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The Poisson formula for Euclidean space groups 
and some of its applications I 

P. GUNTHER 

Die klassische Poissonschc,Summenformel beziehtsich auf eine von n linear unabhiingigen 
Translationen erzeugte Gruppe von Translationen des n-thmensionalen affinen oder eukli-
diachen Raumes. In dieser Arbeit wird eine Veraligemeinerung der Poissonformel gegeben, 
die sich auf eine ailgemeine, eigentlich diskontinuierliche Gruppe affiner Transformationen 
mit kompaktem Fundamentalbereich bezieht. 
HnaccwiecHan 4opnyia CMM5OB&HHH llyaccoua 0TH0cHTcn K rpynne CBHr0B a44nHuoro 
H aicimjoaoro UOCTHCTB pasmepHOCTit n, flOpOKJeHHOa fl nHHeflnoHe3aBudnMb1MH 
cBHraMH. B RacTonuefl paöore aë'rcn o6o6nemse 4OpMyJ1IJ ilyaccoHa, ioTopoe OTHOCHTCH 
H o6uiHM co6cTaeHHo JHcxpeTH1sM rpynna a141HHIIuX npeo6paaosaRlifl C HoMuawrHott 
4yHaMeHTaThHOI1 OGilaCTalo. 
The classical Poisson summation formula refers to a translation group with n linearly inde-
pendent generators in the n-dimensional affine or euclidean space. In this paper a generalization 
of the Poisson formula is given which belongs to a general properly discontinuous group of 
affine transformations with compact fundamental domain. 

The classical Poisson formula can be written as an equality of distributions in R': 

_Y 0- =2rEa2.	 (0.1) 
fEZ I	 fEZ 

During the last years this formula was generalized by several authors in various 
directions mainly in connection with the celebrated Selberg trace formula. ([1, 3, 4, 
5, 6, 9, 10, 11, 12, 13].) Special interest has been shown for the study of the distri-
bution

	

cos (/3 .),	 (0.2) 

where is the sequence of the eigenvalues of a compact Riemannian manifold M. 
Already in 1959 H. HUBER [7] showed the equivalence of the eigenvalue spectrum 
and the length spectrum for hyperbolic space forms; recently beautiful relations 
between (0.2) and the closed geodesics of a general M were discovered. (In this 
interpretation (0.1) corresponds to the case M = 8'.) 

The classical multidimensional variant of (0.1) is as follows. Let FS be an n-dimen-
sional vector space over H and I' a lattice in 3 with n linearly independent gene-
rators and a fundamental domain gF(V). Let ', P be the dual of , r respectively. 
If 8 is equipped with a Lebesgue measure 1A then we have the following equality 
of distributions of 3: 

= ,.4(-(r)) E ôt .	 (0.3) 
uEro	 tEl' 

In this paper we shall give the following generalization of (0.3). Regarding Z as 
an affine space we consider a properly discontinuous group 0 of affine transfer-
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mations of Z with compact fundamental domain .(0i). For the elements S € Gli 
fixed points are allowed. The translations contained in (IS form a normal subgroup S 
of (Ii; their translation vectors form a lattice 1' spanned by n linearly independent 
vectors. W/Z is finite. ([2, 8, 15, 14].) Let f:FS -* C be an element of the Schwartz 
space c(). We consider the series 

E f /(S() - ) du().	 (0.4) 
Se	(C) 

We shall give two quite different expressions for it (a) and b)), their equality consti-
tutes a formula which we call the Poisson formula for (IS. (Prop. 3.2 and the theorem 
of § 3.) (In the case 0$ = the right-hand side of (0.3) applied to / gives (0.4).) 

a) The homogeneous transformations a occuring in the transformations S E (Ii 
form a finite group 2 0$/. Each aT gives a one-to-one mapping of J'* onto itself. 
Two vectors u, ii' € F" are said to be equivalent, if there is a a E 2 with a 7 (u) = u'. 
This way I"'' is decomposed into equivalence classes t; some of these classes are 
characterized as principal classes. Let be the set of these principal classes. Then 
(0.4) equals 

' (1/Card1)	7(2ru).	 (a) 
ue 

Here I is the Fourier transform of f. We remark: To each principal class! E there 
corresponds exactly one (over C) linearly independent (li-automorphic function 

-. C such that (Vt I! e } is a complete orthogonal system in the Hubert 
space L2(0$) of 0$-automorphic functions. 

b) The group 0$ is decomposed into %-conjugacy classes; let Y be the set of these 
classes. To each r E .fJ we assign a distribution 

() D /-•±I(/) E C. 

Essentially I,(/) is the integral of / over a lower dimensional plane in the affine 
space I. This plane has dimension zero if and only if r contains a translation; it 
contains the origin if and only if the elements of r have fixed points. Now, (0.4) 
equals

'I(f);	r= Ord 2.	 (b) 

H we make the additional assumption y E € 5, y a E 2, 1(a()) = f(s) then we 
have 7(2vu 1) = = 7(2nn,) für alle U 1, ..., U,, E f* contained in the same principal 
class! E ; we denote this common value by 7(22r!). Further: I, depends only on the 
(IS-conjugacy class 0 containing the %-conjugacy class r; we write 19 instead of I. 
and we denote the set of (IS-conjugacy classes by Q. Each 0 € Q contains a finite 
number m(0) of -conjugacy classes. Our Poisson formula thus reads 

1(2if	1) = - E m(0) Io(f) .	 (0.5) r OW 

The paper is self-contained and the proofs are quite elementary except for the 
proof of proposition 2.2 where a trace formula is used which occurs in the represen-
tation theory of finite groups. The considerations are independent of the theory of 
Lie groups and Lie algebras. The relations between our formula (0.5) and closed 
geodesics as well as some applications shall be given in a subsequent paper.
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§1 

Let 8 be an n-dimensional vector space over the real field R. We consider F8 also 
as an affine space, taking the elements of 8 in the usual way both as vectors and as 
points. Let 0 be a properly discontinuous group of affine transformations of 8 with 
compact fundamental domain. The translations T € (S form an invariant subgroup 
of (, which contains n linearly independent generators and has a finite factor group 
(l3/ (Bieberbach's theorem [2, 8, 15]). The translation vectors of the elements T E 
form a lattice 1'	over Z; k vectors of I' are Z-linearly independent if and only 

if they are It-linearly independent. Each SE i has the form: V g € 3: S(s) = a(s) + a; 
here a is a linear transformation of FS and a E Z. We use the wellknown symbol: 
S = (a, a) with the multiplication rule (a', a') (a", a") = (a'a", a'(a")-l-- a'). The 
set 2: =. {a 13 S € (i with S = (a, a)} is a finite group isomorphic to (J/; for the 
sake of simplicity we call 2 the homogeneous group. Each a E 2 maps P onto itself. 
Set r = Ord £3. If a € £3 and (a, a) € (S then we call a a vector belonging to a. For 
(a', a'), (a", a"), (a'a", a) E (13 the so-called Frobenius congruences are satisfied: 

a'(a") + a'	a mod I'.	 (1.1)


Definition 1.1: For a€ £3 we set: 

3(a) = ker(a - Id),	j81(a) = im(a - Id);	 (1.2)


n(a) = dim l8(a). 

Lemma l.1: Fora E 9-wehave:

(1.3) 

Proof: From the dimension theorem for linear mappings there follows: 

dim 58 = dim 58(a) + dim 58'(a).	 (1.4) 

Assume g E 58(a) n 581(a); then there is a vector 6 € 58 with a(s) = 6 ± T. Applying 
a' to this equation we obtain 

a'(b)=+v,	v=1,2,..., 

because a() = . 2 is a finite group and we have with r = Ord 2: a' = Id. It 
follows r = 0 and 

58(a) n 58 1 (a) = {O}.	 (1.5)


The equations (1.4), (1.5) imply the assertion I 

Definition 1.2: For a € 2 we eel: 

I'(a) = r n 58(a),	Fl (a) = F n 

T. 1 (a) = (a - Id) (1') g F' (a).	 (1.6) 

Lemma 1.2. The Z-modules P(a), P1 (a) contain exactly n(a), n - n(a) linearly 
independent generator8. The difference module J'l (a) - Fe I (a) is finite. 

Proof: We choose a basis of F; it is also a basis of 58. With respect to such a 
basis the mapping a - Id is described by an integer matrix W with rank n - n(or). 
Taking n - n(a) linearly independent rows of W we get the coordinates of n - n(a) 
linearly independent vectors of r, -(a); but Fe	cannot have more than n - n(a)
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linearly independent vectors, because re' (a) '(a) and dim l3 I (a) = n - n(a). 
Now it is clear, that Fe-L (a) has a basis with n - n(a) vectors. The same must be 
true for F' (a). From this it follows, that F' (a) - Fe '(a) has finitely many elements. 
In order to find the elements of f(a), one has to find the integer solutions of the 
system of linear homogeneous equations belonging to the matrix W. This system has 
n(a) linearly independent solutions. I 

Definition 1.3: For a E 2 we set: e(a) = Card {I i (a) - 

Remark 1.1: Using the elementary divisor theorem one can find a basis 
t)n_n( of F " (a) such that e 1 t3 1 , ..., Sn_.n(0)t)n_n(g) form a basis of re '(a). The 

are the non-zero elementary divisors of the matrix lt used in the proof 
of Lemma 1.2 and their product e 1 ,	= d_ ( ,, ) is the determinant divisor 
of W of order n - n(a). On the other hand one has e(c) = le,..., e,,_,,	This

yields e(a) = ldfl_fl(0)J. 

Remark 1.2: In the following we shall consider the difference Z-module P—I"(a) 
as a lattice in the difference fl-module Q - B '(a). This can be done by identifying 
a coset g + I"(o) of F— r' (a) with the coset E + 3'(a) of 3 - 

Definition 1.4: Let V be the dual vector space of 8 and aT the transposed 
transformation of a € 2. Further: let f* be the dual lattice of I'. We set: 

3*(a) = ker (aT Id),	3*i(a) = im (aT - Id), 
= 1'n 3 *(),	J'*i(a) = En 3*i(a) 

Remark 1.3: 3*(a) and 3*1(a) have the dimension n(a) and n - n(a) respec-
tively. Further: 3* = *(a) Q*i(a). The Z-modules f*(a) and F*i(a) have 
n(a) and n - n(a) linearly independent generators respectively. The proof of these 
facts follows the lines of the proofs for the Lemmata 1.1 and 1.2. 

Remark 1.4: In a natural manner the pairs of vector spaces 3 - 3(a) , 3*(a) 
and 58 '(a), Ql' - *(a) are pairs of dual vector spaces. The dual lattice of P - F' (a) 
considered as a lattice in 8 - 8'(a) (see Remark 1.2) is F*(a). In the same way 

- F(a) is the dual lattice of r , (a).

§2 

Let p be the Lebesgue measure of 58 normed such that a fundamental domain 
of Z has measure 1. Let L2() be the Hilbert space over C of locally quadratically 
integrable -automorphic functions with scalar product: 

(9', v) = f ç,() p() du().	 (2.1) 

The functions	I U € I'*) with 

V I € 3: 9'u() = exp {2,zi(u, )}
	

(2.2) 

form a complete orthonormal system in L2(). Our aim is to find such a system for 
the subspace L2(()	L2() of (li-automorphic functions. 

Lemma 2.1: Let S =(a,a) € (l be an element of (li. Then we have for g E l: 

9'u(5()) = exp {2i(u, a)} q,._(u)Q).	 (2.3)
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Definition 2.1: Two vectors u, U' E I' are called equivalent, if a a E 2 exists 
with u' = aT(u) . Let Q be the set of equivalence classes belonging to this relation. If 
I = Jul,..., u,} E 9, the linear subspace of L2(S) spanned by , ..., q, is denoted 
by L(!). 

Remark 2.1: From (2.3) there follows, that an element 1p € L2() is li-auto-
morphic if and only if its projection on every L(!), I € R, is 0-automorphic. There-
fore it is sufficient to find only the Q5-automorphic functions contained in each of 
the L(!). 

Remark 2.2: For S € Q5 the mapping L(!)   o S is a transformation of 
L(t). If S varies in (IS these transformations give a representation ¶(!) of the group 
2 = (J/41 in L(!). The space L(f) contains exactly h linearly independent (IS-auto-
morphic functions, if (!) contains the identical representation exactly h times. It 
is wellknown that  

Xtr(t)(a).	 (2.4) 
r aE2 

Definition 2.2: For u € P* let R(u) be the subgroup of alla ' E 2 with UT(U) = 
we set e(u) = Ord R(u). We choose a vector a belonging to a € fl(u) and define 

x(u, a) = exp {27ri(u, a)}.	 (2.5)


This definition is correct, because a is determined mod r. 

The following lemma is obvious. 

Lemma 2.2: For equivalent vectors Ii, U' € f* the subgroups R(u), R(u') are con-
jugate. The index of R(u) equals the number of vectors equivalent to u. x(u, .) is a character 
of R(u). 

'Definition 2.3: The vector u € f' is called principal vector, if x(u,.) is the prin-
cipal character of 91(u), i. e. 

V a € 91(u): x(u, a) = 1. 

Lemma 2.3: A class I E S of equivalent vectors contains' either only principal 
vectors or only non-principal vectors. 

Proof: Assume! E Se and u, u' € f. There is a a' E 2 with u' = a'T(u). If a € 91(u) 
then we have a''aa' € 91(u') and 

7(11', a''aa') = (ii, a).	'	 (2.6)


From this the assertion follows I 

Proposition 2.1: 1/! is a class o/ principal vectors, then dim 5{L(!) n L2 ((I5)} = 1; 
if I is a class of non-principal vectors, then L(I) n L2 (63) = {O}. 

Proof: Let I = Ju l, ..., u,} be a class of equivalent vectors and let S, ..., 5, be 
a complete system of representatives of (IS with respect to t Then we have: 

h= '- ,' tr (f) (a) = -- ,' ± (' ° Sp ç). r E2	 r j=1 iI 

According to (2.3) the last scalar product vanishes if a,T(u1) + u1, i.e.' if o, 4 91(u1). 

2 Analysis Bd. 1, Heft 1(1982)
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Therefore we obtain from (2.3) and (2.5): 

E Ez(u1,a). r 1=1 aEl(U) 

We use the following wellknown formula. 

E x(u, a) = {e(u) if (u,.) is principal,	
(2.7) 

oE9l(U)	 0 else. 
Taking into account that e(u 1) = ... = e(u,), 1 = index 91(u 1 ), we find h = 1 if the 
u, are principal vectors and h = 0 in the contrary case U 

Definition 2.4: The set of classes f € St containing principal vectors is denoted 
by . Let yj be a 03-automorphic function with JIVIII = 1 contained in f E . 

Lemma 2.4: (p I f E ,} is a complete orthonormal system in 22(0). 
Remark 2.3: An explicite expression for jq can be found in the following way. 

Assume f = {u 1 , ..., u1 1 E ; let a1, ..., a1 be a complete system of representatives 
of the left cosets of 2 with respect to 91(u 1 ). For i = 1, 2, ..., I we choose a vector a 
belonging to a•. Then we have 

= ± ± exp {2i(u 1, a,)) 9'uj() .	 (2.8)


It is easy to see that Vi has the required properties. 
Proposition 2.2: Let g: SB" —* C be given. Assume that for each a E 2 the series 

Z x(u, a) g(u) 
UEf'(,) 

is absolutely convergent. Then we have 

'(u,a)g(u) =r(1/Cardf)g(u).	 (2.10) 
oE2 U€I'(q)	 TEro	 u€f 

Proof: On the left-hand side we change the order of summation. Taking into 
account the Definitions 1.4 and 2.2 we obtain 

Au , a)g(u). 
u(r aESl(U) 

Finally we apply (2.7) and the equation Card! = r/e(u). The proof is finished U 

§3 

Proposition 3.1: Let/be an element of the Schwartz space () such that V g € F8, 
V a E 2: /(a()) = f(s). Let 7 be the Fourier transform of /; then /(Znu) has the same 
value br every U € f. Denoting this common value by 1(2t) we have 

E/(S(t) - ) =r7(2f)tpf (t)).	 (3.1) 
SE(5 

Both series in (3.1) are absolutely convergent. 

Proof: For fixed g € l3 the left-hand side of (3.1) is a 0-automorphic function 
of t); its Fourier expansion gives 

' /(S(tj) -	= E c() py(t3 ).	 (3.2) 
SE45	 1E0

(2.9)



Poisson formula for Euclidean space groups I	19 

The Fourier coefficients c() are given by 

= Z I A(t1) 1(8(t)) - ) du(t) = r f v't(b + ) f(s) d1s().	(3.3) 
Se5	%) 

In the last equation we have used the fact that almost every point of 8 is contained 
in exactly r of the sets S(.()), S € W. Taking into account the expression (2.8) 
for in we obtain

' exp {-2i(u 1 , a .) - 2ri(u, )} Oj	 (3.4) 
}/j=1 

with

= f exp {-2ni(u j, o,())} /() d,u(b). 

The, function . / and the measure u are invariant under application of o, hence 
Oj = 7(2im 1 ) and 

= r1(2ru1) 

The absolutely uniform convergence of the series in (3.1) follows from the properties 
of the function / belonging to CZ). I 

Corollary 3. 1: If (SJ = Z is a pure translation group then from (3.1) with t) = 6 ± 
the wellknown POISSOn formula, valid for every / E (3), follows: 

f( + t) = E 1(2nu) exp {2ni(u, )}.	 . . (3.5) 
tel'	 u5r 

Proposition 3.2: Let / be any element o/ the Schwartz space C8) with Fourier 
transform /. Then we have 

f /(S() - ) du() = r I' (1/Card!) Ey 1(27ru).	 (3.6) 
S€S	(t)	 1EO	 UEf 

Proof: From equation (3.2) it follows 

E f f(S() - ) du() = E f c!()	d4u().	 (3.7) 
SE'S	()	 fE ,(%) 

Using the expressions (3.4) and (2.8) for cf, tp respectively we obtain 

c) () = 
r

exp {27r11(u 1, am - a,) + (Urn - U,, )]} 0j .	(3.8) 
j.m=1 

The integration over	yields: 

c) () d/A() =	P,.	 S	 (3.9) f 	- 
JFM 

Taking into account that a,T(U1) = u5, = 1, 2, ..., 1 = Card! the formula (3.4) 
gives	- 

= /(2ru).	 .	 (3.10) 

From (3.7), (3.9), (3.10) the assertion follows I 

Corollary 3.2: Under the additional assumption V X € F8, V a E S: /(a()) = 

2
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the /ormula (3.6) reads: 

f f(S( - )d,i() = Ei(2nl) .	 (3.11) 
SE05 j(5) 

Of course F(() is a fundamental domain with respect to (b. 

Definition 3.1: Let 1 and be theLebesgue measures in FS '(a) and Z —l3 1(a) 
such that a fundamental domain of the lattices fi (a) and F - f' .' (a) respectively has 
measure 1. 

Lemma 3.1: If ç' E L1(3) then the following integral formula is valid: 

fç)ds() = f	f q(t +)dita'(t))dp().	 (3.12) 
e 1 (0)	i() 

Here denotes the coset j + 3-(a). 

Proof: It is possible to find a basis 91, ..., Xn of l3 such that (, ..., 
{i,	{fl-fl(,)+1. ..., ,,} span a fundamental domain off', F1 (a), F - r , (a)

respectively. Using this basis we obtain the assertion from the Fubini theorem. U 

Remark 3.1: In the vector spaces	3'(a) and Z" - 3*(a) we introduce 
Lebesgue measures 4u,	which are normed with the help of the , lattices

F*, F"(a), F" - r*(a) respectively. 

Definition 3.2: Let Y be the set 0/ -sonjugacy classes of 0, (S, 8' E 0 are in 
the same -conjugacy class, if a T E .Z exists with S' = TST- 1.) Further let Q be 
the set of i-conjugacy classes of 03. Each 0 E Q is the union of  finite number of 

-conjugacy classes. Let m(0) be that number. 
Remark 3.2: Assume 0 E S2, S E 0 - and let 1(S) be the normalizer of S in 03. 

Let 'J(S) be the image of (S) under the natural homomorphism of 0 onto i/4. 
Then we have m(0) = (ord (3/) : (ord 91(5)). 

Proof: The group (/4 acts as a transformation group in . (via the inner auto-
morphism of tb). Let r E ., S E r, r 0; then 91(2) is the stable subgroup of r and 
the set {r' E .Y 1 r'	01 is its orbit. From these facts the assertion follows. U 

Theorem: Assume fE ((3). Let  ET bea -conjugacy class of (h and S =(a, 6) Er. 
Then we set

1	1. 
= é(a) J 

/(t + 6) da0(L)).	 (3.13) 

1. I,(f) depends only on r (i.e. I, is independent of the choice of S E i). I,(f) has the 
alternative expression:	 I 

= (1f(2n)"(0) e(a)) f exp {i(D, b)} 7(1)) d(o).	 (3.14)

zow 

Here I is the Fourier transform of f. 
2. We have 

Z( 1/Card t)EI(2ru) = -- E	I (f) .	 (3.15) 
tEb	 11€!	 r OED Te 

3. Under the additional assumption V g E FS, V a E 2: /(a()) = f() the value of 
I,(f) depends only on 0 with r 9 0 and the value of 7(2nu) depends only on! E with
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u € f. Then we can write 

L' 7(2 'r) = 1 -	m(0) I(/).	 (3.16) 
UrO	 r OED 

Proof: We use Proposition 2.2 with g(u) replaced by 7(2.iu) 

Z . (1 /Card 1) E 7(2u)	! ' E x(u, a) 7(23ru).	 (3.17) 
f ErO	 UEf	 r aE2 UEF(o) 

For fixed a E 2 and a vector a belonging to a we consider the series 

x(u, a) 7(2ru) =	' exp {2ni(u, a)} 7(2ru).	 (3.18) 
UEPa)	 uer.(c) 

Now we apply the Poisson formula for translation groups (eq. (3.5)) together 
with the Fourier transformation in 23*(a): 

E x(u, a) 7(2ru) = (112n)(°) Y f exp (i(a + t, b)} 7(u) diu0*(13). 

UEt(o)	 tmodJ I (a) S(a) 

The last summation is extended over a complete system of representatives for the 
cosets forming the difference Z-module 1' - F (a). Each of these cosets is the 
union of exactly e(a) coset elements of the difference Z-module F - F (a). Therefore 
we can write:

x(u, a)1(2ru ) = (1/(2iv)'(°)e(a))	'	fexp {i(a + t,u)}7(u)du0*(u). 
uer0 (o)	 modF,1 (a)	(a)

(3.19) 

Now we turn to the -conjugacy classes of (. Firstly we remark that two -conjugate 
elements of (Ii are contained in the same coset of (l with respect to Z. Let (a), 
a E 2 be such a coset; let 8' = (a, a + t'), S" = (a, a + t") € l(a) with t', t" € F. 
It is easy to see that 8', 8" are ¶-conjugate if and only if t' - t" E I' 6 (a). If the 
vector tin S = (a, b), b = a + t runs through a complete system of representatives 
of F with respect to F6 1 (a) then S runs through a complete system of representatives 
of the -conjugacy classes contained in ((a). On the other hand we have for 
u E 3*(a): 

(a + t', u) = (a + t", u) if t' - t" E F61(a). 

This shows that the summand in (3.19) is a function of the t-conjugacy classes; 
therefore we can write 

!' x(u, a) 7(2ru) = Z '(t) .	 (3.20) 
UEI'(a)	 ra(o) 

Here I,(/) is given by (3.14). In (3.20) we sum up over a € 2; on the left-hand side 
we use (3.17), on the right-hand side we make a simple change of the order of sum-
mation. This gives the assertion (3.15). 

In order to obtain formula (3.13) we write down: 

7(u) = f exp {—i(u, gJ /() du(); 

by use of (3.12) we get 

1(0)	f	f exp (—i(u, t) + )} /(t + ) du, -1 (4 ) d1i().	(3.21) 
)5_L(0) 531(e)
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Inserting (3.21) in (3.14) we obtain an expression for I,(/) with three succesive 
integrations; two of them cancel by means of the Fourier inversion formula because 
3*(a) and l3 - J3'(a) are dual vector spaces. The remaining formula is (3.13). Thus 

part 1 and 2 of the theorem are proved. 
In order to prove part 3 w assume V g E F8, V a E 9,: 1(o)) = /(). Then we 

have Vu E *: 1(a 1 (u) = 1(u). From this it follows that /(2u) has the same value 
for all u E t, t E ; we denote this value by 7(2nl). Further let S, 8' be two0-con-
jugate elements of J with S = (a, b), 5' = (a', IY) and 2' = GSG- 1, G = (y, c). 
A simple calculation shows: 

a' = yay', b' = y(b) + c - yay 1 (c).	 (3.22) 
From this we have 

= Y(% , (a)), I"(a') = 

re'(a') = y(fe'(a)), e(a') = e(a), y 11 = 

If the coset of b'(resp. b) modulo l3 '(a') (resp. jS '(a)) is denoted by b' (resp. b) then 
we have b' = (b). Transforming the integral in (3.13) with the help of the linear 
transformation y we obtain 

+b')d4u,(tj) = ---- f1t +i)du0'(t3). 
n'(0) 

This shows that I,(/) is a function of the Oi-conjugacy class 0 € Q containing r; in 
this way the notation I(/) is justified. The proof of the theorem is finished I 

Proposition 3.3: Let f(r), r € Y be the (n - n(a))-dimensional plane in the 
a//ins space 58 which i8 the domain of integration occuring in the expression (3.13) of 
I,(f) .	 - - 
a) dim f() = 0 if and only if r contains translations. 
b) 0 E f(r) if and only 

if 
the elements S E -r have fixed points. 

Proof: a) dim (r) =0 means that dim 3'(a) = 0; owing to Lemma 1.1 this is 
equivalent to dim (a) = n, i.e. a = Id. 
b) From (3.13) it follows that 0 E f(r) if and only if b € Z '(a); here S = (a, &) is 
any element of the class r under consideration. b E '(a) is equivalent to the exis-
tence of a CE 3 with b = c - a(c); in this case we have 5(c) = C. Finally we 
remark: if some element S € r has fixed points, then every element of r has fixed 
points. 
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