non-explosive since K � N�t�s is smooth and bounded. Then

N�.t; x/ D Ex. N�0.Zt //;

and the bounds on N�t follow.

2.2. Higher order estimates

We have already established that N�t is bounded uniformly in time. In this section, we
extend this result to all derivatives.

Lemma 2.2. For all n � 1 and ˛1; : : : ; ˛n 2 J1; dK, there exist C un ; C
1
n > 0 such that

for all t � 0,

k@˛1;:::;˛n
N�tkL1 � C

u
n and

Z t

0

k@˛1;:::;˛n
N�sk

2
L1 ds � C

1
n :

Proof. Thanks to Morrey’s inequality and Sobolev embeddings, it is sufficient to prove
such bounds in the Sobolev space Hm for all m, in other words it is sufficient to prove
similar bounds for k@˛1;:::;˛n

N�sk
2
L2 for all multi-indices ˛. The proof is by induction on the

order of the derivatives; we only detail the first iterations. We write f D r � ..K � N�t / N�t /
D .K � N�t / � r N�t .

Integrated bound for kr N�tk2L2 . We have

1

2

d

dt

Z
Td

j N�t j
2
D

Z
Td

N�t@t N�t D

Z
Td

N�t� N�t �

Z
Td

N�tf:

On the one hand, Z
Td

N�t� N�t D �

Z
Td

jr N�t j
2:

On the other hand,Z
Td

N�tf D

Z
Td

N�tr � ..K � N�t / N�t / D �

Z
Td

r N�t � .K � N�t / N�t D �

Z
Td

N�tf D 0:
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Hence,
1

2

d

dt
k N�tk

2
L2 C kr N�tk

2
L2 D 0:

By integrating the equality above, we getZ t

0

kr N�tk
2
L2 D

k N�0k
2
L2 � k N�tk

2
L2

2
�
�2

2
D C11 :

Integrated bound for k@˛1;˛2
N�tk

2
L2 and uniform bound for kr N�tk2L2 . Similarly, we cal-

culate

1

2

d

dt

Z
Td

j@˛1
N�t j
2
D

Z
Td

@˛1
N�t@˛1

.@t N�t /

D

Z
Td

@˛1
N�t@˛1

.� N�t � f /

D �

X
˛2

Z
Td

j@˛1;˛2
N�t j
2
C

Z
Td

@˛1;˛1
N�tf:

Bounding Z
Td

@˛1;˛1
N�tf � k@˛1;˛1

N�tkL2kf kL2

�
1

2

X
˛2

k@˛1;˛2
N�tk

2
L2 C

1

2
kf k2

L2 ;

and

kf k2
L2 D

Z
Td

ˇ̌̌ dX

D1

.K
 � N�t /@
 N�t

ˇ̌̌2
� kK � N�tk

2
L1kr N�tk

2
L2

� kKk2
L1k N�tk

2
L1kr N�tk

2
L2 ;

where we have used Young’s convolution inequality, we get

1

2

d

dt
k@˛1
N�tk

2
L2 C

1

2

X
˛2

k@˛1;˛2
N�tk

2
L2 �

1

2
kKk2

L1k N�tk
2
L1kr N�tk

2
L2 :

By integrating the equality above and using Theorem 2.1, we get

k@˛1
N�tk

2
L2 � k@˛1

N�0k
2
L2

2
C
1

2

Z t

0

X
˛2

k@˛1;˛2
N�sk

2
L2 ds �

1

2
kKk2

L1�
2

Z t

0

kr N�sk
2
L2 ds

�
1

2
kKk2

L1�
2C11 :

This provides both the existence of C12 such that for all t � 0,
R t
0
k@˛1;˛2

N�sk
2
L2 ds � C

1
2 ,

and the existence of C u1 such that for all t � 0, k@˛1
N�tk

2
L2 � C

u
1 .
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Integrated bound bound for k@˛1;˛2;˛3
N�tk

2
L2 and uniform bound for k@˛1;˛2

N�tk
2
L2 . We

have

@˛f D
X



.@˛K
 � N�t /@
 N�t C
X



.K
 � N�t /@˛;
 N�t ;

and

@˛K
 � N�t D

Z
Td

@˛K
 .x � y/ N�t .y/ dy D �

Z
Td

@˛K
 .y/ N�t .x � y/ dy

D �

Z
Td

K
 .y/@˛ N�t .x � y/ dy D �
X
ˇ

Z
Td

V
;ˇ .y/@˛;ˇ N�t .x � y/ dy

D

X
ˇ

V
;ˇ � @˛;ˇ N�t :

Hence X



.@˛K
 � N�t /@
 N�t D
X



�X
ˇ

V
;ˇ � @˛;ˇ N�t

�
@
 N�t

D .V � @˛r N�t /r N�t ;

and thus 


X



.@˛K
 � N�t /@
 N�t





L2
� kV � @˛r N�tkL1kr N�tkL2

� kV kL1k@˛r N�tkL1kr N�tkL2 :

Therefore

k@˛f k
2
L2 � 2kV k

2
L1k@˛r N�tk

2
L1kr N�tk

2
L2 C 2kKk

2
L1k N�tk

2
L1k@˛r N�tk

2
L2 :

Similarly to the previous computations,

1

2

d

dt

Z
Td

j@˛1;˛2
N�t j
2
D

Z
Td

@˛1;˛2
N�t@˛1;˛2

.� N�t � f /

D �

X
˛3

Z
Td

j@˛1;˛2;˛3
N�t j
2
C

Z
Td

@˛1;˛2;˛2
N�t@˛1

f

� �

X
˛3

k@˛1;˛2;˛3
N�tk

2
L2 C k@˛1;˛2;˛2

N�tkL2k@˛1
f kL2

� �

X
˛3

k@˛1;˛2;˛3
N�tk

2
L2 C

1

2

X
˛3

k@˛1;˛2;˛3
N�tk

2
L2

C kV k2L1k@˛1
r N�tk

2
L1kr N�tk

2
L2 C kKk

2
L1k N�tk

2
L1k@˛1

r N�tk
2
L2

� �
1

2

X
˛3

k@˛1;˛2;˛3
N�tk

2
L2 C kV k

2
L1kr N�tk

2
L2k@˛1

r N�tk
2
L2

C kKk2
L1k N�tk

2
L1k@˛1

r N�tk
2
L2 ;
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and thus

1

2

d

dt
k@˛1;˛2

N�tk
2
L2 C

1

2

X
˛3

k@˛1;˛2;˛3
N�tk

2
L2 � kV k

2
L1k@˛1

r N�tk
2
L2kr N�tk

2
L2

C kKk2
L1k N�tk

2
L1k@˛1

r N�tk
2
L2 :

Integrating over time and using Theorem 2.1 gives

k@˛1;˛2
N�tk

2
L2 � k@˛1;˛2

N�0k
2
L2

2
C
1

2

X
˛3

Z t

0

k@˛1;˛2;˛3
N�sk

2
L2 ds

� kV k2L1dC
u
1

Z t

0

k@˛1
r N�sk

2
L2 ds C kKk

2
L1�

2

Z t

0

k@˛1
r N�sk

2
L2 ds

� d.dkV k2L1C
u
1 C kKk

2
L1�

2/C12 :

This provides both the existence of C13 such that for all t � 0,Z t

0

k@˛1;˛2;˛3
N�sk

2
L2 ds � C

1
3 ;

and the existence of C u2 such that for all t � 0, k@˛1;˛2
N�tk

2
L2 � C

u
2 .

The proof is then by induction on the order of the derivative, iterating the same
method.

2.3. Logarithmic Sobolev inequality

We now establish a logarithmic Sobolev inequality (LSI) for N�t solving (1.2). To this end,
we use the fact that the uniform distribution u on Td satisfies a LSI and that N�t is bounded
(below and above) uniformly in time. Recall the following Holley–Stroock perturbation
lemma, from [2, Propostion 5.1.6].

Lemma 2.3. Assume that � is a probability measure on Td satisfying a logarithmic
Sobolev inequality with constant C LS

� , i.e. for all f 2 C1>0.T
d /,

Ent�.f / WD
Z

Td

f logf d� �
Z

Td

f d� log
�Z

Td

f d�

�
� C LS

�

Z
Td

jrf j2

f
d�:

Let � be a probability measure with density h with respect to � such that 1=� � h � �
for some constant � > 0. Then � satisfies a logarithmic Sobolev inequality with constant
C LS
� D �

2C LS
� , i.e. for all f 2 C1>0.T

d /,

Ent�.f / � �2C LS
�

Z
Td

jrf j2

f
d�:

We also know that the uniform distribution u (i.e. the Lebesgue measure) on Td

satisfies a LSI. See for instance [2, Proposition 5.7.5], or [16] for a proof in dimension 1,
the results in higher dimension being a consequence of tensorization properties.
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Lemma 2.4. Let u be the uniform distribution on Td . Then u satisfies a logarithmic
Sobolev inequality: for all f 2 C1>0.T

d /,

Entu.f / �
1

8�2

Z
Td

jrf j2

f
du: (2.2)

A direct consequence of Lemmas 2.3 and 2.4 and the bounds on N�t given in Theo-
rem 2.1 is the following theorem, as well as its corollary. It establishes a uniform in time
logarithmic Sobolev inequality for N�t , crucial for the uniform control of the Fisher infor-
mation appearing in the study of the dissipation of the entropy between the law of the
particle system and the non-linear particles.

Theorem 2.5. Under Assumptions 1.1 and 1.3, for all t � 0 and all f 2 C1>0.T
d /,

Ent N�t
.f / �

�2

8�2

Z
Td

jrf j2

f
d N�t :

Corollary 2.6. Under Assumptions 1.1 and 1.3, for all N 2 N and t � 0 and all proba-
bility densities �N 2 C1>0.T

dN /,

HN .�N ; N�N .t// �
�2

8�2
1

N

NX
iD1

Z
Td

�N

ˇ̌̌̌
rxi

log
�N

N�N .t/

ˇ̌̌̌2
:

Proof. By tensorization of the logarithmic Sobolev inequality (see for instance [2, Propo-
sition 5.2.7]), since N� satisfies a LSI with constant �2

8�2 , so does N�N . Using Theorem 2.5
for f D �N

N�N
we thus get

HN .�N ; N�N .t// D
1

N
Ent N�N .t/

�
�N

N�N .t/

�
�

�2

8�2
1

N
E N�N .t/

�ˇ̌̌̌
rx

�N

N�N .t/

ˇ̌̌̌2
N�N .t/

�N

�
;

which yields the result.

3. Proofs of the main results

From now on and up to Section 3.5 (excluded), in addition to Assumptions 1.1 and 1.3,
we suppose that there exists a solution �N 2 C1>0.R

C � TdN / of (1.4). This justifies
the validity of the various calculations conducted in this part of the proof. The question
of lifting this assumption (by taking a limit in a regularized problem) is addressed in
Section 3.5.

3.1. Time evolution of the relative entropy

We write

HN .t/ D HN .�N .t/; N�N .t//; IN .t/ D
1

N

X
i

Z
TdN

�N .t/

ˇ̌̌̌
rxi

log
�N .t/

N�N .t/

ˇ̌̌̌2
dx:

as shorthands for the relative entropy and relative Fisher information. We start by calcu-
lating the time evolution of the relative entropy.
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Lemma 3.1. For all t � 0,

d

dt
HN .t/ � AN .t/C

1

2
BN .t/ �

1

2
IN .t/ (3.1)

with

AN .t/ WD
1

N 2

X
i;j

Z
TdN

�N .V .xi � xj / � V � N�t .xi // W
r2xi
N�N

N�N
dx;

BN .t/ WD
1

N

X
i

Z
TdN

�N
jrxi
N�N j

2

N�2N

ˇ̌̌̌
1

N

X
j

V.xi � xj / � V � N�t .xi /

ˇ̌̌̌2
f

dx:

Here, j � j2
f

denotes the sum of the squares of the coefficients of the matrix.

Proof. It has been shown in [18] that

d

dt
HN .t/ � �IN .t/ �

1

N 2

X
i;j

Z
TdN

�N .K.xi � xj / �K � N�t .xi // � rxi
log N�N dx

with

�
1

N 2

X
i;j

Z
TdN

�N .K.xi � xj / �K � N�t .xi // � rxi
log N�N dx

D
1

N 2

X
i;j

Z
TdN

�N .V .xi � xj / � V � N�t .xi // W
r2xi
N�N

N�N
dx

C
1

N 2

X
i;j

Z
TdN

.V .xi � xj / � V � N�t .xi // W rxi
N�N ˝rxi

�N

N�N
dx:

Let us consider the last term:

1

N 2

X
i;j

Z
TdN

.V .xi � xj / � V � N�t .xi // W rxi
N�N ˝rxi

�N

N�N
dx

D
1

N

X
i

X
˛;ˇ

Z
TdN

�
1

N

X
j

V.xi � xj / � V � N�t .xi /

�
˛;ˇ

.rxi
N�N /˛

�
rxi

�N

N�N

�
ˇ

dx:

Let

yiˇ WD

�
rxi

�N

N�N

�
ˇ

N�N
p
�N
; zi˛ WD .rxi

N�N /˛

p
�N

N�N
;

xi˛;ˇ WD

�
1

N

X
j

V.xi � xj / � V � N�.xi /

�
˛;ˇ

:

Then, using xy � x2=2C y2=2 for all x; y 2 R, we getX
˛;ˇ

xi˛;ˇz
i
˛y

i
ˇ D

X
ˇ

yiˇ

�X
˛

xi˛;ˇz
i
˛

�
�
1

2

X
ˇ

.yiˇ /
2
C
1

2

X
ˇ

�X
˛

xi˛;ˇz
i
˛

�2
;



A. Guillin, P. Le Bris, P. Monmarché 14

and thus, by the Cauchy–Schwarz inequality,X
˛;ˇ

xi˛;ˇz
i
˛y

i
ˇ �

1

2

X
ˇ

.yiˇ /
2
C
1

2

X
ˇ

�X
˛

.xi˛;ˇ /
2
��X

˛

.zi˛/
2
�

D
1

2

X
ˇ

.yiˇ /
2
C
1

2

�X
˛

.zi˛/
2
��X

˛;ˇ

.xi˛;ˇ /
2
�
:

Hence

1

N 2

X
i;j

Z
TdN

.V .xi � xj / � V � N�t .xi // W rxi
N�N ˝rxi

�N

N�N
dx

�
1

2N

X
i

Z
N�2N
�N

ˇ̌̌̌
rxi

�N

N�N

ˇ̌̌̌2
C

1

2N

X
i

Z
�N
jrxi
N�N j

2

N�2N

ˇ̌̌̌
1

N

X
j

V.xi � xj / � V � N�t .xi /

ˇ̌̌̌2
f

D
1

2
IN .t/C

1

2N

X
i

Z
TdN

�N
jrxi
N�N j

2

N�2N

ˇ̌̌̌
1

N

X
j

V.xi � xj / � V � N�t .xi /

ˇ̌̌̌2
f

dx:

This yields the desired result.

3.2. Change of reference measure and Law of Large Numbers

We now state three general results which will be useful in order to control the error terms
AN and BN defined in Lemma 3.1. The first one will be used to perform a change of
measure from �N to N�N .

Lemma 3.2. Let N 2 N. For two probability densities � and � on TdN , and any
ˆ 2 L1.TdN / and � > 0,

E�ˆ � �HN .�; �/C
�

N
log E�eNˆ=�:

Proof. Define

f D
1

�
eNˆ=��; � D

Z
TdN

eNˆ=�� dx:

Notice that f is a probability density. By convexity of entropy,

1

N

Z
TdN

� logf dx �
1

N

Z
TdN

� log�dx:

On the other hand,

1

N

Z
TdN

� logf dx D
1

�

Z
TdN

�ˆdxC
1

N

Z
TdN

� log � dx �
log �
N

:

The next two statements are crucial theorems of [18].
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Theorem 3.3 ([18, Theorem 3]). Consider any probability measure � on Td and a
scalar function  2 L1.Td � Td / with k kL1 < 1

2e
and such that for all z 2 Td ,R

Td  .z; x/�.dx/ D 0. ThenZ
TdN

exp
�
1

N

NX
j1;j2D1

 .x1; xj1
/ .x1; xj2

/

�
�˝N dx � C WD 2

�
1C

10˛

.1�˛/3
C

ˇ

1�ˇ

�
;

(3.2)
where

˛ D .ek kL1/
4 < 1; ˇ D .

p
2e k kL1/

4 < 1:

The second one is a nice improvement of the usual level 2 large deviations bound for
i.i.d. random variables.

Theorem 3.4 ([18, Theorem 4]). Consider any probability measure � on Td and � 2
L1.Td � Td / with


 WD .16002 C 36e4/

�
sup
p�1



supz j�.�; z/j



Lp.�/

p

�2
< 1: (3.3)

Assume that � satisfies the following cancellations:

8z 2 Td ;

Z
Td

�.x; z/ �.dx/ D 0 D

Z
Td

�.z; x/�.dx/ :

Then, for all N 2 N,Z
TdN

exp
�
1

N

NX
i;jD1

�.xi ; xj /

�
�˝N dx �

2

1 � 

<1: (3.4)

3.3. Bounding the error terms

Lemma 3.5. The terms AN and BN introduced in Lemma 3.1 satisfy

AN .t/C
1

2
BN .t/ � C

�
HN .t/C

1

N

�
with

C D OC1�dkr
2
N�tkL1kV kL1 C OC2�

2d2kV k2L1kr N�tk
2
L1 ;

where OC1; OC2 are universal constants.

Proof. Recall from Theorem 2.1 that N�t 2 C1
�
.Td / for all t � 0. We first bound BN . For

.X it /i given in (1.3), we have

BN D
1

N

X
i

Z
TdN

�N
jr N�t j

2

N�2t
.xi /

ˇ̌̌̌
1

N

X
j

V.xi � xj / � V � N�t .xi /

ˇ̌̌̌2
f

dx
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D
1

N

X
i

E

�ˇ̌̌̌
r N�t

N�t
.X it /

ˇ̌̌̌2 ˇ̌̌̌
1

N

X
j

V.X it �X
j
t / � V � N�t .X

i
t /

ˇ̌̌̌2
f

�

D
1

N

X
i

dX
˛;ˇD1

E

�ˇ̌̌̌
r N�t

N�t
.X it /

ˇ̌̌̌2�
1

N

X
j

V˛;ˇ .X
i
t �X

j
t / � V˛;ˇ � N�t .X

i
t /

�2�

�
�2kr N�tk

2
L1

N

X
i

dX
˛;ˇD1

E

��
1

N

X
j

V˛;ˇ .X
i
t �X

j
t / � V˛;ˇ � N�t .X

i
t /

�2�
:

We apply Lemma 3.2 to each

ˆ˛;ˇ D

�
1

N

X
j

V˛;ˇ .xi � xj / � V˛;ˇ � N�t .xi /

�2
to get, for all CB > 0,

E

��
1

N

X
j

V˛;ˇ .X
i
t �X

j
t / � V˛;ˇ � N�t .X

i
t /

�2�
� CBHN .t/C

CB

N
log E

�
exp

�
1

CB

�
1
p
N

X
j

V˛;ˇ . NX
i
t �
NX
j
t / � V˛;ˇ � N�t . NX

i
t /

�2��
:

This way,

BN �
CB�

2kr N�tk
2
L1

N 2

�

X
i;˛;ˇ

log
Z
N�N exp

�
1

CB

�
1
p
N

X
j

V˛;ˇ .xi � xj / � V˛;ˇ � N�t .xi /

�2�
C CBd

2�2kr N�tk
2
L1HN .t/:

In the following we choose CB D 64e2kV k2L1 . Applying Theorem 3.3 to

 .z; x/ D
1

8ekV kL1
.V .z � x/ � V � N�t .z//;

which satisfies k kL1 � 1
4e

and is such thatZ
Td

 .z; x/ N�t .x/ dx

D
1

8ekV kL1

Z
Td

V.z � x/ N�t .x/ dx �
1

8ekV kL1

Z
Td

V � N�t .z/ N�t .x/ dx D 0;

we get

BN � OCBkV k
2
L1�

2d2kr N�tk
2
L1

�
HN .t/C

QCB

N

�
; (3.5)

where OCB and QCB are universal constants.
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We now proceed with the bound on AN . Applying Lemma 3.2 to

ˆ D
1

N 2

X
i;j

.V .xi � xj / � V � N�t .xi // W
r2xi
N�N

N�N
;

we obtain, for all CA > 0,

AN �
CA

N
log

Z
TdN

N�N exp
�

1

CAN

X
i;j

.V .xi � xj / � V � N�t .xi // W
r2xi
N�N

N�N

�
dx

C CAHN .t/:

In the following we choose

CA D 4
p
16002 C 36e4 kr2 N�tkL1kV kL1�d DW OCA�dkr

2
N�tkL1kV kL1 :

Then, we apply Theorem 3.4 to

�.z; x/ D
1

CA

�
.V .z � x/ � V � N�t .z// W

r2 N�t

N�t
.z/

�
;

which satisfies, thanks to Assumption 1.3,Z
Td

�.z; x/ N�t .z/ dz D
1

CA

Z
Td

�
.V .z � x/ � V � N�t .z// W

r2 N�t

N�t
.z/

�
N�t .z/ dz

D
1

CA

Z
Td

�
divK.z � x/ � divK � N�t .z/

�
N�t .z/ dz D 0;

and, thanks to
R

Td .V .z � x/ � V � N�t .z// N�t .x/ dx D 0,Z
Td

�.z; x/ N�t .x/ dx D 0:

Through our choice of CA, (3.3) is satisfied, because


 � .16002 C 36e4/

�
2dkV kL1kr

2 N�tkL1�

CA

�2
D
1

4
< 1:

Hence

AN � OCAkr
2
N�tkL1kV kL1�d

�
HN .t/C

QCA

N

�
; (3.6)

where OCA and QCA are universal constants. The conclusion easily follows.

3.4. Proof of Theorem 1.8 in the smooth case

It only remains to gather the previous results. Inequalities (3.1), (3.5) and (3.6) yield

d

dt
HN .t/ �

�
OCA�dkr

2
N�tkL1kV kL1 C

OCBkV k
2
L1�

2kr N�tk
2
L1d

2

2

�
HN .t/

C
C2

N
�
1

2
IN .t/;
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and using Corollary 2.6 and

OCAkr
2
N�tkL1kV kL1�d �

1

2

�
2�

�

�2
C
1

2

�
�

2�

�2
OC 2Akr

2
N�tk

2
L1kV k

2
L1�

2d2;

we get

d

dt
HN .t/

� �

��
2�

�

�2
� OCA�dkr

2
N�tkL1kV kL1 �

OCBkV k
2
L1�

2kr N�tk
2
L1d

2

2

�
HN .t/

C C2=N

� �
1

2

��
2�

�

�2
� OC 2A

�4

4�2
d2kr2 N�tk

2
L1kV k

2
L1 �

OCBkV k
2
L1kr N�tk

2
L1�

2d2
�

HN .t/

C C2=N :

In a more concise way, using Lemma 2.2, this means there are constants C1; C12 ; C3 > 0
and a function t 7! C2.t/ > 0 with

R t
0
C2.s/ ds � C

1
2 for all t � 0 such that for all t � 0,

d

dt
HN .t/ � �.C1 � C2.t//HN .t/C C3=N :

Multiplying by exp.C1t �
R t
0
C2.s/ ds/ and integrating in time we get

HN .t/ � e
�C1tC

R t
0 C2.s/ dsHN .0/C

C3

N

Z t

0

eC1.s�t/C
R t

s C2.u/ du ds

� eC
1
2
�C1tHN .0/C

C3

C1N
eC
1
2 ;

which concludes the proof.

3.5. Dealing with the regularity of �N

As mentioned at the beginning of Section 3, up to now we have proven the result under
the additional assumption that there exists a smooth solution �N to (1.4). Let us now
remove this assumption. Let .�"/"�0 be a sequence of mollifiers such that k�"kL1 D 1with
support strictly contained in Œ�1=2; 1=2�d . SetK" DK � �". We haveK" 2 C1.Td / and
div.K"/ D 0.

Let �"N be the unique smooth solution (see Lemma 8 below) of the parabolic equation
with smooth coefficients

@t�
"
N C

1

N

NX
i;jD1

K".xi � xj / � rxi
�"N D

NX
iD1

�xi
�"N (3.7)

with initial condition �"N .0; �/ D �N .0; �/.
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Lemma 3.6. Let 
 > 1 be such that �N .0/ 2 C1
 .T
dN /. Then, for all t � 0 and all " > 0,

we have �"N .t/ 2 C1
 .T
dN /.

Proof. Let x 2 TdN . Consider the particle system

dX"i .t/ D �
1

N

NX
jD1

K".X"i .t/ �X
"
j .t//dt C

p
2 dB it ;

with initial condition X"0D x, where we denote X"t D .X"1.t/; : : : ;X
"
N .t//. We have strong

existence and uniqueness for this SDE. Then

�"N .t; x/ D E.�"N .0;X
"
t //;

and the bounds on �"N follow.

Using Lemma 3.6, we see that .�"N /" is a sequence of smooth functions uniformly
bounded in L1.RC � TNd /. This yields two results.

First, we can extract a weakly-* converging subsequence in L1.RC � TNd /, i.e.
there exists �N 2 L1.RC � TNd / such that for all f 2 L1.RC � TNd / we haveZ

TNd

�"Nf ����!
"!0C

Z
TNd

�Nf:

We finally check that �N is indeed a weak solution of (1.4). For all T � 0 and all smooth
test functions f on Œ0; T � � TNd , the following hold:

� Since @tf is smooth and therefore in L1.Œ0; T � � TNd /, we haveZ
TNd

�"N @tf !

Z
TNd

�N @tf:

� Likewise, since �xi
f is smooth and therefore in L1.Œ0; T � � TNd /, we haveZ

TNd

�"N�xi
f !

Z
TNd

�N�xi
f:

� Finally,Z
TNd

�"NK
".xi � xj / � rxi

f �

Z
TNd

�NK.xi � xj / � rxi
f

D

Z
TNd

�"N
�
K".xi �xj /�K.xi �xj /

�
� rxi

f C

Z
TNd

.�"N ��N /K.xi �xj / � rxi
f

� k�"N kL1krxi
f kL1kK

"
�KkL1 C

Z
TNd

.�"N � �N /K.xi � xj / � rxi
f

! 0

since kK" �KkL1 ! 0 and K.xi � xj / � rxi
f 2 L1.Œ0; T � � TNd /.

We have thus proven that �N is a weak solution of (1.4).
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Likewise, we may consider . N�"/", which weakly-* converges to a solution which, by
uniqueness, is N�.

Second, �"N satisfies the assumption made at the beginning of Section 3, i.e. �"N 2
C1>0.R

C � Td /. Since by considering V " D V � �" we have K" D div.V "/, we find that
K" satisfies Assumption 1.3 and the calculations in Section 3 are valid for this specific
kernel, i.e.

HN .�
"
N .t/; N�

"
N .t// � HN .�N .0/; N�N .0//e

�C "
1
teC
1;"

C
C "3e

C1;"

C "1

1

N
: (3.8)

Notice that, in the proof of Lemma 2.2, the constants bounding the various derivatives
of N� only depend on the initial conditions, on kKkL1 and on kV kL1 . Since .�"/"�0 is a
sequence of mollifiers, we have kK"kL1 ! kKkL1 as "! 0, and kV "kL1 � kV kL1 .
The right-hand side of (3.8) can thus be chosen independent of ".

We now use the fact that for u� 0 and v 2R we have uv � u logu� uC ev to obtain
the variational formulation of the entropy,

NHN .�
"
N .t/; N�

"
N .t// D sup ¹E�"

N
.t/.g/ � E N�"

N
.t/.e

g/C 1 W g 2 L1º; (3.9)

the equality being attained for g D log.�"N = N�
"
N /. Thus, for g 2 L1,

1

N

�
E�"

N
.t/.g/ � E N�"

N
.t/.e

g/C 1
�
� HN .�N .0/; N�N .0//e

�C1teC
1

C
C3e

C1

1C C1

1

N
:

By definition of weak-* convergence in L1 (since both g and eg are in L1), we have

E�"
N
.t/.g/! E�N .t/.g/ and E N�"

N
.t/.e

g/! E N�N .t/.e
g/

as "! 0. Therefore, for all g 2 L1,

1

N

�
E�N .t/.g/ � E N�N .t/.e

g/C 1
�
� HN .�N .0/; N�N .0//e

�C1teC
1

C
C3e

C1

1C C1

1

N
;

which yields Theorem 1.8, using (3.9) for HN .�N .t/; N�N .t//.

3.6. Proof of Corollary 1.9

Let k 2 N and N � k. The subadditivity of entropy (see for instance [1, Theorem
10.2.3]) implies that the (rescaled) relative entropy of the marginals is bounded by the
total (rescaled) relative entropy,

k

�
N

k

�
Hk.�

k
N .t/; N�k.t// � NHN .�N .t/; N�N .t//:

The logarithmic Sobolev inequality established in Corollary 2.6 implies a Talagrand trans-
portation inequality (see [26]), so that the L2-Wasserstein distance is bounded by the
relative entropy. Classically, this is also the case of the total variation thanks to Pinsker’s
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inequality, and thus

k�kN .t/ � N�k.t/kL1 CW2.�
k
N .t/; N�k.t// � C

q
kHk.�

k
N .t/; N�k.t//

� C

s
N

bN=kc
HN .�N .t/; N�N .t//:

With the additional assumption that HN .�N .0/; N�N .0// D 0, we thus get the result using
Theorem 1.8. To obtain the result on the empirical measure, we recall for completeness
the arguments of [19, Proposition 8]. Given x; y 2 TdN , a coupling of �.x/ and �.y/
is obtained by considering .xJ ; yJ / where J is uniformly distributed over J1; N K. From
this we get W2.�.x/; �.y// � jx � yj=

p
N . Letting .X;Y/ be an optimal coupling of

.�N .t/; N�N .t//, we bound

E.W2.�.X; N�t // � E.W2.�.X/; �.Y///C E.W2.�.Y/; N�t //

�
1
p
N

W2.�N .t/; N�N .t//C E.W2.�.Y/; N�t //:

The last term is tackled with the result for i.i.d. variables established in [14].

Appendix A. Proof of Theorem 2.1

The proof is based on an iterative procedure, and relies heavily on work of Ben-Artzi [3].
Let N�.�1/ WD 0, and then for k 2 N solve

@t N�
.k/
D �.u.k�1/ � r/ N�.k/ C� N�.k/ in RC � Td ; (A.1)

u.k/ D K � N�.k/; (A.2)

N�.k/.0; �/ D �0: (A.3)

Let us recall the following lemma concerning the regularity of a second order parabolic
equation. We refer to [13, Chapter 7] for a proof on a bounded domain, which can be
extended to the torus.

Lemma A.1. Let a.t; x/ be a C1 function on RC � Td and  0 2 C1.Td /. Then the
problem

@t D �a � r C� in RC � Td ;

 .0; �/ D  0;

has a unique solution, which is C1.

Lemma A.2. Suppose �0 2 C1.Td /. Then the system (A.1)–(A.3) defines successively
a sequence of C1 solutions ¹ N�.k/; u.k/ºk2N . Furthermore, for all t � 0 and all k 2 N,

k N�.k/.t; �/kL1 � k�0kL1 and ku.k/.t; �/kL1 � kKkL1k�0kL1 :

Finally, given a final time T � 0, N�.k/ .resp. u.k// and all their derivatives, both in time
and in space, are bounded on Œ0; T � � Td uniformly in k.
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Proof. We use induction on k. The assertion is clear for N�.0/ from the explicit solution
to the heat equation. Suppose ¹ N�.j /; u.j�1/ºjD0;:::;k have been shown to be C1 solutions
bounded uniformly in time.

Regularity. By definition

u.k/.t; x/ D K � N�.k/.t; x/

D

Z
Td

K.x � y/ N�.k/.t; y/ dy D �

Z
Td

K.y/ N�.k/.t; x � y/ dy:

Then

u.k/.t; x/ D �

Z
Td

div.V .y// N�.k/.t; x � y/ dy D �
Z

Td

V.y/ry N�
.k/.t; x � y/ dy:

Since we are in the compact set Td , and V 2 L1.Td / and N�.k/ 2 C1.RC � Td / by
induction hypothesis, we can easily show that u.k/, as well as all its derivatives, are Lip-
schitz continuous. Hence u.k/ is C1. Applying Lemma A.1 to (A.1) with k replaced by
k C 1 yields the desired result for N�.kC1/.

Boundedness of N�.kC1/ and u.k/. Let us show that for all T � 0, N�.kC1/ and u.k/ are both
bounded on Œ0; T � � Td , with a bound independent of T . Using Young’s convolution
inequality and the induction hypothesis, we have

ku.k/.t; �/kL1 � kKkL1k N�.k/.t; �/kL1 � kKkL1k�0kL1 :

Now N�.kC1/ is the unique solution of

@t N�
.kC1/

D �.u.k/ � r/ N�.kC1/ C� N�.kC1/;

N�.kC1/.0; x/ D �0.x/:

For t � 0, let Z.kC1/s be the strong solution of the following stochastic differential equa-
tion for s 2 Œ0; t �:

dZ.kC1/s D
p
2 dBs � u

.k/.t � s; Zs/ ds;

which exists, is unique and non-explosive since u.k/ is smooth, bounded and Lipschitz
continuous. Then

N�.kC1/.t; x/ D Ex.�0.Z
.kC1/
t //:

We thus get
k N�
.kC1/
t kL1 � k�0kL1 :

Notice that this is simply a probabilistic way of presenting the use of the maximum prin-
ciple.

Boundedness of the derivatives of N�.kC1/ and u.k/. The boundedness of the derivatives
of u.k/ is a direct consequence of the boundedness of the derivatives of N�.k/ thanks to
Young’s convolution inequality. The proof for N�.kC1/ is similar to the proof of Lemma 2.2,
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using the boundedness of the derivatives of u.k/. To show that the bounds are in fact
independent of k, we follow the proof of Lemma 2.2, i.e. we argue by induction on the
order of the derivative, and in each induction step we prove that both the integrated and
uniform bounds are independent of k. This comes from the fact that the proof initially
only relies on the bounds on k N�.kC1/t kL1 and ku.k/t kL1 – which, as we have shown,
only depend on k�0kL1 – and then, for each induction step, on the initial condition and
on the bounds constructed at the previous step (therefore independent of k). The bounds
concerning the derivatives involving time are then obtained thanks to the bounds on the
space derivatives using (A.1).

Proof of Theorem 2.1. It is sufficient to prove existence and uniqueness of the solution
in Œ0; T � � Td for all T � 0, since then the solutions on Œ0; T1� � Td and Œ0; T2� � Td ,
with T1 < T2, must coincide in Œ0; T1� � Td , leading to the existence and uniqueness of
the global solution in RC � Td . Let T � 0.

Existence in Œ0; T � � Td for T small enough. Let us show the existence of the limit
solution. We consider here T to be small enough (an explicit bound will be given later).
Let

G.t; x/ D
X
k2Zd

1

.4�t/d=2
exp

�
�
jx C kj2

4t

�
be the heat kernel on the d -dimensional torus. We have

N�.k/.t; x/ D G.t; �/ � �0.x/ �

Z t

0

Z
Td

G.t � s; x � y/u.k�1/.s; y/ � ry N�
.k/.s; y/ dy ds:

Set Nk.t/ D sup0�s�t k N�
.kC1/.s; �/ � N�.k/.s; �/kL1 . Using ry � u.k/ D 0, we have

N�.kC1/.t; x/ � N�.k/.t; x/

D �

Z t

0

Z
Td

ryG.t � s; x � y/
�
N�.kC1/.s; y/ � N�.k/.s; y/

�
u.k/.s; y/ dy ds

�

Z t

0

Z
Td

ryG.t � s; x � y/ N�
.k/.s; y/

�
u.k/.s; y/ � u.k�1/.s; y/

�
dy ds:

Observe that (using the first moment of the chi distribution), for some constant ˇ > 0 we
have Z

Td

jrxG.t; x/j dx � ˇt
�1=2:

We thus get

k N�.kC1/.t; �/ � N�.k/.t; �/kL1

� ˇkKkL1k�0kL1

Z t

0

.t � s/�1=2k N�.kC1/.s; �/ � N�.k/.s; �/kL1 ds

C ˇk�0kL1

Z t

0

.t � s/�1=2ku.k/.s; �/ � u.k�1/.s; �/kL1 ds
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and

ku.k/.s; �/ � u.k�1/.s; �/kL1 � kKkL1k N�.k/.s; �/ � N�.k�1/.s; �/kL1 :

Therefore

Nk.t/ � ˇkKkL1k�0kL1

Z t

0

.t � s/�1=2Nk.s/ ds

C ˇkKkL1k�0kL1

Z t

0

.t � s/�1=2Nk�1.s/ ds:

Denoting C D ˇkKkL1k�0kL1 we get

Nk.t/ � C

Z t

0

.t � s/�1=2.Nk.s/CNk�1.s// ds: (A.4)

SinceNk is continuous, there existsR > 0 such that for all t 2 Œ0; T � we haveNk.t/ � R.
We thus have, using this bound in (A.4) and assuming 2C

p
T � 1=2,

Nk.t/ � RC

Z t

0

.t � s/�1=2 ds C C

Z t

0

.t � s/�1=2Nk�1.s/ ds

�
R

2
C C

Z t

0

.t � s/�1=2Nk�1.s/ ds:

We use this bound in (A.4) to get

Nk.t/ �
R

2
C

Z t

0

.t � s/�1=2 ds C C

Z t

0

.t � s/�1=2Nk�1.s/ ds

C C 2
Z t

0

Z s

0

.t � s/�1=2.s � u/�1=2Nk�1.u/ du ds:

We deal with the last term:

C 2
Z t

0

Z s

0

.t � s/�1=2.s � u/�1=2Nk�1.u/ du ds

D C 2
Z t

0

Nk�1.u/

Z t

u

.t � s/�1=2.s � u/�1=2 ds du D C 2�

Z t

0

Nk�1.u/ du:

Let ˛ D
p
T �C and choose T such that ˛ � 1=2 (which in turn also yields the previous

condition 2C
p
T � 1=2). We have

˛C

Z t

0

.t � s/�1=2Nk�1.s/ ds � C
2�

Z t

0

Nk�1.s/ du

D C

Z t

0

Nk�1.s/
�
˛.t � s/�1=2 � �C

�
ds;

and since ˛ D
p
T �C �

p
t � s �C for 0 � s � t � T , we get

˛C

Z t

0

.t � s/�1=2Nk�1.s/ ds � C
2�

Z t

0

Nk�1.s/ du;
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and thus

Nk.t/ �
R

4
C C.1C ˛/

Z t

0

.t � s/�1=2Nk�1.s/ ds:

Iterating this method we obtain, for all n 2 N,

Nk.t/ � 2
�nRC C.1C ˛ C � � � C ˛n�1/

Z t

0

.t � s/�1=2Nk�1.s/ ds;

and thus

Nk.t/ � 2C

Z t

0

.t � s/�1=2Nk�1.s/ ds:

We now show that this implies that

Nk.t/ � N0.T /

�
2C�

�
1

2

��k
tk=2�

�
k C 2

2

��1
; (A.5)

where �.z/ D
R1
0
tz�1e�t dt . Indeed, for k D 0, (A.5) is satisfied and, by induction, we

haveZ t

0

.t � s/�1=2sk=2 ds D t .kC1/=2
Z 1

0

.1 � u/�1=2uk=2 du D t .kC1/=2
�
�
1
2

�
�
�
kC2
2

�
�
�
kC3
2

� :

Using the fact that �.k C 1/ D kŠ and �.k C 3
2
/ D kŠ�.1

2
/, we find that

P1
kD0 Nk.t/

converges uniformly for t 2 Œ0; T � and the limits

N�.t; x/ D lim
k!1

N�.k/.t; x/ and u.t; x/ D lim
k!1

u.k/.t; x/

exist in C.Œ0;T ��Td /. Now, since for all l;n2N and all ˛1; : : : ;˛n, k@lt@˛1;:::;˛n
N�.k/kL1

and k@lt@˛1;:::;˛n
u.k/kL1 are bounded uniformly in k, using the Arzelà–Ascoli theorem

we have uniform convergence of the derivatives, up to extracting a subsequence. Hence
the validity of the limits in C1.Œ0; T � � Td /, i.e. there is convergence of the functions
along with their derivatives of all orders in Œ0; T � � Td . This implies that the limit N�
satisfies (2.1).

Uniqueness in Œ0; T � � Td . Suppose N�1 and N�2 are two bounded solutions of (2.1) on
Œ0; T � � Td . Then

@t . N�
1
� N�2/ ��. N�1 � N�2/ D �.K � N�1/ � r. N�1 � N�2/ � r �

�
.K � N�1 �K � N�2/ N�2

�
;

so that

N�1.t; x/ � N�2.t; x/

D �

Z t

0

Z
Td

ryG.t � s; x � y/ �
�
K �y N�

1.s; y/
�
. N�1.s; y/ � N�2.s; y// dy ds

�

Z t

0

Z
Td

ryG.x � y; t � s/ �
�
K �y N�

1.s; y/ �K �y N�
2.s; y/

�
N�2.s; y/ dy ds:
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Let N.t/ WD sup0�s�t k N�
1.s; �/ � N�2.s; �/kL1 : Recall

kK � N�1.s; �/ �K � N�2.s; �/kL1 � kKkL1k N�1.s; �/ � N�2.s; �/kL1 ;

which implies, as previously, the existence of a constant C such that

N.t/ � C

Z t

0

.t � s/�1=2N.s/ ds:

We choose L > 0 such that C
R T
0
s�1=2e�Ls ds � 1=2, and let Q.t/ D e�LtN.t/. Then

for all t ,

Q.t/ � C

Z t

0

.t � s/�1=2Q.s/e�L.t�s/ ds:

Let R > 0 be such that Q.t/ � R. Then

Q.t/ � RC

Z t

0

.t � s/�1=2e�L.t�s/ ds �
R

2
:

By induction, we get N.t/ D 0 for t 2 Œ0; T �. This concludes the proof of uniqueness.

Existence in RC �Td . For T small enough, there exists a solution in Œ0;T ��Td . Notice
that T only depends on constants independent of time (it depends on the L1 bound of the
initial condition, which we have shown propagates). It is therefore possible to construct
the (unique) smooth solution on all intervals Œt0; T C t0� � Td . Uniqueness allows us to
iteratively construct the (unique) smooth solution on RC �Td . This concludes the proof.
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