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On Counterexamples for Rates of Convergence concerning Numerical 
Solutions of Initial Value Problems 

W. Dicxiaiis 1) and R. J. NESSEL 

Es ist das Anliegen der vorliegenden Note, die Annhherung von Differenzenverfahren an die 
exaktc Losung sachgemhf3 gesteilter Anfangswertaufgaben zu untersuchen. Genauer wird 
gezeigt, daB die Konvergenzgeschwindigkeiten, die unlängst fiber abstrakte Approximations-
shtze vom Lax-Typ hergeloitet werden konnten, tatsächlioh scharf sind. Diese Aussagen folgen 
aus einem ailgemeinen Beschrhnktheitsprinzip mit Ordnung, das hier im Rahmen diskreter 
Approximationen von Banach-Rhumen hergeléitet wird. Die dabei benutzte Beweismethode 
ist die klassische Methode des gleitenden Höckers, die jedoch nun mit Ordnungen versehen ist. 
Die aulgefuhrten Anwendungen betreffen hyperbolische wie parabolisehe Aufgabeu und dienen 
in erster Linie dem Zweck, den einheitlichen Zugang zu Fragen der Schärfe von Feller-
abschätzungen aufzuzeigon. 
B pa6oTe HecaeAye'ren flp1t6JIHReHHe MOTOJOB ceToK H T0qH151 pealemim.1 KOKTHO 
nocTasneHHaix 3aga q Komu. Boiee nopo6Ho: noKaahlsaeTcu, qTO oieuuu C}{OOCTH cxoiu-
MOCTI!, HOJLaBHO nwiyenaze H8 06flHX allBpoRcitmailHOHHEIX TeopeM nina Lax, HBJIRIOTCH 
TOq HLIMII. PeaymbTaml 3TH noiyaioc H3 HeKoToporo o6aero npuiuna OI'paBMeHHOCTM 
C nop1UKoM, KOTOpbIl B pa6oTe ycTaHaBJInBaeTCH B paax JuCKpeTHO1 annpoKcuMawin 
6aIaxonblx npocTpaucTs. MeTOA AoHa3aTejibCTBa coBriaaeT no CYIAeCTBy C 
MTOJOM cxojmaiuero rop6a, caa6eHHHft 0JHKO nOpflJKOM. AaHHLie upuMeneHm1 
OTHOCHTCH It K rnnep6OJmMecHHM H K Uapa6oJiHecKi1M 3aga tiam H CJIKT B llepBOfl oepeui 
AeM0HcTpaqmeft o6nero nogxoja K BO[iOC15 ToqnocTF! OUH0K norpeuluocTu. 
The present note is concerned with the approximation of the exact solution of a properly 
posed initial value problem by finite difference methods. It is shown that those rates of con-
vergence obtained in previous papers on abstract Lax-type theorems with rates are indeed 
sharp. This is achieved as a consequence of a general uniform boundedness principle with 
rates, given in the setting of discrete approximations of Banach spaces. The method of proof 
is the familiar gliding hump method but now equipped with rates. The applications presented 
emphasize the unifying approach to various concrete results scattered in the literature. 

1. Introduction 

This note is concerned with the approximation of the exact solution of an initial 
value problem by difference methods. It will be shown that those rates of con-
vergence given in previous papers on abstract Lax-type theorems with rates (e.g. 
[4, 6, 7]) are indeed sharp. This will be a consequence of a general gliding hump 
method equipped with rates. Corresponding concrete results given e.g. by HEDSTROM 
[14] and BRENNEE-ThOMEE [1] (see also [2, pp. 76, 111]) use rather specific argu-
ments, for example, in the framework of Fourier analysis. 

Given a properly posed initial value problem 

d/dt 'u(t) = Au(t),	u(0) = / E X, 

') The contribution of this author was supported by Grant No. II B4 FA 7888 awarded by 
the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen.



60	W. DICKMEIS and R. J. NESSEL 

on a Banach space X (with norm fi . j ), the solution may be represented in the form 
u(t) = E(t) /, t	0, where 

E(t) E [X] and il E (t )J1i ^5 C	(0	t	T < co), 

E(t) E(s) = E(t + s)	 (s, I	0),	 (11) 
limE(t)f = E(0)/ =1	 (1€ X). 

Here [X] = [X, X] denotes the space of bounded linear operators from X into 
itself. 

A difference method for the approximation of the continuous solution semigroup 
(1.1) is described by operators E, E [X h}; 0	r	1} where for each h = h(t) the 
linear space Xh is endowed with norm	. The spaces X,, are related to X in terms

of operators Ph € [X, Xh] satisfying 

(i) !iPh/iih ^ C l/ill	(11> 0,1 E X),	
1 2 

(ii) ijin lPh/iJh = Il/lix	(/ € X), 

i.e., the operators Ph and spaces Xh define a discrete approximation of X (cf. [17] 
and the literature cited). 

The difference method is assumed to be consistent of order cx with the solution 
semigroup (1.1) on the linear subspace U	X with seminorm	, i.e., 

l[ E,Ph - Ph E(r)] E(t) /iih 5 Cr'	i/lu	 (1.3) 

uniformly for all / € U, 0 :^-,	1, 0 < 1 < T. If the difference method is stable,

i.e.,

ijETiI.y, ;S C	(0	1, 0	T, j € N)	 (1.4)

(N: = natural numbers), then the approximation error satisfies 

Il E ' Ph/ - PhE(nr) / ^S CS(nr', /; X, U)	 (1.5) 

uniformly for all / € X, 0	r	1, 0	nt	T, n € N (see [4, 6, 7], also [15], and

for related material [121). Here theSt-functional 

X, U) := ml {IL/ - gil1 + £ l g iu}	(/ € X, 1 ? 0)	 (1.6) 
9EU 

serves as an abstract measure of the "smoothness" of / € X. Note that the constants 
C in (1.1-5) and in the following may have different values at each occurrence. 

Let to be a modulus of continuity, thus a function defined on [0, ), continuous 
and monotonely increasing there such that (cf. [16, p. 96ff.]) 

w(0) = 0,	w(1) > 0 for 1> 0, 

w(1 -.f- 1) < w(t) + 02).
	 (1.7) 

Then one may introduce intermediate spaces U c	X by 

{t € X; l(t, /; X, U) = c!(w(1)), t -+0+)	 (1.8)

with seminorm

sup Wt, /; X, U)/w(t).	 (1.9) 
t>o
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For / E X. and nr = £0 = 1 (fixed), the estimate (1.5) now implies the rate of con-
vergence

llE , P,f - PI E( l) Ills = e(w(n- 0))	(n - cc).	 (1.10)


In fact, concerning the operator norms of the approximation error 

llE 1 P5I - P5 E(l) /lls	 (1.11) IIEfl P - PSE(1)ll [x0..x01 := sup II	i/n S
1110.40	 1/10. 

the estimate (1.5) even delivers 

11E 1 P5 - PsE(l)Il t xw x, i	Coi(n).	 (1.12) 

It is the purpose of this note to show that convergence assertions of the previous 
type are indeed sharp in the sense that there exist elements f. € X. for whiéh e.g. 
the right side of (1.10) cannot be improved to 

To this end, Sec. 2 exhibits a general approach (Thm. 1) concerning the existence 
of counterexamples dealing with rates of convergence for X 0.. Sec. 3 presents a 
theorem on Voronovskaja-type relations for iterates of operators and gives a more 
detailed description of the difference methods employed. Sec. 4 is concerned with a 
hyperbolic initial value problem, the solution of which is represented by the trans-
lation semigroup. An application of Thm. 1 then improves results of HEDSTROM [14] 
and BRENNER-THOMEE [1] (see also [2, p. 111]) in as much as a sequence {f,} 
may be replaced by a single element / € X. to achieve certain lower bounds (cf. 
(2.7), (4.4)). In Sec. 5 the solution sernigroups are certain holomorphic semigroups. 
Here an application of Thm. I mainly reproduces results given by HEDSTBOM [14] 
(see also [2, p. 76]) in the special case of the Gauss-Weierstrass semigroup. In any 
case, the choice of applications presented here is of course not complete but rather 
exemplary, emphasizing the unifying approach via Thm. 1 to various concrete 
results known so far in the literature but derived there by different and specific 
methods. 

2. Counterexamples via the Gliding Hump Method 

Let us commence with an observation concerning operator norms on X. (cf. (1.11)). 

Proposition 1: Let X be a Banach space, {Y} a sequence of normed linear spaces, 
and U c: X a seminormed linear subspace. Let {q} denote a sequence of positive numbers 
with

lim q = 0 monotonely decreasing.	 (2.1) 

If for each R € [X, Y] there exists gn € U such that for all n € N 

llg llx	Cj ,	 (2.2) 

1901u ;5 C2/9 ,1	 (2.3) 

llRgl[ ^ C3 > 0,	 (2.4) 

then there exists a constant C4 > 0 such that for any modulus of continuity co and for 
each n E N 

ILR111x0..y1 ^ C4w(q',).	 (2.5)
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Proof: It is a well-known fact that for each modulus of continuity one has (cf. 
[16, p. 99]) 

w(s)/s	2w(t)/t	(8 ^! t > 0).	 (2.6) 

Consider now the elements g n.. : = w(lp,,) gn € U c X. Since (cf. (1.7), (2.2/3), 
(2.6))

(t g	X U) < JI1n.wIJx 5 C1w(ç,,,) ^ Cw(t)	for t ^ q,,, 

	

= It Jn.Iu ^5 C2tw(-p)/97 	2C2w(t)	for t 

one has that	^5 C	max {C1 , 2C2 }. Thus by (2.4) 
jRngn.0 iJ n/C*	C3w(cp,,)1C, 

i.e., one has (2.5) with C4 := C3/C* > 0 independent of co and n € N 
On the other hand, note that (2.5) is equivalent to 

for each n E N there exists /.,. € X. with	
(2.7)


IfI _-:^ C and IIR f.,,118 ^ c4'*w(), 

in other words, a first glance at conditions (2.2-4) yields the existence of a sequence 
For moduli of continuity satisfying 

lim co(t)/t = 00,	 (2.8) 

however, one may even formulate the following resonance principle. 

Theorem 1: Let X, U, {Y}, {q,j, {R,,}, and {g8} satisfy the conditions of Prop. 1. 
Then for any modulus of continuity satisfying (2.8) there exists an element / E X, 
such that

1R0f,I == '(o (q'n))	(ii —* co).	 (2.9)

Proof: Assume that (2.9) does not hold, i.e., for each f E X. one has 

IIR fI[ = o(cv())	(n --> oo).	 (2.10) 
Starting with an arbitrary n1 E N, one may successively construct an increasing 
subsequence {k} N such that the following conditions are satisfied simultaneously 
(k ^! 2):

(1/2) W (97nk_1 ),	 (2.11) 
k—I 

' w(q',,,)/q,	 (2.12) 

IL k-i II[ X,	(C3/6C1) w(Wn j )fw(q fl),	 (2.13) 

JRnkhk_lIJn :&- (C3/3) co(ç),	 (2.14 
k—i 

hk _ l :=	cu(q,,) gn, € U. 
i—i 

Indeed, (2.11-13) may be satisfied in view of (1.7), (2.1/8), whereas (2.14) is a 
consequence of (2.10). By (2.2/11) it follows that 

00	 00	 00 

E Ikv(q,) g,ILv	C1	w(q,)	C1w(ç,) ' 2	< 00. 
j=i	 3=1	 1=1
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Therefore h0. r=r E w(ç',) gg, is well-defined as an element of X since X is complete. 
Moreover, h. E X,. Indeed, for each t E (0, q,) there exists k EN such that 99k+1 
<	Using the corresponding hk E U and conditions (2.2/3), (2.11/12), and finally 

(2.6), one has in view of definition (1.6) 

(t, h; X, U)	IIh - hkl!x + t Ihiclu 
k 

=	Ct)(92,,,) a,,,	+	cu(q,,,,) gn, 
j = k+I I	 1	 lu 

^ 2Coi(q,,, 1 ) + 2C2tw(9,fl)/q,fl 
(2C1 + 4C2 ) w(t). 

This proves that h. E Zr.,. Applying Re,, to 

h0. = w() g + hk_j + (he, - hk), 

one obtains by (2.4) and (2.13/14) that 

JRflkh IIflk jj^ Rfl co(pfl ) gflkIIfl - JRflkhk_jIJfl k - IlR II1x. y i Iih - hkIlx 

C3w(ç) [i - 
73 - 

This is a contradiction to (2.10), proving the assertion I 

The proof is based on a gliding hump method as known since the last century, 
but now equipped with rates. This building in of rates was initiated in relevant work 
of Teljakovskii and Mertens-Nessel concerning multipliers of strong convergence for 
the one-dimensional trigonometric system and for regular biorthogonal systems in 
Banach spaces, respectively. For further comments, however, one may consult 
[9, 10], in particular for an interpretation of Thm. 1 as a uniform boundedness 
principle with rates as well as for applications to approximation and interpolation 
theory, numerical quadrature formulae, and for its connections to Banach-Steinhaus 
theorems with rates. In the following we will give applications to the numerical 
solution of initial value problems. 

3. A Voronovskaj a-Typo Relation for Iterates 

Apart from some interest in itself, the following (first) asymptotic expansions for 
iterates of operators are used to verify condition (2.4) in the applications. In fact, 
only very special cases of the following, more general treatment are needed (cf. 
Thm. 2). 

Lemma 1: Let (E(t)) = [X] satisfy (1.1) and {E, € [Xh]} be a stable difference method. 
Let B be a closed linear operator from D(B) c X into X such that D(B) is dense in 
X, E(t) (D(B)) c D(B), and 

BE(t) fIJi	C I!BIIJx	(j E D(B), 0	t :!E^: T).	 (3.1)


Then the Voronovskaja-type condition (tx> 0, r —* 0+) 

J[E,Ph - PhE(r)] E(t) / - tl+4PhE(1) B/Ifh = L,(Ta),	 (3.2)
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for each / E D(B) uniformly for t E [0, T], implies correspondingly for the iterates that 

ll E, Ph/ - PhE(nT) f - nT1+aPhE(nr) B/ h = nor')	 (3.3)


for each / E D(B) uniformly for nr E [0, T], n € N. 

Proof: First observe that D(B) =: U is a Banach space with respect to the norm 
flu : = liflix + JIBIl Ix . Therefore by the uniform boundedness principle condition 
(3.2) implies consistency of order a on U, and thus convergence (1.5). For each 
/ E D(B) one has 

IIET"Ph/ - PhE(nr) / - nr'PhE(nr) B/li,, 

'v: E"i'[[E,P,, - P,,E(r)] E(ft) f - x'P,,E(j) B/] 

+	 - PhE((n - j - 1) )] E(jr) B/ 

+	llPE((n - 1) T) [E(0) - E(r)] Bfll,,. 
Stability (1.4), convergence (1.5) as well as conditions (1.1/2) and (3.2) yield 

llEP,,/ - P,,E(nr) / - nr''P,,E(nT) B/il,, 

nC') + t'E CS ((n - j - 1)	E(jT) B/; X, U) ± nr'(1). 

But in view of (1.1) and (3.1) one has IE(jr) glu	C Iglu for each g  U, and hence

uniformly for 0 j n - I (t—*0+) 

E(ft) B/; X, U) 5 CS(r, B/; X, U) = 
This completes the proof M 

As concrete examples of spaces X, U, X,, we consider X = C,,(R), the space of 
uniformly continuous, bounded (complex-valued) functions on the real axis R 
endowed with the usual sup-norm I f• 

U : =  C(R) : = {f € CUb(It); f(i) € C,,(R), j = 0, 1,-..., r}, 111u: = Ub 

and X,, = C,,(R), the space of bounded functions on the mesh hZ	(vh; v € Z

(:= integers)} with sup-norm. The restrictions F,, defined by 

(P,,/) (v/i) := f(vh)	(v € Z, f € C b(R))	 (3.4)


obviously satisfy (1.2). If T(t) denotes the translation operator 

(T(t) I) (x) := f(x + 1)	(x, £ E R, / € CUb(R)),	 (3.5) 

then the difference methods of type 

E, :=ak(1) T(kh),	 <00,	A:= ri/i ^! 0	 (3.6) 

are well defined in [C,,(R)]. The following lemma gives a sufficient condition for 
(3.2) to be satisfied for the semigroup {T(t); t	0)	[CUb(R)] in terms of the weights 
ak(A).
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Lemma 2: Let {E,} be given by (3.6) such that (1 <r E N) 

(i) L' kiak(2) k =	 + b(.)) )r,	, = r,	•' - 1, 

(ii) f !kTak(A)I < oo.	 (3.7) 
k= - 

Then JEJ and {T(t)} 8ati8/y (3.1/2) with a = r - 1, B = (b(A)/r!) (d/dx)', and 
D(B) = C(R). 

Proof: Since (3.7) (i) implies (Ak = r) 

co	
1,	j=O, 

L'ak(A)(kh—r)= 0, 
TTb(A),	= r, 

one obtains for / E C(R), v E Z, t > 0 

I(ETPhT(t) /) (vh) - (PhT(t + r) /) (vh) - r'(b(A)/r!) (PhT(t) /(r)) (vh)I 

= jk=-00 
a(A) I E/W(vh + t + T) (kh -
 L= 

1	kh 
+	f (kh - u)T/(r)(vh + I + u) du 

r	1)! 

- /(vh + I + r) - rr(b(A)/r!) /()(vh + I) 

kh 
1 

= I a(A) (r - 1)! 1 (kh—u)1[/()(vh +t+u) —/()(vh+t +T)]du 
I=-°° 

+ rT(b(A)/r!) [/()(vh + I + r) - /(')(vh + I)] 

^ E	ak(A)l ( l kh - ri n/r!) sup	/ (')(vh + I + u) - /( (vh + I + t)

Ou—TT'l' 

+	2	ja(1) ( I kh - ri n/r!) 2 I/IIc 
I kh - 

+ rT(b(2)/r!) /(r)(vh + t + T)	/()(vh + 1)1 

a(A) (1 k/A - 1j'/r!) sup II/)	/(r)(. + ö)IIc k--co 
+ )r"	E	Iak(A)l (1 k/A - lj'/r!) 2 !I/'l1c 

IkI2-1I>1I1" 

+	(b(a)/r!) II/() - /(v)(. -.1-. t). 

In view of the uniform continuity of /(r) and the absolute summability of the series, 
all terms are of order (rT), r -* 0 +. This establishes the assertion I 

5 AnaIyIs Bd. 1, Heft 1 (1982)
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Note that in the concrete situation of these spaces X and U the Q-functional 
turns out to be equivalent to the classical r-th modulus of continuity 

w,(t, /) : = sup 1[T(8) - T(0)]" /jc, 
O^8g 

i.e., there exist constants c 1 , c2 > 0, independent of / € C b (R) and I ^ 0, such that 

^s O r, /; C b(R), C(R)) ;5 c2w,(t, /).	 (3.8) Ub 

Thus for o(t) : = tP, 0 <fi 1, the intermediate spaces X. =: Xp are the standard 
r-th Lipschitz spaces 

X fl = Lip, (#r): = {f € C b(R); wr(t, I) = e(tflr), t —* 0 +} 
see e.g. [3, p. 192f.]). 

4. Approximation of the Translation Semigroup 

In this section we are concerned with the approximation of the solution of the 
hyperbolic initial value problem 

d/dtu(x, t) = d/dxu(x, t),	u(x, 0) = /(x) € Cub( R)	(t	0) 
by stable difference methods of type (3.6) satisfying (3.7). Since the solution is 
given by the 'translation semigroup (3.5), condition (3.7) implies consistency of 
order r — 1 on C(R), as was indicated in the proof of La. 1. Thus one has con-
vergence (1.5), i.e., 

IE I P,J - P1,T(1) /IIh = (w(n +1 ))	(n -- cc, / E X,,). 

The following theorem shows that this rate of convergence is indeed sharp. 

Theorem 2: Let {E, € [CA(11)]; 0 r !!^: 11 be a difference method of type (3.6) 
8atz8fy?ng (3.7). Then for each modulus of continuity co and each A> 0 with b(A) =1= 0 
there exi8t8 an element 1,. A = f°. € X,, .such that 

IJE 1 P f,, — PhT(1) fI!h == o(cv(n'))	(n - co). 

Proof: First of all, consider moduli of continuity satisfying w(t) = t(t). Then 
any /, € D(B) with Bf,, = (b(2)/r!) f,,,() rj= 0 (cf. La. 1/2) may serve as a counter-
example since the Voronovskaja-type relation (3.3) and (1.2) (ii) deliver 

lim n 1 IIE,P,f — PAT(l) fwllh	lim JPhT(1) Bf,,l!h 

IT(1) B/,Ijc = IWwIic+ 0. 
Thus let (0 satisfy (2.8). For an application of Thm. 1 consider the operators 
(h = 1/).n')

= R :=	— PhT(1) € [C b(R), Ch(R)] 

and the functions 0,, and g,,i = g,, defined by (c> 0) 

0,,(x) : = exp {icx},	g(x) = 0,,(An'x) = exp {ic2nt_lx}, 

respectively. Thus (2.2/3) follow for U = C(R) and q = _r(t_1)• To show (2.4),.
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note that one has r = n T, h = I/Aur as well as the eigenvalue properties 

= Z a(A) exp {icAn 1kh} P,,jj, 
Ic 

= E ak(A) 0,(k/n), P1g 

= ([E41 P ,1 0 1 (0)) 

PhT( 1) gn = Ph exp {ic2n'9 ga = [O)]"' 
[Ei,P,,O] (v/n) = Z a(A) exp{ic((v -f- k)/n)} 

= ([E21 P,i 0 ] (0)) 0,(v/n). 

	

Since 0(0) = lIPgflhJ = 1, this yields	 fr 

= Il[[E inP i1n0c] (0)]" PAy,, - [O(A)1")) PAN11h 
= I[[E71,,Piia0cl (0)1"'' - [MAW-1I. 

Using La. 1/2 one obtains 

= [[P,,,,T(A) O] (0) + n(A/n) (b(A)/r!) [P,,,,T(A) O] (0) 

+ (nT')]"'' - [Oc(A)1"'! 

= IO(A)I n` 1[1 + A0./n)-1 b(A) (1)/! + (n_T+1)]' - ii. 

Since IO(A)I = 1, this implies 

urn	= exp (icA)' b(A)/r!} - ii. 
fl-+00 

If r is even, then b(A) 0 immediately implies that this limit is different from zero 
(for each c > 0); if r is odd, one may choose c = c(A) to ensure this property. Thus 
one has (2.4) for all n n0(A). Therefore an application of Thm. 1 delivers the 
existence of an element 1, . A = /,, E X. such that 

urn sup	 > 0. 

This implies, at least for the subsequence m = V, that 

lim sup flEr,mPJw - PAT(1) /I6/w (m '') > 0, 
M- 00 

completing the proof 
Examples: The explicit, implicit, semi-discrete difference operators 

	

:= (1 - A) T(0) + AT(h),	A E [0, 1],	 (4.1) 

E,:= 
± A kO (	A) 

T(kh),	A ^ 0,	 (4.2) 

E, :=	T(kh),	A 	0,	 (4.3) 

respectively, satisfy (3.6/7) with r = 2 and b(A) = A'(l - A), A'(l + A), A', 
respectively. Thus in any of these cases one has the rate of convergence 

IIE inPh/ - PAT(1) f = 9(w(1/n))	(n --> oo) 

5*
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for all / € X; this is sharp since for each co and each A € (0, 1), A E (0, co), respec-
tively, there exists at least one element	= /,,. E X such that 

11E7,flPhIW - PhT(1) /.III, == (w(1/n))	(n -* oo). 

For the difference schemes (4.1-3) the operators T(/; ). ) := [E7,P 11 1] (0) 
occurring in the proof of Thm. 2 turn out to constitute classical approximation 
processes, namely the Bernstein polynomials, the Baskakov operators and the 
Szasz-Mirakjan operators, respectively (for details see [8]). Thus La. 1 also allows 
to reduce the proof of the well-known Voronovskaja relations for these approxi-
mation processes to the corresponding simpler ones for the step operators (4.1-3). 

	

Note that Prop. 1 yields a sequence {/fl.w} c X. with /I	C" and (n 

II1/n)hIn.w — PI T(l) /n,oIIh	Cco(n''),	 (4.4) 

so that in terms of the operator norms (cf. (1.11)) 

"E' P - PhT(1)IJ (x C(R)1 ^ Ca(n_'). ii	tin h 

For the intermediate spaces Ip = Lip, (2fl), i.e., for w(t) = t, 0 <f < 1, this result 
was obtained by HEDSTBOM [14] and BRENNER-THOMEE [1] (see also [2, p. 111]) for 
Xh = 0 b(R) and Ph = I( = identity). Thm. 2 (cf. (3.8)) now states that at least 
for a subsequence {k} the elements may be replaced by a single one /, € X,. 
In this sense Thm. 2 is an improvement of (4.4) and an extension to all nrnduli co; 
but, on the other hand, due to the general approach via Thm. 1, there is a restriction 
to an unknown subsequence {k}. 

5. ilolomorphic Semigroups 

In this section we consider the holomorphic semigroups (0 <ô 2) 

[W6 (t) /] (x) := r h fö f/(x + ,u) k6(u/t' 16 ) du	 (5.1) 

(x € R, t > 0, / € Cb(R)), where ka is given via its Fourier transform 
00 

k(v) :=__1_. fk6(u) e- i-u du = exp( —IvI 6j 	(v € R). 
-00 

This semigroup solves the initial value problem 

d/dt u(x, t) = _(_(d/dx)2)512 u(x, t),	u(x, 0) = f(x) € Cb(R), 
where the fractional power of the differential operator is to be understood in the 
sense of BocmrER and FELLER [13] (see also [5, 18]). For the approximation of. 
these sernigroups we consider stable difference methods of type (3.6) with A = v/h6 
that reproduce constant functions, i.e., E ak(A) = 1. If the difference method is 
consistent of order a on U = C(R) with a no - 1, r> 0, then for / € Lip (ft) 
0 <jI < j9 : = r - 0, one has the rate of approximation (cf. (3.8)) 

!IEi,nPht — P5 W5(1) tIIh = (_aflf(r_ô))	(n -* op.);	 (5.2) 

it is better than that given by (1.5); for a proof see [11, 15]. In case x = rIO - 1 
this rate is again best possible.
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Theorem 3:- Let {E,} be a di//erence method of type (3.6) with 2 = rIhö that re-
produces constant functions. If the method is stable and consistent of order r/ô - 1 with 
the semigroup {W(t)}, then for each ft E (0, flu) there exists an element fi E Lip,. () 
such that

IIE ,nPsfp - 'aWo(l) fpIIs	c(n 1h6 )	(n —p. oo). 

Proof: Consider the operators 

- PA W6 (1) E [C b(R), C(R)] 

and the elements 

g(x) = cos (2nx/h),	h = (n2)1/5. 

Obviously tliese elements satisfy (2.2/3) with ,, = n_n o. Since the difference method 
reproduces constant functions and P,,g(vh) = 1 for all v E Z, one has 

=	- P5 W6 (1) gnu,, = Il l - ko(2n/h) Ptq.11j, 
=l—k(2n/h)=1+a(l) (n->oo), 

proving (2.4). Thus the assertion follows by Thm. I upon setting w(t) = 
0 <fi</J0< r I	 S 

Example: For ô = 2 the operators (5.1) constitute the Gauss-Weierstrass semi-
group. Consider the explicit difference scheme 

E, = (1 - 22) T(0) + A[T(h) + T(—h)],	2 = nh2. 

This scheme is stable for 0 ^ A ^-, 1/2 as well as consistent of order 1 on U = C(R) 
for 0 <2 1/2, and even consistent of order 2 on U = C(R) for A = 1/6. Thus 
one has consistency of order r/ô - 1 and convergence of order 0(n /2) for E Lip, (a), 
o <fi <2, if A E (0, 1/21, and for / E Lip6 () 0 < fi < 4, if 2 = 1/6. Thm. 3 then 
states that these rates of convergence are indeed best possible. 

Let us mention that the result of Thm. 3 (for 6 = 2) was also given in [14], 
[2, p. 76]. The proofs there are constructive (for subsequences of type n k = C"). 
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