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Modular Interpolation Spaces I

M. KrBEC

.Es wird eine Interpolationsmethode in modularen Riumen definiert, und Grundeigenschaften
der Interpolationsriume werden untersucht (Vollstindigkeit, Einbettungen usw.). Das wich-
tigste Resultat ist hier ein Satz iiber die Stabilitit der Methode. Ferner wird gezeigt, wie die
Methode in OrLIcz-Riumen arbeitet, und als ein Beispiel von méglichen Anwendungen ist ein
Satz fiber Multiplikatoren vom MicHLIN-Typ bewiesen. Die ausgearbeitete Methode ver-
allgemeinert die K-Methode von PEETRE.

OnpenenseTcA WHTePNOJALMOAHHM METOX B MOAYJIAPHHX IPOCTPAHCTBAX I H3YHAWTCH
OCHOBHHE CBOMCTBA MNOJYYEHHLIX HHTEPMOJALNHOHHHX NPOCTPAHCTB (NOJHOTA, BIIOMEHHS
# T.70.). CaMHM BaKEHM pe3yJbTaTOM ABIAETCA 3Aech TeopeMa 06 ycroftuusocTm MeToaa.
MoxasuBaerca, Kaxk Merton paboraer B npocrpamctBax Opamya M B KayecrBe mpumepa
npuMeneHull JoKazaHa TeopemMa THma MuxamHa o MyaTmnamkaropax. Merox oGoGmiaer
K-merop I1ETPE.

An interpolation method in modular spaces is introduced and basic properties of obtained
interpolation spaces are studied (completness, imbeddings etc.). The main result here is a
reiteration theorem. It is shown how the method works in Orlicz spaces and as an example
of applications there is proved a multiplier theorem of the Michlin type. The method genera-
lizes the K-method of PEETRE.

1. Introduction

The aim of this paper is to develop a part of a basic theory of interpolation of modular
gpaces. We shall use an approach based on a suitable generalization of the L-func-
tional.

There are several papers dealing with the concrete case of Orlicz spaces — they
contain an extension of the ‘‘basic interpolation property” — i.e. an appropriate
version of the Riesz-Thorin theorem. It was shown (see [12, 11]) that the Orlicz
space Lo is an interpolation space with respect to Ly, and Le,, where

Pl = ()0 (@,7Y)  (0<O<Y

or, more generally,

B B N ¢1—]
oo )

with some concave function % (or with some % equivalent to a concave one). For
this case see [2].

Our goal will be to develop a wider theory applicable to Orlicz and Sobolev-Orlicz
spaces. The substantial difficulties are, clearly, connected with the structure of
spaces of the, Orlicz type — they are caused, in part, by the non-homogeneity of
Young functions and the rather non-constructive definition of the norm. The last
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fact is, above all, the reason why the known interpolation theory (having been.
roughly speaking, developed and successfully applied namely to L, type spaces)
has not found use in the theory of Orlicz spaces and related ones. There is a more
favourable approach which was indicated by J. PEETRE in [10] in a concrete “Orlicz
case”. We shall make use of this natural idea. For this purpose it will be reasonable
to change a little the notion of the interpolation space and interpolation properties —
in accordance with the special structure of modular spaces and, especially, of the
Orlicz ones. Then we prove assertions concerning basic properties of spaces obtained.

In the prepared paper [6] there will be dealt with another variant of the presented
method, with trace spaces and applications to imbedding theorems.

We begin with several definitions.

1.1. Definition. Let' X be a (real) linear space. A function g: X —> (0, co) is
said to be the modular (on X) if

() e(@) =0(=)z =0,
(i) o(—=) = o(=), ZEX
(iii) o(az + By) < xo(x) —i—ﬂg(y) forall z,y€ X and «,8=0,
«+ =1,
Set
X(p) = {x € X; lim g(iz) = 0}.
-0

The modular space (m-space) is the couple’(X (o), g). (See {9].)

For our purposes it will be sufficient to suppose that always X = X(é) and we
shall write only (X, ) or X.

In any m-space X = (X, g) one can introduce the (Luxemburg) norm

Il x —mf{l>0 9(1) = 1}

. The important example of m-spaces is the Orlicz (Sobolev-Orlicz) space: Let &
be a,n‘Young function, i.e. D:R — (0, oo), even, convex and

P im ¢
lim —

=0.
tso ¢ t—»co ‘D(t)

Let 2 — RNbe measurable and consider the modular

eolf) = f &(f(z))dz,  f measurable on 2.

The correspondmg m-space is the Orlicz space Lo = Ly(£2). More generally, if
is a domain in RN then using the modular

al) = [ X o(D¢f(x))dz, k=0,1,...,

2 |s|sk

(D°f being regular distribution, |x| < k) we get the Sobolev-Orlicz space W*Lo(Q).
It is also reasonable in some connections to define the space W*E4(Q2) — as the .
closure in the norm W*Ly(R2) of C~-functions in 2 with bounded support. (See [7].)

One can extend in a natural way the notion of the so-called 4,-condition known
from the theory of Orlicz spaces (see, e.g. [5, 7]).

N\



Modular Interpolation Spaces I - 27

1.2. Definition. The modular p on the space X is said to satisfy the A,-condition if
0(22) < co() (1.1)
for some ¢ = c(o) > 0 and each z € X. We shall also sometimes write ¢ € 4,.

In the class of modulars satisfying (1.1) there it is possible to get some growth
conditions (roughly replacing the role of a homogenelty) If (1.1) holds then the
function

o(Ax) ,
A sup ———, >0,
zei’) o(x)
x40

is finite and, in addition, submultiplicative and therefore (see [10] and generally
{2, Part II, Chapter 7]) there exist p, = polo) > 0, p; = p1(p) > 0and C = C(g) > 0
such that

o(Ax) < C max (iP,, A7) o(z), z€ X, 2 > 0.

1.3. Definition. Let (X, o) and (Y, ) be m-spaces. A linear mapping 7' from X
to Y will be called m-continuous and it will be written 7:X — Y if there exists
y > 0 such that

8(yTx) < o(2). ' (1.2)

1.4. Remark. It is clear that every m-continuous mapping is also continuous.
The converse does not generally hold. Nevertheless, this is not any large restriction.
Many important operators in Orlicz type spaces are m-continuous or one can choose
suitable modulars (in order to reach the m-continuity — see, e.g. Corollary 4.2).
Here, we give an example of an m-continuous imbedding: Let 2 < RN, u(2) = oo,
and let @, and @, be some Young functions. Then (see, e.g. [7, Part II, 3.17]) Ly (2)
is continuously imbedded into Le (£2) iff @,(pt) < Py(t) for ¢ = 0 with some y > 0.
This leads to an inequality of the type (1.2) and it means that the imbedding is
m-continuous. Similar considerations can be used for the case u(2) < oo, further,
for the case of the imbedding of Sobolev-Orlicz spaces into trace spaces and so on.

1.5. Notation. The symbol (O will denote an m-continuous imbedding. If X
= (X4, X,) and Y = (¥,, ¥,) are couples of m-spaces then 7:X —Y means that
T:X; > Y,,v=0,1, (in the sense of Definition 1.3).

The results presented in this paper can be generalized; the condition (iii) from
Definition 1.1 can be weakened.

2. An abstract interpolation method

We shall consider the following situation: Let X, = (X,, go) and X, = (X}, g,) be
m-spaces imbedded into some linear Hausdorff space. We define the spaces

IX)=X,+ X, ={x; 2 =124+ 2, forsome z,€ X, 2, € X,}
and
AX) =Xyn X,.

Let us denote by ||-|l; the norm in X;, 7 = 0, 1. It is easy to prove that 2(X) and
A(X) are m-spaces, as well; more exactly: The norm in Z(X) defined by

lzlz = inf (l2olly + lizally) (2.1)

T=Ze+Iy
To€Xo.21€X,
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is equivalent to the (Luxemburg) norm derived from the modular

ex(z) = inf (oo(zy) + 01(21)) ' (2.2)

(the inf on the right hand side is here and always in analogous situations in the
sequel to be taken as in (2.1)). Similarly, the 4(X)-norm

llzlla = max (llzllo, lizll,)
is equivalent to the norm obtained from the modular
04(x) = max (Qo 91(‘17))

2.1. Definition. A couple X = (X, X,) of m-spaces imbedded into a linear
Hausdorff space is said to ‘be the m-interpolation wuple
An . m-space X such that

A4X) 0 X O ZX)

will be called the m-tntermediate space. If X, in addition, has the property that
T:X — X for each T:X — X then X -is said to be the m-interpolation space (with
respect to X).

2.2. Definition. Let M be some system of m-spaces such that each X € M x M
forms an m-interpolation couple. A mappmg F:MXM — M is said to be the
m-zmterpolatwn functor on M if .

() X e MxM = 4X) O.FX O 2(X),
(i) X, 7 € MxM, T:X TV > T:FX > FY.

In the sequel, each. couple of m-spaces in question will be supposed to be an m-
mterpolatlon couple unless we recall it.

2.3. Definition. Let (Xo, Qo)s (X,, 91) be m-spaces and o a measura.ble positive
function on (0, oo). Let us define the functional

L, 2, X) = inf (gyfzo) + ter(e),  z€ ZX), .

and the modular
0.(2) = [ L(¢t, z, X) o(t) dt.
0

The corresponding m-space will be denoted by X, = (X,, X,),. We denote its norin
by “'Hm ’ : !

Obviously, ¢, is a modular — the condition o,(z) =0 =>z = 0 follows from the
fact that if g,(x) = O then there is a ¢ = 1 such that 0 = #(¢, z, X) = g:(;_z:).

24. Lemma. Let X = (X,, X,) be an m-interpolation couple and
= [ min (1,¢) o(t) dt < oo. (2.3)
0

Then X, is an m-intermediate space with respect to X.
Proof. Let be z € A(X). We have
Z(t, z, X) o(t) < min (oo(z), t04(2)) o(t) < min (1, £) o(t) 04().

/7
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This gives {jzll, < I, |lz{l4. The rest follows from the inequality
min (1, ¢) pg(x) < L, 2, X) 1

Before we introduce the class of admissible weights o it will be always supposed
that (2.3) holds. The condition (2.3), however, gives a stronger result: :

2.5. Theorem. (i) Let (X, g0), (X1, 01)) be an m-interpolation couple. Then X,
28 an m-interpolation space with respect to (X, X,).

(i1) Let M be any class of m-spaces from Definition 2.2. Then the mapping
F:X X, X e MxM,

is an m-interpolation functor on M. More precisely: If X, Y EMxXM, T: X -7
then T: X, > Y, and .

ITg,~7, = max (|Tlx,—ve 1THx,~r.). : (2.4)
Proof. The assertion (i) follows from (ii) by the choice ¥ = X As far (ii) is
concerned, let us suppose that g; is the modular in X; and g; in ¥;, ¢ = 0, 1, and that
T .
G (y—x) <oilz), =01

Then (3, denotes the modular in Y ,)

~

éa (T—x) g Qu(z)

max (Yo, ¥1)
and (2.4) follows 1§

2.6. Theorem. If (X,, o) and (X, ¢,) are Banach m-spaces (i.e. complete with
respect to the corresponding norms) then X, 73 a Banack m-space.

Proof. Let {z"} be a Cauchy sequence in X,. Then (X(X) is complete) there exists
limz® =z in 2(X). We estimate ||z — 2%||,. Let ¢ > 0, 0 < s < G. Then

G .
[t [o() ] o
y + yl"' + 21""'
S‘/ = z“='lln"+lh [90 ( 2 ) + tel (T)] U(t) d‘ .

8 IRz ™

Yo" n"
—.[ z— 2"'=’llo"'+lh |:Qo (T) + tel (T)] a(t) @
+ < f [eo(z°m)+tl( m)]a(t)dt I4J.
z“—z"-=-z.""+' mn e

Itis I + J < 1for m, n large. Let m — o0, 8 > 0, @ — oo in I. We get so ||z — z",
= 2¢ for n sufficiently large §
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2.7. Theorem. (i) Let o, and o, be locally bounded and suppose that

o(t) = 0(al(t)), t—>0,

at) = Oaol0)),

t — o0,
(ii) Let X, be “m-imbedded” into X, (i.e. let py(x) < 0:(yz) for each x € X, and some

Then X, n X, c X
y > 0). If 0y and o, are locally bounded and

ao(t) = Ofay(t), t—0, _

then X,, 0 X...
Proof. (i) Let be T > 0 and

O'(t) g mal(t): ¢ é T;
: oft) = Moot), t=T.
Further, let be x € X, n sz llzlls, < 1, 2=0, 1, and C = 2'max (1, m, M). Thep

(_) f.sf(z z X)o(t)dt+f ( z _)a(t)dt

f 2Lt 7, X) 0y(t) dt —i———f..‘f(t z, X) aylt) dt < 1.

y) and ¢ = y. Then

m

QI

(ii) Let be C = max (1,
o (55) = 562 = ) £ g o)

2C
The second inequality is obvious; the first follows from
t YT
1 (F)] = 2—0.?0 x, X).

x 1 Zo
(i) 53 o[ () + 50

Let us still suppose that
C = ( J & dt)

y

o
[ o
¥

1
ot) dt,
t<y.

0'0(‘) é mol(t)’

Now, if z € X, then
oofio) = [ # -5 X) it = oo [
0 b4
< mf.?(z 5 X) ay(t) At + o, (;C)fao(e) de

0
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1t holds

(;C) Y(t z, X)

fort = y. Thexjefore
z 1
o (55) [ @01 = gpenta
k4

and we get
T oo -1

1 o
oo (55) S 35 00 + g5 0ate) [0t [ [a0dt) S eute)

b4
2.8. Theorem. Let T': Xy — Y becompactand T: X, — Y. Let o be nonincreasing
near -+-oo, lim sup ¢20(t) = 0o and g, € 4, or py € Ay. Then T: X, — Y 25 compact.
t—»00 .
Probf. Let be {z,} — X., [lZalle < 1, Zn = Zpo + Zny = fno(t) + Zay(2) and
Qo(xno(t)) + tgl(znl(t)) = 22, x, X)
Let be M = M(t) = max (1, 2¢, max.(1, ¢)) with

oo -1
¢ = ( J min (1, 7) o(z) dr) .
[
Then
Tno) < 2 max (1, t) < 2 max (1, 8) ou(aa)
0o\ 37 ax or M o max 04(Za
so that {Tz,y} is relatively compact in Y. Now, it suffices to prove that for any'

€ > 0 there is ||Tzp,(t) — Tzy,(t)|ly < € for m, n large enough and for some ¢ > 0.
Let us choose a decomposition z, — Z, = Zmno + Zma1 = Zmnolt) + Tmar(t) such that

.1 (, 1 X

to, (E xmnl(z)) 2% (ty rl (Zm — ), ‘X)’

ZToni = Tmi — Tni = Tmilt) — 2pil?), 1=0,1,

Tmg + Tmy, = ZT;my  Tng + Tt = Ty, Tpp; € Xy, ©=0,1.

This yields

A
\‘8

2

2

139

~
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and it means that
-1

1 o
(431 (% xmnl(t)) =& (? (Zm1 — xnl)) =2 tf o(r) dr
: .

The last term is tending to O when ¢ — oo. If g, € 4, then |ja,, — 2, =0 for
m, n — oo, If py € 4, then we can use the m-continuity 7: X, - ¥

The proof of the following theorem is similar to that of Theorem 2.8 and it is
therefore omitted.

2.9. Theorem. Let T:Y — X, be compact and T:Y — X,. Let lima(t) =0
and let oy € A, or9; € Ay (¥ =0, 1). Then T': Y — X, 1s compact. f=ro0

3. The stability of the method

3.1. Definition. A positiv}e nonincreasing and differentiable function ¢ on (0, co)
will be said admissible if (2.3) holds and if there exists an ¢ > 0 such that the function

t > t1teg(t)

is nonincreasing on (0, oo) and the func.tion
t > 27%g(8)

is nondecreasing on (0, oco).

Let us notice that an admissible function o satisfies the conditions

lim to(t) = lim t26(t) = oo, ' ) : (3.1)
t—0 t—o00 . ) H

lim {o(t) = lim 20(¢) = 0. . i . (3.2)
t—o00 X t— oo .

_ We shall deal with the following situation: Let us have an m-interpolation couple

X = (X,, X,) and positive measurable functions w,, w;, and 4 on (0, o). Let be

E; = X,, 1 =0, 1. These spaces form an m-interpolation couple, as well. We can

define the space E;. .
The so called weak stability of our method is easy to establish:

3.2. Theorem. Let T: X — X. Then T: E, - E, whenever 2 and w;, 1 =0, 1,
satisfy (2.3).

The proof is straightforward and easy.

The more interesting question is the problem of the existence of a function 6 such
that (Xo,, Xo )i = E; = X, i.e. the strong stability of our method. In this section
we derive a theorem of this type. In the proof we make use of the natural idea from
{8] and [4]: We obtain a formula for £(, z, E) of the form

&) o
L, 7, B) ~ [ L5, 7, X) wo(s) ds + t [ L(s, z, X) w,(s) ds, (3.3)
0 &
where £ is a suitable positive function. (The symbol ~ in (3.3) and everywhere in

the sequel between two terms containing modulars expresses the fact that replacing
z on one side by z/C with suitable C € R the term obtained can be estimated by the
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other side. In other places, the symbol ~ denotes the usual equivalence). The for-
mula (3.3) will be then applied to the definition of E, in order to get the function 6.

The following auxiliary assertions are devoted to the proof of (3.3).
3.3. Lemma. Let w be an admissible function. Then

¢

[ sw(8) ds ~ Bw(t) on (0, ), (3.4)
[
J w(8) ds ~tw(t) on (0, ). : (3.5)

:
‘Proof. It follows from the admissibility of w that

1 o
 Jw(s)ds = oo, [ sw(s) ds = oo, : (3.6)

[\]
and, that
[log (s‘“w(s))]’ <0,
[log (s*~w(s))] = 0,
or some ¢ > 0. The last inequalities yield

—2+8<%:)i)<—1—e (3.7)

Using (3.4) we get

2
tim inf —220__ > Jim inf [2 42 (‘)]

J sw(s) ds =0 @)
0
lim sup #Q_ < lim sup [2 + tz ((:))]
T feosds T
)

and similarly for llm mf and lim sup. It suffices to use (3.7) and (3 4) follows. The
t—o00

equivalence (3.6) is to "be treated in the same way @

34. Lemma. Letbe C =1, t > 0, &(¢) > 0 and w;, © = 0, 1, be admissible. Then
there exists C > 0 such that

&
.?( SZC )SC(f.f(s,x,X)wo(s)de—}-f.?(s,x,X)w,(e)ds)
&
kolds for each x € Z(E), the constant C being independent of t

Proof. Let be z ¢ Z(E), £(t) > 0. For each ¢ > 0, let us consider some decompo-
sition z = &y(t) + £,(2), £(¢) = zi(£(t)), © = 0, 1, where

eo(Zo(0) + tos(%:(t)) < 22(¢, 2, X). (3.8)

3 Analysis Bd. 1, Heft 1 (1982)
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Then

=1, +1, +[3 + 1,.
Let us still denote

&
PO = f.g(g’ x, X) (;00(8) dsy
0 .

Py =1t [ L(s, 2, X) wy(s) ds.
&)

We have e
. . ) S
LS alt f (o540, X) wole) o
. . 0 C P 0)
< 3G Py + ic (E(t))"A -?(_f(l), z, X)f Sff)o(s) ds
. , J
§8_CP0+R,P0=8—CP0- ‘ (?9)

(We have used (3.8) and the fact that the function ¢ — #(s, 2, )&) is nondecreasing.)
Further, making use of Lemma 3.3 we obtam

e

o

D A 2(&(t), =, X) f ol8) ds
o
.e(t)' -1 . ® ) -
< SC s(n ‘ f swo(s)ds | Py f wo(s) ds < OP,.
0 U]

The proof of the estlmates
I;,SCPI, I‘SCPl

is similar and will be therefore omitted 8
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3.5. Lemma. Let wy and w, be admissible and denote
wo(t)
w(t)’

Let the function ¢ > t%w,(t) be nondecreasmg on (0, 00) for some 6 > 0. Then to every
C = 1 there exists a C > 0 such that

we(t) = t>0.

@y o -
xz = z =
'/‘l.f (s, 3 X) we(s) ds + tf &z (8,. ”2—0, X) wl(fs'.).ds.
0 . T ey : o
< 0%,z E). LT (3.10)
Proof. Under our assumptions on w, we have . A
‘ 1 oo
wals) ds < 0, - _ds < oo, . .
s Swy(s) : , i
. L ~ (3.11)

ds fwz(s) ds = 0o
swz(s) 8
1

Let be x € Z(E) and = z, + =;, z; € X, 1=0,1. Let Q= Q(t) ‘denote the left
hand side of (3.10). Then Vo

. Q§R1+R2+R3+RU R S e oL

where T B
PR )

f‘g’(sx i, X) wo(s) dS, z =O’ l: .

0

R.':—%

t —
R=g5 [ .m0 Dy wio)ds,
wy” ()

TRy = f‘z(s,:xl,‘X) wy(s)ds.. T eeTieen e 0 T e

¢
2C
wy~' (4 Vs . T

Letstill: - .. =~ .. SRR S
Li =f$(8, Zi» X) wi(s) d-.?, 7:‘_"0: 1, st (312)
0

then . T O AT TY: R P S RS

t
31320Lo, R4_20L

Using Lemma 3.3 and the estlmates

oo

ZL(s, i, X) s(f w;(o)‘rda) L, &=0;1;" %

3+
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we get
L wy7}(1) o -1 @yl )
L w;(o) do ~ W8
B3 f ols) (,f ) ds ~ L, f 222 g, (3.13)
(V] (1]
For y = 1 — 2¢, the function ¢ +> ¢~7w,(t) is nonincreasing because
ti+eg) (t)
- — g1-2e— 0
t7w,(t) = -2y o)’

From this and (3.11) one can show similarly as in the proof of Lemma 3.3 that .
4

f w2(8)da~w2(t) on (0, 00,

° (3.14)

oo

1
f ds ~ on (0’ w) ’
¢ .

8wq(8)  wt)

so that (3.13) yields
R, =<CL,.
Quite analogously we get
R, =<CL, 1

3.6. Theorem Let wy, w, and 2 be admissible and let w, = wy/w, satisfy the con-
dition from Lemma 3.5. Then there exists an admissible /uwzon 0 such that

(Xw.’ Xan)l = XO

Moreover, if we define

A(t) = fml(s)ds, t>0,

then
6(t) ~ wo(t) A(wq(?)).

Proof. Let g; be the modular in E, = (X.,, X.,):;. The foregoing assertions give

o0 @y (1)
ox(x) ~ f}. t) f.if’(s, 2, X) wy(8) ds dt + f tA(t) f Ps, x, X) wy(s) ds dt

[ @y~ ()
= So + Sl'
After change of variables (w, is increasing and differentiable) we get

oo

o=/ [wo(t) fw/'l(wz(s)) w,'(8) ds] L, z, X) dt,

0

] t
=/ [wl(t) J Hwe(8)) we'(8) wals) ds] L, z, X) dt.
(1] 0
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Let us denote

Bo(t) = wo(t) [ Awa(s)) w,'(5) ds,

' ¢
01(t) = w,(t) [ Awa(s)) we'(8) wo(s) ds.
)

We show that 64(¢) ~ 6,(¢) on (0, o©), i.e. that

¢

‘wz(t) A(wz(t)) ~ fd% [——A(wg(s))] wo(s) ds.
0 .

It holds that

lim zA(z) = lim 2 f A(8) ds ~ lim 2%4(2) = O,
20

2z =0 2 =0
lim zA(2) = o0,
Z2—00

therefore

-1

lin‘:t_’soup wa(t) Alw.(?)) f %[—A(wz(s))] wy(8) ds
0 .

o) |

< lim sup [—1 t Aon0) w2l0)

which is finite for

. A(z) . 1 3
i 5 = i g A e~ 1.
Further, similarly as above one gets

1] -1

lim inf wy(¢) A(w.(t)) f %[—A(wg(s))] wy(s)da| > 0.
t—0

0

37

(3.15)

(3.16)

(3.17)

Using the last inequality in (3.15) we obtain the same relations as in (3.16) and (3.17)

for lim sup, lim inf, resp.

t—o0 t—c0

It remains to show that the function 6(¢) = w(t) A(w,(?)) is admissible. The con-

dition (2.3) is satisfied for

1

[ () dt ~ [ toy(t) [ Hwals) w2 (s) w;(s)dsdt < oo
1] [1]

V]

J o) de ~ [ wot) [ Awa(s)) w2'(s) ds dt < oo.
1 1 t
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Finally, the function
t > £1e8(t) = B+ wt) Afw,(?))
is nonincreasing and the function
t > 12-0(t)
is equivalent to
t—> (wz(t))" 22w, (2) (wg(t))g“' ).(wg(t))

which is nondecreasing if we choose ¢ > 0 so that the functnon ZH> zz" A(z) is non-
decreasing @

3.7. Remark. Similarly, one can prove reiteration theorems of the form
(X, Xo)i =Xy or (X, X)) =X,

with some suitable 6.

4. Miscellaneous

Firstly, we present an important example which can serve as a justification and,
roughly speaking, as the motivation of the presented method. (The example can be
found in a somewhat different form with the sketch of the proof in the already cited
paper [10].)

Let @, and @, be Young functions and £ a measurable set in RN, Then for any o
satisfying (2.3) we have

(Loo(2), Lo,(2))s = Lo(9),

P (t))
D(t) ~ Dy(t) b {2
0 ~ o0 5 (Z0

with

h{t) = f min (1, ¢7) o(z) dr

0
The function % is pseudoconcave (see, e.g. [1]) i.e. it is equivalent to some concave

function. It can be shown (see, again, e.g.-[1]) that :

h(7t) = C max (1, 2) A(t). . (4.1)
It also holds that any & satisfying (4.1) is pseudoconcave.

In the same way one can prove the “‘modular version” of the Stein-Weiss inter-
polation theorem. (See [13, 1.18.7].) »

The rest will be devoted to the proof of a multiplier theorem of Michlin type in
Orlicz spaces. This theorem can serve as a basic tool in mterpolatlon of Sobolev-
Orlicz spaces. This will be also briefly dealt with in [6).

4.1. Lemma. Let @ be a Young function satisfying the A,-condition. Then there
exist po, py > 0 and a pseudoconcave function h so that .

B(e) = trh(trP), > 0. ' (4.2)
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Proof. The function v

()
g A

is submultiplicative and therefore (see Sectlon 1) there exnst 90 q, >0 and C’ >0
such that .’ . . .
d)().t) < C max (29, 20) O(¢). oo - (4.3)

Let Q, and @, be the “best” gy and ¢, for which (4 3) holds and @, < p, S @ =p.
If there is such a function k that.(4.2) holds with so choosen p, and p, then it is
necessary

A>0,

h(8) = s—Peltpr=p0) P(HiPr—Pol),
If 2 £ 1 we have

CApoltpr— p.)¢(sl}(pn—ﬂ.))
APel(Pr—Pe) gPel{P1—Pe)

h_(is) = < Ch(s)

and for A > litis

CAQ(Pi=Pe) P(gl(P1=Po))
APl (Dr— Do) gPel(P1—Ps)

h(ds) <

< CAh(s),

i.e. h is pseudoconcave @

4.2. Corolla.ry Let @ be a Young function satisfying (4.3) wztk some ¢o, g1 > 1.
“Let M be a mapping from RN into itself such that

jz|l*| DM (z)| < C, z € RN,

(« is here a multiindex) kolds for each |x| < L, where L > N/[2. Then M is a Fourier
multiplier in Lo(RF), 2.e. the mapping

> FIM ., (4.4)

F being the Fourier transform and « denotes the convolution, is continuous from Lo (RY)
into self.

Proof. The mapping (4.4) is (by the Michlin multiplier theorem, see, e.g. [13,
2.2.4]) continuous from L,(RY) into itself. It suffices to realize that (4.4) is also
m-continuous with respect to the modulars f > llfllf" in L (RN) and to use the
foregoing lemma. )
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