
Z. Anal. Anwend. (Online first)
DOI 10.4171/ZAA/1742

© 2024 European Mathematical Society
Published by EMS Press

Existence of solutions for a class of fractional
Kirchhoff variational inequality

Shenbing Deng, Wenshan Luo, César E. Torres Ledesma, and
George W. Alama Quiroz

Abstract. We are concerned with the following fractional Kirchhoff variational inequality:

.aC bŒu�2/

Z
R3
.��/

s
2 u.��/

s
2 .v � u/ dx C

Z
R3
.1C �V.x//u.v � u/ dx

�

Z
R3
f .u/.v � u/ dx 8v 2 K;

where s 2 .34 ; 1/, � > 0. In this paper, by applying penalization techniques from Bensoussan and
Lions (1978) combined with mountain pass theorem, we show the existence and concentration
behavior of positive solution to the cited variational inequality. This result extend some results
established by Alves, Barros and Torres [J. Math. Anal. Appl. 494 (2021)] to the fractional case.

1. Introduction

In this paper, we focus our attention on the following fractional Kirchhoff inequality, for
u 2 K:

.aC bŒu�2/

Z
R3

.��/
s
2u.��/

s
2 .v � u/ dx C

Z
R3

.1C �V.x//u.v � u/ dx

�

Z
R3

f .u/.v � u/ dx 8v 2 K; (1.1)

where s 2 .3
4
; 1/, � > 0,

Œu�2 D

Z
R3

Z
R3

.u.x/ � u.y//2

jx � yj3C2s
dx dy;

and the function V WR3!R is a continuous potential verifying the following assumptions:

(V1) V.x/ � 08x 2 R3;

(V2) there exists an open, connected and bounded domain � � R3 with smooth
boundary such that � WD int.V �1.¹0º// ¤ ;;
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(V3) there exists M0 > 0 such that the set L D ¹x 2 R3 W V.x/ � M0º is nonempty
and jLj <1, where jAj denotes the Lebesgue measure of A on R3.

Letting

E WD

²
u 2 H s.R3/I

Z
R3

V.x/juj2 dx <1

³
;

we define
K WD ¹v 2 EI v � ' a.e. in �º;

with ' 2 H s.R3/, 'C ¤ 0 and supp.'C/ � �. Moreover, on the nonlinearity f , we
require that

f .t/ D �tq�1 C t2
�
s�1

for any t > 0, with 4 < q < 2�s , � > 0 and f vanishes in .�1; 0/.
Variational inequalities are well known in the literature of applied mathematics and

lead to many applications. According to Rodrigues [32], the theory of variational inequal-
ities born in Italy in the sixties with the work of Fichera in 1963 on the elasticity problem
and the work of Stampacchia in 1964 in the frame of potential theory in connection with
capacity. The classical example of a variational problem consists of an elastic membrane,
with vertical displacement u on a domain � with u D u0 along @� and it is forced to lie
below some obstacle, that is, u �  . Then, at the equilibrium, whenever the membrane
does not touch the obstacle, the elasticity provides a balance of the tension of the mem-
brane that, geometrically, reflects into a balance of the principal curvatures of the surface
described by u. On the other hand, when the membrane sticks to the obstacle, its princi-
pal curvatures are expected to adapt to those of  . Moreover, if an external force �f is
switched on, the rest configuration of the membrane will be such that the elastic tension
of the membrane equilibrates the force. These physical considerations lead to the classical
variational inequalityZ

�

ru.rv � ru/ dx �

Z
�

f .x/.v.x/ � u.x// dx (1.2)

for any test function v, with v �  and v D u0 along @�.
Many extensions of this problem have been considered in the literature, particularly

for taking into account nonlinear elastic reactions of the membrane, non-commutative
effects and nonlocal interactions [3, 4, 9, 10, 16, 25, 26, 28–30]. When replacing the local
elastic reaction with a nonlocal one, with the purpose of taking into account the long-range
interactions of particles, for instance, the standard Laplacian �� might be replaced with
the fractional Laplacian .��/s , equation (1.2) becomes“

R2N nQ

Œu.x/ � u.y/�Œv.x/ � v.y/ � u.x/C u.y/�

jx � yjNC2s
dx dy

�

Z
�

f .x/.v.x/ � u.x// dx;

where QD .RN n�/� .RN n�/. This kind of variational problems has been extensively
studied in [9, 19, 33, 34, 37] and the references therein.
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Recently, Alves, Barros and Torres Ledesma [3] pointed out there are three methods
for researching variational inequalities: the nonsmooth critical point theory [12,13,23,27],
the minimax principles [17,38,39] and the penalization method [8,28,29]. Moreover, they
established the existence of positive solutions for the variational inequality8̂̂̂̂

<̂
ˆ̂̂:

u 2 K;Z
R3

rur.v � u/ dx C

Z
R3

.1C �V.x//u.v � u/ dx

�

Z
R3

f .u/.v � u/ dx 8v 2 K;

(1.3)

where the definition of these letters in this inequality is similar to our paper when s D 1.
Elliptic problems with critical growth like

��uC �V.x/u D �uq�1 C u2
��1 in R3 (1.4)

have been extensively studied by many authors. In fact, Alves and Barros [2] consid-
ered the existence and multiplicity for (1.4), under V.x/ satisfies (V1)–(V3). Based on the
important research in [2], Alves et al. [3,4] solved (1.3) by using the penalization method
under different conditions on V . Moreover, as for a class of problems where � is large
enough to get the existence result in (1.4), we refer to [7, 11, 14] and references therein.

The equation related to the variational inequality (1.1) is given by

.aC bŒu�2/.��/suC .1C �V.x//u D �jujq�2uC juj2
�
s�2u: (1.5)

The Kirchhoff part of problem (1.5) is due to the work of Kirchhoff [24], in which, in
1883, he studied the hyperbolic equation

�
@2u

@t2
�

�
p0

h
C
E

2L

Z L

0

juxj
2 dx

�
uxx D 0

that extends the classical D’Alembert wave equation, by considering the effects of the
changes in the length of the strings during the vibrations. As s 2 .3

4
; 1/, the fractional

Laplacian .��/s is defined by

.��/s‰.x/ D C.3; s/P.V.
Z

R3

‰.x/ �‰.y/

jx � yj3C2s
dy; ‰ 2 �.R3/;

where P.V. stands for the Cauchy principle value and � is the Schwartz space of rapidly
decaying functions. The operator .��/s can be also defined via Fourier transform and
viewed as a pseudo-differential operator of symbol j�j2s , see [5], that is,

F ..��/su/.�/ D j�j2sF .u/.�/ for � 2 R3;

where F denotes the Fourier transform, i.e., for function w in the Schwartz class,

F .w/.�/ D
1

.2�/
3
2

Z
RN

e�i�xw.x/ dx:
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When s D 1, Alimohammady et al. [1] studied the multiplicity of positive solutions for
a Kirchhoff type problem, under conditions (V1)–(V3) and a D 1 in (1.5). Besides, Fan
[15] proved multiple positive solutions of a Kirchhoff type problem on a bounded domain,
when there are competing potentials in (1.5) and s D 1. For more Kirchhoff problems, we
refer to [21, 22] and references therein.

When s 2 .0; 1/, in [18], Fiscella and Valdinoci researched the existence of solutions
in (1.5), when there is no potential and replace the nonlinearity with �f .u/ in (1.5). More-
over, Chen considered existence of a fractional p-Kirchhoff type problem, when there is
� in the generalized Choquard nonlinearity. For more fractional Kirchhoff equation, we
refer to [6,31,36] and so on. Moreover, Frites and Moussaoui in [20] and Zuo et al. in [40]
have explored the variational Kirchhoff inequality based on the nonsmooth critical point
theory due to Szulkin.

Since we did not find in the literature any paper dealing with the existence of non-
negative solutions for problem (1.1) in RN , motivated by the previous exposition and by
the ideas of [1,4], in the present paper, we intend to prove that (1.1) has a nontrivial weak
solution. To the best of our knowledge, it is the first time to study fractional Kirchhoff
variational inequality by using the penalization method.

The main result of this paper can be stated as follows.

Theorem 1.1. Suppose that V satisfies (V1)–(V3). Then there exist �� > 0, �� > 0 and
b� > 0, problem (1.1) has at least one nontrivial weak solution u� for � � ��, � � ��
and b < b�. Furthermore, for any sequence �n ! C1, there exists a subsequence, still
denoted by ¹�nº, such that ¹u�nº converges strongly inH s.R3/ to a function u with uD 0
a.e. in �c , where u is a solution of the following variational inequality:�

aC b

Z
Q

ju.x/ � u.y/j2

jx � yj3C2s
dx dy

�
�

Z
Q

.u.x/ � u.y//..v � u/.x/ � .v � u/.y//

jx � yj3C2s
dx dy

C

Z
�

u.v � u/ dx

�

Z
�

.�jujq�2 C juj2
�
s�2/u.v � u/ dx;

where Q WD R6 n .�c ��c/ and, for every v 2 QK, where

QK D ¹v 2 H s
0 .�/I v � ' a.e. in �º:

In order to prove Theorem 1.1, we use penalization techniques due to Bensoussan and
Lions [8], that is, considering problem (1.1), we introduce the penalized problem defined
as

.aC bŒu�2/.��/suC .1C �V.x//u �
1

"
.' � u/C��

D �.uC/q�1 C .uC/2
�
s�1 in R3; (1.6)
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where � > 0. Associated to (1.6), we have the energy functional

J�;".u/ D
1

2
kuk2� C

b

4
Œu�4 C

1

2"

Z
�

Œ.' � u/C�2 dx �

Z
R3

FC.u/ dx;

where
P WE� ! E 0�;

u! hP.u/; vi D �

Z
�

.' � u/Cv dx

is the penalization operator. Then, by applying mountain pass arguments, we study the
existence of at least one critical point of the functional I�;� which is a weak solution of
penalized problem (1.6). By taking � D 1

n
with n large enough, we denote this mountain

pass solution as un and we show that .un/ is bounded in E�; hence, up to a subsequence,
there is u 2 E� such that

un * u in E�:

This limit is such that P.u/ D 0 and hence a weak solution of problem (1.1).

Remark 1.2. Compared with the previous results, Theorem 1.1 can be regarded as an
extension of [3, Theorem 1.1] under the fractional Kirchhoff situation. Due to the Kirch-
hoff term and the critical term, we cannot ensure in a standard way that weak limits of
a bounded Palais–Smale sequence of the energy functional are critical points of it. Besides,
if we change this inequality into an equation, a penalization term will be generated natu-
rally. Therefore, we need to get some restrictions on b for our compactness.

The paper is organized as follows. In Section 2, we give some preliminaries about
definitions and properties of the function space. In Section 3, we study the penalized
problem (1.6). In Section 4, we get Theorem 1.1.

Notation. • The letter C changes from line to line.

• Br .x/ denotes the ball in R3 centered at x 2 R3 with radius r .

• �c means R3 n � , where � � R3.

• j � jr means the norm in Lr .R3/ and jujr.M/ WD .
R
M
jujr dx/

1
r , where M � R3 and

u 2 Lr .M/.

2. Abstract setting and preliminary results

In this preliminary section, we fix the notation and we recall some technical results. For
s 2 .3

4
; 1/, we define the fractional Sobolev space H s.R3/ as

H s.R3/ WD ¹u 2 L2.R3/ W Œu� <1º;

where Œu� is the so-called Gagliardo semi-norm of u. It is well known that H s.R3/ is
a Hilbert space, under the norm

kuk2 WD

“
R6

ju.x/ � u.y/j2

jx � yj3C2s
dx dy C

Z
R3

juj2 dx:
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We denote by Ds;2.R3/ the completion of C1c .R
3/ as

Ds;2.R3/ D ¹u 2 L2
�
s .R3/ W Œu� <1º:

When � > 0, we denote by E� the Hilbert space

E� WD

²
u 2 H s.R3/ W

Z
R3

V.x/u2.x/ dx <1

³
;

endowed with the norm

kuk2� WD aŒu�
2
C

Z
R3

.1C �V.x//u2 dx:

The scalar product in E� is, for v 2 E�,

hu; vi� WD a

“
R6

.u.x/ � u.y//.v.x/ � v.y//

jx � yj3C2s
dx dy C

Z
R3

.1C �V.x//uv dx:

By [5], since E� � H s.R3/, we can obtain the embedding E� ! Lr .R3/ is continuous
for all r 2 Œ2; 2�s � and locally compact for all r 2 Œ1; 2�s /. The following Sobolev inequality
can be found in [5, Theorem 1.1.8]: for all u 2 Ds;2.R3/, there exists S > 0 such that

S juj22�s � Œu�
2:

As in [4, 8], we get the penalized problem of (1.1),

.aC bŒu�2/.��/suC .1C �V.x//u �
1

"
.' � u/C��

D �.uC/q�1 C .uC/2
�
s�1 in R3; (2.1)

where uC D max¹u; 0º and " > 0 is the penalization parameter. Let

hP.u/; vi D �

Z
�

.' � u/Cv dx:

We know P is the penalty operator and 1
"

R
�
.' � u/Cv dx is the penalization term. The

associated energy functional associated to problem (2.1) is

J�;".u/ D
1

2
kuk2� C

b

4
Œu�4 C

1

2"

Z
�

Œ.' � u/C�2 dx �

Z
R3

FC.u/ dx;

where

FC.t/ D

Z t

0

fC.s/ ds and fC.t/ D �.t
C/q�1 C .tC/2

�
s�1 8t 2 R:

It is easy to check that J�;" 2 C 1.E�;R/ and its differential is defined as, for any v 2 E�,

J 0�;".u/v D hu; vi� C bŒu�
2

“
R6

.u.x/ � u.y//.v.x/ � v.y//

jx � yj3C2s
dx dy

�
1

"

Z
�

.' � u/Cv dx �

Z
R3

fC.u/v dx:
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3. The penalized problem

We stress that, by the definition of f , J�;" possesses a mountain pass geometry [35].

Lemma 3.1. (i) There exist constants r; � > 0, independent of � and �, such that

J�;�.u/ � � for kuk� D r:

(ii) There is e 2 E� with kek� > r and J�;�.e/ < 0.

Proof. (i) By Sobolev embeddings, we derive that

J�;�.u/ �
1

2
kuk2� �

C1�

q
kuk

q

�
�
C2

2�s
kuk

2�s
�
:

As 4 < q < 2�s , if we choose r > 0 satisfying

r < min
°�3 � 2�s

8C2

� 1
2�s �2 ;

� 3q

8C1�

� 1
q�2
±
;

we obtain
J�;�.u/ �

1

8
r2 WD � for kuk� D r:

(ii) Since supp.'C/ � �, then we have

J�;".'
C/ �

1

2
k'Ck2 C

C

4
k'Ck4 �

1

2
k'k2 C

C

4
k'k4;

where C WD b
a

. Choose k'k small enough such that

1

2
k'k2 C

C

4
k'k4 < �;

which implies that J�;�.'C/ < � and

J�;�.t'
C/ D

t2

2
k'Ck2� C

bt4

4
Œ'C�4

�
tq�

q

Z
�

j'Cjq dx �
t2
�
s

2�s

Z
�

j'Cj2
�
s dx for t > 1:

As 4 < q < 2�s , it follows that limt!1 J�;".t'
C/D �1. Hence, taking e WD .1C t0/'C

for t0 large enough, we get kek� > r and J�;".e/ < 0.

From [35, Theorem 1.15], there is a .PS/c sequence ¹unº � E� such that J�;�.un/!
c�;� and J 0

�;�
.un/! 0, where c�;� is the mountain pass level characterized by

c�;� D inf

2�

max
t2Œ0;1�

J�;�.
.t//;

and
� D ¹
 2 C.Œ0; 1�; E�/ W 
.0/ D '

C and 
.1/ D eº:

We can see the following results.
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Lemma 3.2. The .PS/c�;� sequence ¹unº of J�;� is bounded in E�.

Proof. Let ¹unº � E� be a .PS/c�;� sequence for J�;� , that is,

J�;�.un/! c and J 0�;�.un/! 0 as n!C1:

Since Œ.' � un/C�2 C .' � un/Cun � .' � un/C', as q > 4, then

1

2"

Z
�

Œ.' � un/
C�2 dx C

1

q"

Z
�

.' � un/
Cun dx �

1

q"

Z
�

.' � un/
C' dx:

Therefore, from Hölder inequality and Sobolev embedding,

J�;�.un/ �
1

q
J 0�;�.un/un �

�1
2
�
1

q

�
kunk

2
� C

�1
4
�
1

q

�
bŒun�

4

C
1

q"

Z
�

.' � un/
C' dx C

�1
q
�
1

2�s

� Z
R3

juCn j
2�s dx

�

�1
2
�
1

q

�
kunk

2
� �

1

q"

Z
�

.j'j C junj/j'j dx

�
q � 2

2q
kunk

2
� �

1

q"
j'j22 �

1

q"
j'j2kunk�;

which yields

q � 2

2q
kunk

2
� � c�;� C

1

q"
j'j22 C on.1/C .on.1/C

1

q"
j'j2/kunk�:

Thus, ¹unº is bounded in E�.

Lemma 3.3. Given � > 0, there is �� D ��.�/ > 0 such that

c�;� <
q � 2

2q
S

3
2s � � for all � > 0; � > 0 and � � ��:

Proof. Firstly, we fix the path 
 2 � ,


 W Œ0; 1�! E�;

t 7! 
.t/ D .1C t t0/'
C;

where t0 is defined as in Lemma 3.1. Since .1C t t0/'C � ', we getZ
�

Œ.' � .1C t t0/'
C/C�2 dx D 0;

and then

J�;�.
.t// D
.1C t t0/

2

2
k'Ck2� C

b.1C t t0/
4

4
Œ'C�4

�
�.1C t t0/

q

q

Z
�

j'Cjq dx �
.1C t t0/

2�s

2�s

Z
�

j'Cj2
�
s dx

�
.1C t t0/

2

2
k'Ck2 C

b.1C t t0/
4

4
Œ'C�4 �

�.1C t t0/
q

q

Z
�

j'Cjq dx:
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Taking A WD 1
2
k'Ck2, B WD bŒ'C�4

4
and C WD 1

q

R
R3 j'

Cjq dx, then we consider the fol-
lowing function:

g�.t/ WD At
2
C Bt4 � �Ctq for all t 2 Œ0;1/:

From the second derivative of g�.t/, for any�>0, g�.t/ is bounded up. Let the maximum
point of g� be tmax > 0; thus

c�;� � max
t�0

J�;�.
.t//

� max
t�0

²
.1C t t0/

2

2
k'Ck2 C

b.1C t t0/
4

4
Œ'C�4 �

�.1C t t0/
q

q

Z
�

j'Cjq dx

³
D max

t�0
g�.t/ D At

2
max C Bt

4
max � �Ct

q
max <

q � 2

2q
S

3
2s � �

for all � > 0, � > 0 and � � ��, where �� is large enough.

Lemma 3.4. ¹uCn º is also a .PS/c�;� sequence of J�;� .

Proof. Let u�n D min¹un; 0º, then un D uCn C u
�
n and

�

Z
R3

Z
R3

uCn .x/u
�
n .y/C u

C
n .y/u

�
n .x/

jx � yj3C2s
dx dy � 0: (3.1)

By Lemma 3.2, ¹u�n º is bounded, then from (3.1),

on.1/ D J
0
�;".un/u

�
n

D hun; u
�
n i� C bŒun�

2

“
R6

.un.x/ � un.y//.u
�
n .x/ � u

�
n .y//

jx � yj3C2s
dx dy

�
1

"

Z
�

.' � un/
Cu�n dx

� ku�n k
2
�;

which implies that ku�n k
2
�
D on.1/. Up to a subsequence, we get

u�n * 0 in E�;

u�n ! 0 in Lrloc.R
3/ for r 2 Œ1; 2�s /;

u�n .x/! 0 a.e. in R3:

Then we note that kunk� D kuCn k� C on.1/. Besides, by Lebesgue dominated conver-
gence theorem, Z

�

Œ.' � un/
C�2 dx D

Z
�

Œ.' � uCn /�
2 dx C on.1/:
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Then

J�;".un/ D
1

2
kunk

2
� C

b

4
Œun�

4
C

1

2"

Z
�

Œ.' � un/
C�2 dx

�
�

q

Z
R3

juCn j
q dx �

1

2�s

Z
R3

juCn j
2�s dx

D
1

2
kuCn k

2
� C

b

4
ŒuCn �

4
C

1

2"

Z
�

Œ.' � uCn /
C�2 dx

�
�

q

Z
R3

juCn j
q dx �

1

2�s

Z
R3

juCn j
2�s dx C on.1/

D J�;".u
C
n /C on.1/:

Hence
J�;".u

C
n / D c�;" C on.1/:

Following, we are going to show J 0
�;"
.uCn / D on.1/. Now let v 2 E� with kvk� � C for

some C > 0. By Lebesgue dominated convergence theorem, we haveZ
�

.' � un/
Cv dx D

Z
�

.' � uCn /
Cv dx C on.1/;

and Z
R3

.1C �V.x//u�n v dx D on.1/:

Thus, “
R6

.u�n .x/ � u
�
n .y//.v.x/ � v.y//

jx � yj3C2s
dx dy

D hu�n ; vi� �

Z
R3

.1C �V.x//u�n v dx D on.1/:

Therefore, from Hölder inequality and Lemma 3.2, we obtain

J 0�;".un/v

D huCn ; vi� C hu
�
n ; vi� C bŒun�

2

“
R6

.un.x/ � un.y//.v.x/ � v.y//

jx � yj3C2s
dx dy

�
1

"

Z
�

.' � un/
Cv dx � �

Z
R3

.uCn /
q�1v dx �

Z
R3

.uCn /
2�s�1v dx

D huCn ; vi� C hu
�
n ; vi�

C b.ŒuCn �
2
C on.1//

�“
R6

.uCn .x/ � u
C
n .y//.v.x/ � v.y//

jx � yj3C2s
dx dy C on.1/

�
�
1

"

Z
�

.' � uCn /
Cv dx � �

Z
R3

.uCn /
q�1v dx �

Z
R3

.uCn /
2�s�1v dx C on.1/

D J 0�;".u
C
n /v C hu

�
n ; vi� C on.1/;
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from where we get

jJ 0�;".u
C
n /vj � jJ

0
�;".un/vj C jhu

�
n ; vi�j C on.1/

� kJ 0�;".un/kE 0�
kvk� C ku

�
n k�kvk� C on.1/:

Therefore, since J 0
�;"
.un/ D on.1/, we conclude that

kJ 0�;".u
C
n /kE 0�

D on.1/:

As a byproduct of the above lemma, we obtain the clearly upper boundedness of ¹unº.

Lemma 3.5 ([3, Lemma 3.6]). If ¹unº is given by Lemma 3.2, then for any c�;" > 0,

lim sup
n!1

kunk
2
� �

2q

q � 2
c�;":

Lemma 3.6. Let K > 0 be independent on � and let ¹unº � E� be a .PS/c sequence for
J�;" with 0 < c < K. Then, as �n!1, there exists u 2H s

0 .�/ such that un*u in E�n
and un ! u in Lr .R3/ for all r 2 Œ2; 2�s /.

Proof. Lemma 3.5 yields that

kunk
2
� kunk

2
�n
�

2q

q � 2
K:

We assume that un * u in H s.R3/. By the Fatou lemma, we haveZ
R3

V.x/juj2 dx � lim inf
n!1

Z
R3

V.x/junj
2 dx � lim inf

n!1

kunk
2
�n

�n
D 0;

which implies that u.x/ D 0 almost everywhere in R3 n V �1.0/. Thus, u 2 H s
0 .�/.

Let F WD ¹x 2 R3 W V.x/ �M0º. ThenZ
F c
junj

2 dx �
1

�nM0

Z
F c
�nV.x/junj

2 dx �
2q

.q � 2/�nM0

K ! 0:

For any r 2 .1; 2
�
s

2
/, and fixing r 0 D r

r�1
, as R is large enough, from (V3), we haveZ

F\BcR

jun � uj
2 dx � jun � uj

2
2r jL.F \ B

c
R/j

1
r 0

� Ckun � uk
2
jL.F \ BcR/j

1
r 0 ! 0:

On the other hand, un ! u in L2.BR/. This shows that un ! u in L2.R3/ as �n !1.
Following, by using interpolation, we obtain un ! u in Lr .R3/ for all r 2 Œ2; 2�s /.

Proposition 3.7. There exist �� D ��.�/ > 0 and b�.�/ > 0 such that, for all � � �� and
b 2 .0; b�/, J�;� satisfies the .PS/c condition at the level c 2

�
0; q�2

2q
S

3
2s � �

�
, where � is

from Lemma 3.3.
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Proof. Let ¹unº be a .PS/c sequence of J�;� . From Lemmas 3.2 and 3.4, ¹unº is a non-
negative bounded sequence; hence, up to a subsequence, there are u 2 E� and A � 0 such
that

un * u in E�;

un ! u in Lrloc.R
3/ for any r 2 Œ1; 2�s /;

un.x/! u.x/ a.e. in R3;

Œun�
2
! A2:

Setting the functional

P�;".u/ D
1

2
kuk2� C

bA2

2
Œu�2 C

1

2"

Z
�

Œ.' � u/C�2 dx

�
�

q

Z
R3

uq dx �
1

2�s

Z
R3

u2
�
s dx;

we have

P�;".un/ D J�;".un/C
bA4

4
C on.1/;

and
J 0�;".un/un � P

0
�;".un/un D on.1/:

Thus,

P�;".un/ D c C
bA4

4
C on.1/ and P 0�;".un/un D on.1/:

For any h 2 C10 .R
3/, taking h as a test function in (2.1), we obtain P 0

�;"
.u/ D 0. There-

fore, P�;".u/ � 0.
Now, setting vn WD un � u, firstly by Lebesgue dominated convergence theorem, we

get Z
�

Œ.' � un/
C�2 dx D

Z
�

Œ.' � u/C�2 dx C on.1/:

Therefore, by the Brezis–Lieb Lemma in [35] and from Lemma 3.3, it follows that

P�;".un/ � P�;".u/C on.1/

D
1

2
kvnk

2
� C

bA2

2
Œvn�

2
�
�

q

Z
R3

jvnj
q dx �

1

2�s

Z
R3

jvnj
2�s dx

D c C
bA4

4
� P�;".u/ <

q � 2

2q
S

3
2s � � C

bA4

4
: (3.2)

Then, taking b�.�/ small enough, for any b 2 .0; b�/, we can assume that

�� C
bA4

4
� 0:

Thus,

P�;".un/ � P�;".u/C on.1/ <
q � 2

2q
S

3
2s :
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Besides, also by Lebesgue dominated convergence theorem, we getZ
�

.' � un/
Cun dx D

Z
�

.' � u/Cudx C on.1/I

then we have

on.1/ D P
0
�;".un/un D P

0
�;".un/un � P

0
�;".u/u

D kvnk
2
� C bA

2Œvn�
2
� �

Z
R3

jvnj
q dx �

Z
R3

jvnj
2�s dx: (3.3)

Fixed � > 0, assume kvnk2� C bA
2Œvn�

2 ! l1.�/ and
R

R3 jvnj
2�s dx ! l2. If l1.�/ D 0,

then un ! u in E�. Thus, we may assume l1.�/ > 0. Since Lemma 3.6, we have

lim
n!1

�

Z
R3

jvnj
q dx D o�.1/:

Therefore, from (3.3), as n!1, we may get l2 D l2.�/ D l1.�/C o�.1/ and

kvnk
2
� C.kvnk

q

�
C kvnk

2�s
�
/:

As q 2 .4; 2�s /, we get, for any t 2 R,

jt jq �
1

2C
jt j2 C C jt j2

�
s :

Then we find

l1.�/ D lim
n!1

.kvnk
2
� C bA

2Œvn�
2/ � lim

n!1
kvnk

2
�

�

� 1

2C.C C 1/

� 2
2�s �2
WD C1 > 0; (3.4)

where C1 > 0 does not depend on �. Since n!1, by Sobolev inequality,

S �
kvnk

2
�

jvnj
2
2�s

�
l1.�/

l2.�/
2
2�s

D
l1.�/

.l1.�/C o�.1//
2
2�s

:

From (3.4), we have
lim inf
�!1

l1.�/ � S
3
2s :

Thus, from (3.2), we get

q � 2

2q
S

3
2s > lim inf

�!1

�1
2
�
1

2�s

�
l1.�/ �

q � 2

2q
S

3
2s ;

which is absurd. Then we complete this proof.

Remark 3.8. From Lemma 3.1, Lemma 3.3 and Proposition 3.7, there exist ��; ��; b� >
0, for every � � ��, � � �� and b 2 .0; b�/, problem (2.1) has at least one weak solution
u". Besides, from Lemma 3.4, u" is non-negative and nontrivial.
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4. Proof of Theorem 1.1

From now on, making the change of notations

� D
1

n
; un D u 1

n
; Jn D J�;� and Jn.un/ D cn D c�;�;

for any v 2 E�, we get

hun; vi� C bŒun�
2

“
R6

.un.x/ � un.y//.v.x/ � v.y//

jx � yj3C2s
dx dy

�
1

"

Z
�

.' � un/
Cv dx

D

Z
R3

f .un/v dx: (4.1)

From Lemma 3.2, there is u 2 E� such that, up to a subsequence, un * u in E�.

Lemma 4.1 ([3, Lemma 3.11]). If u is given above, then u 2 K.

Remark 4.2. Take v WD un � u in (4.1). Since

hP.un/; un � ui D hP.un/ � P.u/; un � ui � 0;

we may get

hun; un � ui� C bŒun�
2

“
R6

.un.x/ � un.y//..un � u/.x/ � .un � u/.y//

jx � yj3C2s
dx dy

�

Z
R3

f .un/.un � u/ dx: (4.2)

Lemma 4.3. We have un ! u in E� as �!1.

Proof. Firstly, we show un ! u in H s.R3/. Assume by contradiction that

un ¹ u in H s.R3/;

that is,
kun � uk

2
! B > 0:

Setting vn D un � u, from [3, Lemma 3.12], we may haveZ
R3

f .un/vn dx D

Z
R3

f .vn/vn C

Z
R3

f .u/vn C on.1/:

Moreover, as Z
R3

f .u/vn D on.1/;
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we have Z
R3

f .un/vn dx D

Z
R3

f .vn/vn C on.1/: (4.3)

Since “
R6

.un.x/ � un.y//.u.x/ � u.y//

jx � yj3C2s
dx dy

�

“
R6

j.un.x/ � un.y//.u.x/ � u.y//j

jx � yj3C2s
dx dy � Œun�Œu�;

thus from (4.2), we obtainZ
R3

f .un/.un � u/ dx

� hun; un � ui�

C bŒun�
2

“
R6

.un.x/ � un.y//..un � u/.x/ � .un � u/.y//

jx � yj3C2s
dx dy

D hun; un � ui�

C bŒun�
2

�
Œun�

2
�

“
R6

.un.x/ � un.y//.u.x/ � u.y//

jx � yj3C2s
dx dy

�
� hun; un � ui� C bŒun�

2.Œun�
2
� Œun�Œu�/

D hun; un � ui� C bŒun�
3.Œun� � Œu�/: (4.4)

Moreover, from the Brezis–Lieb Lemma in [35], we get

Œvn�
2
D Œun�

2
� Œu�2 C on.1/ � 0I

thus, Œun� D Œu�C on.1/ or Œun� � Œu�. Then by (4.3) and (4.4), we haveZ
R3

f .vn/vn C on.1/ � hun; un � ui� D kvnk
2
�:

This is equivalent to

kvnk
2
� kvnk

2
� � �jvnj

q
q C jvnj

2�s
2�s
C on.1/: (4.5)

On the other hand, since

kvnk
2
� kvnk

2
� � kunk

2
� C on.1/;

from Lemma 3.5, we have
lim sup
n!1

kvnk
2 < S

3
2s ;

that is,
B < S

3
2s : (4.6)
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Moreover, by (4.5),

S �
kvnk

2

jvnj
2
2�s

�
kvnk

2

.kvnk2 � �jvnj
q
q C on.1//

2
2�s

:

Taking �!1 and n!1, from Lemma 3.6, we will see

S �
kvnk

2

.kvnk2 C o�.1/C on.1//
2
2�s

D
B

B
2
2�s

I

then B � S
3
2s . Because of (4.6), S

3
2s � B < S

3
2s , which shows a contradiction. Thus,

kvnk ! 0, and from (4.5), we have kvnk� ! 0 when n!1 and � is large enough.

Remark 4.4. For any v 2 K, taking v � un in (4.1), from Lemmas 4.1 and 4.3, we can
obtain u is a non-negative and nontrivial solution for (1.1).

To complete our concentration, we verify the following theorem.

Theorem 4.5. Let ¹unº � E�n be a sequence satisfying

.aC bŒun�
2/

Z
R3

.��/
s
2un.��/

s
2 .v � un/ dx C

Z
R3

.1C �nV.x//un.v � un/ dx

�

Z
R3

f .un/.v � un/ dx

as �n !1 and for all v 2 K. Then there are a subsequence of ¹unº, still denoted by
itself, and u 2 H s.R3/ such that un * u in H s.R3/. Moreover,

(i) u D 0 a.e. in �c;

(ii) kun � uk2�n ! 0;

(iii) we may obtain

un ! u in H s.R3/;

�n

Z
R3

V.x/u2n dx ! 0;

kunk
2
�n
!

Z
Q

ju.x/ � u.y/j2

jx � yj3C2s
dx dy C

Z
�

juj2 dx;

where Q WD R3 �R3 n .�c ��c/.

(iv) u is a solution of the variational inequality

.aC bŒu�2Q/

“
Q

.u.x/ � u.y//..w � u/.x/ � .w � u/.y//

jx � yj3C2s
dx dy C

Z
�

u.w � u/ dx

�

Z
�

.�jujq�2 C juj2
��2/u.w � u/ dx

for all w 2 QK, where

QK WD ¹w 2 H s
0 .�/; w � ' a.e. in �º:
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Proof. From Lemma 3.5, ¹unº is bounded inH s.R3/, so up to a subsequence, there exists
u 2 H s.R3/ such that

un * u in H s.R3/:

(i) The same process as in Lemma 3.6 works to prove u D 0 a.e. in �c .
(ii) Since un* u inH s.R3/, if we set vn D un � u, by the same arguments explored

in the proof of Lemma 4.3, we can show that vn ! 0 in H s.R3/, and

kvnk
2
�n
�

Z
R3

f .vn/vn dx C on.1/:

Thus, we obtain, as n!1,
vn ! 0 in E�n :

(iii) From (i)–(ii), we get

�n

Z
R3

V.x/junj
2 dx D �n

Z
R3

V.x/jun � uj
2 dx � kun � uk

2
�n
! 0;

and

kunk
2
�n
!

Z
Q

ju.x/ � u.y/j2

jx � yjNC2s
dx dy C

Z
�

juj2 dx:

(iv) For any w 2 QK, we may get

hun; w � uni�n C bŒun�
2

“
R6

.un.x/ � un.y//..w � un/.x/ � .w � un/.y//

jx � yj3C2s
dx dy

�

Z
R3

f .un/.w � un/ dx:

Thus, from (i)–(iii), taking n!1, we obtain�
aC b

Z
Q

ju.x/ � u.y/j2

jx � yj3C2s
dx dy

�
�

Z
Q

.un.x/ � un.y/..w � un/.x/ � .w � un/.y///

jx � yj3C2s
dx dy

C

Z
�

u.w � u/ dx �

Z
�

.�uq�2 C u2
�
s�2/u.w � u/ dx:
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