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The Poisson formula for Euclidean space groups
and some of its applications I

P. GONTHER

Die klassische Poissonsche, Summenformel bezieht sich auf eine von » linear unabhingigen
Translationen erzeugte Gruppe von Translationen des n-dimensionalen affinen oder eukli-
dischen Raumes. In dieser Arbeit wird eine Verallgemeinerung der Poissonformel gegeben,
die sich auf eine allgemeine, eigentlich diskontinuierliche Gruppe affiner Transformationen
mit kompaktem Fundamentalbereich bezieht. A

Hnaccnueckan dopmyna cymmmpoBauns Ilyaccona OTHOCHTCA K rpymnne ciBUros ap@uHHOro
K OBKJNAOBOrO MNpPOCTPAHCTB PAa3MEPHOCTH n, TMOPOKAEHHON 7 JAHHEHHOHE3aBHCAMWMH
caBurami. B macrosmeit pabore gaérca o6o6menne Gopmynn IlyaccoHa, KoTopoe OTHOCHUTCH
K o6muM coOcTBeHHO NAMCKpeTHHIM rpynnmaM ad@uAHHX npeo6pazoBaHHit ¢ KOMIOAKTHOIM
$yHnameHTaALHOL 0GNACTRIO.

The classical Poisson summation formula refers to a translation group with n linearly inde-
pendent generators in the n-dimensional affine or euclidean space. In this paper a generalization
of the Poisson formula is given which belongs to a general properly discontinuous group of
affine transformations with compact fundamental domain.

The classical Poisson formula can be written as an equality of distributions in R!:

Y et =27 3 b (0.1)
ez 1€Z

During ‘the last years this formula was generalized by several authors in various

directions mainly in connection with the celebrated Selberg trace formula. ([1, 3, 4,

5, 6, 9, 10, 11, 12, 13].) Special interest has been shown for the study of the distri-

bution :

,5; cos (V4 ), | ; (0.2)

where {4}, i8 the sequence of the eigenvalues of a compact Riemannian manifold M.
Already in 1959 H. HuBEkR [7] showed the equivalence of the eigenvalue spectrum
and the length spectrum for hyperbolic space forms; recently beautiful relations
between (0.2) and the closed geodesics of a general M were discovered. (In this
interpretation (0.1) corresponds to the case M = S'.)

The classical multidimensional variant of (0.1) is as follows. Let 8 be an n-dimen-
sional vector space over R and I & lattice in 8 with n linearly independent gene-
rators and a fundamental domain F(I'). Let 8*, I'* be the dual of B, I' respectively.
1f 9 is equipped with a Lebesgue measure then we have the followmg equality
of distributions of %B:

r @271 — ‘u( F( p)) Z 8. (0.3)
uere ter

In this paper we shall give the following generalization of (0.3). Regarding B as
an affine space we consider a properly discontinuous group & of affine transfor-
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mations of B with compact fundamental domain Z# (). For the elements S ¢ &
fixed points are allowed. The translations contained in ¢ form a normal subgroup &
of @; their translation vectors form a lattice I” spanned by = linearly independent
vectors. /T is finite. ([2, 8, 15, 14].) Let f: B — C be an element of the Schwartz
space &(B). We consider the series

2 [ H8k) — t) dulx). ' (0.4)

Se® F(®)

We shall give two quite different expressions for it (a) and b)), their equality consti-
tutes a formula which we call the Poisson formula for &. (Prop. 3.2 and the theorem
of §3.) (In the case & = T the right-hand side of (0.3) applied to f gives (0.4).)

a) The homogeneous transformations ¢ occuring in the transformations S € @
form a finite group & =~ ¢/T. Each o7 gives a one-to-one mapping of I'* onto itself.
Two vectors u, u’ € I'* are said to be equivalent, if there is a 0 € & with ¢T(u) = u’.
This way I'* is decomposed into equivalence classes f; some of these classes are
characterized as principal classes. Let § be the set of these principal classes. Then
(0.4) equals

“Zg (1/Card f)u‘e‘; f(2nu). -~ (a)

Here f is the Fourier transform of f. We remark: To each principal class ¥ € § there
corresponds exactly one (over C) linearly independent (-automorphic function
wr: B — C such that {yr|¥ € O} is a complete orthogonal system in the Hilbert
space L,(®) of (S-automorphic functions.

b) The group & is decomposed into T-conjugacy classes; let 7 be the set of these
classes. To each 7 € J we assign a distribution ’ :

&(B) >/~ L(H€C.

Essentially I,(f) is the integral of f over a lower dimensional plane in the affine
space B. This plane has dimension zero if and only if  contains a translation; it
contains the origin if and only if the elements of 7 have fixed points. Now, (0.4)
equals

1
— ZI(); r=0rdg. (b)
r € J
If we make the additional assumption V ¢ € B, Vo€g, f(o(¥)) = () then we
have f(27u,) = --- = f(2nw,) fiir alle u,, ..., u; € I'* contained in the same principal -

class t € ©; we denote this common value by f(2rf). Further: I, depends only on the
@-conjugacy class § containing the ¥-conjugacy class t; we write I; instead of 7,
and we denote the set of &-conjugacy classes by Q. Each 6 € 2 contains a finite
number m(#) of T-conjugacy classes. Qur Poisson formula thus reads

Tied =1 ¥ me) L. V : (0.5)
teo T 9en

The paper is self-contained and the proofs are quite elementary except for the
proof of proposition 2.2 where a trace formula is used which occurs in the represen-
tation theory of finite groups. The considerations are independent of the theory of
Lie groups and Lie algebras. The relations between our formula (0.5) and closed
geodesics as well as some applications shall be given in a subsequent paper.
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§1

Let B be an n-dimensional vector space over the real field R. We consider 8 also
as an affine space, taking the elements of B in the usual way both as vectors and as
points. Let & be a properly discontinuous group of affine transformations of 8 with -
compact fundamental domain. The translations 7’ € & form an invariant subgroup ¥
of ¢, which contains » linearly independent generators and has a finite factor group
&/ (Breberbach’s theorem [2, 8, 15]). The translation vectors of the elements 7' € &
form a lattice I' = B over Z; k vectors of I" are Z-linearly independent if and only
if they are R-linearly independent. Each S € @ has the form: \/ ¢ € 8:8(x) =0(x) + a;
here ¢ is a linear transformation of B and a € 8. We use the wellknown symbol:
S = (0, a) with the multiplication rule (¢’, a’) (¢”’, a”’) = (0’0", ¢’(a”’)™+ a’). The
set &:={0c|3S € @ with S = (0, a)} is a finite group isomorphic to &/ ; for the
sake of simplicity we call & the homogeneous group. Each ¢ € € maps I onto itself.
Set 7 = Ord 8. If 6 € & and (o, a) € & then we call a a vector belonging to o. For
(o', a’), (6", a"’), (¢'6”, a) € & the so-called Frobenius congruences are satisfied :

o'(@”) + a’=amod I'. (1.1)
Definition 1.1: For ¢ € & we set:

B(o) = ker (¢ — Id), BL(o) =im (0 — Id); | (1.2) -

n{o) = dim B(o).
Lemma 1.1: For o € € we have:

B = B(o) P BV(a). (L3)
Proof: From the dimension theorem for linear mappings there follows: ‘

dim B = dim B(c) + dim B (s). (1.4)

Assume ¢ € B(g) n BL(o); then there is a vector 3 € B with ¢(3) = 3 + r. Applying
o’ to this equation we obtain

o"(3) = 3 + vz, »=12,...,

because o(x) = . { is a finite group and we have with r = Ord &: 0" = Id. It
follows rr = 0 and

B(a) n BL(o) = {0}. ‘ ' (1.5)
The equations (1.4), (1.5) imply the assertion &
Definition 1.2: For ¢ € & we sét:
. @ =T0Bl), Ie)=TInB),
T'et(o) = (6 — Id) (') S I' (o). (1.6)

Lemma 1.2. The Z-modules I'(a), I'*(0) contain ezactly n(s), n — n(o) h‘nealrly
independent generators. The difference module I't (o) — I'e* (o) ¥ finite.

Proof: We choose a basis of I'; it is also a basis of B. With respect to such a
basis the mapping ¢ — 1d is described by an integer matrix % with rank » — n(o).
Taking n — n(0) linearly independent rows of U we get the coordinates of n — n(o)
linearly independent vectors of I'.t(c); but /.t (o) cannot have more than n — n(o)
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linearly independent vectors, because I'.1(¢) — B (s) and dim B (o) = n — n(a).
Now it is clear, that I';t(s) has a basis with » — n(0) vectors. The same must be
true for I'* (¢). From this it follows, that I't (o) — I'.1(0) has finitely many elements.
In order to find the elements of I'(c), one has to find the integer solutions of the
system of linear homogeneous equations belonging to the matrix . This system has
n(o) linearly independent solutions. B

Definition 1.3: For ¢ € & we set: e(6) = Card {I'*(0) — I'.1(0)}.

Remark 1.1: Using the elementary divisor theorem one can find a basis
Y1, --+s Dnnio) Of I'L(0) such that &9, ..., €g_n(o)Yu-nto) form a basis of I'.1(c). The
€15 - <5 En_n(a) are the non-zero elementary divisors of the matrix % used in the proof
of Lemma 1.2 and their product &), ---, £,_n(s) = @pn(o) is the determinant divisor
of A of order » — n(s). On the other hand one. has e(o) = |, -+, s,,_,,(,,l This
ylelds e(a) Idn—n(a)l ’

Remark 1.2: In the following we shall consider the difference Z-module I'— I'* (o)
as a lattice in the difference R-module B — B (o). This can be done by identifying
a coset ¢ + I't(0) of I' — I'* (o) with the coset ¢ + B (o) of B — B1(o).

Definition 1.4: Let 8* be the dual vector space of B and o7 the transposed
transformation of ¢ € Q. Further: let I'* be the dual lattice of I". We set:

B*(g) = ker (6T — 1d), B*L(g) = im (o7 — Id),
I*o) = I'nB*o), I'*i(s) = I'n B*L(a).

Remark 1.3: B*(o) and B*L(o) have the dimension n(c) and » — n(c) respec-
tively. Further: B* = B*(o) @ B*!(0). The Z-modules ™(s) and I'*!(oc) have
n(g) and » — n(o) linearly independent generators respectively. The proof of these
facts follows the lines of the proofs for the Lemmata 1.1 and 1.2.

Rema.rL 1.4:In a natural manner the pairs of vector spaces 8 — 531(0'), B*(o)
and B4 (o), B* — V*(o) are pairs of dual vector spaces. The dual lattice of I' — I't (a)
considered as a lattice in B — BL(0) (see Remark 1.2) is I'*(o). In the same way
I'* — I'*(0) is the dual lattice of I't (o).

§2

Let u be the Lebesgue measure of B normed such that a fundamental domain F ()
of ¥ has measure 1. Let Ly(T) be the Hilbert space over C of locally quadratically
integrable El-automorphic functions with scalar product:

@y = [ o (z) - . 2.1)
F@X)
The functions {p, | u € I'*} with
' V T € B: u(r) = exp {22y, r)} : (2.2)

form a complete orthonormal system in Ly(Z). Our aim is to find such a system for
the subspace Ly(®) & L,(T) of $-automorphic functions.

Lemma 2.1: Let S = (0, a) € & be an element of ®. Then we have for ¢ € B:
‘Pu(S(Z)) = exp {27y, a)} Por(uy(E). (2.3)
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Definition 2.1: Two vectors u, u’ € I'* are called equivalent, if a o € { exists
with 1’ = oT(u). Let & be the set of equivalence classes belonging to this relation. If
f={u;,..., w} € &, the linear subspace of L,(T) spanned by @y,, ..., @y, is denoted
by L(t).

Remark 2.1: From (2.3) there follows, that an element ¢ € L, (%) is ®-auto- .
morphic if and only if its projection on every L(f), t € &, is @-automorphic. There-
fore it is sufficient to find only the &-automorphic functions contained in each of
the L(f).

Remark 2.2: For S € & the mapping L(f) 53¢ - ¢ oS is a transformation of
L(¥). If S varies in & these transformations give a representation D(t) of the group
¢ = @/% in L(f). The space L(f) contains exactly % linearly independent &-auto-
morphic functions, if D(f) contains the 1dentlca1 representatxon exa.ctly h times. It
is wellknown that

L shom ). S | (2.4)
7 €8

Definition 2.2: For u € I'* let R(u) be the subgroup of all 6 € L with aT(u) = u;
we set o(u) = Ord R(u). We choose a vector a belonging to o € R(u) and define
z(u, o) = exp {2n(u, a)}. _ - (2.5)
This definition is correct, because a is determined mod I".

The following lemma is obvious.

Lemma 2.2: For equivalent véctors u, u' € I'* the zmbgr(mpslﬁi(u), R(u') are con-
jugate. The index of R(u) equals the number of vectors equivalent to u. y(u, ) vs a churacter .
of R(u).

-,

Definition 2.3: The vector u € I'* ig called prmmpal vector, if y(u, -) is the prin-
cipal character of R(u), i. e. )

V o € R(u): x(u,0) = 1.

Lemma 2.3: 4 class £ € & of equivalent vectors contains either only principal
vectors or only non-principal vectors.

Proof: Assumef € ®andu, u’ € f. Thereisa o’ € & with u’' = o'T(u). If 0 € R(u)
then we have o'~lg0’ € R(u’) and

2’y 6-100") = x(u, 0). : (2.6)

From this the assertion follows 8 =~ - . S e e

Proposition 2.1: If  is a class of principal vectors, then dim ¢{L(t) n Ly,(®)} = 1;
if 1 is e class of non-principal vectors, then L(f) n Ly(®) = {0}.

Proof: Let ¥ = {u,, ..., u;} be a class of equivalent vectors and let S, ..., S, be

a complete system of representatives of & with respect to . Then we have:

1 150k
=— 2 trdO (@ =— 3 3 (Pu 08 pu).
o€l r 1

j=1 im] Co.
According to (2.3) the last scalar product vanishes if o,T(u;) =+ u;, ie. if o; € R(u,).

2 Analysis Bd. 1, Heft 1 (1982)
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Therefore we obtain from (2.3) and (2.5):
1 ¢
h=— 3 3 xu,o).

T i=1 a€R(uy)

We use the following wellknown formula.

o(u) if x(u,-)is pﬁncipd,
= 7
qe%(‘u)x(u’ o) {0 else. (2.7)
Taking into account that o(u,) = --- = p(u,), I = index R(u;), wefind & = 1 if the

u; are principal vectors and A = 0 in the contrary case § :

Definition 2.4: The set of classes t € & containing principal vectors is denoted
by 9. Let yr be a @-automorphic function with ||yy]] = 1 contained in t € 9.

Lemma 2.4: {yy | t € H} v3 a complete orthonormal system in Q,(®).

Remark 2.3: An explicite expression for yy can be found in the following way.
Assume f = {u,, ..., ;} € ; let oy, ..., 0, be a complete system of representatives
of the left cosets of € with respect to R(u,). For i = 1, 2, ..., I we choose a vector q;
belonging to ;. Then we have

1 [
w(z) = 7 Zl exp {2n(uy, 6;)} @u(x)- T (2.8)
i<

It is easy to see that yy has the required properties.
Proposition 2.2: Let g: B* — C be given. Assume that for each o € Q the series

2 x(u, 0) g(u) _ (2.9)

Uere(a)

18 absolutely convergent. Then we have

2 2 xlu,0)glu) =r r()_7@ (1/Card t) f‘; g(u). (2.10)

o€8 uer*(o)

Proof: On the left-hand side we change the order of summation. Taking into
account the Definitions 1.4 and 2.2 we obtain

2 2 x(u,0)g(u).

UEr® seR(u)

Finally we apply (2.7) and the equation Card ¥ = 7/o(u). The proof is finished B

§3

Proposition 3.1: Let f be an element of the Schwartz space ©(B) such that \/ ¢ € B,
V o € 2: f(a(t)) = f(x). Let | be the Fourier transform of f; then f(2nu) has the same
value for every u € f. Denoting this common value by f(2nt) we have -

2 1(S(n) — x) =7 X f(22t) pa(T) w(v). (3.1)
Se® 19

Both series in (3.1) are absolutely convergent.

Proof: For fixed ¢ € B the left-hand side of (3.1) is a G-automorphic function
of v; its Fourier expansion gives

2 H(S(y) — ¥) = X alr) wy). (3.2)
Se@® 1€
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The Fourier coefficients ¢ () are given by

a@) =X [ wly) /(S9) — ¥) du(y) =7 f w3 + 0 /(3) du(s). (3.3)
568 FD)

In the last equa,tnon we have used the fact that almost every pomt of B is contained
in exactly r of the sets S(.”} (i)) S € @. Taking into account the expresswn (2. 8)
for yr we obtain

Ct(E) )__: exp {—2-7”'(111, ;) - 27"'(1111 E>} ¢ (34)

V';

?; = f exp {—2ni(uy, 6;(3))} /(3) du(3)-

with

. The. functlon / and the measure u are invariant under application of o;, hence
®; = f(2nu,) and

alt) = rf(2m,) w(z).

The absolutely uniform convergence of the series in (3.1) follows from the propertles
of the function f belonging to &(B). .

Corollary 3.1: If & = ¥ s a pure translation group then from (3.1) with §) = T I
the wellknown Poisson formula, valid for every | € &(B), follows:

Z e+t = Z 1(27u) exp {2ni(u, 3)}- .. (3.8)

Proposition 3.2: Let f be any element of the Schwartz space ©(B) with Fourier
transform f. Then we have

5 [ASG) — 1) dute) =7 X (fCard §) T @), (3.6)

Se® ZF () ted uet
Proof: From equation (3.2) it follows

T [ A8® - 0)ds) = [ a® v du). (3.7)

SeB@ F(T) e F(X)

Using the expressions'(3.4) and (2.8) for ¢y, yr respectively we obtain .

1]
a(z) v(t) = % Z; exp {2ni{uy, 0m — Q;) + (Un — u;, D]} D;. (3.8)

RZ

The integration over #(Z) yields:

r |
lr) wile) dute) = 7 3 9. ~ (3.9)
CFE) !

Taking into account that o;T(u,) =u;, j=1,2,...,,] = Card f the formula (3.4)

gives ) | J
®; = f(2nu;). ' . (3.10)

From (3.7), (3.9), (3.10) the assertion follows B

Corollary 3.2: Under the additional assumption \/ ¢ € B, \/ o € L: /(a(g)) = f(x)

2%
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the formula (3.6) reads:

2 [ (8@ — 1) du(x) = X f(2at). (3.11)
Se® Z(®) €D .

Of course # (@) is a fundamental domain with respect to @

Definition3.1: Let u,* and 44t be the Lebesgue measures in 8! (o) and 23 B 1( )
such that a fundamental domain of the lattices I't (¢) and I — I'* (o) respectively has
measure 1.

Lemma 3.1: If ¢ € L,(B) then the following z'ntégml formula is valid:

f p@au) = [ [ o9 + 3) du.t () dut (). (3.12)
B-BLl) Bl

Here 3 denotes the coset 3 + B 1 (o).

Proof: It is possible to find a basis L1 ooy Ln Of B such that {g-l, oo g,;},
{T1s ++ s Ta-nto))s {Tnontor+1s +++» Tn} 8pan a fundamental domain of I', 't (¢), I' — I't (o)
respectively. Using this basis we obtain the assertion from the Fubini theorem. 8

Remark 3.1: In the veetor spaces B*, B*(o) and B* — B*(o) we introduce
Lebesgue measures u*, po*, uf, which are normed with ;the help of the lattices
I'* I'¥g), I P*(a) respectnvely

Definition 3.2: Let 7 be the set of %-conyugacy classes of (55 (S S’ € @ are in
the same T-conjugacy class, if a 7 € T exists with §' = T'ST-1.) Further let 2 be
the set of G-conjugacy classes of ®. Each 0 € £ is the union of a finite number of
ﬂi-con_]ugacy classes. Let m(0) be that number

Remark 3.2: Assume § € 2, Se 6 and let N(S) be the normahzer of S in (35

Let ‘R(S) be the image of N(S) under the natural homomorphlsm of & onto &/%.
Then we have m(6) = (ord G/T) : (ord N( S))

Proof: The group @/ acts as a transformation ion group in J (via, the inner auto-
morphism of &). Let z € 7, S € 7, v S 0; then N(S) is the stable subgroup of 7 and
the set {z' € 7 | ' & 6} is its orbit. From these facts the assertion follows. 8 -

Theorem: Assume/E S(B). Let 1€ T be ai con;ugacy classof @ and S = (0, b) € 7.
Then we set

I.()) = .e—(;—) f f9 +0b)dust(y). (3.13)

B1(0)

1. L, (f) depends only on © (i.e. I, is independent of the choice of S € t). I,(f) has the
alternative expression:

L(f) = (1/(27)* e(0)) [ exp {iv, b)} F(v) du,*(v). ' (3.14)

B*(o)

Here | is the Fourier transform of f.
2. We have .
£ (eard t) 2 em) = £ T L. - (3.15)

6eQ 6

3. Under the additional assumption N/ ¢ € B, \ o € &: f(o(r)) = /(z) the value of
I(f) depends only on 0 with v S 8 and the value of f(2nu) depends only on t € D with
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u € t. Then we can write
Sieat) =L 5 mo) L. (3.16)
| {T) T e

Proof: We use Proposition 2.2 with g(u) replaced by f(2mu)

ZCard ) Zm) = % 3 (0 f(2m). (3.17)

o€l Uer+(o)

For fixed o € { and a vector a belonging to ¢ we consider the series

X x(u, 0) f(2mu) = Y exp {2y, a)} f(27u). (3.18)
u€er*(o) Uer*(o)
Now we apply the Poisson formula for translation groups (eq. (3.5)) together
with the Fourier transformation in B8*(s):

2 x(u, 0) f(2mu) = (1/22)7) 37 fexp {ia + t, v)) f(v) dus*(0).

uers(o) tmoar L (o) B*(o)

The last summation is extended over a complete system of representatives for the
cosets forming the difference Z-module I' — I't(g). Each of these cosets is the
union of exactly e(o) coset elements of the difference Z-module I" — I',4 (o). Therefore
we can write:

- X x(u, 0) f(2mu) = (1/(27!)"{"’3(0)) 2 feXP {ia + t, o)} F(0) du,*(v).
uer(o) , Amodr, L (a) B*(a) '

(3.19)

Now we turn to the T-conjugacy classes of . Firstly we remark that two T-conjugate
elements of & are contained in the same coset of & with respect to ¥. Let €(a),
o € € be such a coset; let S’ = (s,a + t'), 8" = (g, a + t"’) € (o) with t', t"" € I.
It is easy to see that S’, 8 are T-conjugate if and only if t' — t"" € I',* (o). If the
vector tin S = (0, b), b = a + t runs through a complete system of representatives
of I' with respect to I';* (o) then S runs through a complete system of representatives
of the $-conjugacy classes contained in @(s). On the other hand we have for

p € B*o):

(a +1t,0y =(a+1t",0) if t'—1t"€Tlt().

This shows that the summand in (3.19) is a function of the T-conjugacy classes;
therefore we can write ‘

3 z2(u, 0) f(27u) = Z I(f). (3.20)

uere(o} Co)

Here I,(f) is given by (3.14). In (3.20) we sum up over o € €; on the left-hand side
we use (3.17), on the right-hand side we make a simple change of the order of sum-
mation. This gives the assertion (3.15).

In order to obtain formula (3.13) we write down:

flo) = f exp {—i(v, £} /() du(z);

by use of (3.12) we get

foy= [ [exp{—«v, 9+ ) /(9 + 3) du.*(9) A’ (3). (3.21)
B-81(0) Bl(a) .
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Inserting (3.21) in (3.14) we obtain an expression for I,(f) with three succesivé
integrations; two of them cancel by means of the Fourier inversion formula because
B*(0) and B — B (o) are dual vector spaces. The remaining formula is (3.13). Thus
part 1 and 2 of the theorem are proved.

In order to prove part 3 we assume V ¢ € B, V o € €: f(a(r)) = f(r). Then we
have \/ u € 8*: 7(6"‘(11)) = f(u). From this it follows that f(2zu) has the same value
forall u € t, t € ; we denote this value by f(2zf). Further let S, §’ be two -con-
jugate elements of & with S = (0,b), 8’ = (¢’,0’) and &' = GSG-}, @ = (y, ¢).
A simple calculation shows: '

o' =yoy L, b = y(b) + ¢ — yoy~}(c). (322
From this we have , o
Bi(a") = y(B*(0)), I't(c") = (' (),
Tet(0) = y(T*(0)), e(a’) = e(0), pt = y(uot).

If the coset of b’ (resp. b) modulo B (s’) (resp. B+ (o)) is denoted by b’ (resp. b) then
we have b” = y(b). Transforming the integral in (3.13) with the help of the linear
transformation y we obtain

¢

1 T
e(T,)f/(n ) A = f/(n +6) duot (1)
Bl B1(0)

"This shows that I.(f) is a function of the ®-conjugacy class 6 € 2 containing z; in
this way the notation I4(f) is justified. The proof of the theorem is finished 8

Proposition 3.3: Let {(z), 1 € T be the (n — n(o))-dimensional plane n the
affine space B which is the domain of integration occuring in the expression (3.13) of
I.(). _ o
a) dim f{(z) = 0 if and only if © contains translations.

b) 0 € §(z) uf and only if the elements S € T have fized. points.

"Proof: a) dim f(r) =0 means that dim 8*(s) = 0; owing to Lemma 1.1 this is
equivalent to dim B(c) = n, i.e. ¢ = Id. '
b) From (3.13) it follows that 0 € {(r) if and only if b € B1(0); here S = (0, b) is
any element of the class z under consideration. b € 81 (o) is equivalent to the exis-
tence of a ¢ € B with b =c — o(c); in this case we have S(c) = ¢. Finally we
remark: if some element S € v has fixed points, then every element of r has fixed
points.
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