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Abstract. We study the Jb.F /-action on the set of top-dimensional irreducible components of
affine Deligne–Lusztig varieties in the affine Grassmannian. We show that the stabilizer of any such
component is a parahoric subgroup of Jb.F / of maximal volume, verifying a conjecture of X. Zhu.
As an application, we give a description of the set of top-dimensional irreducible components in the
basic locus of Shimura varieties.

Keywords: affine Deligne–Lusztig varieties, irreducible components, very special parahoric
subgroups.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Affine Deligne–Lusztig varieties and their irreducible components . . . . . . . . . . . . 2
1.2. Application to Shimura varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. The proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4. Outline of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Affine Deligne–Lusztig varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1. The Iwahori–Weyl group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Parahoric subgroups of maximal volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. � -conjugacy classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4. Affine Deligne–Lusztig varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Deligne–Lusztig reduction method and motivic counting . . . . . . . . . . . . . . . . . . . . . . 16
3.1. The Grothendieck–Deligne–Lusztig monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2. Calculus of top irreducible components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3. Class polynomials and motivic counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4. Stabilizer of one irreducible component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. Component stabilizers for X�.b/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Xuhua He: Department of Mathematics and New Cornerstone Science Laboratory, The University
of Hong Kong, Hong Kong, P.R. China; xuhuahe@hku.hk

Rong Zhou: Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, CB3 0WB Cambridge, UK; rz240@dpmms.cam.ac.uk

Yihang Zhu: Yau Mathematical Sciences Center, Tsinghua University, 100084 Beijing,
P.R. China; yhzhu@singhua.edu.cn

Mathematics Subject Classification 2020: 11G18 (primary); 14G35 (secondary).

mailto:xuhuahe@hku.hk
mailto:rz240@dpmms.cam.ac.uk
mailto:yhzhu@singhua.edu.cn


X. He, R. Zhou, Y. Zhu 2

4.1. The main theorem and some consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2. Reduction to adjoint unramified F -simple groups in characteristic zero . . . . . . . . 30
4.3. Reduction to the basic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4. The special case of a sum of dominant minuscule cocharacters . . . . . . . . . . . . . . 39
4.5. Numerical relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6. Proof of Theorem 4.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5. Irreducible components of basic loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1. Shimura varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2. Rapoport–Zink uniformization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Erratum for [44] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1. Introduction

1.1. Affine Deligne–Lusztig varieties and their irreducible components

Affine Deligne–Lusztig varieties were introduced by Rapoport [35]. In the equal charac-
teristic setting, affine Deligne–Lusztig varieties are related to the moduli space of local
shtukas. In the mixed characteristic setting, they are related to the geometry of Rapoport–
Zink spaces and hence to the geometry of certain distinguished loci in the special fiber of
Shimura varieties via p-adic uniformization. Therefore studying the geometry of affine
Deligne–Lusztig varieties can give useful information on the geometry of special cycles
on Shimura varieties.

This paper is concerned with studying the set of top-dimensional irreducible compo-
nents of affine Deligne–Lusztig varieties. To state our main results we fix some notation.
Let F be a local field with ring of integers OF , and let MF be the completion of the maxi-
mal unramified extension of F . Let G be a reductive group over F , which we assume is
unramified in the introduction for simplicity. For b 2 G. MF / and � a cocharacter of G, we
have the affine Deligne–Lusztig varietyX�.b/ which is a locally closed subscheme of the
affine Grassmannian. We refer to Section 2.4.1 for the precise definition.

If F is of equal characteristic, X�.b/ is locally of finite type. If F is of mixed char-
acteristic, X�.b/ is a perfect scheme and is locally of perfectly finite type. In either case,
it is known that X�.b/ is finite-dimensional. We write †top.X�.b// for the set of top-
dimensional irreducible components of X�.b/.

The scheme X�.b/ is equipped with an action of Jb.F /, the F -rational points of
a certain reductive group Jb over F (the Frobenius-centralizer of b). This induces an
action of Jb.F / on †top.X�.b//. The goal of this paper is to understand the Jb.F /-set
†top.X�.b//. This amounts to considering the following two problems:

(i) Classify the Jb.F /-orbits in †top.X�.b//.

(ii) For each Z 2 †top.X�.b//, determine the stabilizer of Z in Jb.F /.

For (i), M. Chen and X. Zhu conjectured (see [12, Conjecture 1.3]) that the set of
Jb.F /-orbits in †top.X�.b// should be in natural bijection with the Mirkovic–Vilonen
basis MV�.�b/ for a certain weight space of a representation of the dual group yG. (See
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Section 4.1 for the definition of MV�.�b/.) Special cases of this conjecture were proved
by Xiao–Zhu [48], Hamacher–Viehmann [12] and Nie [32]. The conjecture was finally
proved by Nie [33], and by the second and third authors [45] using different methods.

It is known that the stabilizer of every irreducible component of X�.b/ is a parahoric
subgroup (see [45, Theorem 3.1.1]). For (ii), Xiao–Zhu [48, Theorem 4.4.14] showed that
if the element b 2 G. MF / is unramified, then the stabilizer of every Z 2 †top.X�.b// is
a hyperspecial subgroup of Jb.F / (see also [45, Theorem 6.2.2]). For general b, it was
conjectured by X. Zhu1 that every stabilizer should be a parahoric subgroup of Jb.F / of
maximal volume.2 Our first main result confirms this conjecture.

Theorem A (see Theorem 4.1.2 and Corollary 4.1.4). For each Z 2 †top.X�.b//, the
stabilizer of Z in Jb.F / is a very special parahoric subgroup of Jb.F /. In particular,
there is an isomorphism of Jb.F /-sets

†top.X�.b// Š
a

a2MV�.�b/

Jb.F /=J
a;

where Ja � Jb.F / is a very special parahoric subgroup.

We refer to Section 2.2.1 for the definition of very special parahoric subgroups, and
to Proposition 2.2.5 for the equivalence of this condition with that of having maximal
volume. After this result was announced, S. Nie informed us that he could also prove this
result using a different method.

For a reductive group over F with no factors of type C -BCn, the condition that a
parahoric is very special determines the parahoric up to conjugation in the adjoint group.
Thus when Jb has no factors of type C -BCn, Theorem A determines the stabilizers up
to conjugation by J ad

b
.F /. It is an interesting problem to determine the stabilizers up to

Jb.F /-conjugacy. However, Theorem A is already enough for some important applica-
tions explained below.

1.2. Application to Shimura varieties

Let .G;X/ be a Shimura datum, and let K � G.Af / be a sufficiently small compact open
subgroup. Then we have the associated Shimura variety ShK.G; X/ which is an algebraic
variety defined over a number field E. Let p > 2 be a prime. We assume that .G; X/ is
of Hodge type, and that K D KpKp where Kp is a compact open subgroup of G.Ap

f
/ and

Kp is a hyperspecial subgroup of G.Qp/. Then by work of Kisin [22], for any prime v jp
of E, there is a smooth canonical integral model SK.G; X/ of ShK.G; X/ over OE.v/ . We
write ShK for its special fiber.

Write G for G D GQp . There is a stratification of ShK indexed by the Kottwitz set
B.G; �/ (see Section 2.4.4). We let Œb�bas denote the unique basic element of B.G; �/,

1Private communication.
2This conjecture implies that all the stabilizers have the same volume. The latter statement was

also conjectured by M. Rapoport.
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and we write ShK;bas for the stratum corresponding to Œb�bas. This is known as the basic
locus, and is a generalization of the supersingular locus in the special fiber of a modular
curve. The Rapoport–Zink uniformization (see e.g. [48, Corollary 7.2.16]) implies that
there is an isomorphism of perfect schemes

Shpfn
K;bas Š I.Q/nX�.b/ �G.Ap

f
/=Kp: (�)

Here I is a certain reductive group over Q with I ˝Q Ap
f
Š G˝Q Ap

f
and I ˝Q Qp

Š Jb , and the left hand side denotes the perfection of ShK;bas. The following theorem then
follows immediately from Theorem A and the above isomorphism.

Theorem B (see Corollary 5.2.3). There exists a bijection between the set of irreducible
components of ShK;bas of top dimension and the seta

a2MV�.�b/

I.Q/nI.Af /=Ia
pIp;

where Ip Š Kp and Ia
p is a very special parahoric subgroup of Jb.Qp/. Moreover, the

bijection is equivariant for prime-to-p Hecke operators.

In fact, ShK;bas is equidimensional by [12, Theorem 3.4], so we have obtained a
description of the set of all irreducible components in this case. We also remark that for
Theorem A, the assumption that G is unramified over F is not necessary, and we in fact
obtain results for general quasi-split G over F . This allows us to obtain a generalization
of Theorem B. The key input for this is a generalization of (�) for the integral models
constructed by Kisin–Pappas [25], which we prove in Section 5.

Theorem B and its generalization reflect the general philosophy going back to Serre
and Deuring that components of the basic locus are parameterized by class sets for an
inner form of the structure group. We refer to [20, 29, 43] for some special cases of this
result.

The main contribution of this paper is establishing that the compact open subgroups
Ia
p � I.Qp/ are very special. For many applications this is a crucial piece of information.

For example, in [29], the authors used the description of irreducible components in the
supersingular locus of quaternionic Shimura varieties to prove an arithmetic level raising
result on the way to proving cases of the Beilinson–Bloch–Kato conjecture. For this, they
used the interpretation of functions on †top.ShK;bas/ as automorphic forms for I . Thus
the knowledge of Ia

p is needed to determine the level of these automorphic forms. In [28],
the authors used a formula for the number of irreducible components in the supersingular
locus of unitary Shimura varieties to prove results on the image of the Torelli map. This
requires information on the volume of Ia

p .

1.3. The proof of Theorem A

Our proof of Theorem A makes use of techniques from p-adic harmonic analysis devel-
oped in [45], and the Deligne–Lusztig reduction method for affine Deligne–Lusztig vari-
eties developed in [14]. For simplicity, in the introduction we assume thatG has no factors
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of type A or E6. After a series of reduction steps, we can assume that G is an unramified
adjoint group over F , that F has characteristic 0, and that b 2 B.G; �/ is basic. It is
known that the stabilizer of every Z 2 †top.X�.b// is a parahoric subgroup of Jb.F /, so
the question is to prove that such a parahoric subgroup must have maximal volume. The
proof proceeds in two steps:

(1) Show that there exists Z 2 †top.X�.b// whose stabilizer is a parahoric subgroup of
Jb.F / of maximal volume.

(2) Show that all the stabilizers have the maximal volume.

The Deligne–Lusztig reduction method of [14] works for the affine Deligne–Lusztig
varieties in the affine flag variety. It keeps track of geometric information such as the
dimension and the number of irreducible components of top dimension. To keep track
of the stabilizers of top-dimensional irreducible components under the action of Jb.F /,
we introduce a refined reduction method in the context of motivic counting. Then we use
the explicit dimension formula for X�.b/ and a certain affine Deligne–Lusztig variety
Xw0t�.b/ in the affine flag variety to obtain a Jb.F /-equivariant bijection†top.Xw0t�.b//
�
�!†top.X�.b//. We combine the explicit reduction path constructed in [14] with a refine-
ment of the argument in [19] to obtain an element of †top.Xw0t�.b// whose stabilizer in
Jb.F / has maximal volume. This finishes step (1).

For step (2), consider the quantity

Q.�; b/ WD jJb.F /n†
top.X�.b//j

�1
�

X
Z

vol.StabZ.Jb.F ///�1;

where the sum is over a set of representatives for the Jb.F /-orbits in †top.X�.b//. The
results of [45] imply thatQ.�; b/ depends only on b, not on �. Moreover, for the given b
there exists �1 2 X�.T /C such that jJb.F /n†top.X�1.b//j D 1. By step (1) applied to
.�1; b/, we know thatQ.�1; b/ is equal to the inverse of the maximal volume attained by
parahoric subgroups of Jb.F /. Since Q.�; b/ D Q.�1; b/, and since StabZ.Jb.F // is a
parahoric subgroup of Jb.F / for eachZ 2†top.X�.b//, we conclude that StabZ.Jb.F //
must be a parahoric subgroup of maximal volume for each Z. This finishes step (2).

For step (2), the assumption that F has characteristic zero is crucial. This is due to
the fact that the results we use from [45] rely on the Base Change Fundamental Lemma,
a result only known for characteristic zero local fields in general.

1.4. Outline of the paper

In Section 2 we introduce notations and some preliminary group-theoretic results. In
Section 2.2, we define very special parahoric subgroups and prove the equivalence of
this condition with that of having maximal volume and maximal log volume. We then
introduce affine Deligne–Lusztig varieties and establish the relation between components
of X�.b/ and Xw0t�.b/ in Section 2.4. In Section 3, we give a reinterpretation of the
Deligne–Lusztig reduction method in terms of motivic counting. We apply this in Sec-
tion 3.4 to show the existence of a component in Xw0t�.b/ whose stabilizer is a very
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special parahoric. In Section 4, we prove Theorem A. In Sections 4.2 and 4.3, we reduce
the proof to the case where char.F / D 0, G is adjoint, unramified over F , and F -simple,
and b is basic. The proof then proceeds in Sections 4.5 and 4.6 as outlined above, with
some extra work needed to handle the case of type A and E6, which is the content of
Section 4.4. Finally, in Section 5, we apply our results to study the basic locus of Shimura
varieties and prove Theorem B. As mentioned, the key input is an analogue of the p-adic
uniformization for the integral models of Shimura varieties constructed by Kisin–Pappas,
which we prove following the method in [48, Section 7] using results of [44].

2. Affine Deligne–Lusztig varieties

2.1. The Iwahori–Weyl group

2.1.1. Let F be a non-archimedean local field with valuation ring OF and residue field
kF D Fq . We fix an algebraic closure xF of F . Let F ur be the maximal unramified exten-
sion of F inside xF , and let MF be the completion of F ur. We denote by O MF the valuation
ring of MF , and by k the residue field of MF , which is an algebraic closure of kF . Fix
an algebraic closure xMF of MF , and fix an F ur-algebra embedding xF ! xMF . We write � for
Gal. xF=F / and write �0 for the inertia subgroup of � , which is identified with Gal. xMF= MF /.
We let � 2 Aut. MF=F / denote the q-Frobenius.

Let G be a connected reductive group over F . We fix a maximal F ur-split torus S in
G defined over F , which exists by [4, Corollaire 5.1.12]. By [38, Proposition 2.3.9], S is
also maximal MF -split. Let T be the centralizer of S in G. By Steinberg’s theorem, G is
quasi-split over MF , so T is a maximal torus in G. Let N be the normalizer of T in G, and
let

MW0 WD N. MF /=T . MF /:

In other words, MW0 is the relative Weyl group of G MF .
The Iwahori–Weyl group is defined to be

MW WD N. MF /=T . MF /1;

where T . MF /1 is the kernel of the Kottwitz homomorphism T . MF /! X�.T /�0 . We have
a natural short exact sequence

0! X�.T /�0 !
MW ! MW0 ! 0: (2.1.1.1)

For each � 2 X�.T /�0 , we write t� for the corresponding element of MW . Such elements
of MW are called translation elements.

2.1.2. Let MA be the apartment of G MF corresponding to S MF . Thus MA is an affine R-space
under X�.T /�0 ˝Z R. The Frobenius � and the Iwahori–Weyl group MW act on MA via
affine transformations. Since MA is naturally identified with the apartment of GF ur cor-
responding to SF ur , there exists a � -stable alcove in MA by [41, Section 1.10.3] as the
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residue field of F is finite. We fix such a � -stable alcove Ma. Let MI � G. MF / be the Iwahori
subgroup corresponding to Ma. Then MI is � -stable and we write I for the corresponding
Iwahori subgroup MI� of G.F /.

As explained in [11], the choice of Ma gives rise to a subgroup MWa of MW called the affine
Weyl group. This is by definition the subgroup generated by the set MS of simple reflections
in the walls of Ma. The pair . MWa; MS/ is a Coxeter group.

Let � be the stabilizer of Ma in MW . Then by [11, Lemma 14], we have

MW D MWa Ì�;

and � is (canonically) isomorphic to �1.G/�0 . The length function on the Coxeter group
. MWa; MS/ extends to a function

M̀ W MW ! Z�0

with respect to which� is the set of length-zero elements of MW . The Frobenius � naturally
acts on MW , stabilizing the subset MS � MW (as Ma is � -stable). In particular, � induces an
automorphism of the Coxeter group . MWa; MS/.

By [11, p. 195], there exists a reduced root system † such that

MWa Š Q
_.†/ ÌW.†/;

whereQ_.†/ andW.†/ denote the coroot lattice and Weyl group of † respectively. The
roots of † are proportional to the roots of the relative root system for G MF . However, the
root systems themselves may not be isomorphic.

2.1.3. Let MK be a subset of MS. We write MW MK � MW for the subgroup generated by MK.
We let MW MK (resp. MK MW ) denote the set of minimal length representatives for the cosets in
MW = MW MK (resp. MW MKn MW ).

For each w 2 MW , we choose a lift Pw 2 N. MF / of w. We assume furthermore that
�. Pw/ D Pw if �.w/ D w. Indeed, to see that this can always be arranged, it suffices to see
that the Lang map T . MF /1! T . MF /1; t 7! t�.t/�1, is surjective. Now T . MF /1 D T 0.O MF /

where T 0 is the connected Néron model of T over OF [35, Remark 2.2 (iii)]. The
desired surjectivity follows from Greenberg’s theorem [9, Proposition 3] (whose proof
holds regardless of the characteristic of F ) applied to T 0.

Let MK be a subset of MS such that MW MK is finite. In this case MK corresponds to a stan-
dard parahoric subgroup of G. MF / containing MI, which we denote by MK . By the Bruhat
decomposition, the map w 7! Pw induces a bijection

MW MKn
MW = MW MK

�
�! MKnG. MF /= MK:

If furthermore MK is � -stable, then so is MK , and we write K D MK� for the corresponding
parahoric subgroup of G.F /. In what follows we will often abuse notation and write MK
(resp. K) for the parahoric group scheme over O MF (resp. OF ) when there is no risk of
confusion. The same is applied to the notations MI and I.
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2.1.4. Let A denote the maximal F -split subtorus of S , which is also a maximal F -split
torus inG. We writeZA andNA for the centralizer and normalizer of A inG respectively.
Since ZA is anisotropic modulo center over F , there is a unique parahoric subgroup ZA
of ZA.F /. The relative Iwahori–Weyl group is defined to be

W WD NA.F /=ZA:

It admits a natural map to the relative Weyl group W0 WD NA.F /=ZA.F / of G over F .
We write D for the relative local Dynkin diagram of .G; A; F /, and write � for the

set of vertices of D . Let A be the apartment associated to A, and let a be the base alcove
in A determined by the Iwahori subgroup I of G.F /. For each v 2 �, let ˛v be the
corresponding non-divisible simple affine root on A. As explained in [41, Section 1.11],
� is naturally identified with the set of � -orbits C in MS such that MWC is finite. For v 2 �,
we write Cv � MS for the corresponding � -orbit, and write sv 2 W for the reflection in A

along ˛v . By [37, Lemma 1.6], there is a natural isomorphism W Š MW � induced by the
inclusion map NA.F / ! N. MF /. By [30, Theorem A.8], sv corresponds to the longest
element of MWCv under this isomorphism. We set

S D ¹sv j v 2 �º:

We also note that ifw 2W , then the lifting Pw inN. MF / chosen in Section 2.1.3 is contained
in NA.F /, which follows from our assumption that Pw is � -invariant.

2.2. Parahoric subgroups of maximal volume

We keep the notations of Section 2.1. In this subsection we give a description of the
parahoric subgroups of G.F / that have maximal volume.

2.2.1. For a vertex v 2 �, we define d.v/ WD M̀.sv/. When G is simply connected and
absolutely almost simple, this coincides with the integer attached to v in [41, Section 1.8]
(cf. [37, Remark 1.13 (ii)]). We say that a special vertex v 2 � is very special if d.v/ is
minimal among all special vertices v0 lying in the connected component of D contain-
ing v.

Let x 2 A be a point lying in the closure xa of a. We associate to x a set of vertices

�x WD ¹v 2 � j sv.x/ ¤ xº:

It is easy to see that�x has non-empty intersection with each connected component of D .

Definition 2.2.2. A point x lying in the closure xa of a is said to be very special if �x
contains exactly one very special vertex in each connected component of D . A parahoric
subgroup ofG.F / is said to be very special if it isG.F /-conjugate to a standard parahoric
subgroup associated to a very special x 2 xa.

Remark 2.2.3. WhenG is simply connected and absolutely almost simple, our definition
of a very special parahoric subgroup is the same as that in [2, Section A.4]. There is also
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a notion of a very special parahoric subgroup defined in [47, Definition 6.1]. When G is
quasi-split, it can be shown that these two notions are equivalent. However, they differ for
non-quasi-split G (see [47, Lemma 6.1]).

2.2.4. We now fix a choice of Haar measure on G.F / such that all Iwahori subgroups
of G.F / have volume 1. Let K be a parahoric subgroup of G.F / and MK the associated
parahoric subgroup of G. MF /. We define the log-volume of K by

log vol.K/ WD dim xK=xI; (2.2.4.1)

where xK (resp. xI) denotes the reductive quotient of the special fiber of MK (resp. the image
of the special fiber of MI in xK). If K is a standard parahoric corresponding to a � -stable
subset MK � MS, then we have

log vol.K/ D M̀.w MK/; (2.2.4.2)

where w MK is the longest element of MW MK .
We have the Bruhat decompositions

MK D
a

w2 MW MK

MI Pw MI

and
K D

a
w2 MW �

MK

I PwI:

By [37, Proposition 1.11], we have

vol.K/ D
X
w2 MW �

MK

q
M̀.w/: (2.2.4.3)

Proposition 2.2.5. Let K be a parahoric subgroup of G.F /. Then the following are
equivalent:

(1) K is a very special parahoric.

(2) K is of maximal volume among all the parahoric subgroups of G.F /.

(3) K has maximal log-volume.

Remark 2.2.6. When G is simply connected and absolutely almost simple, the equiva-
lence between (1) and (2) is [2, Proposition A.5]. The equivalence between (3) and the
other two conditions will be used in the proof of Corollary 4.2.4 below, especially when
we alter the local field.

2.2.7. To prove Proposition 2.2.5 we follow the method in [2, Section A.4]. We begin
with some preparation. Assume that G is almost simple over F and let ˆ be the relative
root system ˆ.G; A/. We let ˆnd denote the system of non-divisible roots in ˆ and we
write W for the Weyl group of ˆnd, which is identified with the relative Weyl group W0
of G (see [39, Section 3.5]).
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For an element v 2�, we defineK.v/ WD S n ¹svº � S. We letWK.v/ denote the sub-
group ofW Š MW � generated byK.v/. Then the natural map Aff.A/! GL.X�.A/˝R/
(i.e., taking the linear part) induces an identification betweenWK.v/ and a subgroup of W ,
which we denote by Wv . We denote the inverse isomorphism by �v WWv

�
�! WK.v/. For

w 2Wv , we set
d.w; v/ WD M̀.�v.w//;

where we consider WK.v/ as a subgroup of MW . For each v0 2 � n ¹vº, we write x̨v0 for
the unique proportion of the vector part of ˛v0 that lies in ˆnd. We let ˆv denote the root
subsystem of ˆnd generated by x̨v0 with v0 2 � n ¹vº.

We define an ordering onˆv by specifying the positive simple roots to be given by x̨v0
with v0 2 � n ¹vº, and we write ˆCv (resp. ˆ�v ) for the subset of positive (resp. negative)
roots. Note that the ordering on ˆv depends on v; there may exist v1; v2 2 � such that
ˆv1 D ˆv2 but ˆCv1 ¤ ˆ

C
v2

.
For x̨ 2ˆv , we define an integer d.x̨; v/ as follows. If x̨ D x̨v0 for some v0 2� n ¹vº,

then we define d.x̨; v/D d.v0/. In general, we define d.x̨; v/ by specifying that its depen-
dence on x̨ is Wv-invariant. This is well-defined since if v1; v2;2 � n ¹vº are such that
x̨v1 and x̨v2 are Wv-conjugate, then d.v1/ D d.v2/ (see [2, Section A.4]).

Lemma 2.2.8. For each w 2Wv , we have

d.w; v/ D
X

x̨2ˆ
C
v ;w x̨2ˆ

�
v

d.x̨; v/: (2.2.8.1)

Proof. Let s1 � � � sn be a reduced word decomposition for w 2Wv , where si is the simple
reflection corresponding to x̨vi for vi 2 � n ¹vº. For i D 1; : : : ; n, set wi D siC1 � � � sn.
Then the association si 7! w�1i x̨vi defines a bijection

¹s1; : : : ; snº
�
�! ¹x̨ 2 ˆCv j w x̨ 2 ˆ

�
v ºI

see [21, Section 10.3, Lemma A]. By Wv-invariance, for i D 1; : : : ; n we have

d.w�1i x̨vi ; v/ D d.x̨vi ; v/ D
M̀.si /:

By [37, Sublemma 1.12] and induction, we have

d.w; v/ D

nX
iD1

M̀.si /

and the result follows.

Now let v0 2 � be a special vertex. By definition (see [41, Section 1.9]), this means
that ˆv0 D ˆ

nd, or equivalently W ŠWv0 . Thus the integer d.x̨; v0/ is well-defined for
any x̨ 2 ˆnd.

Lemma 2.2.9. AssumeG is almost simple over F and let v;v0 2� with v0 a very special
vertex. Then for all x̨ 2 ˆv , we have d.x̨; v/ � d.x̨; v0/.
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Proof. Since d.x̨; v/ and d.x̨; v0/ only depend on the Wv-orbit of x̨, it suffices to prove
this in the case that x̨ 2ˆCv is a simple root, i.e., x̨ D x̨v0 with v0 2� n ¹vº. If v0¤ v0, then
v0 2 �n¹v0º and hence x̨ is also a simple root for ˆCv0 by the definition of the ordering
on ˆCv0 . We therefore have d.x̨; v/ D d.x̨; v0/ D d.v0/.

If v0 D v0, by inspection of Tits’ table [41, Section 4] we find that

d.x̨; v/ WD d.v0/ D min
v002�

d.v00/

unless G is of type 2A002m�1, 2D0n, 2D002m, 4D2mC1 or 3E6. In these cases, one computes
explicitly that d.x̨; v/ � d.x̨; v0/.

Proof of Proposition 2.2.5. It suffices to prove the result for K a standard parahoric. We
first consider the case where G is adjoint and simple over F . Let MK0; MK � MS be � -stable
subsets with corresponding parahoric subgroups K0 and K of G.F /, and corresponding
subsets K0; K0 � S. Assume that K0 is a very special parahoric. Then we need to show
that

vol.K/ � vol.K0/; log vol.K/ � log vol.K0/

and that strict inequality holds in each case if K is not very special.
Since K0 is very special, we have K0 D K.v0/ for v0 2 � a very special vertex.

Moreover, since K is contained inside a parahoric corresponding to some v 2 �, we may
assume K D K.v/.

Since v0 is a very special vertex, Wv0 DW and we have ˆnd D ˆv0 . Let u 2Wv be
the unique element such that u.ˆCv / � ˆ

C
v0

. Then u.ˆ�v / � ˆ
�
v0

. It follows that the map
x̨ 7! u.x̨/ induces a bijection

¹x̨ 2 ˆCv j w x̨ 2 ˆ
�
v º
�
�! ¹x̨ 2 u.ˆCv / j uwu

�1
x̨ 2 ˆ�v0º: (2.2.9.1)

Thus for w 2Wv we have

d.w; v/ D
X

x̨2ˆ
C
v ;w x̨2ˆ

�
v

d.x̨; v/ D
X

x̨2u.ˆ
C
v /; uwu

�1 x̨2ˆ�v0

d.x̨; v/

�

X
x̨2u.ˆ

C
v /; uwu

�1 x̨2ˆ�v0

d.x̨; v0/

�

X
x̨2ˆ

C
v0
; uwu�1 x̨2ˆ�v0

d.x̨; v0/ D d.uwu
�1; v0/:

Here the first equality follows from Lemma 2.2.8. The second equality follows from the
bijection (2.2.9.1) and the Wv-invariance of d.�; v/. The first inequality follows from
Lemma 2.2.9. Thus by (2.2.4.3), we have

vol.K/ D
X
w2Wv

qd.w;v/ �
X
w2Wv

qd.w;v0/ �
X
w2W

qd.w;v0/ D vol.K0/:
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If K is not special, then the second inequality is strict. If K is special but not very special,
then the first inequality is strict. We thus obtain the equivalence .1/,.2/.

Similarly, if we let wv 2Wv (resp. wv0 2Wv0 ) denote the image of w MK (resp. w MK0 ),
then

log vol. MW MK/ D d.wv; v/ D
X

x̨2u.ˆ
C
v /

d.x̨; v/

�

X
x̨2ˆ

C
v0

d.x̨; v0/ D d.wv0 ; v0/ D log vol. MW MK0/:

If K is not very special, then the inequality is strict. Thus we obtain .1/,.3/.
The case with generalG is reduced to the above special case by considering the direct

product decomposition ofGad into F -simple factors. In fact, by (2.2.4.1) (resp. (2.2.4.3)),
we know that the log-volume (resp. volume) of a parahoric subgroup of G.F / is equal to
the product of the log-volumes (resp. volumes) of the corresponding parahoric subgroups
of the F -simple factors of Gad.

2.3. � -conjugacy classes

We keep the setting of Section 2.1, and assume in addition that G is quasi-split over F .

2.3.1. Under the assumption that G is quasi-split over F , we can fix a � -stable special
point Ms lying in the closure of Ma (see [46, Lemma 6.1]). For an abelian group X and a
Z-algebra R, we write XR for X ˝Z R. The choice of Ms gives rise to a � -equivariant
isomorphism

X�.T /�0;R Š
MA; (2.3.1.1)

which sends 0 to Ms. We let MS0 � MS denote the subset of simple reflections fixing Ms. Then
MS0 is preserved by the action of � . The identification (2.3.1.1) determines a chamber
X�.T /

C

�0;R
in X�.T /�0;R Š X�.S/R (with respect to the relative roots of .G MF ; S MF /),

namely the one whose image under (2.3.1.1) contains the alcove Ma. We let X�.T /C�0
(resp. X�.T /C�0;Q) denote the preimage of X�.T /C�0;R under the map X�.T /�0 !

X�.T /�0;R (resp. under the map X�.T /�0;Q ! X�.T /�0;R).
Note that X�.T /C�0;R gives rise to an ordering of the relative roots of .G MF ; S MF /. Since

G is quasi-split over MF , this uniquely determines an ordering of the absolute roots in
X�.T /, and determines a Borel subgroup of G MF containing T MF . Since C is � -stable, this
Borel subgroup comes from a Borel subgroup B of G containing T .

2.3.2. For b 2 G. MF /, we let Œb� denote the � -conjugacy class of b,

Œb� D ¹h�1b�.h/ j h 2 G. MF /º:

We shall sometimes write Œb�G if we want to specify G. Let B.G/ be the set of � -
conjugacy classes in G. MF /.
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The elements of B.G/ have been classified by Kottwitz [27]. For b 2 G. MF /, we
write x�b 2 .X�.T /�0;Q

C/� for its dominant Newton point. (Note that .X�.T /�0;Q
C/�

is canonically identified with .X�.T /QC/� , where X�.T /QC consists of the B-dominant
elements of X�.T /Q.) The map b 7! �b induces a map x� W B.G/! .X�.T /�0;Q

C/� .
We let Q� W G. MF /! �1.G/�0 denote the Kottwitz homomorphism and we write

� W G. MF /! �1.G/�

for the composition of Q� with the natural projection �1.G/�0 ! �1.G/� . This factors
through a map B.G/! �1.G/� , which we still denote by �.

By [27, Section 4.13], the map

.x�; �/ W B.G/! .X�.T /�0;Q
C/� � �1.G/�

is injective. We sometimes write x�G and �G for � and � if we want to specify G.
An element b 2 G. MF / is said to be basic if �b is central. Similarly we define basic

elements of B.G/.

2.3.3. For b 2 G. MF /, let Jb denote the � -centralizer group of b. It is a reductive group
over F such that

Jb.R/ D ¹g 2 G. MF ˝F R/ j g
�1b�.g/ D bº

for any F -algebra R. Let M be the centralizer of x�b , where we consider x�b as an element
of .X�.T /QC/� � .X�.T /�/Q as explained in Section 2.3.2. ThenM is a Levi subgroup
of G defined over F and Jb is an inner form of M over F .

2.3.4. The maps � and � on B.G/ can be described in a more explicit way as follows. Let
B. MW ;�/ be the set of � -conjugacy classes in MW . The map MW ! G. MF /, w 7! Pw, defined
in Section 2.1 induces a well-defined map

B. MW ; �/! B.G/: (2.3.4.1)

For each w 2 MW , there exists a positive integer n such that �n acts trivially on MW and
w�.w/ � � � �n�1.w/ D t� for some � 2 X�.T /�0 . We set �w WD �=n 2 X�.T /�0;Q and
we let �w denote the unique MW0-conjugate of �w that lies in X�.T /�0;Q

C. Then �w is
necessarily fixed by � . We let Q�.w/ 2 �1.G/�0 denote the image of w under the quotient
map MW ! MW = MWa Š �1.G/�0 , and we let �.w/ be the image of Q�.w/ in �1.G/� . By
[14, Proposition 3.6], we have a commutative diagram

B. MW ; �/
(2.3.4.1) //

.�;�/ ((

B.G/

.�;�/vv
.X�.T /�0;Q

C/� � �1.G/�
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2.4. Affine Deligne–Lusztig varieties

We keep the setting and notation of Section 2.3. We assume in addition that G splits over
a tamely ramified extension of F and that char.F / is either zero or coprime to the order
of �1.Gad/.

2.4.1. Let MK � MS be a � -stable subset that corresponds to a parahoric subgroup MK �
G. MF /. For w 2 MW MKn MW = MW MK and b 2 G. MF /, we set

X MK;w.b/.k/ D ¹g MK 2 G. MF /= MK j g
�1b�.g/ 2 MK Pw MKº: (2.4.1.1)

If char.F / > 0, then X MK;w.b/.k/ is the set of k-points of a locally closed subscheme
X MK;w.b/ of the partial affine flag variety Gr MK . In this case X MK;w.b/ is locally of finite
type over k (see [34]). If char.F / D 0, then X MK;w.b/.k/ is the set of k-points of a locally
closed subscheme X MK;w.b/ of the Witt vector partial affine flag variety Gr MK constructed
by X. Zhu [47] and Bhatt–Scholze [1]. In this case X MK;w.b/ is locally of perfectly finite
type over k (see [13, Theorem 1.1]). In both cases, we call X MK;w.b/ the affine Deligne–
Lusztig variety associated to b, w, and MK.

The group Jb.F / (see Section 2.3.3) acts on X MK;w.b/ via k-scheme automorphisms.
By [13, Theorem 1.1], the induced Jb.F /-action on the set of irreducible components
of X MK;w.b/ has finitely many orbits. The results in [13] also have the following easy
consequence.

Lemma 2.4.2. Every irreducible component of X MK;w.b/ is quasi-compact.

Proof. Let Z be an irreducible component of X MK;w.b/. By [13, Proposition 5.4], there
is a dense open subset U � Z which is contained in a finite union

S
i Si of Schubert

varieties in Gr MK . Since the Schubert varieties are closed in Gr MK , we have Z �
S
i Si .

Moreover, since Z is closed in X MK;w.b/, it is locally closed in
S
i Si . Now the Schubert

varieties are of finite type over k when char.F / > 0 and of perfectly finite type over k
when char.F / D 0 (see [13, Section 4]), so the underlying topological space of

S
i Si is

Noetherian. It follows that Z is quasi-compact.

2.4.3. We are mainly interested in X MK;w.b/ in the following two cases:

� (Iwahori level) We have MK D ;, i.e., MK D MI.

� (Maximal special level) We have MK D MS0, i.e., MK is the maximal special parahoric
subgroup corresponding to the special point Ms.

When MK D ;, we simply write Xw.b/ for X;;w.b/. When MK D MS0, the restriction
of the natural map MW ! MW0 to MW MK � MW induces an isomorphism MW MK

�
�! MW0. In other

words, our choice of Ms determines a splitting of the exact sequence (2.1.1.1). In this case
we shall identify MW0 with MW MK , viewed as a subgroup of MW . We have natural bijections

X�.T /�0
C
Š X�.T /�0=

MW0 Š MW0n MW = MW0:
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Here the first bijection follows from the fact that X�.T /C�0;R is naturally isomorphic
to X�.T /�0;R=W0, together with the observation that the torsion part X�.T /�0;tors

of X�.T /�0 injects into X�.T /�0
C (which follows from the definitions) and injects

into X�.T /�0=
MW0 (because X�.T /�0=

MW0 injects into �1.G/�0 , whereas the kernel
of X�.T /�0 ! �1.G/�0 is torsion-free, being the free abelian group generated by
the �0-orbits of absolute coroots). The second bijection is induced by the inclusion
X�.T /�0 ,!

MW ; � 7! t� (see (2.1.1.1)). For � 2 X�.T /�0
C, we write X�.b/ for

X MS0;t�
.b/. We sometimes write XG� .b/ for X�.b/ if we need to specify the group G.

If G is unramified over F , then every cocharacter �0 of G xF is conjugate to a unique
element � 2 X�.T /�0

C
D X�.T /�0 . In this case we also write X�0.b/ for X�.b/.

2.4.4. For �; �0 2 X�.T /�0;Q Š X�.S/Q, we write � � �0 if �0 � � is a non-negative
rational linear combination of the positive coroots in X�.S/ (with respect to .G MF ; S MF /
and the ordering defined in Section 2.3.1).

For � 2 X�.T /�0
C, we define

B.G;�/ WD ¹Œb� 2 B.G/ j x�b � �
˘; �.b/ D �\º:

Here �\ is the image of � in �1.G/� , and �˘ 2 X�.T /�0;Q
C denotes the average of the

� -orbit of the image of � in X�.T /�0;Q
C. The set B.G; �/ has a unique basic element,

which is also the unique minimal element with respect to the natural partial order on
B.G;�/ (see [18, Section 2]).

The following criterion for the non-emptiness of X�.b/, originally conjectured by
Kottwitz and Rapoport, was proved by Gashi [6] for unramified groups and by the first-
named author [14, Theorem 7.1] in general.

Theorem 2.4.5. For � 2X�.T /�0
C, we haveX�.b/¤; if and only if Œb� 2B.G;�/.

2.4.6. Now we recall the dimension formula for X�.b/. For b 2 G. MF /, the defect of b is
defined as

defG.b/ WD rankF G � rankF Jb :

We let � denote the half sum of the positive roots in the root system † (see Sec-
tion 2.1). The following theorem was proved by Görtz–Haines–Kottwitz–Reuman [7] and
Viehmann [42] for split G, and by Hamacher [10] and X. Zhu [47] independently for
unramified groups. The result in general was proved by the first-named author [16, Theo-
rem 2.29].

Theorem 2.4.7. Assume Œb� 2 B.G;�/. Then

dimX�.b/ D h� � x�b; �i �
1
2

defG.b/:

Definition 2.4.8. For a scheme X of finite Krull dimension and each non-negative inte-
ger d , we write†d .X/ for the set of irreducible components ofX of dimension d (which
is allowed to be empty). We write †top.X/ for †dim.X/.X/, and †.X/ for the set of all
irreducible components of X .
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2.4.9. The main object of interest in this paper is the set †top.X�.b//. To study this set
it will be useful to relate X�.b/ to a certain affine Deligne–Lusztig variety with Iwahori
level.

We have a natural projection map

� W Gr MI ! Gr MK

between the partial affine flag varieties, which exhibits Gr MI as an étale fibration over Gr MK
with fibers isomorphic to xK=xI when char.F / > 0 (resp. the perfection of xK=xI when
char.F / D 0). See Section 2.2.4 for xK=xI.

As in Section 2.4.3, we identify MW0 with the subgroup MW MS0 of MW . For � 2X�.T /�0
C,

the map � induces a Jb.F /-equivariant map[
w2 MW0t� MW0

Xw.b/! X�.b/: (2.4.9.1)

In fact, the left hand side is equal to ��1.X�.b//.

Proposition 2.4.10. Let w0 denote the longest element of MW0. The map Xw0t�.b/ !
X�.b/ induces a Jb.F /-equivariant bijection

†top.Xw0t�.b//
�
�! †top.X�.b//:

Proof. Write Y for the left hand side of (2.4.9.1). Since the map (2.4.9.1) is a Jb.F /-
equivariant fibration with irreducible fibers, it induces a Jb.F /-equivariant bijection

†top.Y /
�
�! †top.X�.b//:

Note that the Jb.F /-action on Y stabilizesXw.b/ for each w 2 MW0t� MW0. Moreover, each
Xw.b/ is locally closed in Y . By [14, Theorem 9.1], for w 2 MW0t� MW0 we have

dimXw.b/ � dimXw0t�.b/

with equality if and only if w D w0t�. Thus the inclusion map Xw0t�.b/ ,! Y induces a
Jb.F /-equivariant bijection

†top.Xw0t�.b//
�
�! †top.Y /:

The statement is proved.

3. Deligne–Lusztig reduction method and motivic counting

3.1. The Grothendieck–Deligne–Lusztig monoid

Recall that k is a fixed algebraic closure of Fq . Let H be an abstract group. We retain the
notations introduced in Definition 2.4.8.
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Definition 3.1.1. Let �H be the category of perfect k-schemes V that are equipped with
an H -action and satisfy the following conditions:

(1) The scheme V is locally of perfectly finite type over k.

(2) Each irreducible component of V is quasi-compact.

(3) The H -action on †.V / has finitely many orbits.

We define morphisms in �H to be the k-scheme morphisms that are H -equivariant.

3.1.2. It is a simple exercise to check that the category �H is essentially small. Thus
the isomorphism classes in �H form a set. Let NŒ�H � be the free commutative monoid
generated by this set. For any object V in �H , we denote by ŒV � the element of NŒ�H �
given by the isomorphism class of V .

For any k-scheme Q, we write Qpfn for the perfection of Q, which is a perfect k-
scheme. We write A1 for A1k, and write Gm for A1k � ¹0º. Then Gpfn

m equipped with the
trivial H -action is an object in �H . Moreover, if V is in �H , then V �k Gpfn

m equipped
with the product H -action is also in �H . We thus define an endomorphism T of NŒ�H �
by

ŒV � 7! ŒV �k Gpfn
m � for any object V in �H :

Lemma 3.1.3. Let V be an object in �H , and let U be an H -stable open subscheme
of V . Then U equipped with the induced H -action is an object in �H .

Proof. Clearly U satisfies condition (1) in Definition 3.1.1. We verify the other two con-
ditions. For each Z 2 †.U /, the closure xZ of Z in V is an element of†.V /. Conversely,
for each Z0 2 †.V /, either Z0 \ U D ;, or Z0 \ U is an element of †.U /. Hence we
have a bijection

†.U /
�
�! ¹Z0 2 †.V / j Z0 \ U ¤ ;º; Z 7! xZ:

The right hand side is an H -stable subset of †.V /, and the bijection is H -equivariant.
Since V satisfies condition (3), so does U .

Since V satisfies conditions (1) and (2), eachZ0 2†.V / is Noetherian as a topological
space. For an arbitrary Z 2 †.V /, we know that Z is open in xZ (since Z D xZ \U ), and
that xZ is Noetherian (since xZ 2 †.U /). Hence Z is quasi-compact. Thus U satisfies
condition (2).

Definition 3.1.4. Let � be the minimal equivalence relation on NŒ�H � generated by the
following rules:

(1) If there is a morphism V1 ! V2 in �H such that forgetting the H -actions this is a
Zariski-locally trivial Gpfn

m -bundle, then ŒV1� � T ŒV2�.

(2) If there is a morphism V1 ! V2 in �H such that forgetting the H -actions this is a
Zariski-locally trivial A1;pfn-bundle, then ŒV1� � T ŒV2�C ŒV2�.

(3) Suppose that there is a morphism V 0 ! V in �H that is a closed embedding. By
Lemma 3.1.3, the open subscheme V n V 0 of V is an object in �H . We require that
ŒV � � ŒV 0�C ŒV n V 0�.
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3.1.5. We recall the general notion of a quotient monoid. Let .M;C/ be a commutative
monoid. An equivalence relation� onM is called a congruence if for all x;x0; y; y0 2M
such that x � x0 and y � y0, we have x C y � x0 C y0. If � is a congruence, then
the quotient set M=� inherits from M the structure of a commutative monoid. This is
called the quotient monoid of M by �. Starting with an arbitrary equivalence relation �
on M , we obtain a congruence � on M by declaring x � y if and only if we can write
x D

Pn
iD1 xi and y D

Pn
iD1 yi for some xi ; yi 2M such that xi � yi for each i .

Definition 3.1.6. Let � be congruence on NŒ�H � associated to �, and let GDLH be the
quotient monoid NŒ�H �=�. We call GDLH the Grothendieck–Deligne–Lusztig monoid.
For any object V in �H , we denote the image of ŒV � under NŒ�H �! GDLH by ŒŒV ��.

3.1.7. One easily checks that the endomorphism T of NŒ�H � descends to an endomor-
phism of GDLH , which we still denote by T . We write L for T C 1 2 End.GDLH /.

3.2. Calculus of top irreducible components

3.2.1. LetH be an abstract group as before. One can formally calculate “top-dimensional
irreducible components” of elements of GDLH . To this end we first introduce a commu-
tative monoid TICH which is much simpler than GDLH and serves to record information
about top-dimensional irreducible components. Let �etH

f
be the category ofH -sets which

contain only finitely many H -orbits. This is an essentially small category. We let TICH

be the set of pairs .†; d/, where † is an isomorphism class in �etH
f

, and d 2 Z�0. Given
two elements .†1; d1/; .†2; d2/ 2 TICH , we define their sum to be

.†1; d1/C .†2; d2/ WD

8̂̂<̂
:̂
.†1; d1/ if d1 > d2;

.†2; d2/ if d2 > d1;

.†1 t†2; d1/ if d1 D d2:

This makes TICH a commutative monoid. In the above definition of the sum, if d1 � d2,
then we say that .†1; d1/ makes non-trivial contribution to the sum.

Define an endomorphism T of TICH by

T W .†; d/ 7! .†; d C 1/:

We write L for T C 1 2 End.TICH /; it is easy to see that in fact L D T in End.TICH /.
Note that every object V in �H has finite Krull dimension. The sets†.V / and†d .V /

for all d 2 Z�0 (Definition 2.4.8) equipped with the natural H -actions are all objects
in �etH

f
.

Definition 3.2.2. For any X D
Pn
iD1ŒVi � 2 NŒ�H �, we set

dimX WD max
1�i�n

dimVi 2 Z�0;
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and define
†top.X/ WD

a
1�i�n

†dimX .Vi /;

which is an object in �etH
f

. The pair consisting of the isomorphism class of †top.X/ and

the integer dimX is thus an element of TICH , which we denote by QC.X/ 2 TICH .

Lemma 3.2.3. The map QC W NŒ�H �! TICH is a monoid homomorphism, and descends
to a monoid homomorphism C WGDLH ! TICH . Moreover, C is equivariant with respect
to the endomorphisms T on GDLH and T on TICH .see Sections 3.1.7 and 3.2.1/.

Proof. It follows from the definitions that QC is a monoid homomorphism. To show that
QC descends to GDLH , it suffices to check that any X;X 0 2 NŒ�H � with X � X 0 satisfy
QC.X/ D QC.X 0/. For this, we only need to analyze the three situations in Definition 3.1.4.
Namely, we may assume that X and X 0 are the two sides of � in those situations.

In situation (1), we haveX D ŒV1� andX 0DT ŒV2�. We have dimV1D dimV2C 1, and
taking the inverse image along V1! V2 induces anH -equivariant bijection †top.V2/

�
�!

†top.V1/. (In fact, we have an H -equivariant bijection †d .V2/
�
�! †dC1.V1/ for arbi-

trary d .) Thus QC.ŒV1�/ D T QC.ŒV2�/. For the same reason, we also have QC.T ŒV2�/ D
T QC.ŒV2�/. Thus QC.ŒV1�/ D QC.T ŒV2�/ as desired.

One treats situation (2) similarly, noting that QC.T ŒV2�C ŒV2�/ D QC.T ŒV2�/.
Now consider situation (3). We haveX D ŒV � andX 0 D ŒV 0�C ŒV n V 0�. Observe that

for each Z 2 †.V /, precisely one of the following two statements holds:

� Z � V 0 and Z 2 †.V 0/.

� The intersection Z1 WD Z \ .V nV 0/ is dense in Z. Moreover, Z1 2 †.V nV 0/ and
dimZ1 D dimZ (cf. the proof of Lemma 3.1.3).

It follows that for each d 2 Z�0 we have an H -equivariant bijection

†d .V 0/ t†d .V nV 0/
�
�! †d .V /; Z 7! NZ:

Therefore we have QC.ŒV �/ D QC.ŒV 0� C ŒV nV 0�/, as desired. We have proved that QC
descends to GDLH .

For any V in �H , we have dim.V �k Gpfn
m /D dim.V /C 1, and we have a naturalH -

equivariant bijection †top.V �k Gpfn
m /
�
�! †top.V /. It follows that QC is equivariant with

respect to T on the two sides. Since C is induced by QC, it is also equivariant with respect
to T on the two sides.

3.3. Class polynomials and motivic counting

We assume thatG is as in Section 2.4, i.e.,G is quasi-split, tamely ramified, and char.F / −
j�1.Gad/j if char.F / > 0. Then we have the affine Deligne–Lusztig varietyXw.b/ associ-
ated to w 2 MW and b 2 G. MF /. The motivation behind the definition of the Grothendieck–
Deligne–Lusztig monoid is that it gives a natural setting to apply the Deligne–Lusztig
reduction method for Xw.b/. We recall the reduction method in the proposition below.
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Proposition 3.3.1. Let w 2 MW , s 2 MS, and b 2 G. MF /. If char.F / > 0, then the following
two statements hold:

(1) If M̀.sw�.s// D M̀.w/, then there exists a Jb.F /-equivariant morphism

Xw.b/! Xsw�.s/.b/

which is a universal homeomorphism.

(2) If M̀.sw�.s// D M̀.w/ � 2, then Xw.b/ has a Jb.F /-stable closed subscheme X1 sat-
isfying the following conditions:

� There exist a k-scheme Y1 with a Jb.F /-action, and Jb.F /-equivariant morphisms
f1 W X1! Y1 and g1 W Y1! Xsw�.s/.b/, where f1 is a Zariski-locally trivial A1-
bundle and g1 is a universal homeomorphism.

� LetX2 be the open subscheme ofXw.b/ complement toX1, which is Jb.F /-stable.
There exist a k-scheme Y2 with a Jb.F /-action, and Jb.F /-equivariant morphisms
f2 W X2 ! Y2 and g2 W Y2 ! Xsw.b/, where f2 is a Zariski-locally trivial Gm-
bundle and g2 is a universal homeomorphism.

If char.F /D 0, then the above two statements still hold, but with “A1-bundle” and “Gm-
bundle” replaced by “A1;pfn-bundle” and “Gpfn

m -bundle” respectively.

Proof. The equal characteristic case is proved in [8, Section 2.5]. The mixed characteristic
case follows from the same proof.

3.3.2. Let w 2 MW and b 2 G. MF /. By the discussion in Section 2.4.1 and Lemma 2.4.2,
we know that the perfection Xw.b/pfn of Xw.b/ is an object in �Jb.F /. (Of course Xw.b/
D Xw.b/

pfn if char.F / D 0.) To simplify the notation, we write ŒŒXw.b/�� for the element
ŒŒXw.b/

pfn�� 2 GDLJb.F /.
Using the formalism in Section 3.1, we can reformulate Proposition 3.3.1 in the fol-

lowing proposition (which is weaker, but more convenient for applications).

Proposition 3.3.3. Let w 2 MW , s 2 MS, and b 2 G. MF /.

(1) If M̀.sw�.s// D M̀.w/, then

ŒŒXw.b/�� D ŒŒXsw�.s/.b/�� 2 GDLJb.F /:

(2) If M̀.sw�.s// D M̀.w/ � 2, then

ŒŒXw.b/�� D .L � 1/ŒŒXsw.b/��C LŒŒXsw�.s/.b/�� 2 GDLJb.F /:

Proof. This follows from Proposition 3.3.1 and the following three observations. Firstly,
if a morphism of k-schemes is universally homeomorphic, then the perfection of this mor-
phism is an isomorphism, by [1, Lemma 3.8]. Secondly, if a morphism of k-schemes is a
Zariski-locally trivial A1-bundle (resp. Gm-bundle), then the perfection of this morphism
is a Zariski-locally trivial A1;pfn-bundle (resp. Gpfn

m -bundle). For this one uses the fact
that perfection does not change the Zariski topology, and commutes with fiber products
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over k (by the universal property of the perfection functor). Thirdly, the perfections of
the k-schemes X1; X2; Y1; Y2 in Proposition 3.3.1 (2), equipped with the natural Jb.F /-
actions, are all objects in �Jb.F /. Indeed, the assertion for X2 follows from the fact that
Xw.b/

pfn is in �Jb.F / and from Lemma 3.1.3. The assertion for Y2 follows from the fact
that Xsx.b/pfn is in �Jb.F /, and the fact that the perfection of g2 is a Jb.F /-equivariant
isomorphism. The assertion for Y1 follows from the fact that Xsx�.x/.b/pfn is in �Jb.F /,
and the fact that the perfection of g1 is a Jb.F /-equivariant isomorphism. The assertion
for X1 follows from the assertion for Y1, the fact that the perfection of f1 is locally of
perfectly finite type, and the fact that pulling back along the perfection of f1 induces a
Jb.F /-equivariant bijection †.Y pfn

1 /
�
�! †.X

pfn
1 /.

3.3.4. We will use Proposition 3.3.3 to define a refinement of the class polynomials
for affine Hecke algebras, which are more suited for the study of the Jb.F /-action on
†top.Xw.b//. We first recall the definition of the usual class polynomials. Here we use
the convention of [16, Section 2.8.2], which differs from that in [14].

Let q be an indeterminate, and let ZŒq˙1� be the Laurent polynomial ring. Let H be
the affine Hecke algebra over ZŒq˙1� attached to MW . Thus H is the associative ZŒq˙1�-
algebra generated by symbols ¹Tw j w 2 MW º subject to the following relations:

� TwTw0 D Tww0 if M̀.ww0/ D M̀.w/C M̀.w0/;

� .Ts C 1/.Ts � q/ D 0 for all s 2 MS.

The action of � on MW induces an automorphism � of H characterized by �.Tw/ D
T�.w/ for all w 2 MW . Define ŒH;H�� to be the ZŒq˙1�-submodule of H generated by
h�.h0/ � h0�.h/; where h and h0 run over elements of H. Define the � -cocenter (or
simply cocenter) to be the quotient module NH� WD H=ŒH;H�� .

For any O 2 B. MW ; �/, let Omin be the set of minimal length elements of O. By [17,
Theorems 5.3 and 6.7], the cocenter NH� is a free ZŒq˙1�-module with a basis given by
¹TO j O 2 B. MW ; �/º. Here TO is the image of Tw in NH� for some (or equivalently, any)
w 2 Omin. Moreover, for any w 2 MW , we have

Tw �
X

O2B. MW ;�/

Fw;OTO mod ŒH;H�� ;

where Fw;O 2 ZŒq� is the class polynomial, uniquely determined by the above identity.

3.3.5. As indicated above, we now refine the polynomials Fw;O where .w; O/ 2
MW � B. MW ; �/. The refined polynomials will be indexed by pairs .w; C / 2 MW � C . MW /,

where C . MW / is a set more refined than B. MW ; �/. For the definition of C . MW / we first
recall some notations. For w;w0 2 MW and s 2 MS, we write

w
s
�!� w

0

if w0 D sw�.s/ and M̀.w0/ � M̀.w/. We write

w !� w
0
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if there is a sequence w D w1; w2; : : : ; wn D w0 in MW such that for each 2 � k � n we
have wk�1

sk
�!� wk for some sk 2 MS. We write

w �� w
0

if w !� w
0 and w0 !� w. We write w Q��w0 if there exists � 2 � such that w ��

�w0�.�/�1. The following theorem is proved in [17, Theorem 2.9].

Theorem 3.3.6. Let O be a � -conjugacy class in MW . Then for each w 2 O, there exists
w0 2 Omin such that w !� w

0.

Definition 3.3.7. Let MW�;min be the set of w 2 MW such that w has minimal length in
its own � -conjugacy class. We write C . MW / for the set MW�;min= Q�� , and we view each
element of C . MW / as a subset of MW . We denote by � the natural map C . MW /! B. MW ; �/

sending C 2 C . MW / to the unique � -conjugacy class in MW containing C . We denote the
composition of the map (2.3.4.1) with � by ‰ W C . MW /! B.G/.

3.3.8. For any C 2 C . MW / and b 2 G. MF /, we write ŒŒXC .b/�� for ŒŒXw.b/�� 2 GDLJb.F /

for arbitrary w 2 C . By Proposition 3.3.3 (1) and the fact that right multiplication by P�
induces a Jb.F /-equivariant isomorphism Xw.b/

�
�! X��1w�.�/.b/ for all w 2 MW and

� 2 �, the definition of ŒŒXC .b/�� is independent of the choice of w 2 C .
We now construct the refined polynomials in the following theorem. Let NŒq � 1�

denote the set of polynomials in the variable q� 1 with positive integral coefficients. The
second statement in the theorem can be viewed as a “motivic counting” result.

Theorem 3.3.9. Fix w 2 MW . There exists a map

C . MW /! NŒq � 1�; C 7! Fw;C .q � 1/;

satisfying the following conditions:

(1) For each O 2 B. MW ; �/, we have

Fw;O.q/ D
X

C2C . MW /;�.C/DO

Fw;C .q � 1/ 2 ZŒq�:

In particular, Fw;O.q/ 2 NŒq � 1�.
(2) For each b 2 G. MF /, we have

ŒŒXw.b/�� D
X

C2C . MW /;‰.C/DŒb�

Fw;C .L � 1/ � ŒŒXC .b/�� 2 GDLJb.F /: (3.3.9.1)

Proof. We prove the statement by induction on `.w/.
If w 2 MW�;min, then by [16, Section 2.8.2], for any O 2 B. MW ; �/, we have

Fw;O D

´
1 if w 2 O;

0 otherwise:
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On the other hand, for C 2 C . MW /, we set

Fw;C WD

´
1 if w 2 C;

0 otherwise:

In this case, the map C 7! Fw;C satisfies conditions (1) and (2).
Now assume that w … MW�;min. Then by Theorem 3.3.6, there exist w1 2 MW and s 2 MS

such that w �� w1 and sw1�.s/ < w1. By [16, Section 2.8.2], for any O 2 B. MW ; �/ we
have

Fw;O.q/ D .q � 1/Fsw1;O.q/C qFsw1�.s/;O.q/:

For C 2 C . MW /, we set

Fw;C .q � 1/ WD .q � 1/Fsw1;C .q � 1/C qFsw1�.s/;C .q � 1/;

where Fsw1;C .q � 1/ and Fsw1�.s/;C .q � 1/ are defined by the induction hypothesis.
Since condition (1) holds for sw1 and sw1�.s/, it also holds for w.

By Proposition 3.3.3, for any b 2 G. MF / we have

ŒŒXw.b/�� D ŒŒXw1.b/�� D .L � 1/ŒŒXsw1.b/��C LŒŒXsw1�.s/.b/��:

By the induction hypothesis, we have the following identities in GDLJb.F /:

ŒŒXsw1.b/�� D
X

C2C . MW /;‰.C/DŒb�

Fsw1;C .L � 1/ � ŒŒXC .b/��;

ŒŒXsw1�.s/.b/�� D
X

C2C . MW /;‰.C/DŒb�

Fsw1�.s/;C .L � 1/ � ŒŒXC .b/��:

Then

ŒŒXw.b/�� D .L � 1/ŒŒXsw1.b/��C LŒŒXsw1�.s/.b/��

D

X
C

�
.L � 1/ � Fsw1;C .L � 1/C L � Fsw1�.s/;C .L � 1/

�
� ŒŒXC .b/��

D

X
C

Fw;C .L � 1/ � ŒŒXC .b/�� 2 GDLJb.F /;

where both summations are over C 2 C . MW / with ‰.C/ D Œb�. Thus (2) holds for w.

Remark 3.3.10. (1) The polynomials Fw;C are not uniquely characterized by condition
(1) in Theorem 3.3.9. This is because the cocenter of the affine Hecke algebra over ZŒq�
has a torsion part (see [15, Section 5.2]). (In contrast, as mentioned above, the cocenter
of the affine Hecke algebra over ZŒq˙1� is free.)

(2) Fix b 2 G. MF /, and let KJb.F /0 be the Grothendieck group of the monoid
GDLJb.F /. The endomorphism L of GDLJb.F / gives rise to a ZŒq�-module structure
on KJb.F /0 via the specialization q 7! L. The ZŒq�-submodule of KJb.F /0 generated by
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¹ŒŒXw.b/�� j w 2 MW º is not necessarily torsion-free as a ZŒq�-module. It would be interest-
ing to compare the torsion phenomenon here with the cocenter of the affine Hecke algebra
over ZŒq�.

(3) As we have seen in the proof of Theorem 3.3.9, the construction of Fw;C depends
on G only via the triple . MW ; M̀ W MW ! Z�0; � 2 Aut. MW //. In Section 4.2 below, we will
use the same idea to reduce the study of general G to unramified groups.

Corollary 3.3.11. Let w 2 MW and b 2 G. MF /. For each C 2 C . MW /, choose an ele-
ment wC 2 C . The isomorphism class of the Jb.F /-set †top.Xw.b// .resp. the integer
dimXw.b// is given by the first .resp. second/ coordinate of the elementX

C2C . MW /;‰.C/DŒb�

Fw;C .L � 1/ �
�
†top.XwC .b//; dimXwC .b/

�
2 TICJb.F /:

Proof. Note that the isomorphism class of the Jb.F /-set †top.Xw.b// and the integer
dimXw.b/ do not change if we replace Xw.b/ by its perfection. The corollary then fol-
lows from applying the T -equivariant homomorphism C in Lemma 3.2.3 to the two sides
of (3.3.9.1).

Remark 3.3.12. Fix b 2 G. MF /. For x 2 MW�;min, by [14, Theorem 4.8] we know that
Xx.b/ ¤ ; if and only if ‰.x/ D Œb�, that Xx.b/ is equidimensional, and that the Jb.F /-
action on †top.Xx.b// is transitive. Moreover, when Xx.b/ ¤ ;, we have an explicit
formula for dimXx.b/ (see [14, Theorem 4.8]), and we know that the stabilizer of each
irreducible component of Xx.b/ in Jb.F / is a parahoric subgroup of Jb.F / with an
explicit description (see the proof of [45, Proposition 3.1.4]). The upshot is that we explic-
itly understand the elements .†top.XwC .b//;dimXwC .b// 2 TICJb.F / for all C 2 C . MW /

and wC 2 C . Thus by Corollary 3.3.11, the determination of the Jb.F /-set †top.Xw.b//

and dimXw.b/ for general w 2 MW reduces to the computation of the polynomials Fw;C .
It also follows that for general w, the stabilizer of each element of †top.Xw.b// in Jb.F /
is a parahoric subgroup (see [45, Proposition 3.1.4]).

3.4. Stabilizer of one irreducible component

We keep the setting and notation of Section 3.3. In this subsection we assume in addition
that G is F -simple and adjoint. We will apply the results in Section 3.3 to study the
stabilizers for the Jb.F /-action on †top.Xw0t�.b//, where � 2 X�.T /�0

C and w0 is the
longest element of MW0.

3.4.1. Recall that for ı an automorphism of . MWa; MS/ and MK � MS a ı-stable subset, a ı-
twisted Coxeter element of MW MK is an element which can be written as s1 � � � sn, where
s1; : : : ; sn 2 MW MK are distinct and form a set of representatives of the ı-orbits in MK. For
w 2 MWa we write suppı.w/ for the smallest ı-stable subset MK of MS such that w 2 MW MK . As
explained in Section 2.4.3, we identify MW0 with the subgroup MW MS0 of MW . Note that every

w 2 MW can be written in a unique way as w D xt�y, where � 2 X�.T /�0
C, x; y 2 MW0,

and t�y 2 MS0 MW . Moreover, M̀.w/ D M̀.x/C M̀.t�y/ D M̀.x/C M̀.t�/ � M̀.y/.
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The following result gives a refinement of [14, Proposition 11.6].

Proposition 3.4.2. Assume G is F -simple and adjoint. Let MK be a � -stable subset of
MS0. Let w D xt�y 2 MW with � 2 X�.T /C�0 , x; y 2 MW0, and t�y 2 MS0 MW . Assume that

� ¤ 0, supp� .x/ D MK, and y is a � -twisted Coxeter element of MW MS0n MK . Then there exists
a � -twisted Coxeter element c of MW0 with t�c 2 MS0 MW such that for each b 2 G. MF /, we
have

ŒŒXw.b/�� D .L � 1/
M̀.x/ŒŒXt�c.b/��C P 2 GDLJb.F /

for some P 2 GDLJb.F /.

Proof. We follow the method in [14, Proposition 11.6].
We proceed by induction on j MKj. The case j MKj D 0 is clear, as we can take c D y.

We thus assume that the result is true for all MK 0 ¨ MK. We may also assume that the result
is true for all x0 2 MW MK with supp� .x

0/ D MK and M̀.x0/ < M̀.x/. We set MK1 WD ¹s 2 MK j
t�ys …

MS0 MW º. Then as in [14, Proposition 11.6], MK1 is a proper subset of MK, and every
s 2 MK1 commutes with y and with t�y.

We write x D ux0 where u 2 MW��1. MK1/ and x0 2 �
�1. MK1/ MW . We let u D s1 � � � sn be

a reduced word decomposition for u. We write ui D s1 � � � si and set xi D u�1i x�.ui / for
i D 0; : : : ; n. In particular, x0D x. Then M̀.xi /� M̀.u�1i x/C M̀.�.ui //D . M̀.x/� M̀.ui //C
M̀.ui / D M̀.x/ for all i D 1; : : : ; n. There are two possibilities:

Case (i): There exists k such that M̀.x/ D M̀.xi / for i D 1; : : : ; k � 1 and M̀.xk/ < M̀.x/.

Case (ii): M̀.xi / D M̀.x/ for all i D 1; : : : ; n.

In Case (i), we have M̀.xk�1/ D M̀.x/ and M̀.xk/ D M̀.xk�1/ � 2 D M̀.x/ � 2. There-
fore M̀.sxk�1/ D M̀.xk�1/� 1. Moreover, M̀.w/ D M̀.x/C M̀.t�y/ D M̀.xk�1/C M̀.t�y/ D
M̀.xk�1t

�y/. By Proposition 3.3.3, we have

ŒŒXw.b/�� D ŒŒXxk�1t�y.b/�� D .L � 1/ŒŒXskxk�1t�y.b/��C LŒŒXxk t�y.b/��:

Since M̀.skxk�1�.sk// < M̀.xk�1/, we have supp� .skxk�1/ D supp� .x/ D MK. Thus by
induction hypothesis, we have

ŒŒXskxk�1t�y.b/�� D .L � 1/
M̀.skxk�1/ŒŒXt�c.b/��C P

0

for some � -twisted Coxeter element c of MW0 with t�c 2 MS0 MW and P 0 2 GDLJb.F /. Since
M̀.skxk�1/ D M̀.x/ � 1, we have

ŒŒXw.b/�� D .L � 1/
M̀.x/ŒŒXt�c.b/��C P

with P 2 GDLJb.F / as desired.
In Case (ii), we have x �� xn D x0�.u/. It follows that w �� xnt�y and hence

ŒŒXw.b/�� D ŒŒXxnt�y.b/�� 2 GDLJb.F /

by Proposition 3.3.3. We first consider the case where x … MW��1. MK1/. Then x0 ¤ 1 and

there exists s 2 ��1. MK/ n ��1. MK1/ such that sxn < xn. Moreover, M̀.y�.s// D M̀.y/C 1
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and t�y�.s/ 2 MS0 MW and we have

M̀.sxnt
�y�.s// D M̀.sxn/C M̀.t

�/ � M̀.y�.s// D M̀.xnt
�y/ � 2:

It follows that

ŒŒXw.b/�� D ŒŒXxnt�y.b/��

D .L � 1/ŒŒXsxnt�y.b/��C LŒŒXsxnt�y�.s/.b/��

D .L � 1/ŒŒXsxnt�y.b/��C .L � 1/ŒŒXsxnt�y�.s/.b/��C ŒŒXsxnt�y�.s/.b/��:

Note that sxn < xn and supp.sxn/ � supp.xn/. Thus supp� .sxn/ � MK.
If supp� .sxn/ D MK, the induction hypothesis applied to Xsxnt�y.b/ gives

ŒŒXsxnt�y.b/�� D .L � 1/
M̀.sxn/ŒŒXt�c.b/��C P

0

for some � -twisted Coxeter element c of MW0 and P 0 2 GDLJb.F /. It follows that

ŒŒXw.b/�� D .L � 1/
M̀.x/ŒŒXt�c.b/��C P

with P 2 GDLJb.F /.
Similarly, if supp� .sxn/ ¤ MK, the induction hypothesis applied to the pair�

Xsxnt�y�.s/.b/; supp� .sxn/
�

gives
ŒŒXsxnt�y�.s/.b/�� D .L � 1/

M̀.sxn/ŒŒXt�c.b/��C P
0

for some P 0 2 GDLJb.F /, and hence

ŒŒXw.b/�� D .L � 1/
M̀.x/ŒŒXt�c.b/��C P

with P 2 GDLJb.F /.
Finally, we consider the case x 2 MW��1. MK1/. Since MK1 is a proper subset of MK and

supp� .x/ D MK, there exists m 2 N such that x; �.x/; : : : ; �m�1.x/ 2 MW��1. MK1/ and

�m.x/ … MW��1. MK1/. We have

ŒŒXxt�y.b/�� D ŒŒX�.x/t�y.b/�� D � � � D ŒŒX�m�1.x/t�y.b/��:

The argument above applied to �m.x/ shows that

ŒŒX�.m/t�y.b/�� D .L � 1/
M̀.x/ŒŒXt�c.b/��C P

for some � -twisted Coxeter element c 2 MW0 and P 2 GDLJb.F / as desired.

3.4.3. For an element � 2�, the Iwahori–Weyl group and affine Weyl group of J P� are iso-
morphic to MW and MWa respectively, and the Frobenius actions are both given by Ad.�/ ı � .

We need the following result which is proved in [19]. Set V WD X�.T /�0 ˝Z R.
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Proposition 3.4.4. Let p W MW � Aff.V /! GL.V / be the natural map. Consider the � -
twisted conjugation action of MWa on MW . Let O be a MWa-orbit in MW with O � MWa� for
some � 2�. If p.O/� MW0 contains a � -twisted Coxeter element of MW0, then there exists a
unique Ad.�/ ı � -stable subset MK of MS such that W MK is finite and the set Omin of minimal
length elements of O is precisely the set of Ad.�/ ı � -twisted Coxeter elements of MW MK .
Moreover, the standard parahoric subgroup of J P� .F / corresponding to MK is very special.

Remark 3.4.5. In Proposition 3.4.4, the unique MK is explicitly computed in each case
in [19]. The “moreover” part immediately follows from the explicit description.

The main result of this subsection is the following proposition.

Proposition 3.4.6. Assume that G is F -simple and adjoint. Let Œb� 2 B.G; �/ be the
unique basic element. Then there exists Z 2 †top.Xw0t�.b// such that StabZ.Jb.F // is
a very special parahoric subgroup of Jb.F /.

Proof. Since � is dominant, t� 2 MS0 MW . If � D 0, then we may take b D 1. In this case,
Jb.F / D G.F / and X�.b/ D G.F /=K is discrete; here K � G.F / is the parahoric
subgroup corresponding to MS0 which is very special (cf. Remark 2.2.3). For any Z 2
X�.b/, the stabilizer StabZ.Jb.F // is conjugate to K and thus is a very special parahoric
subgroup of G.F /. Now the statement on Xw0t�.b/ follows from Proposition 2.4.10.

Now assume that � ¤ 0. By Proposition 3.4.2 applied to MK D MS0 and w D w0t
�,

there exists a � -twisted Coxeter element c of MW0 such that

ŒŒXw0t�.b/�� D .L � 1/
M̀.w0/ŒŒXt�c.b/��C P

0;

where P 0 2 GDLJb.F /.
Let � 2� be the unique element such that �.�/D�\ 2 �1.G/�0 . Upon replacing b by

another representative in Œb�, we may assume b D P� . By Proposition 3.4.4 and Theorem
3.3.6, there exists an Ad.�/ ı � -stable subset MK � MS and an Ad.�/ ı � -twisted Coxeter
element c0 of MW MK such that the associated parahoric J of J P� .F / is very special, c0� is of
minimal length in its � -conjugacy class, and t�c !� c

0� .
By Proposition 3.3.3, we have

ŒŒXt�c. P�/�� D .L � 1/
M̀.t�c/� M̀.c0/

2 ŒŒXc0� . P�/��CQ

for some Q 2 GDLJ P� .F / and hence

ŒŒXw0t�. P�/�� D .L � 1/
M̀.w0/C

M̀.t�c/� M̀.c0/
2 ŒŒXc0� . P�/��C P

for some P 2 GDLJ P� .F /. By Lemma 3.2.3, the above equality implies that

C.ŒŒXw0t�. P�/��/ D T
M̀.w0/C

M̀.t�c/� M̀.c0/
2 C.ŒŒXc0� . P�/��/CH (3.4.6.1)

for some H 2 TICJ P� .F /. Here on the right side, the addition is in the monoid TICJ P� .F /.
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By definition, M̀.c/ is the semisimple F -rank of G and M̀.c0/ is the semisimple F -rank
of Jb . Hence M̀.c/ � M̀.c0/ D defG. P�/. Since � 2 �, N� P� is central in G. Thus h N� P� ; �i D 0.
By Theorem 2.4.7 and [14, Theorem 10.1],

dimXw0t�. P�/ D
M̀.w0/C dimX�. P�/

D M̀.w0/C h�; �i C
M̀.c0/ � M̀.c/

2

D M̀.w0/C
M̀.t�/ � M̀.c/C M̀.c0/

2

D M̀.c0/C M̀.w0/C
M̀.t�c/ � M̀.c0/

2

D dim.Xc0� . P�//C M̀.w0/C
M̀.t�c/ � M̀.c0/

2
;

where the fourth equality follows from the fact that t�c 2 MS0 MW .
By the above computation, the first term in the sum

T
M̀.w0/C

M̀.t�c/� M̀.c0/
2 C.ŒŒXc0� . P�/��/CH

makes a non-trivial contribution to the sum in the sense of Section 3.2.1. Thus we have
a J P� .F /-equivariant embedding †top.Xc0� . P�//! †top.Xw0t�. P�//. It remains to find an
element of †top.Xc0� . P�// whose stabilizer in J P� .F / is a very special parahoric subgroup.

By [14, p. 383, line 3], Xc0� . P�/ Š J P� .F / �
J X

MK
c0� . P�/, where X MK

c0� . P�/ is a classi-
cal Deligne–Lusztig variety (resp. perfection of a classical Deligne–Lusztig variety) if
char.F / > 0 (resp. char.F / D 0) defined by

X
MK
c0� . P�/ Š ¹g

xI 2 xK=xI j g�1� 0.g/ 2 xIc0 xIº:

Here � 0 D Ad.�/ ı � , and note that xI is a � 0-stable Borel subgroup of xK .
Since c0 is a � 0-Coxeter element of MW MK , X MK

c0� . P�/ is irreducible. Hence

†top.Xc0� . P�// Š J P� .F /=J

as J P� .F /-sets and the stabilizers of the elements are isomorphic to J.

4. Component stabilizers for X�.b/

4.1. The main theorem and some consequences

4.1.1. We keep the notation and assumptions of Section 2.4. In particular, G is a quasi-
split tamely ramified reductive group over F , and char.F / − j�1.Gad/j if char.F / > 0.

We now state our main theorem, which confirms conjectures made by X. Zhu and
Rapoport.
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Theorem 4.1.2. Let � 2 X�.T /C�0 and Œb� 2 B.G; �/. Each stabilizer for the Jb.F /-
action on †top.X�.b// is a very special parahoric subgroup of Jb.F /.

By [45, Proposition 3.1.4], we already know that each stabilizer for the Jb.F /-action
on †top.X�.b// is a parahoric subgroup of Jb.F /. In the proof of Theorem 4.1.2 below
we shall freely use this fact.

We now deduce an immediate consequence of Theorem 4.1.2.

Definition 4.1.3. Fix � and b as in Theorem 4.1.2. We write N .�; b/ for the number of
Jb.F /-orbits in †top.X�.b//.

Corollary 4.1.4. There is an identification of Jb.F /-sets

†top.X�.b// Š

N .�;b/a
iD1

Jb.F /=Ji ;

where Ji � Jb.F / is a very special parahoric subgroup for each i .

4.1.5. When G is unramified, an explicit formula for N .�; b/ was first conjectured by
M. Chen and X. Zhu, and was proved independently by the second and third named
authors [45] and by S. Nie [33]. In the appendix of [45], a generalization of this for-
mula to ramified G is given. We now recall this formula when G is unramified, as this
will be needed in Section 4.3 below.

Consider the dual group yG of G over C. We fix a pinning . yB; yT ; yXC/ of yG, and fix
an isomorphism between the based root datum of . yG; yB; yT / and the dual of the based
root datum of .G; B; T / (see Section 2.3.1 for B). We then have a unique �-action on yG
via automorphisms preserving . yB; yT ; yXC/ such that the induced �-action on the based
root datum of . yG; yB; yT / is compatible with the natural �-action on the based root datum
of .G; B; T /; see for instance [45, Section 5.1]. Now �0 acts trivially on X�.T /, so the
element � 2 X�.T /C�0 can be viewed as a yB-dominant character of yT . Let V� be the

irreducible representation of yG of highest weight �. Let y� be the identity component of
the �-fixed points of yT . Then X�.y�/ is identified with the maximal torsion-free quotient
of X�.T /� D X�.T /� . As in [45, Definition 2.6.4], b determines an element łb 2 X�.y�/.
We omit the explicit definition of �b here. Let V�.�b/ be the weight space in the y�-
representation V� of weight �b . The geometric Satake provides us with a canonical basis
MV�.�b/ of V�.�b/.

In the theorem below, the numerical identity was proved independently by the sec-
ond and third named authors [45, Theorem A] and Nie [33, Theorem 0.5]. The second
statement is due to Nie [33, Theorem 0.5].

Theorem 4.1.6. Keep the assumptions of Section 2.4, and assume that G is unramified
over F . We have

N .�; b/ D dimV�.�b/:

Moreover, there is a natural bijection between Jb.F /n†top.X�.b// and MV�.�b/.
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4.2. Reduction to adjoint unramified F -simple groups in characteristic zero

In this subsection, we show that to prove Theorem 4.1.2, it suffices to prove it in the case
where char.F / D 0, and G is an adjoint F -simple unramified group over F .

4.2.1. Let w 2 MW and Œb� 2 B.G/. We first construct some combinatorial data involving
only the affine Weyl group MWa together with the length function M̀ and the action of �
on MWa, but not the reductive groupG. This allows us to connect different reductive groups
over different local fields.

Let Aut0. MWa/ be the group of length-preserving automorphisms of MWa. We may
regard � as an element of Aut0. MWa/. Let yWa D MWa Ì Aut0. MWa/. We have a natural group
homomorphism

i W MW ! yWa; w� 7! .w;Ad.�// for w 2 MWa; � 2 �:

Moreover, the map i is compatible with the actions of � . (Here the action of � on yWa is
given by .w; f / 7! .�.w/; � ı f ı ��1/.)

4.2.2. By [14, Theorem 3.7], the set B.G/ is in natural bijection with a certain subset
of � -conjugacy classes in MW . By composing with the map i , we may associate to any
Œb� 2 B.G/ a � -conjugacy class CŒb� in yWa. Let G0 be a connected reductive group over
a (possibly different) local field F 0, let b0 2 G0. MF 0/, and let w0 be an element of the
Iwahori–Weyl group MW 0 of G MF 0 . Note that any length-preserving isomorphism of MWa to
MW 0a extends in a unique way to a group isomorphism yWa! yW 0a. Write � for the Frobenius

in Aut. MF 0=F 0/, and write Œb0� for the � 0-conjugacy class of b0 in G0. MF 0/. Then Œb0� deter-
mines a � 0-conjugacy class CŒb0� in yW 0a. We say that the triples .G; b; w/ and .G0; b0; w0/
are associated if the following conditions are satisfied:

� �G.w/ D �G.b/ and �G0.w0/ D �G0.b0/.

� There exists a length-preserving isomorphism f W MWa
�
�! MW 0a such that the diagram

MWa
f //

�

��

MW 0a

� 0

��
MWa

f // MW 0a

commutes, and f .CŒb�/DCŒb0� and f .i.w//D i 0.w0/. Here i 0 W MW 0! yW 0a is the natural
homomorphism analogous to i .

In this case, f induces an isomorphism from the affine Weyl group of Jb to the affine
Weyl group of Jb0 . We thus obtain a bijection between the standard parahoric subgroups
of Jb.F / and those of Jb0.F / [45, Lemma 3.2.2]. Let J � Jb.F / and J0 � Jb0.F

0/

be parahoric subgroups. We say that J and J0 are associated with respect to f if there
exist j 2 Jb.F / and j 0 2 Jb0.F 0/ such that jJj�1 and j 0J0j 0�1 are standard parahoric
subgroups which correspond to each other under the above-mentioned bijection.
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Now suppose that .G; b;w/ and .G0; b0; w0/ are associated, and fix f W MWa
�
�! MW 0a as

above. By [14, Theorem 4.8], for all w 2 MW�;min we have dimXw.b/D M̀.w/� 
b , where

b is a constant depending only on b, not on w. Similarly we define 
b0 .

Proposition 4.2.3. We have dimXw.b/� dimXw0.b0/D 
b0 � 
b , and there is a bijection

‚ W Jb.F /n†
top.Xw.b//

�
�! Jb0.F

0/n†top.Xw0.b
0//

satisfying the following condition:
For Z 2 †top.Xw.b// and Z0 2 †top.Xw0.b

0// such that ‚.Jb.F /Z/ D Jb0.F /Z0,
the parahoric subgroups StabZ.Jb.F // and StabZ0.Jb0.F 0// are associated with respect
to f .

Proof. We first claim that for all x 2 MWa, xw�.x/�1 and x0w0� 0.x0/�1 have the same
length, where x0 D f .x/ 2 MW 0a. Indeed, xw�.x/�1 D xAd.w/.�.x/�1/w by defini-
tion has the same length as its component in MWa (under MW D MWa Ì �), which is
xAd.w/.�.x/�1/wa 2 MWa. Here wa denotes the component of w in MWa. The assump-
tion that .G; b; w/ and .G0; b0; w0/ are associated implies that

f .xAd.w/.�.x/�1/wa/ D x0Ad.w0/.� 0.x0/�1/w0a; (4.2.3.1)

wherew0a is the coordinate ofw0 in MW 0a. Since f preserves length, and since the right hand
side of the above equality is the component in MW 0a of x0w0� 0.x0/�1, the claim is proved.

We now reduce the proposition to the case wherew 2 MW�;min. Assume thatw … MW�;min.
As in the proof of Theorem 3.3.9, we can find w1 2 MW and s 2 MS such that w1 �� w and
sw1�.s/ < w1. Thus w1 is obtained from w by consecutively � -conjugating by simple
reflections in MS in a way that the length is preserved in each step. If we consecutively
� 0-conjugate w0 by the images of these simple reflections under f W MWa

�
�! MW 0a, then we

obtain an element w01 2 MW
0, which satisfies w01 �� 0 w

0 by the claim above. Moreover,
by (4.2.3.1), the component in MWa of sw1�.s/ (resp. of w1) is related to the component
in MW 0a of s0w01�

0.s0/ (resp. of w01) under f , where s0 D f .s/. Hence s0w01�
0.s0/ < w01. By

Proposition 3.3.3, we have

ŒŒXw.b/�� D ŒŒXw1.b/�� D .L � 1/ŒŒXsw1.b/��C LŒŒXsw1�.s/.b/��

and
ŒŒXw0.b

0/�� D ŒŒXw0
1
.b0/�� D .L � 1/ŒŒXs0w0

1
.b0/��C LŒŒXs0w0

1
� 0.s0/.b

0/��:

By construction .G; b; sw1/ is associated with .G0; b0; s0w01/, and .G; b; sw1�.s// is
associated with .G0; b0; s0w01�

0.s0//. By induction on the length of w, we may assume
that the proposition holds for these two pairs of associated triples. It then follows
from the above two identities that the proposition also holds for the associated triples
.G; b; w/; .G0; b0; w0/. (Here the statement about dimensions in the induction hypoth-
esis implies that the non-empty subset U � ¹sw1; sw1�.s/º such that †top.Xw.b// D`
u2U †

top.Xu.b// matches the analogous subset of ¹s0w01; s
0w01�

0.s0/º in the obvious
sense.)
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It remains to prove the proposition assuming that w 2 MW�;min. By the claim at
the beginning of the proof and the fact that conjugating by length-zero elements does
not change the length, we necessarily have w0 2 MW 0� 0;min. By [14, Theorem 4.8], the
relation between the dimensions holds, and Jb.F / (resp. Jb0.F 0/) acts transitively on
†top.Xw.b// (resp. †top.Xw0.b

0//). In particular, we have a unique bijection ‚ (between
two singletons). The condition about association of stabilizers follows from the explicit
description of Xw.b/ and Xw0.b0/ in terms of finite Deligne–Lusztig varieties given in
the proof [14, Theorem 4.8] (cf. the proof of [45, Proposition 3.1.4]).

Corollary 4.2.4. To prove Theorem 4.1.2, it suffices to prove it when char.F / D 0 and G
is an adjoint F -simple unramified group over F .

Proof. We first assume Theorem 4.1.2 is true for unramified adjoint groups over local
fields of characteristic zero. LetG be an arbitrary (i.e., quasi-split, tamely ramified, reduc-
tive) group over an arbitrary local field F . By Proposition 2.4.10, it suffices to show that
the stabilizer in Jb.F / of every element of †top.Xw0t�.b// is a very special parahoric
of Jb.F /.

Since X�.b/¤ ;, we have Xw0t�.b/¤ ; and thus �G.w0t�/D �G.b/. By [14, The-
orem 3.7], there exists w 2 MW such that Œb� D Œ Pw�. In particular, �G.w0t�/ D �G.w/. By
replacing w by a suitable element in the � -orbit of w, we may assume furthermore that
w0t

� MWa D w MWa.
We choose a local field F 0 of characteristic zero and an adjoint unramified group G0

over F 0 such that there is a length-preserving isomorphism f W MWa! MW 0a such that f ı �
D � 0 ı f ; see [14, Sections 6.1 and 6.2] for the construction of such a group. Since G0

is adjoint, we have f .i. MW // � i 0. MW 0/. Let �0 2 X�.T 0/ with f .i.t�// D i 0.t�
0

/. Then
f .i.w0t

�// D i 0.w00t
�0/. Let w0 2 MW 0 with f .i.w// D i 0.w0/ and Œb0� 2 B.G0/ with

Œb0� D Œ Pw0�. Since w0t� MWa D w MWa, we have w00t
�0 MW 0a D w0 MW 0a. Therefore �G0.b0/ D

�G0.w
0/ D �G0.w

0
0t
�0/.

Hence .G; b; w0t�/ and .G0; b0; w00t
�0/ are associated.

By Proposition 4.2.3, for any Z 2 †top.Xw0t�.b//, its stabilizer StabZ.Jb.F //
is associated to StabZ0.Jb0.F 0// for some Z0 2 †top.Xw0

0
t�
0 .b0//. By assumption,

StabZ0.Jb0.F 0// is a very special parahoric subgroup of Jb0.F 0/. By the equivalence
(1),(3) in Proposition 2.2.5 and by formula (2.2.4.2) for the log-volume, we know that
StabZ.Jb.F // is a very special parahoric subgroup of Jb.F /.

Now the reduction from the adjoint unramified case to the adjoint unramified
F -simple case follows from the fact that any adjoint unramified group over F is a direct
product of adjoint unramified F -simple groups.

4.3. Reduction to the basic case

We assume that char.F /D 0 and that G is an adjoint F -simple unramified group over F .
By Corollary 4.2.4, we can reduce the proof of Theorem 4.1.2 to this case. In this subsec-
tion we show that we can further reduce the proof to the case where b is basic. We follow
the strategy of [12, Section 5].
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4.3.1. Let MK D MS0, and let K and MK be the corresponding parahoric subgroups of G.F /
and G. MF / respectively, as in Section 2.4.3. In our current setting, K is in fact a hyperspe-
cial subgroup of G.F /.

Let M � G denote the standard Levi subgroup of G given by the centralizer of �Gb .
We view MA as an apartment for M and let MaM � MA be the (unique) alcove with respect
to M such that Ma � MaM . We denote by MWM the Iwahori–Weyl group for M and denote
by �M the subgroup of length zero elements determined by MaM . Upon replacing b by
an element of its � -conjugacy class in G. MF /, we may assume that b 2 M. MF / and that
�Mb D �

G
b (see e.g. [5, Lemma 2.5.1]). Then b is basic in M . Upon further replacing b

by an element of its � -conjugacy class in M. MF /, we may assume that b D P� for some
� 2 �M .

Let P be the standard parabolic subgroup of G with Levi subgroup M . Let N be
the unipotent radical of P . Let MKM (resp. MKP ) denote the intersection M. MF / \ MK
(resp P. MF / \ MK). These arise from group schemes KM and KP defined over OF , and
KM .OF / is a hyperspecial subgroup of M.F /. As in [12, Section 5], we define

XM�G� .b/.k/ WD ¹g 2M. MF /= MKM j g
�1b�.g/ 2 MK Pt� MKº;

XP�G� .b/.k/ WD ¹g 2 P. MF /= MKP j g
�1b�.g/ 2 MK Pt� MKº:

These can be identified with the sets of k-points of perfect subschemes XM�G� .b/ and
XP�G� .b/ of Gr MKM

and Gr MKP
respectively.

The natural maps M  P ! G induce maps

XM�G� .b/
p
 � XP�G� .b/

q
�! X�.b/;

which are easily seen to be Jb.F /-equivariant. The same argument as for [10, Lemma 2.2]
shows that the map q is an immersion. By the Iwasawa decomposition, q is also surjec-
tive, and hence gives a decomposition of X�.b/ into locally closed subschemes (see [12,
Lemma 5.2]). Hence we obtain a Jb.F /-equivariant bijection

†top.XP�G� .b//
�
�! †top.X�.b//: (4.3.1.1)

4.3.2. Let X and X be smooth finite-type affine group schemes over MF and O MF respec-
tively. The loop groupLX and the positive loop groupLCX are defined to be the functors
on perfect k-algebras R given by

LX.R/ D X.W.R/˝W.k/ MF / and LCX.R/ D X.W.R/˝W.k/ O MF /:

ThenLX is representable by an ind-perfect ind-group-scheme, andLCX is representable
by the perfection of an affine group scheme over k. We also define the nth jet-group LnX

to be the functor on perfect k-algebras R given by

LnX.R/ D X.W.R/˝W.k/ O MF =.�
n//;

where � is a uniformizer in MF . Then LnX is representable by the perfection of an alge-
braic group over k.
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Lemma 4.3.3. The map fb W LN ! LN sending n to n�1b�.n/b�1 is an isomorphism.

Proof. Recall we have assumed b D P� for � 2 �M . Choose s sufficiently divisible such
that ��.�/ � � � � s�1.�/ D t�s where �s WD sx�b 2 X�.T /

C. (Note that since we have
assumed G is unramified, �0 acts trivially on X�.T /.) We set bs WD b�.b/ � � � � s�1�.b/.
Then bs 2 Pt�sT . MF /1 and it suffices to show that the map

f sb D fb ı � � � ı fb W n 7! n�1bs�
s.n/b�1s

is an isomorphism LN ! LN .
For r � 0, we define Nr WD N.F / \ Ir where Ir is the r th subgroup in the Moy–

Prasad filtration of I. Then Nr D Nr .OF / for an OF -group scheme Nr and

LCNr D ker.LCN0 ! LrN0/:

Since �s 2X�.T /C, we have Pt�s� s.Nr /Pt��s �Nr for all r . It follows that f s
b

induces
a morphism

f sb;r W L
rN0 ! LrN0

for each r . In fact, f s
b;r

is naturally defined before taking perfections and induces bijec-
tions between tangent spaces. Indeed, let � W LrN0 ! LrN0 be the morphism n 7!

Pt�s�.n/Pt��s . Then � has derivative 0 (before taking perfections), and hence f s
b;r

induces
multiplication by �1 on tangent spaces at the identity by [40, Lemma 4.4.13]. The usual
argument as in the proof of Lang’s Theorem implies that f s

b;r
is a bijection on tangent

spaces and hence f s
b;r

is an étale morphism.

Let Fs be the degree s unramified extension of F and let J .s/
bs
.Fs/ denote the � -

centralizer group J .s/
bs
.Fs/ WD ¹g 2 G. MF / j g

�1bs�
s.g/ D bsº; then J .s/

bs
.Fs/ � M. MF /.

Let n1; n2 2 LN.k/ with f s
b
.n1/ D f

s
b
.n2/. Then

n1n
�1
2 D bs�

s.n1n
�1
2 /b

�1
s

and hence n1n�12 2 J
.s/

b1
.Fs/ \ N. MF / D ¹1º. Therefore the fibers of the map f s

b
W

LN !LN are torsors for the trivial group, and hence the “pro-étale” covering f s
b
jLCN0

W

LCN0 ! LCN0 obtained by taking the inverse limit of the f s
b;r

is trivial. It follows that
f s
b
jLCN0

is an isomorphism (cf. [48, Lemma 4.3.4]).
Now fix an element � 2 X�.T /C;� \X�.ZM /, where ZM is the center of M . Using

the fact that Ad Pt� ı f s
b
D f s

b
ı Ad Pt�, we find that f s

b
W Pt��LCN0 Pt

� ! Pt��LCN0 Pt
� is

an isomorphism. Taking an inductive limit over �, we find that f s
b
W LN ! LN is an

isomorphism.

4.3.4. We identify Gr MK with the fpqc quotient LG=LC MK . For � 2 X�.T /, recall the
semi-infinite orbit

SN;� WD LN Pt
�LC MK=LC MK � Gr MK :

We let Gr MK;�
denote the Schubert cellLC MK Pt�LC MK=LC MK and Gr MK;4�

the correspond-
ing Schubert variety which is defined to be the closure of Gr MK;�

inside Gr MK .
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Let yM � yG denote the Levi subgroup determined by M and the fixed pinning from
Section 4.1.5. For an M -dominant element � 2 X�.T /, we may consider � as element
of X�. yT / which is yM -dominant with respect to the ordering determined by yB \ yM . We
write V yM

�
for the irreducible representation of yM of highest weight �.

We let a�;� denote the multiplicity of V yM
�

appearing in the yM -representation V�j yM ,
and we write �M (resp. �N ) for the half sum of the positive roots inM (resp. roots in N ).
The same argument as in [7, Proposition 5.4.2] shows that

dimSN;� \ Gr MK;�
D h�C �; �i � 2h�; �M i;

and j†top.SN;� \ Gr MK;�
/j D a�;�.

Lemma 4.3.5. Let kM 2 LC MKM .k/ be an element such that Pt��kM Pt� 2 LC MKM . Then
left multiplication by kM induces an automorphism of SN;� \ Gr MK;�

, and we have
kM .Z/ D Z for all Z 2 †top.SN;� \ Gr MK;�

/.

Proof. Let n 2 LN.R/ where R is a k-algebra. Then

kMnPt� D .kMnk
�1
M /kM Pt

�
D .kMnk

�1
M /Pt�.Pt��kM Pt

�/ 2 LN Pt�LC MK:

It follows that multiplication by kM induces an automorphism of SN;� with inverse given
by multiplication by k�1M , and hence an automorphism of SN;� \ Gr MK;�

.

The group Pt�� MKM Pt
� \ MKM arises as the O MF -points of a smooth connected O MF -

scheme MK�. Then as above, left multiplication induces a map

LC MK� � .SN;� \ Gr MK;�
/! SN;� \ Gr MK;�

:

Let Z 2 †top.SN;� \ Gr MK;�
/. Then the element kM .Z/ 2 †top.SN;� \ Gr MK;�

/ is con-

tained in the image of LC MK� � Z ! SN;� \ Gr MK;�
. The image of this map is an irre-

ducible subscheme of SN;� \ Gr MK;�
containing Z, hence is equal to Z. It follows that

kM .Z/ D Z.

4.3.6. We define the sets

I�;M WD ¹� 2 X�.T / j � 2 X�.T / is M -dominant; SN;� \ Gr MK;�
¤ ;º;

I�;b;M WD ¹� 2 I�;M j �M .b/ D �
\
2 �1.M/�º:

Then there is a decomposition

XM�G� .b/ D
a

�2I�;b;M

XM� .b/; (4.3.6.1)

where each XM
�
.b/ is locally closed inside XM�G� .b/. In the equal characteristic setting,

this is proved in [10, Proposition 2.9 (1, 2)], and the same proof works in general.
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Proposition 4.3.7. (1) Let � 2 I�;b;M and Z 2 †top.XM
�
.b//. Then

dimp�1.Z/ � dimX�.b/

with equality if and only if a�;� ¤ 0.

(2) Let U 2 †top.X�.b// and UP 2 †top.XP�G� .b// the corresponding element. Then
there exists � 2 I�;b;M with a�;� ¤ 0 and Z 2 †top.XM

�
.b// such that Z \ p.UP /

is open dense in p.UP /.

Proof. (1) By [10, Lemma 2.8, Proposition 2.9 (3)], which also holds in the mixed char-
acteristic setting, we have

dimp�1.Z/ � dimXM� .b/C h�C �; �i � 2h�; �M i � 2hx�b; �N i

D h�; �M i �
1
2

defM .b/C h�C �; �i � 2h�; �M i � 2hx�b; �N i

D h� � �b; �i �
1
2

defG.b/ D dimX�.b/:

The first and third equalities follow from Theorem 2.4.7 and the second equality follows
from the identities defG.b/ D defM .b/ and h�b; �N i D h�; �N i. For this last identity
h�b; �N i D h�; �N i, we use the fact that �� x�b is a linear combination of coroots forM ,
and that h˛_; �N i D 0 for any such coroot. By [7, Proposition 5.4.2], which again holds
in mixed characteristic, the first inequality is an equality if and only if a�;� ¤ 0.

(2) By [10, Proposition 2.9 (2)] and a similar calculation to that in (1), for every
� 2 I�;b;M and x 2 XM

�
.b/, we have

dimp�1.x/ � dimX�.b/ � dimXM� .b/

with equality if and only if a�;� ¤ 0.
Since theXM

�
.b/ are locally closed insideXM�G� .b/, there exists a unique �2 I�;b;M

such that p.UP / \XM
�
.b/ is open dense in p.UP /. Since p.UP / is irreducible, we can

further find a Z 2 †top.XM
�
.b// such that p.UP / \Z is open dense in p.UP /. Then

dimp.UP / � dimXM� .b/:

It follows that these quantities are equal and a�;� ¤ 0.

Proposition 4.3.8. Let � 2 I�;b;M with a�;� ¤ 0 and let Z 2 †top.XM
�
.b//. Then the

group StabZ.Jb.F // acts trivially on †top.p�1.Z//.

Proof. Let Y 0 ! Z be an étale morphism such that the inclusion map Z ! XM
�
.b/ lifts

to a map � W Y 0 ! LM . The existence of Y 0 follows verbatim from the same argument
as in [34, Theorem 1.4], which shows that the morphism LM ! Gr MKM

admits sections
locally for the étale topology (see [47, Proposition 1.20]). Upon replacing Y 0 with an
irreducible component, we may assume that Y 0 is also irreducible. We let Y � Z denote
the image of Y 0, which is an open subscheme of Z.
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We write p�1.Y 0/ for the fiber product

p�1.Y 0/ //

��

XP�G� .b/

p

��
Y 0 // XM�G� .b/

and we write p0 for the map p�1.Y 0/! Y 0. The natural map p�1.Y 0/! p�1.Z/ induces
a bijection †top.p�1.Y 0// Š †top.p�1.Z//.

As in [12, Proposition 5.6], we set

ˆ WD ¹.m; n/ 2 �.Y 0/ � LN j mnLC MKP 2 X
P�G
� º � LM � LN:

We also set Q̂ WD ¹.y; n/ 2 Y 0 �LN j �.y/nLC MKP 2 X
P�G
� º � Y 0 �LN . Thenˆ is an

image of Q̂ under the map .�; id/ W Y 0 �LN ! LM �LN , and the morphism ' W Q̂ !ˆ

induces a bijection between irreducible components.
There is a natural morphism 
 W Q̂ ! p�1.Y 0/ induced by .y; n/ 7! �.y/nLC MKP .

The action of LC MKN on LN preserves Q̂ and the map 
 factors through this action. We
thus obtain a morphism

Q̂ =LC MKN ! p�1.Y 0/: (4.3.8.1)

We claim that (4.3.8.1) is an isomorphism. We define a map ı W p�1.Y 0/ ! Gr MKP
by

sending x 2 p�1.Y 0/.R/, for R a perfect k-algebra, to Œ�.p0.x//��1x. Here we consider
Œ�.p0.x//� as an element of LM.R/ which acts on Gr MKP

via the inclusion LM ! LP .
Then ı factors through the image of the immersion Gr MKN

! Gr MKP
, and hence we obtain

a morphism ı W p�1.Y 0/! Gr MKN
. The map .p0; ı/ W p�1.Y 0/! Q̂ =LC MKN is then an

inverse for (4.3.8.1); this proves the claim.
Let x 2 MW be such that MIM Px MIM � MKM Pt

� MKM is the open cell. We replace Y 0 (and
hence Y ) by the open subscheme such that m�1b�.m/ 2 MIM Px MIM for m 2 �.Y 0/. Then
the same argument as in [12, proof of Proposition 5.6] shows that upon replacing � if
necessary, we may assume m�1b�.m/ 2 Pt� MKM for any m 2 �.Y 0/. We then define

E WD �.Y 0/ � .LN \ LC MK Pt�LC MK Pt��/ � LM � LN:

We write AdM W LM �LN ! LM �LN for the map .m; n/ 7! .m;mnm�1/. This
is easily seen to be an isomorphism with inverse given by Ad�1M W .m;n/ 7! .m;m�1nm/.
Define Qfb D Ad�1M ı .id; fb/ ı AdM W LM � LN ! LM � LN . By Lemma 4.3.3, Qfb
is an isomorphism. The restriction of Qfb to ˆ gives an isomorphism Qfb W ˆ! E and we
have a Cartesian diagram

ˆ
Qfb //

��

E

��
�.Y 0/ � LN

Qfb // �.Y 0/ � LN
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We consider the projection

pr� W LN ! LN Pt�LC MK=LC MK

given by n 7! nPt� MK . Then LN \ LC MK Pt�LC MK Pt�� is the preimage of SN;� \ Gr MK;�

under pr�. We write pr W E ! SN;� \ Gr MK;�
for the composition of projection onto the

second component pr2 W E ! LN \ LC MK Pt�LC MK Pt�� followed by pr�.
Let Z0 2 †.SN;� \ Gr MK;�

/. The same argument as for [10, Proposition 2.9] shows
that

dim 
..pr ı Qfb ı �/�1.Z0// � dimX�.b/ D dimp�1.Y 0/

with equality if and only if Z0 2 †top.SN;� \ Gr MK;�
/. Indeed, if

y 2 p0.
..pr ı Qfb/�1.Z0/// � Y 0

with m D �.y/, then

p�1.y/ \ 
..pr ı Qfb ı �/�1.Z0// D .pr� ı fm�1b�.m//
�1.Z0/:

Then [10, Lemma 2.4] (cf. also [10, proof of Proposition 2.9 (2)]) implies that

dimp�1.y/ \ 
..pr ı Qfb ı �/�1.Z0// D dimZ0 � hx�b; 2�N i

and hence

dim 
..pr ı Qfb ı �/�1.Z0// D dimXM� .b/C dimZ0 � hx�b; 2�N i

� dimXM� .b/C h�C �; �i � 2h�; �M i � hx�b; 2�N i

D dimX�.b/

with equality if and only if Z0 2 †top.SN;� \ Gr MK;�
/. For the last equality, see the proof

of Proposition 4.3.7.
It follows that Z0 7! 
..pr ı Qfb/�1.Z0// induces a map � W †top.SN;� \ Gr MK;�

/!

†top.p�1.Y 0//. We have the following diagram of morphisms:

p�1.Y 0/


 � Q̂

�
�! ˆ

Qfb
�! E

�
�! prSN;� \ Gr MK;�

:

These morphisms all induce bijections of irreducible components, and hence � is a bijec-
tion.

Let j 2 StabZ.Jb.F // and let U 2 †top.p�1.Z//. We let QU1; QU2 � Q̂ denote the
preimages of U and jU respectively under the composite map Q̂



�! p�1.Y 0/! p�1.Z/,

and we let U1; U2 � ˆ denote their respective images under �. For i D 1; 2, let Z0i 2
†top.SN;� \ Gr MK;�

/ be the unique component containing pr ı Qfb.Ui /. Then it suffices to
show that Z01 D Z

0
2.

Let x D .m; n/ 2 U1.k/ be such that the image y D m MKM of x in Z lies in j�1Y .
Note that the set of such x is dense in U1. Then jy lies in Y and we let y0 2 Y 0.k/ be
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a lift of jy to Y 0.k/. Then the element �.y0/ 2 LM.k/ is of the form jmkM for some
kM 2 L

C MKM .k/, since it is a lift of jy D jm MKM .
Consider the element z D .jmkM ; k�1M nkM / 2 ˆ. Then we have z 2 U2.k/, and one

computes that

pr2. Qfb.z// D k
�1
M n�1bm�.n/b

�1
m kM D k

�1
M pr2. Qfb.x//kM ;

where bmDm�1b�.m/. By the assumption on �, we have bm;k�1M bmkM 2 Pt
� MLCKM , and

hence Pt��kM Pt� 2 LC MKM . Then by Lemma 4.3.5, we have pr ı Qfb.x/ 2 Z02. Since this is
true for a dense set of x in U1, it follows that pr ı Qfb.U1/ � Z02, and hence Z01 D Z

0
2.

Corollary 4.3.9. LetU 2†top.X�.b//. Then there are � 2 I�;b;M andZ 2†top.XM
�
.b//

such that
StabU .Jb.F // D StabZ.Jb.F //:

Proof. Let UP 2 †top.XP�G� .b// be the component corresponding to U and let Z WD
p.UP / � XM�G� .b/. By Lemma 4.3.7, we have Z 2 †top.XM

�
.b// for some � 2 I�;b;M

with a�;� ¤ 0.
By the Jb.F /-equivariance of p, we have

StabUP .Jb.F // � StabZ.Jb.F //:

Since UP 2 †top.p�1.Z//, Proposition 4.3.8 implies

StabU .Jb.F // D StabUP .Jb.F // D StabZ.Jb.F //:

Proposition 4.3.10. In order to prove Theorem 4.1.2, it suffices to prove it when char.F /
D 0, G is F -simple, adjoint, and unramified over F , and b is basic.

Proof. This follows from Corollaries 4.2.4 and 4.3.9.

4.4. The special case of a sum of dominant minuscule cocharacters

We assume that char.F / D 0, G is F -simple, adjoint, and unramified over F , and b is
basic. Our goal in this subsection is to prove a partial result towards Theorem 4.1.2 when
� is a sum of minuscule dominant cocharacters. We use the idea of X. Zhu (see [47,
Section 3.1.3]) that one can “separate” the summands of � by constructing a convolution
map from the affine Deligne–Lusztig variety of a Weil-restriction group to the original
affine Deligne–Lusztig variety. This idea was originally used in loc. cit. to establish the
dimension formula, and it was S. Nie [32, 33] who first applied this idea to the study of
irreducible components.

4.4.1. Let Fr denote the unramified extension of F of degree r inside MF . Let H be an
unramified reductive group over Fr and let G0 WD ResFr=FH . We canonically identify MF
with MFr . For b 2H. MF / and � a geometric cocharacter ofH , we have the affine Deligne–
Lusztig variety XH� .b/ as in Section 2.4.3. In this subsection we denote this by XH� .b�

r /
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to emphasize that H is a group over Fr and the Frobenius relative to Fr is � r . We also
write J .r/

b
for Jb (defined with respect to H over Fr ), and write B.r/.H/ for the set of

� r -conjugacy classes in H. MF /.
Let �0 W Fr ,! MF be the inclusion and write �i for � i .�0/ for i D 1; : : : ; r � 1. Thus

¹�0; : : : ; �r�1º is the set of F -algebra embeddings Fr ! MF . There is a canonical identifi-
cation

G0 ˝F MF Š

r�1Y
iD0

H ˝Fr ;�i
MF :

Let TH be the centralizer of a fixed maximal Fr -split torus in H . Let T 0 D ResFr=F TH ,
which we view as an F -subgroup of G0. Then T 0 is the centralizer of a maximal F -
split torus in G0. A cocharacter of T 0 is the same as a sequence �0 D .�0; : : : ; �r�1/,
where �i 2 X�.TH /. Fix a Borel subgroup of H containing TH and use it to define
the dominant cocharacters X�.TH /C. This also defines a Borel subgroup of G0 contain-
ing T 0 and defines X�.T 0/C. We fix a hyperspecial subgroup ofH.Fr / that is compatible
with our choice of the maximal MFr -split Fr -rational torus of H . This also determines a
hyperspecial subgroup of G0.F /. We use these hyperspecial subgroups to define affine
Deligne–Lusztig varieties at hyperspecial level for H and G0. For b0 D .b0; : : : ; br / 2

G0. MF /, we define

Nm.b0/ WD b0�.b1/ � � � � r�1.bi�1/ 2 H. MF /:

Then b0 7! Nm.b0/ defines a bijection B.G0/ ��! B.r/.H/, and there is a natural isomor-
phism Jb0.F / Š J

.r/

Nm.b0/.Fr /.

Lemma 4.4.2. Let �0 D .�0; : : : ; �r�1/ 2 X�.T 0/C and Œb0� 2 B.G0; �0/. We write j�0j
for

Pr�1
iD0 �

i .�i / 2 X�.TH /
C. Then there is a natural morphism

� W XG
0

4�0.b
0/! XH

4j�0j.Nm.b0/� r /

which is Jb0.F / Š J
.r/

Nm.b0/.Fr /-equivariant. Moreover, for each

U 2 †top.XH
4j�0j.Nm.b0/� r //;

there exists Z 2 †top.XG
0

4�0.b
0// such that

StabZ.Jb0.F // D StabU .J
.r/

Nm.b0/.Fr //:

Proof. The morphism � is given by the isomorphism in [47, Lemma 3.5] and the left
vertical map in the diagram of [47, p. 459]. The Jb0.F / Š J

.r/

Nm.b0/.Fr /-equivariance
is clear from the construction. Let U 2 †top.XH

4j�0j
.Nm.b0/� r //. We claim that J WD

StabU .JNm.b0/.Fr // acts trivially on †top.��1.U //. In fact, by the diagram of [47],
there exists m 2 N and an LmH -torsor U 0 over U equipped with a J-action such
that U 0 ! U is J-equivariant and there exists a J-equivariant U 0-scheme isomorphism
��1.U / �U U

0 ��! F �k U
0, where J acts trivially on F . Our claim follows. By the
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claim, we have StabZ.Jb0.F // D StabU .J
.r/

Nm.b0/.Fr // for arbitrary Z 2 †top.��1.U //.

By [32, Lemma 1.8], we have †top.��1.U // � †top.XG
0

4�0.b
0//. The lemma follows.

Proposition 4.4.3. Assume that � is a sum of dominant minuscule cocharacters and that
Œb� 2 B.G;�/ is basic. Then for any Z 2 †top.X�.b//, StabZ.Jb.F // is a special para-
horic subgroup of Jb.F /.

Proof. We first consider the case where � is minuscule. Let M � G be a standard Levi
subgroup such that there exists b 2 Œb� \M. MF / which is superbasic in M . We use the
same notations as in Section 4.3.1 with respect to M . We choose b 2 Œb� \M. MF / that
is superbasic in M , and upon � -conjugating b in M. MF / we may assume that b D P� for
some � 2 �M .

Let Z 2 †top.X�.b// and we let J � Jb.F / denote the stabilizer of Z. Let P be
the standard parabolic subgroup of G with Levi factor M . By [45, Theorem 3.1.1], J is
a parahoric subgroup of Jb.F /. By Theorem 4.1.6, the map � in [12, Theorem 5.12] is
a bijection. Indeed, as explained in [12, Remark 1.5 (a)], the cardinality of the domain
of � is equal to dim V�.�b/, and the cardinality of the codomain is equal to N .�; b/.
Thus by [12, Theorem 5.12] and Theorem 4.1.6, � is a surjective map between finite sets
of equal cardinality and hence is a bijection. It follows from the “only if” part of [12,
Theorem 5.12] that Jb.F /\ P. MF / acts transitively on each Jb.F /-orbit in †top.X�.b//.
Hence

Jb.F / D .Jb.F / \ P. MF // � J:

Note that Jb.F /\ P. MF /DQ.F / whereQ is a minimal parabolic subgroup of Jb , since
b is superbasic in M. MF /. Thus

Jb.F / D Q.F / � J: (4.4.3.1)

Recall that J is a parahoric subgroup of Jb.F /. In the following we show that this fact
together with (4.4.3.1) implies that J is a special parahoric subgroup. By [3, Propo-
sition 4.4.2], the equality (4.4.3.1) implies that J is contained in a special parahoric
subgroup J1 of Jb.F /. (Indeed, (4.4.3.1) implies that J is contained in a “bon sous-
groupe borné maximal” J01, and the equivalence of (i) and (ii) in [3, Proposition 4.4.2]
implies that J01 is special; cf. [3, Proposition 4.4.6]. Since J is parahoric, it must be con-
tained in a special parahoric J1 that is contained in J01.) We are left to check that J D J1,
for which we need to use (4.4.3.1) again. Fix a maximal split torus A0 in Jb whose cen-
tralizer is a Levi subgroup of Q. By (4.4.3.1), there exists j 2 Q.F / such that jJj�1 is
associated with a facet in the apartment A0 corresponding to A0. Thus up to conjugating
J and J1 by j , we may assume that both J and J1 are associated with facets in A0, and
that (4.4.3.1) still holds. Then from (4.4.3.1) we get

J1 D .J1 \Q.F // � J: (4.4.3.2)

Let J1 denote the reductive quotient of the special fiber of J1. Then the images of
J1 \Q.F / and J in J1 are (kF -points of) parabolic subgroups B and P respectively,
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and B \ P contains a maximal split torus in J1, namely the reduction of A0 (still denoted
by A0). More precisely, B is the parabolic subgroup of J1 containing (the reduction of) A0

such that the roots of A0 on Lie.B/ are those ˛ 2 X�.A0/ appearing as vector parts of the
affine roots of G vanishing at the special vertex in A0 corresponding to J1 and which are
also roots of A0 on Lie.Q/. Since Q is minimal parabolic, there does not exist a pair of
opposite roots ˛;�˛ as above. From this we see that the parabolic B is in fact minimal,
i.e., a Borel subgroup (since every reductive group over kF is quasi-split). By (4.4.3.2)
we have J1 D BP , and by the Bruhat decomposition this is possible only when P D J1,
or equivalently J D J1. We have thus proved that J is a special parahoric subgroup
of Jb.F /.

We now consider the case when � is a sum of r dominant minuscule cocharacters. Let
H be the pinned unramified reductive group over Fr such that its based root datum with
the � r -action is identified with the based root datum of .G; B; T / with the � -action. Let
TH be the maximal torus in the pinning of H . Then we have a canonical identification
X�.T /

C Š X�.TH /
C, and the image of � in X�.TH /C, denoted by �H , is also a sum

of r dominant minuscule cocharacters. We have canonical identifications G. MF / Š H. MF /
and . MW ; �/ Š . MWH ; � r /. Let bH 2 H. MF / correspond to b 2 G. MF /, and let w0;H denote
the longest element of MWH . Then .G; b; w0t�/ and .H; bH ; w0;H t�H / are associated as
in Section 4.2. By Propositions 4.2.3 and 2.4.10, and the fact that association of parahoric
subgroups preserves being very special (see the proof of Corollary 4.2.4), it suffices to
prove the result for XH�H .bH�

r /.
Since �H is a sum of r dominant minuscule cocharacters, we can decompose �H asPr�1
iD0 �

i .�i /, where each �i is a dominant minuscule cocharacter inX�.TH /C. LetG0 D
ResFr=F H , and let �0 D .�0; : : : ; �r�1/, viewed as a cocharacter of a maximal torus in
G0 as in Section 4.4.1. Choose b0 2 G0. MF / such that its image under G0. MF /! B.G0/

�
�!

B.r/.H/ is the class of bH . By Lemma 4.4.2 applied to the current situation, for every
U 2 †top.XH4�H .bH�

r // there exists Z 2 †top.XG
0

4�0.b
0// such that StabU .J

.r/

bH
.Fr // D

StabZ.Jb0.F //. Note that �0 is minuscule, so XG
0

4�0.b
0/ D XG

0

�0 .b
0/, and by the previous

part of the proof, we know that StabZ.Jb0.F // is a special parahoric. The desired result
for XH�H .bH�

r / follows by noting that the natural map XH�H .bH�
r /! XH4�H .bH�

r /

induces a J .r/
bH
.Fr /-equivariant bijection between the sets of top-dimensional irreducible

components.

4.5. Numerical relations

Another key ingredient in our proof of Theorem 4.1.2 is a set of numerical relations
deduced from results in [45], which we discuss here.

4.5.1. We assume that char.F / D 0, G is F -simple, adjoint, and unramified over F , and
b is basic. We also assume that Œb� is not unramified, i.e., defG.b/ ¤ 0.

Since b is basic, Jb is an inner form of G. Thus we can transfer Haar measures
on G.F / to Haar measures on Jb.F /, as in [26, Section 1]. We fix the Haar measure



Stabilizers of irreducible components of affine Deligne–Lusztig varieties 43

on G.F / giving volume 1 to hyperspecial subgroups, and transfer it to a Haar measure
on Jb.F /. (This Haar measure on Jb.F / may not give volume 1 to Iwahori subgroups.)
For eachZ 2†top.X�.b//, the volume of the parahoric subgroup StabZ.Jb.F //� Jb.F /
depends on Z only via the Jb.F /-orbit ŒZ� of Z. We denote this volume by vol.ŒZ�/.

Let S�;b.t/ 2 Q.t/ be the rational function in [45, Theorem 6.1.3]. We have

S�;b.0/ D N .�; b/;

S�;b.q/ D e.Jb/
X

ŒZ�2Jb.F /n†
top.X�.b//

vol.ŒZ�/�1:

Here q denotes the cardinality of the residue field of F , and e.Jb/ 2 ¹˙1º is the Kottwitz
sign of Jb . (Recall N .�; b/ from Definition 4.1.3.) We set

Q.�; b/ WD e.Jb/S�;b.q/N .�; b/�1

D N .�; b/�1
X

ŒZ�2Jb.F /n†
top.X�.b//

vol.ŒZ�/�1: (4.5.1.1)

Proposition 4.5.2. Keep the assumptions on F , G, and Œb� of Section 4.5.1. Assume that
none of the simple factors of G xF is of type A.

(1) Assume thatG is not a Weil restriction of the split adjoint group of typeE6. Then there
exists a minuscule �1 2 X�.T /C such that N .�1; b/ D 1 and for all � 2 X�.T /C

we have
Q.�; b/ D Q.�1; b/:

(2) Assume that G is a Weil restriction of the split adjoint group of type E6. .The Weil
restriction is necessarily along an unramified extension of F since G is unramified./
Then there exist �1; �2 2 X�.T /C, where �1 is minuscule and �2 is a sum of dom-
inant minuscule cocharacters, such that N .�1; b/ D 1 and for all � 2 X�.T /C we
have

Q.�; b/ D Q.�1; b/C C.�/.Q.�2; b/ �Q.�1; b//; (4.5.2.1)

for some C.�/ 2 Q.

Proof. The proposition follows from the main result of [45] (i.e., the Chen–Zhu Con-
jecture), and the proof of [45, Theorem 6.3.2]. More precisely, part (1) follows from
the equation below [45, (6.3.3)] and the main result [45, Theorem A] asserting that the
numbers M .�; b/ and M .�1; b/ in that equation are equal to N .�; b/ and N .�1; b/

respectively. Part (2) follows from the equation below [45, (6.3.7)], the equation below
[45, (6.3.8)], and [45, Theorem A] asserting that M .�; b/ D N .�; b/.

Remark 4.5.3. In Proposition 4.5.2, the conclusion in case (2) is weaker than that in
case (1), and this originates from the dichotomy in [45, Proposition 6.3.2]. It turns out
that in case (2), there is extra difficulty in trying to establish the key estimate [45, (6.3.1)],
and in fact only the weaker statement [45, Proposition 6.3.2 (2)] is proved. If G is a Weil
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restriction of PGLn, there seems to be even more serious difficulty in trying to establish
[45, (6.3.1)]. As a result the type A case is not considered in [45, Proposition 6.3.2]. After
the publishing of [45], the authors have realized that one can actually prove [45, (6.3.1)]
when G is a Weil restriction of an adjoint unramified unitary group. We will not need this
for the purposes of the current paper.

4.6. Proof of Theorem 4.1.2

By Proposition 4.3.10, we may assume without loss of generality that char.F / D 0, G is
F -simple, adjoint, and unramified over F , and b is basic. If Œb� is unramified, then The-
orem 4.1.2 is already proved in [48, Theorem 4.4.14 (1)] (cf. [45, Theorem 6.2.2]). We
hence assume that Œb� is not unramified. Thus we are in the same setting as in Sec-
tion 4.5.1.

Let volmax be the volume of a very special parahoric subgroup of Jb.F /, where the
Haar measure on Jb.F / is as in Section 4.5.1. We know that every stabilizer for the
Jb.F /-action on †top.X�.b// is a parahoric subgroup of Jb.F / (see Remark 3.3.12 and
[45, Proposition 3.1.4]). As a result, the volume of such a stabilizer will be at most volmax,
and equality holds if and only if the stabilizer is very special. Since the quantity Q.�; b/
defined in (4.5.1.1) is the average of the volumes of these stabilizers, we see that Theorem
4.1.2 for .�; b/ is equivalent to the relation

Q.�; b/ D vol�1max : (4.6.0.1)

Since G is F -simple, the simple factors of G xF are isomorphic to each other. If they
are of type A, then � is necessarily a sum of dominant minuscule cocharacters in X�.T /.
In this case, Theorem 4.1.2 follows from Proposition 4.4.3 if we know that every special
parahoric subgroup of Jb.F / is automatically very special. Since Jb is an inner form ofG
and hence also of type A, it is indeed the case that special parahoric subgroups of Jb.F /
are automatically very special, by inspecting the tables in [41, Section 4].

Assume that G is as in Proposition 4.5.2 (1), and let �1 be as in that part of the
proposition. Since N .�1; b/ D 1, it follows from Proposition 3.4.6 that Q.�1; b/ D
vol�1max. (Here Proposition 3.4.6 is indeed applicable sinceG is F -simple and adjoint.) But
Q.�; b/ D Q.�1; b/, so (4.6.0.1) holds for .�; b/, and this implies that Theorem 4.1.2
holds for .�; b/.

We are left with the case where G is a Weil restriction of the split adjoint group of
type E6. In this case, let �1 and �2 be as in Proposition 4.5.2 (2). Since Jb is also of
type E6, by inspecting the tables in [41, Section 4] we see that every special parahoric
subgroup of Jb.F / is automatically very special. Thus by Proposition 4.4.3 we know that
Theorem 4.1.2 holds for .�1; b/ and .�2; b/. It follows that

Q.�1; b/ D Q.�2; b/ D vol�1max :

Substituting this back to (4.5.2.1), we obtain (4.6.0.1) for .�; b/, and this implies that
Theorem 4.1.2 holds for .�; b/.

The proof of Theorem 4.1.2 is complete.
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5. Irreducible components of basic loci

5.1. Shimura varieties

5.1.1. We use the previous section to describe the irreducible components in the basic
locus of certain Hodge type Shimura varieties constructed in [25]. Let G be a connected
reductive group over Q and X a conjugacy class of homomorphisms

h W S WD ResC=R ! GR

such that .G;X/ is a Shimura datum. For any C-algebraR we haveR˝R CŠR� c�.R/,
where c is the complex conjugation. For h 2 X we let �h denote the cocharacter of GC

given by

R� ! R� � c�.R/�
h
�! G.R/;

where R is an arbitrary C-algebra and the first map is z 7! .z; 1/. The conjugacy class
of ��1

h
is defined over a number field E WD E.G; X/ � C and we write ¹�º for the

corresponding geometric conjugacy class of cocharacters over xE.
Let p be an odd prime and we write G WD GQp for the base change of G to Qp . We

let Af denote the ring of finite adeles and Ap
f

the finite adeles with trivial component
at p. Let K D KpKp � G.Af / where Kp � G.Qp/ and Kp � G.Ap

f
/ are compact open

subgroups. Then for Kp sufficiently small,

ShK.G; X/.C/ D G.Q/nX �G.Af /=K

arises as the complex points of an algebraic variety ShK.G; X/ defined over E.

5.1.2. From now on, we will assume the datum .G;X/ is of Hodge type. This means that
there exists an embedding of Shimura data

� W .G; X/! .GSp.V;  /; S˙/;

where .V;  / is a symplectic space over Q and .GSp.V;  /; S˙/ is the standard Siegel
Shimura datum. We will also make the following assumption:

(�) The groupG WDGQp is quasi-split and splits over a tamely ramified extension of Qp .
Moreover, p − j�1.Gder/j, and Kp is a connected very special parahoric subgroup
of G.Qp/.

Here we say a parahoric Kp is connected if it is the same as the stabilizer of a facet
in the building for G. When G is unramified, every parahoric which is contained in a
hyperspecial parahoric is connected. In the sequel we let G be the group scheme over Zp
corresponding to the parahoric Kp .

Let v be a prime of E lying above p with residue field kv D Fq . We write O for
the ring of integers of E and O.v/ for the localization of O at v. Under the assumptions
above, Kisin–Pappas [25] have constructed an integral model SK.G; X/ for ShK.G; X/
over O.v/. We briefly recall the construction below.
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By the discussion in [25, Section 2.3.15], upon replacing � with a different Hodge
embedding, we may assume that there exists a Zp-lattice VZp � VQp such that � induces
a closed immersion G ! GL.VZp /. From now on we fix � such that this condition is
satisfied. We let K0DK0pK0p �GSp.VAf /with K0p �GSp.VQp / the stabilizer of VZp and
K0p � GSp.Ap

f
/ a sufficiently small compact open subgroup. By [22, Lemma 2.1.2], up

to shrinking Kp we may choose a sufficiently small K0p such that the Hodge embedding
� defines a closed immersion

ShK.G; X/! ShK0.GSp.V /; S˙/˝Q E

of Shimura varieties. We let VZ.p/ D VZp \ V and we let GZ.p/ denote the Zariski
closure of G in GSp.VZ.p//. The choice of VZ.p/ gives rise to an interpretation of
ShK0.GSp.V /; S˙/ as a moduli space of abelian varieties and hence to an integral model
SK0.GSp.V /; S˙/ over Z.p/ (see [25, Section 4] and [44, Section 6]). The integral
model SK.G; X/ is defined to be the normalization of the closure of ShK.G; X/ in
SK0.GSp.V /; S˙/˝Z.p/ O.v/. We will write A for the pullback of the universal abelian
scheme on SK0.GSp.V /; S˙/˝Z.p/ O.v/ to SK.G; X/.

5.2. Rapoport–Zink uniformization

5.2.1. We fix a maximal MQp-split Qp-rational torus S in G (cf. Section 2.1.1) such that
Kp corresponds to a � -stable special point Ms in the apartment corresponding to S . We let
T denote the centralizer of S and we fix a Borel subgroup B of G containing T (which
exists as we have assumed that G is quasi-split). We let � 2 X�.T /C�0 denote the image
of a dominant representative z� 2 X�.T /C of ¹�º. (Here �0 is as in Section 2.1.1 with
respect to F DQp .) Then for b 2 B.G;�/ we have the associated affine Deligne–Lusztig
variety X�.b/ as in Section 2.4 corresponding to the very special parahoric Kp .

To simplify notation we write ShK for the geometric special fiber of SK.G; X/. By
[44, Section 8], there exists a map

N W ShK ! B.G;�/

which induces the Newton stratification on ShK. We let Œb�basic 2 B.G; �/ denote the
unique basic � -conjugacy class inB.G;�/ and we write ShK;bas for the preimage of Œb�basic

under N . By [36, Theorem 3.6] this is a closed subscheme of ShK, which is known as the
basic locus.

Our goal is to understand the set †top.ShK;bas/ of top-dimensional irreducible compo-
nents of ShK;bas. This will follow from our study of X�.b/ above and the following result,
which is the analogue in our context of the Rapoport–Zink uniformization.

Proposition 5.2.2. Let b 2 Œb�basic. There exists an isomorphism of perfect schemes

I.Q/nX�.b/ �G.Ap
f
/=Kp Š Shpfn

K;bas;

where I is a certain inner form of G with I ˝Q Ap
f
Š G˝Q Ap

f
and I ˝Q Qp Š Jb .

Moreover, this isomorphism is equivariant for prime-to-p Hecke operators.
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Corollary 5.2.3. There exists an identification

†top.ShK;bas/ Š

N .�;b/a
iD1

I.Q/nI.Af /=IipIp;

where N .�; b/ is as in Definition 4.1.3, Iip is a very special parahoric of I.Qp/ and
Ip Š Kp under a fixed identification I ˝Q Ap

f
Š G ˝Q Ap

f
. Moreover, the following

statements hold:

(1) The identification is compatible with prime-to-p Hecke operators.

(2) If G is unramified, we may replace the indexing set with MV�.�b/.

Proof. This follows from Proposition 5.2.2, Corollary 4.1.4, and the fact that the topology
of a scheme is invariant under taking perfection.

The rest of this section will be devoted to the proof of Proposition 5.2.2. The case
when G is an unramified group is proved in [48, Corollary 7.2.6], a key input being the
existence of a natural map

X�.b/.xFp/! ShK.
xFp/;

which was proved in [23, Proposition 1.4.4]. Our proposition follows similarly using
results from [44]. We first recall some notations from [44, Section 6.2].

5.2.4. By construction, for a scheme T over O.v/, a point x 2 SK.G; X/.T / gives rise
to a triple .Ax ; �; �

p
K0/ where Ax is an abelian variety over T , � is a weak polarization

(cf. [44, Section 6.3]), and �pK0 is a global section of the étale sheaf

Isom�; .
yV .Ax/; VAp

f
/=K0p:

Here yV .Ax/ D .lim
 �p−n

Ax Œn�/˝Z Q is the adelic prime-to-p Tate module of Ax , and
we refer the reader to loc. cit. for more details of the above étale sheaf.

For R a ring andM an R-module, we letM˝ denote the direct sum of all R-modules
obtained from M by taking duals, tensor products, and symmetric and exterior products.
By [22, Section 1.3.2] and the assumption on � in Section 5.1.2, the subgroup GZ.p/

of GSp.V;  / is the stabilizer of a collection of tensors s˛ 2 V ˝Z.p/ . Let k be a finite

field or xFp , and let x 2 ShK.k/. Then by the discussion in [44, Section 6], the abelian
variety Ax is equipped with Frobenius-invariant tensors s˛;`;x 2 T`.Ax/

˝ for primes
` ¤ p and '-invariant tensors s˛;0;x 2 D.Gx/˝. Here T`.Ax/ is the `-adic Tate module
of Ax , Gx WD Ax Œp

1� is the p-divisible group of Ax , and D.Gx/ is its contravariant
Dieudonné module. Upon fixing an isomorphism

D.Gx/ Š V
_

Zp
˝Zp W.k/

taking s˛;0;x to s˛ , which exists by [25, Proposition 3.3.8], the Frobenius ' is given by ı�
for an element ı 2 G.W.k//Œ1=p�/ well defined up to � -conjugation by G.W.k//.
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We write M for the F -crystal of the p-divisible group associated to A over ShK and
we let MŒ1=p� denote the associated isocrystal. By [24], there exist tensors s˛;0 2MŒ1=p�

which specialize to s˛;0;x for all x 2 ShK.
xF/.

5.2.5. Now let k D Fpr be a finite extension of kv . Fix x 2 ShK.k/. For each prime `¤ p,
upon fixing an isomorphism

V _Q` Š T`.Ax/
_
˝Z` Q` (5.2.5.1)

taking s˛ to s˛;`;x , which exists by [22, Section 3.4.2], the pr -Frobenius on the right
is given by an element 
` 2 G.Q`/ well-defined up to conjugation. In fact, [22, Sec-
tion 3.4.2] shows that we may assume the isomorphism (5.2.5.1) arises from an isomor-
phism

V _
Ap
f

Š yV .Ax/
_

taking s˛ to s˛;`;x , and hence that .
`/`¤p is an element of G.Ap
f
/. We let I`=k denote

the centralizer of 
`. For sufficiently divisible n, the centralizer of 
n
`

stabilizes and we
write I` for this centralizer. We also obtain ı 2 G.W.k/Œ1=p�/ from x as explained in
Section 5.2.4, and we define the Qp-group Ip=k whose points in a Qp-algebra R are
given by

Ip=k.R/ WD ¹g 2 G.W.k/Œ1=p�˝Qp R/ j g
�1ı�.g/ D ıº:

Then Ip=k is a subgroup of Jı , and it grows if we keep ı fixed and let the finite field k
grow. Thus when k0=k is a sufficiently large finite extension, Ip=k0 stabilizes, and we
denote it by Ip . We write 
p for the norm ı�.ı/ � � � � r�1.ı/.

Finally, we define the Q-group whose points valued in a Q-algebra R are given by

Aut.Ax ˝k
xFp/.R/ D .EndQ.Ax ˝k

xFp/˝Q R/�

and we let I � Aut.Ax ˝k
xFp/ denote the subgroup which preserves the tensors s˛;0;x

and s˛;`;x for all ` ¤ p. We have the following facts about these groups for points x in
the basic locus.

Proposition 5.2.6. Let k D Fpr be a finite extension of kv and x 2 ShK;bas.Fpr /.

(1) There exists 
0 2 G.Q/ which is elliptic in G.R/ such that .
0; .
`/`¤p; ı/ forms
a Kottwitz triple of level r in the sense of [23, Section 4.3.1]. In particular, 
0 is
G.xQ`/-conjugate to 
` for all ` .including ` D p/.

(2) For any prime ` .including ` D p/, the natural map I ˝Q Q` ! I` is an isomor-
phism, and the group .I=Gm/.R/ is compact. Here Gm � I arises from the image of
the weight homomorphism of the Shimura datum .G; X/.

(3) We write I0 � G for the centralizer of 
n0 for sufficiently divisible n such that the
centralizers stabilize. Then there exists an inner twisting

I ˝Q xQ
�
�! I0 ˝Q xQ
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which makes I an inner form of I0 and is such that the diagram

I0 ˝Q xQ`
� // I` ˝Ql

xQ`

I0 ˝Q xQ`
� // I ˝Q xQ`

�

OO

commutes up to inner automorphism for any prime `.

Proof. (1) and (2) follow from the discussion in [44, Section 9.5]. (3) follows from the
same argument as [23, Corollary 2.3.5], using [44, Theorem 9.4] in place of [23, Theo-
rem 2.2.3].

5.2.7. For .
0; .
`/`¤p; ı/ a Kottwitz triple of level r , .
m0 ; .

m
`
/`¤p; ı/ is a Kottwitz

triple of level rm. We consider the smallest equivalence relation on the set of all Kottwitz
triples of all levels under which .
0; .
`/`¤p; ı/ is equivalent to .
m0 ; .


m
`
/`¤p; ı/ for

all m � 1. An equivalence class under this relation is called a Kottwitz triple. For x 2
ShK;bas.

xFp/, we know that x is defined over some k D Fpr , and the associated Kottwitz
triple .
0; .
`/`¤p; ı/ of level r defines a Kottwitz triple which is independent of the
choice of Fpr .

Recall the following notion of isogeny classes introduced in [44].

Definition 5.2.8. Let x; x0 2 ShK.
xFp/. We say x and x0 are isogenous if there exists a

quasi-isogeny Ax ! Ax0 which takes s˛;`;x to s˛;`;x0 and s˛;0;x to s˛;0;x0 . Clearly this
defines an equivalence relation on ShK.

xFp/, and the equivalence classes will be called
isogeny classes.

5.2.9. We define an equivalence relation � on the set of all Kottwitz triples by set-
ting t � t0 for Kottwitz triples t; t0 if there exist representatives .
0; .
`/`¤p; ı/,
.
 00; .


0
`
/`¤p; ı

0/ of some level r for t, t0 respectively such that

(1) .
`/`¤p and .
 0
`
/`¤p are conjugate in G.Ap

f
/;

(2) ı and ı0 are � -conjugate in G.K0/, where K0 D W.Fpr /Œ1=p�.

It is easy to see that if t, t0 are the Kottwitz triples associated to points x; x0 2 ShK;bas.
xFp/

lying in the same isogeny class, then t � t0.

Proposition 5.2.10. Let x; x0 2 ShK;bas.
xFp/ and let t .resp. t0/ denote the Kottwitz triple

associated to x .resp. x0/. Then t � t0.

Proof. We fix a sufficiently large finite field k D Fpr such that x and x0 are both defined
over k and we fix representatives .
0; .
`/`¤p; ı/ and .
 00; .


0
`
/l¤p; ı

0/ of level r for t

and t0 respectively. Write I and I 0 for the Q-groups associated to x and x0 as above. We
first claim that there exists n� 1 such that 
n0 and 
 0n0 are central. Indeed, this follows ver-
batim from the argument in [48, Lemma 7.2.14] which works without the assumption that
G is unramified. Therefore upon extending k we may assume 
0 and 
 00 are both central.
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Let Zı denote the connected component of the center of G. Upon enlarging k, we
may assume t WD 
�10 
 00 2 Z

ı.Q/. We claim that the image of t in Zı.Af / lies in a
compact open subgroup H . For ` ¤ p, we have 
0 D 
`, hence 
0 lies in a compact sub-
group of Zı.Q`/ since 
` is the Frobenius automorphism of the `-adic Tate module. The
same argument works for 
 00 and hence t lies in a compact open subgroup of G.Ap

f
/. For

` D p, we find that 
0 and 
 00 both have the same image in �1.G/� since ı and ı0 are
both basic. Since the kernel of the map X�.Zı/��0 ! �1.G/� is torsion, it follows that
upon further extending k, we may assume that 
 and 
 00 have the same image under the
Kottwitz map � WZı.Qp/!X�.Z

ı/��0 . Thus t lies in the kernel of �, which is a compact
open subgroup of Zı.Qp/.

Since G and I are inner forms (recall 
0 is central), we may naturally consider Zı as
a subgroup of I which contains the scalars Gm. Then the compactness of .I=Gm/.R/
implies .Zı=Gm/.R/ is compact. It follows that H \ Zı.Q/ is finite. Hence there
exists m such that 
m0 D 


0m
0 . Upon extending k, we may assume 
0 D 
 00. This implies


` D 

0
`
.

Now since x;x0 2 ShK;bas.k/, there exists g 2G. MQp/ such that g�1ı�.g/D ı0. Taking
norms, we obtain

g�1
0�
r .g/ D 
 00 D 
0

and hence g�1� r .g/D 1 since 
0 is central. This implies g 2 G.Qpr / and hence ı and ı0

are � -conjugate in G.Qpr /. It follows that t � t0.

Propositions 5.2.6 and 5.2.10 together with the Hasse principle for adjoint groups
imply the following corollary.

Corollary 5.2.11. Let x; x0 2 ShK;bas.
xFp/. Then the groups I and I 0 are isomorphic as

inner forms of G.

Proposition 5.2.12. Let x; x0 2 ShK;bas.
xFp/. Then x and x0 lie in the same isogeny class.

Proof. Let k D Fpr be a sufficiently large finite field such that x and x0 are both
defined over k. We let I and I 0 be the groups associated to x and x0 respectively, and
Isog.Ax ;Ax0/ be the scheme of quasi-isogenies between Ax0 and Ax0 . We define

Ps˛ .x; x
0/ � Isog.Ax ;Ax0/

to be the subscheme which takes .s˛;`;x/l¤p (resp. s˛;0;x) to .s˛;`;x0/`¤p (resp. s˛;0;x0 ).
It suffices to show that Ps˛ .x; x

0/ is a trivial I -torsor.
We first show Ps˛ .x; x

0/ is an I -torsor. By Corollary 5.2.11, we may fix an isomor-
phism I Š I 0. Let T� I Š I 0 be a maximal torus. The proof of [44, Theorem 9.4] shows
that upon modifying x and x0 in its isogeny class, we may assume that x and x0 admit
lifts Qx and Qx0 to ShK.G; X/.xQ/ satisfying the following conditions:

(1) T � Aut.Ax/ and T � Aut.Ax0/ lift to T � Aut.A Qx/ and T � Aut.A Qx0/.

(2) The Hodge filtrations on H1dR.A Qx/ and H1dR.A Qx0/ are induced by the same T-valued
cocharacter �T.
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(3) If i; i 0 W T ! G are the inclusions obtained by regarding T as a subgroup of the
Mumford–Tate groups of A Qx and A Qx0 (these are well-defined up to G.Q/-conjugacy),
then Qx and Qx0 are in the images of the maps

i W Sh.T; hT/! ShK.G; X/ET ;

i 0 W Sh.T; hT/! ShK.G; X/ET

respectively. Here Sh.T; hT/ is the Shimura variety for .T; hT/ and ET is its reflex
field.

We let QP � Isog.A Qx ;A Qx0/ be the scheme of isogenies which respect the Hodge cycles
and the action of T. We claim that QP is a T-torsor; for this it suffices to show that QP is
non-empty.

By Proposition 5.2.6, the map

i W T! G˝Q xQ Š I ˝Q xQ

is conjugate to the natural inclusion, and a similar statement holds for the map

i 0 W T! G˝Q xQ Š I
0
˝Q xQ:

It follows that there exists g 2G.xQ/ such that gig�1D i 0. Since i.T/ is its own centralizer
in G, we have c� D g�1�.g/ 2 i.T/.xQ/ for any � 2 Gal.xQ=Q/. Let K1 denote the
centralizer of i ı hT . Then by the same argument as in [23, Proposition 4.4.13], the image
of c in H1.R;K1/ is trivial.

This defines a T-torsor QP 0 which is isomorphic to QP by [23, Proposition 4.2.6]. Indeed
the proposition in loc. cit. shows that A Qx0 is isomorphic to the twisted abelian variety A

QP 0

Qx

as in [23, Section 4.1], equipped with its collection of Hodge cycles and the action of T
induced from A Qx . It then follows by the construction of A

QP 0

Qx
that QP Š QP 0. It follows that

Ps˛ is the I -torsor obtained by pushout from the T-torsor QP .
By [23, Lemma 4.4.3], there is an isomorphism

ker.H1.Q; I /! H1.R; I // Š ker.H1.Q;G/! H1.R;G//:

By [23, Lemma 4.4.5] applied to the inclusion TR ! K1, the image of c in H1.R;T/ is
trivial, and hence the image of c in H1.Q; I / lies in ker.H1.Q; I /! H1.R; I //. Since
the image of c in H1.Q;G/ is trivial, we find that c is trivial in H1.Q; I /. It follows that
the I -torsor Ps˛ .x; x

0/ is trivial.

Proof of Proposition 5.2.2. Let x 2 ShK;bas.
xFp/. We first define a natural map X�.ı/!

Shpfn
K;bas. The key input for this is the existence of such a map on xFp-points which was con-

structed in [44, Proposition 7.7]. We may then argue as in [48, Lemma 7.2.12]; we sketch
the argument emphasizing the points which do not directly carry over to the ramified case.

As in [48, Section 7.2.6], we may construct an abelian variety A overX�.b/ equipped
with a p-power quasi-isogeny A!Ax �X�.b/. Moreover, this quasi-isogeny equips A
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with tensors s0˛;0 2 D.AŒp1�/˝, as well as a weak polarization and a prime-to-p level
structure. Hence we obtain a map

�0 W X�.b/! Ag;K0 :

We claim �0 lifts to a unique map

� W X�.b/! Shpfn
K

such that for each closed point y 2 X�.b/, we have s˛;0;y D s0˛;0;y . The uniqueness
follows from [44, Corollary 6.3] and the fact that two maps between perfect schemes
coincide if and only if they coincide on the level of closed points. Thus it suffices to prove
the lifting locally.

Let y be a closed point of X�.b/ and U � X�.b/ an affine open neighborhood con-
taining y which is perfectly of finite presentation. We may assume U is the perfection of
a reduced affine scheme U0 Š SpecR and that the quasi-isogeny AjU ! Ax � U comes
from pullback from a quasi-isogeny A0 ! Ax � U0 over U0. We thus obtain a map

�00 W U0 ! SK0.GSp.V /; S˙/˝Z.p/
xFp

and it suffices to show �00 can be lifted to � W U0 ! ShK.
We form the pullback diagram

Y //

��

ShK

��
SpecR // SK0.GSp.V /; S˙/˝Z.p/

xFp

:

Then Y is equipped with a polarized abelian variety .AY ; �Y / and tensors

s0˛;0;Y 2 D.AŒp1�/Œ1=p�˝; s˛;0;Y 2 D.AŒp1�/Œ1=p�˝;

where the s0˛;0;Y are obtained from pullback of s0˛;0 along Y ! SpecR, and the s˛;0;Y
are obtained from pullback of s˛;0 along Y ! ShK. We let Y ı denote the union of these
connected components which contain an xFp-point y such that s˛;0;y D s0˛;0;y . By [31,
Lemma 5.10], s˛;0;Y ı D s0˛;0;Y ı . By [44, Proposition 6.5 (i)], the map Y ı ! SpecR is
bijective on xFp-points and by [25, Proposition 4.2.2], the map Y ı ! SpecR is finite and
is a closed immersion when completed at every point of the domain. In addition R is
reduced; it follows that Y ı ! SpecR is an isomorphism.

The map � induces a finite map

�isog W I.Q/nX�.b/ �G.Ap
f
/=Kp ! Shpfn

K;b

which is bijective on closed points by [44, Proposition 9.1] and Proposition 5.2.12, and is
a closed immersion when completed at every closed point of the domain. It follows that
�isog is an isomorphism.
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Erratum for [45]

We take this opportunity to make the following corrections to the prequel paper [45].
In [45, Definition 5.2.7], the two appearances of CŒY �� should be replaced by C. In
[45, Proposition 5.5.1], the identity is between two elements of CŒq�1�.
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