Zeitschrift fQr Analysis
und ihre Anwendungen
1(1982), 8. 59—70

On Counterexamples for Rates of Convergence concerning Numerical
Solutions of Initial Value Problems

W. Dicgmers?) and R. J. NESSEL

Es ist das Anliegen der vorliegenden Note, die Annéherung von Differenzenverfahren an die
exakte Losung sachgemiB gestellter Anfangswertaufgaben zu untersuchen. Genauer wird
gezeigt, daB die Konvergenzgeschwindigkeiten, die unlingst iber abstrakte Approximations-
siitze vom Lax-Typ hergelcitet werden konnten, tatsichlich scharf sind. Diese Aussagen folgen
aus einem allgemeinen Beschrinktheitsprinzip mit Ordnung, das hier im Rahmen diskreter
Approximationen von Banach-Raumen hergeleitét wird. Die dabei benutzte Beweismethode
ist die klassische Methode des gleitenden Héckers, die jedoch nun mit Ordnungen versehen ist.
Die anfgefiihrten Anwendungen betreffen hyperbolische wie parabolische Aufgaben und dienen
in erster Linie dem Zweck, den einheitlichen Zugang zu Fragen der Schirfe von Fehler-
abschitzungen aufzuzeigen.

B pa6ote mccaenyercA npHOIMKeHHE METONIOB CETOK K TOYHHIM pEIEeHHAM KOPPeKTHO
noctaBieHHHX 3aa4 Homu. Bosee nogpo6Ho: nokaskwBaeTcsd, YTO OMEHKH CKOPOCTH CXOAM-
MOCTH, HEJaBHO MONy4YeHAHEe M3 OOmMNX aNOpOKCHMALMOHHHX TeopeM THHA Lax, ABIATCA
TOUBEIMH. Pe3yNbTaTH OTH MOJYYyaIOTCA M3 HEKOTOPOro o6Mmero MPHHUMMA OrPaHHIEHHOCTH
C DOpPATKOM, KOTOPHit B paboTe yCTRHABIMBAETCA B PAMKAX JMCKPETHON anmmpOKCHManuit
6aHaXOBHX NPOCTPAHCTB. METOX AOKA3aTeNbCTBA COBIANAET MO CYINECTBY C KIACCHYECKUM
METOMOM CKOAb3Amero rop6a, cHab:keHHHH oOAHAKO nopsAxkKoM. JlaHHKHe IpUMEHEHHA
OTHOCATCA M K rAnep6oanyeckuM M K mapabonMyecknM 3ajlayaM ;M CIyKaT B IEpBOii ouepenu
nAemMoHCTpauuelt o6mero NogXoRa K BONPOCAM TOYHOCTH OLIEHOK NMOTPELIHOCTH.

The present note is concerned with the approximation of the exact solution of a properly
posed initial value problem by finite difference methods. It is shown that those rates of con-
vergence obtained in previous papers on abstract Lax-type theorems with rates are indeed
sharp. This is achieved as a consequence of a general uniform boundedness principle with
rates, given in the setting of discrete approximations of Banach spaces. The method of proof
is the familiar gliding hump method but now equipped with rates. The applications presented
emphasize the unifying approach to various concrete results scattered in the literature.

1. Introduction

This note is concerned with the approximation of the exact solution of an initial
value problem by difference methods. It will be shown that those rates of con-
vergence given in previous papers on abstract Lax-type theorems with rates (e.g.
[4, 6, 7]) are indeed sharp. This will be a consequence of a general gliding hump
method equipped with rates. Corresponding concrete results given e.g. by HEDSTROM
{14] and BRENNER-THOMEE [1] (see also (2, pp. 76, 111]) use rather specific argu-
ments, for example, in the framework of Fourier analysis.

Given a properly posed initial value problem
d/dt u(t) = Aul?), u(0) =f€ X,
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on a Banach space X (with norm {|-{iy), the solution may be represented in the form
u(t) = E(¢) f, t = 0, where :

E@) € [X] and [[E@In=C (O=t=T <o),

E(t) E(s) = E(t + 5) (5,620), (1.1)
Jim B@) ] = E(©) = / (f € X).

Here [X] :=[X, X] denotes the space of bounded linear operators from X into
itself.

A difference method for the approximation of the continuous solution semigroup
(1.1) is described by operators {E, € [X,]; 0 < v < 1} where for each A = k(1) the’
linear space X, is endowed with norm ||-|l;. The spaces X, are related to X in terms
of operators P, € [X, X,] satisfying

() I1Pflls < C Jifilx (h>0,f€X), 2
(ii) lim [Paflls = llfilx (f€ X), o
h—0

i.e., the operators P, and spaces X, define a discrete approximation of X (cf. [17]
and the literature cited).

The difference method is assumed to be consistent of order « with the solution
semigroup (1.1) on the linear subspace U — X with seminorm |-|g, i.e.,

WE.Py — PE@IE® fily = Cr** |flg (1.3)

uniformly foral fe U, 0 << 1,0 gt < 7. If the difference method is stable,
i.e., .
By =C  (0=1=1,0=jr<T,j€N) (1.4)

(N: = na;tural numbers), then the approximation error satisfies
|EPyf — PrE(nr) flh = CR(nt'*e, f; X, U) (1.5)

umformlyfor al fe X, 0=t 1, OSanT n € N (see [4, 6, 7], also [15], and
for related material [12]). Here the f-functional

e, 15 X, U)3=in£{”f—g”x’+t|9|u} (feX,t=20) (1.6)
. e
serves as an abstract measure of the ‘“‘smoothness” of f € X. Note that the constants
C in (1.1—5) and in the following may have different values at each occurrence.

Let w be a modulus of contlnulty, thus a function defined on [0, co), continuous
and monotonely increasing there such that (cf [16, p. 96ff. ]

- w(0) =0, w(t) >0 for t>0
w(t, + t,) < wl(ty) + o).
Then one may introduce intermediate spaces U — X, < X by
X,:={fe X; R }; X, U) = 0ot)), t > 04} (1.8)
with seminorm

o= sup K¢, 13 X, U)ol). (1.9)
>0

(1.7)
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!
For f € X, and nt = ¢, = 1 (fixed), the estimate (1.5) now implies the rate of con-
vergence
IB2aPrf — PoEQL) flls = O(w(n™®)  (n—>o00). ‘ (1.10)
In fact, concerning the operator norms of the approximation error

E® P, — P,E(1)
152 — PuB(Dlir = sup 120t TP,

(1.11)

the estimate (1.5) even delivers _
IE? Py — PAE(Wlix0.x = Cw(n™?). (1.12)

1t is the purpose of this note to show that convergénce assertions of the previous
type are indeed sharp in the sense that there exist elements f, € X, for which e.g.
the right side of (1.10) cannot be improved to o{w(n)).

To this end, Sec. 2 exhibits a general approach (Thm. 1) concerning the existence
of counterexamples dealing with rates of convergence for X,. Sec.3 presents a
theorem on Voronovskaja-type relations for iterates of operators and gives a more
detailed description of the difference methods employed. Sec. 4 is concerned with a
hyperbolic initial value problem, the solution of which is represented by the trans-
lation semigroup. An application of Thm. 1 then improves results of HEDSTROM [14]
and BRENNER-THOMEE [1] (see also [2, p. 111]) in as much as a sequence {f,.} = X,
may be replaced by a single element f, € X,, to achieve certain lower bounds (cf.
(2.7), (4.4)). In Sec. 5 the solution semigroups are certain holomorphic semigroups.
Here an application of Thm. 1 mainly reproduces results given by HEDsTROM [14]
(see also [2, p. 76]) in the special case of the Gauss-Weierstrass semigroup. In any
case, the choice of applications presented here is of course not complete but rather
exemplary, emphasizing the unifying approach via Thm. 1 to various concrete
results known so far in the literature but derived there by different and specific
methods.

2. Counterexamples via the Gliding Hump Method

Let us commence with an observation concerning operator norms on X, (cf. (1.11)).

Proposition 1: Let X be a Banach space, {Y,} a sequence of normed linear spaces,
and U — X a seminormed linear subspace. Let {@,} denote a sequence of positive numbers
with

lim g, = 0 monotonely decreasing. (2.1)
n—rc0

If for each R, € [X, Y,] there exists g, € U such that for all n € N

lgallx = Cy, (2.2)
Ignlo = Cu/®ns (2.3)
”Rngn”n g 03 > 0; (2.4)

then there exists a constant Cy > 0 such that for any modulus of continuity w and for
eachn € N

IRallt xu ¥ = Cocd(@a)- , (2.5)
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Proof: It is a well-known fact that for each modulus of continuity one has (cf.
[16, p. 99])

w(s)s < 20(t)/t (s =t > 0). ' (2.6)

Consider now the elements g, := w(@,) g, € U = X,. Since (cf. (1.7), (2.2/3),
(2.6))

gn.ollx = Cio(pn) = Cro(t) for t = ¢,
tgn.olp S Cotw(@,) @, = 2C,w(t) for t < @y,

one has that |g, .}, < C* := max {C,, 2C,}. Thus by (2.4)
”Rn”[Xw,Y,,] g “Rngn.w”n/o* g 03‘”(‘77»)/0*,
i.e., one has (2.5) with C; := C,3/C* > 0 independent of w and n ¢ N B

K, gnw; X, U) < {

On the other hand, note that (2.5) is equivalent to

for each n € N there exists f, , € X, with
|/n,0le = C* and 1 Bnfn,ulls = 04'*60(%),

(2.7)

in other words, a first glance at conditions (2.2—4) yields the existence of a sequence
{fs»w}. For moduli of continuity satisfying

lim w(t)/t = oo, ‘ (2.8)
t—0+
however, one may even formulate the following resonance principle.
Theorem 1: Let X, U, {Y,}, {@a}, (R}, and {g,} satisfy the conditions of Prop. 1.

Then for any modulus of continuity satisfying (2.8) there exists an element f, € X,
such that :

1Rofulln = o(w(pn) (12— 00). | @9
Proof: Assume that (2.9) does not hold, i.e., for each f ¢ X, one has
1Bafll. = "(w("’n)) (n — co). (2.10)

Starting with an arbitrary n, € N, one may successively construct an’ increasing
subsequence {n;} — N such that the following conditions are satisfied simultaneously
(k= 2):

olgn,) = (1/2) o(n,_,), _ (21
ig lw(%,)/qi,., = O(@n,)/Pnys (2.12)
By allp x.v0,_ ] = (Co/6C1) 0(@ny_, ) w(@n,), (2.13)
IBwRi-slla, = (Caf3) wo(pn,), (2.14)

k—1
hyy:= Z w(‘pn,) Gn, € U.
i=1

Indeed, (2.11—-13) may be satisfied in view of (1.7), (2.1/8), whereas (2.14) is a
consequence of (2.10). By (2.2/11) it follows that

o

21 “w((p":) g":”X =0 Z‘l w(‘?’n,) = C10(@n,) 212_”1 < o0,
= 1= j=
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Therefore k., := } w(gn,) gn, is well-defined as an element of X since X is complete.
j=1

. Moreover, %, € X Indeed, for each ¢ € (0, @,,) there exists k €. N such that ¢, ,, <t
< @n,. Using the correspondmg h, € U and conditions (2.2/3), (2.11/12), and flnally
(2.6), one has in view of definition (1.6)

R ks X, O) = ho — Pullx + ¢ Vulo

- ” Z w(%,) gn, + t

j=k+1

k
Z w(?’n,) Gn,
=1 12

= 201“’(?7'1:4-1) + 202“"(‘7’1-:)/"’":
= (20, + 40y) o(t).

This proves that &, € X,. Applying R,, to

h, = O(Pn,) Gnp, + ey + (R — k),
one obtains by (2.4) and (2.13/14) that .

”Rngkw”n, g ”Rn,w(‘png) gng”n, - ”Rn,hlf—lun. - ”Rn,”[z\',Y,..] ”hw - kk”X
1 1
=2 Csw(%.) [1 -3~ '3—]

This is a contradiction to (2.10), proving the assertion B

The proof is based on a gliding hump method as known since the last century,
but now equipped with rates. This building in of rates was initiated in relevant work
of Teljakovskii and Mertens-Nessel concerning multipliers of strong convergence for
the one-dimensional trigonometric system and for regular biorthogonal systems in
Banach spaces, respectively. ‘For further comments, however, one may consult
[9, 10], in particular for an interpretation of Thm. 1 as a uniform boundedness
principle with rates as well as for applications to approximation and interpolation
theory, numerical quadrature formulae, and for its connections to Banach-Steinhaus
theorems with rates. In the following we will give applications to the numerical
solution of initial value problems.

3. A Voronovskaja-Type Relation for Iterates

Apart from some interest in itself, the following (first) asymptotic expansions for
iterates of operators are used to verify condition (2.4) in the applications. In fact,

only very special cases of the followmg, more general treatment are needed (cf.
Thm. 2).

Lemma 1: Let {E(t)} < [X] satisfy (1.1) and {E. € [X,]} be a stable dz//erence method.
Let B be a closed linear operator from D(B) < X into X such that D(B) s dense in
X, E@) (D(B)) < D(B), and

IBE® flx S CIBflx (/€ D(B),0 <t =<T). 3.1
Then the Voronovskaja-type condition (x > 0, 7 — 0-+) .
I(B. Py — PyE(7)] E(t) f — '*PaE(t) Bfily = o(z'*), (3.2)
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for each f € D(B) uniformly for t € [0, T), implies correspondingly for the iterates that
[|1E.PPyf — PhF(nt)/ — nr'te P E(nt) B/H;, = no(r“'“) ) (3.3)
/or each f € D(B) um/ormly fornt € [0, 7], n € N

Proof: First observe that D(B) =: U is a Banach space with respect to the norm
Iflo:= Wfllx + IBflly. Therefore by the uniform boundedness principle condition
(3.2) implies consistency of order « on U, and thus convergence (1.5). For each
f € D(B) one has

|E."Pyf — PpE(nt) f — nit*ePyE(nt) Bf|,

= v E »-i- 1[[E P, — P,E(z)) E(j1) f — 1'**P,E(j7) B/]”

j= 0 N

-+ glta _E' [En--1Py — PyE((n — j — 1) 7)| E(jr) B/”,.
1=0

+ na'*e ||PyE((n — 1) 7) (E(0) — E(<)) Bfils.
Stability (1.4), convergence (1.5) as well as conditions (1.1/2) and (3.2) yield
|E"Pyf — PyE(nt) f — na**ePyE(nt) Bff),

< nCo(71¥e) 4 glte "2—10@((7; — j — 1) 2%, E(jz) Bf; X, U) + nrt*es(1).

But in view of (1.1) and (3.1) one has |E(j7) gl = C |g|p for each g€ U, and hence
uniformly for 0 < i=n—1(x—>04)

R((n —  ~ 1) **, B(jr) Bf; X, U) < CR(x*, Bf; X, U) = o(1).
This completes the proof 8 -

As concrete examples of spaces X, U, X, we consider X = C,,(R), the space of
uniformly continuous, bounded (complex-valued) functions on the real axis R
endowed with the usual sup-norm |- ¢,

U:= C('ub)(R’) = {f € Cub(R);j(i) € Cub(R))j = O, l)’-": 7}’ |/|U = ”/(f)”C’

and X, = C)(R), the space of bounded functions on the mesh hZ:= {vh;» € Z
(:= integers)} with sup-norm. The restrictions P, defined by

(Puf) (vh) := f(vh)  (v€Z,f€ Cw(R) (3.4)
obviously satisfy (1.2). If T'(¢) denotes the translation operator
(T0/) @ :=fe+1) (mteR feCulR), (3.5)
then the difference methods of type '
E, = k(l) T(kh), 5 lad)] < o0, Ai=1/h=0 (3.6)
k=— k=—oc

are well defined in [C,(R)]. The following lemma gives a sufficient condition for
(3.2) to be satisfied for the semigroup {7T'(¢); ¢ = 0} = [C,,(R)] in terms of the weights
a(4).
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Lemma 2: Let {E,} be given by (3.6) such that (1 < € N)

N8 A, j=0,1,...,r— 1,
(), Z Weul®) = {( L+ba)k,  j=r, '
(i) 5 1au(h)] < oo. 3.7

Then {E.} and (T(t)} satisfy (3.1/2) with « =71 — 1, B=(b(/1)/r!) (d/dz)’, and
D(B) = CY)(R).

Proof: Since (3.7) (i) implies (1h = )

. 1, j=0,
2 a(A) (kb — 1Y = 10, i=12..,r—1,
k=me b)), j=r,

one obtains for f € CY)(R), v € Z,t >0
(E.PAT(¢) f) (vh) — (PT(t + <) f) (vh) — Y'(b(l)fffi (PAT(t) ) (vh)]

b5 a.,<z>{ Ok + ¢ + ) (kh — 25!
i=o

k=—o00

kh .
+ 1 o 'f (kb — w)™1fO (vh + t + u) du}

(r—

— foh + ¢ + 1) — T(bA)/r!) Ok + t)l

1

ka
=1, ;wak(l) (7_—11), f (kh — )2 [[Oh +t +u) — fO(vh 4+t + 7)) du

+ TBA/) [O6h + ¢ + 1) — fOh + 1)

= X &) (kh —zi7/rl) sup Ok + ¢ + u) — [k + ¢ + 1)
n 0

T ke rise

Su—zg5ein
+ X e (kk — oY) 2 [
|kh—rt|>11 18

+ (b)) [fDEh. 4t + 1) — fOh + 1)
<5 {amd)] (kA — 17/rY) sup [[f7(-) = (- + 8)|lc
k=—o osdgun

+ 3 @A) (kA — 17/ 2 ()fD)e

[kf2—11>1/e80"
+ 7@ IO — O + Dllc.

In view of the uniform continuity of /) and the absolute summability; of the series,
all terms are of order o(z"), T — 0+. This establishes the assertion Ml

5 Analysis Bd. 1, Heft 1 (1082)
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Note that in the concrete situation of these spaces X and U the ®-functional
turns out to be equivalent to the classical 7-th modulus of continuity

wt,f)i= sup ‘u['T(s) — T(O) fllc,

i.e., there exist constants c,, Cg > 0, independent of f € Cy,(R) and ¢t = 0, such that
awlt, f) S K(t", f; Cun(R), CR(R)) = caon(t, f)- (3.8)

Thus for o(t):=1t, 0 < g < 1, the intermediate spaces X, =: X, are the standard ‘
r-th Lipschitz spaces

X, = Lip, (Br):={f € Cub(B')r wlt, f) = O@F"), t > 0+}
see e.g. [3, p. 1921.]).

4. Approximation of the Translation Semigroup
In this section we are concerned with the approximation of the solutlon of the
hyperbolic initial value problem

d/dt u(z, t) = dfdx u(z, t), u(z, 0) = f(z) € Cy(R) (t=0)

by stable difference methods of type (3.6) satisfying (3.7). Since the solution is
given by the “translation semigroup (3.5), condition (3.7) implies consistency of
order r — 1 on CY)(R), as was indicated in the proof of La. 1. Thus one has con-
vergence (1.5), i.e.,

B wPaf — PaT(1) flls = Olw(n~"*Y)  (n o0, f € X.).
- The following theorem shows that this rate of convergence is indeed sharp.

Theorem 2: Let {E, € [C4(R)]; 0 < 7 < 1} be a difference method of type (3.6)
satisfying (3.7). Then for each modulus of continuity w and each A > 0 with b(7) + 0
there exists an element f,,;, = [, € X, such that

B wPofo — PAT(L) fully = ofw(n="*1))  (n - o0). -

Proof: First of all, consider moduli of continuity satisfying w(t) = 0(¢). Then
any f, € D(B) with Bf, = (b(l)/r')/ (" = 0 (cf. La. 1/2) may serve as a counter-
example since the Voronovskaja-type relation (3.3) and (1.2) (ii) deliver

lim 271 || B,y Pifo, — PyT(1) fulls = tim ||PyT'(1) Bfalis

= IT(1) Bfulic = l|Bfullc + 0. :

Thus let o satisfy (2.8). For an application of Thm. 1 consider the operators
(h = 1/2n7)

By 2 = By := EYj,. Py — PyT(1) € [Cun(R), Ci(R)]
and the functions 8, and g, = ¢, defined by (¢ > 0)
. Oc(z) : = exp {icz}, gn(x) = O (An""12) = exp {icAn""1z},
respectively. Thus (2.2/3) follow for U = C%)(R) and ¢, = »n~""-1, To show (2.4),
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note that one has t = n~7, A = 1/1n" as well as the eigenvalue properties

EywPag, = X a,(3) exp {icAn™"Ykh} Pyg,
k
). = 5 a(3) 04kin) Pig,

= ([Ellnpl/nec] (0)) Pyg,,
PyT(1) g, = Py exp (ick™™) g, = [0A1™ Paga,
[El/nPl/n e] (v/n) = Z ax(4) exp {?'c((” + k)/n)}

= ([BxyaPy1x0:] (0)) 0.05/m).

Since 6.(0) = [|P,galls = 1, this yields ' 2

IRgalls = [[[(EasaPiabe] (O] Prgn — [04A)* Pigalln

= |[(B5uPriabe] O — (6]

Using La. 1/2 one obtains : .

[1Rugalls = |[[PyaT(2) 65 (0) + n(Aln)" (b(A)/r!) [PyaT(4) 0] (0)

+ o(n P — [BA]
= 18R ([T + A(Mn)™~ B(R) (ie)t/r! + oln ""‘)]""l — 1.

Since |0,(4)] = 1, this implies

'}ifilangnlln = lexp (icA) b(A)/rY}) — 1].
If r is even, then b(2) & 0 immediately implies that this limit is different ffom zex;o
(for each ¢ > 0); if 7 is odd, one may choose ¢ = ¢(4) to ensure this property. Thus

one has (2.4) for all n = ny(4). Therefore an application of Thm. 1 delivers the
existence of an element f, ; = f, € X,, such that ,

lim sup ||Rn/wun/w(<n')-'“) > 0.

n—>c0
'

This implies, at least for the subsequence m = #', that

lim sup (B}, nPifo — PyT(1) fullifwim="*1) > 0,

m—>o0
completing the proof B

Examples: The explicit, implicit, semx-dxscrete difference operators

E:=(1— ) T0) +iT(h), A€[0,1], 4.1)
1 = [ 2 ‘ ‘

Bo=1as 2 (1 - z) T, 320, | 4.2)

B i—ei S puny, azo, - 4.3)
Ry IC' . >

respectively, satisfy (3.6/7) with r =2 and B(4) =21"1(1 — 1), "1 + 4), 174,
respectively. Thus in any of these cases one has the rate of convergence

IE3Paf — PAT(1) flis = O(w(1/n)) (n — o0)

5'
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for all f € X,,; this is sharp since for each w and each 4 € (0, 1), 4 € (0, o), respec-
tively, there exists at least one element f, ; = f, € X, such that

IS wPsfo — PaT(1) fulls + of(l/n))  (n — o).

For the difference schemes (4.1—3) the operators 7,(f; 4):= [E},Py.f] (0)
occurring in the proof of Thm. 2 turn out to constitute classical approximation
processes, namely the Bernstein polynomials, the Baskakov operators and the
Szasz-Mirakjan operators, respectively (for details see [8]). Thus La. 1 also allows
to reduce the proof of the well-known Voronovskaja relations for these approxi-
mation processes to the corresponding simpler ones for the step operators (4.1—3).

Note that Prop. 1 yields a sequence {f,,o} = X,, With |f, .|, < C* and (n = ne(4))

B Pafe — PAT(D) fo.ulls Z Corln=r), . (4
so that in terms of the operator norms (cf. (1.11))
NEYnPr — PaT(Dllix,,.corn = Caw(n~"1).

For the intermediate spaces X 3 = Lip, (28), i.e., for w(t) = ¢/, 0 < f < 1, this result
was obtained by HepsTROM [14] and BRENNER-THOMEE (1] (see also [2, p. 111]) for
X, = C,(R) and P, = I(:= identity). Thm. 2 (cf. (3.8)) now states that at least
for a subsequence {7} the elements f,,.., may be replaced by a single one f, € X,.
In this sense Thm. 2 is an improvement of (4.4) and 'an extension to all moduli w;
but, on the other hand, due to the general approach via Thm. 1, there is a restriction
to an unknown subsequence {n;}.

5. Holomorphic Semigroups
In this section we consider the holomorphic semigroups (0 < §°< 2)

(Wa) 1) 1= 0 [ flz + ) fufe)du | (5.1)

— o0

(zeR,¢ >0,f¢ C.s(R)), where k; is given via its Fourier transform
ks (v) :=V—1_2__n fko(u) e " dy = exp {—|v|% (v € R).

This semigroup solves the initial value problem .
dldt u(z, t) = —(—(dldxyPRu(z,b),  u(z,0) = f(z) € Cu(R),

where the fractional power of the differential operator is to be understood in the
sense of BocENER and FELLER [13] (see also [5, 18])..For the approximation of .
these semigroups we consider stable difference methods of type (3.6) with A = z/h?
that reproduce constant functions, i.e., } a,{d) = 1. If the difference method is
consistent of order & on U = CY)(R) with « < 7/8 — 1, r > §, then for f € Lip, (8),
0 < f < Bo:=r — 4, one has the rate of approximation (cf. (3.8))

ETaPaf — PaWo(1) fils = O(n=2fl=9)  (n — o0); (5.2)

it is better than that given by (1.5); for a proof see [11, 15}. In case x = /6 — 1
this rate is again best possible.
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Theorem 3:" Let {E,} be a difference method of type (3.6) with A = t/k? that re-
produces constant functions. If the method is stable and consistent of order /6 — 1 with
the semigroup {W,(t)}, then for each B € (0, Bo) there exists an element fg € Lip, ()
such that ‘

1B aPrfs — PaWs(1) folls = o(n7?%)  (n — o0).
Proof: Consider the operators
R, := E},,Py — PyWi(1) € [Cun(R), Co(R)]

and the elements

.

gn(x) = cos (2nx/h), h = (na) 16

Obvxously these elements satisfy (2.2/3) with ¢, = n~7/. Since the difference method -
reproduces constant functions and P,g,(vk) = 1 for all v € Z, one has

IRugalls = 1E2Prgn — PaWi(1) galls = 11 — ks (2n/k) Pogills
=1—ks(2n/h) = 1 + o(1) (n - 00),

provmg {(2.4). Thus the assertlon follows by Thm. 1 upon settmg w(t) = ¢,
0<B<py<r i

Example: For 6 = 2 the operators (5.1) constitute the Gauss-Weierstrass semi-
group. Consider the explicit difference scheme

B, = (1 — 20) T(0) + AT + T(—W], 4 = eli®.

This scheme is stable for 0 < 1 < 1/2 as well as consistent of order 1 on U C¥(R)
for 0 < 2 < 1/2, and even consistent of order 2 on U = CYXR) for 2 = 1/6. Thus
one has consistency of order 7/6 — 1 and convergence of order O(n#/2) for f € Lip, (B),
0<B<2ifAc(0,1/2], and for f € Lipg (8), 0 < B < 4, if A = 1/6 Thm. 3 then
-states that these rates of convergence are indeed best possible.

Let us mention that the result of Thm. 3 (for 6 = 2) was also given in [14],
[2, p. 76]. The proofs there are constructive (for subsequences of type n, = C*).
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