On some class of holomorphic functions of several complex variables

R. MAZUR

In der Arbeit werden gewisse bekannte Abschätzungen über holomorphe Funktionen einer komplexen Variablen auf den Fall mehrerer komplexer Variabler verallgemeinert.

В работе обобщаются некоторые известные оценки для голоморфных функций одного комплексного переменного на случай многих комплексных переменных.

The aim of the paper is to generalize some well-known estimations for holomorphic functions of one complex variable to the case of several complex variables...

Introduction

Let $D \subset \mathbb{C}^n$ be an arbitrarily fixed full Reinhardt domain containing the origin $z = 0$. By $H(D)$ we denote a class of holomorphic functions $h: D \to \mathbb{C}$. We define in $H(D)$ an operator of the form

$$
L(h(z)) = h(z) + \sum_{k=1}^{n} z_k h'_{z_k}(z) \quad \text{for } z = (z_1, z_2, ..., z_n).
$$
 (1)

Let $Q(D) \subset H(D)$ denote a family of functions q holomorphic in the domain D and normed by the conditions $q(0) = 0$, $|q(z)| < 1$ for $z \in D$. The author of paper (3) has introduced the family $\mathcal{P}(a, b; D)$ composed of the functions p such that

$$
p(z)=\frac{1+a\cdot q(z)}{1+b\cdot q(z)},\qquad z\in D,\qquad (2)
$$

1

where $q \in Q(D)$ and a, b – arbitrary fixed numbers satisfying the inequalities $-1 \leq b < a \leq 1$.

The class $\not\!\mathscr{V}(\bm{a},\bm{b};\bm{D})$

We now introduce the following definition.

Let L denote the operator defined in (1). The subclass of $H(D)$ of functions f satisfying the conditions:

$$
f(0) = 1 \tag{3}
$$

$$
L(f(z)) = p(z), \qquad z \in D, \qquad p \in \mathscr{P}(a, b; D), \tag{4}
$$

is denoted by $\mathscr{V}(a, b; D)$.

Let us assume next for a fixed $r \in (0, 1)$, D_r is the set of points $z \in D$ for which

 \in *D.* By combining Theorem 1 [3] with the definition of the class $\mathcal{V}(a, b; D)$, we obtain the following result. R. MAZUR

³y combining Theorem 1 [3] with the definition

¹ the following result.

em 1. *If* $f \in \mathscr{V}(a, b; D)$, then for $z \in D_r$ we have
 $\frac{1 - ar}{1 - br} \leq |L(f(z))| \leq \frac{1 + ar}{1 + br}$,
 $\frac{1 - ar}{1 - br} \leq r e L(f(z)) \leq \frac{1 + ar}{1 + br}$, 1 1 [3] with the c

1, then for $z \in D_r$ w
 $\frac{+ ar}{+ br}$,
 $\frac{1 + ar}{1 + br}$, Theorem 1 [3] with the definition of the class $\mathscr{V}(a, b; D)$,

result.
 $\begin{aligned}\n(a, b; D), \text{ then for } z \in D_r \text{ we have} \\
(z) \leq \frac{1 + ar}{1 + br}, \qquad (5) \\
(l(z)) \leq \frac{1 + ar}{1 + br}, \qquad (6) \\
\frac{a - br}{1 - b^2 r^2}, \qquad (7) \\
\arcsin \frac{(a - b)\tau}{1 - abr^2}. \qquad (8)\n\end{aligned}$

Theorem 1. If $f \in \mathcal{V}(a, b; D)$, then for $z \in D_r$ we have

By combining Theorem 1 [3] with the definition of the class
$$
\mathscr{V}(a, b; D)
$$
,
\nthe following result.
\n
$$
\text{rem 1. } If \ f \in \mathscr{V}(a, b; D), \ then \ for \ z \in D, \ we \ have
$$
\n
$$
\frac{1 - ar}{1 - br} \leq |L(f(z))| \leq \frac{1 + ar}{1 + br}, \tag{5}
$$

n the following result.
\nrem 1. If
$$
f \in \mathcal{V}(a, b; D)
$$
, then for $z \in D$, we have
\n
$$
\frac{1 - ar}{1 - br} \le |L(f(z))| \le \frac{1 + ar}{1 + br},
$$
\n(5)
\n
$$
\frac{1 - ar}{1 - br} \le r \le L(f(z)) \le \frac{1 + ar}{1 + br},
$$
\n(6)
\n
$$
|\text{im } L(f(z))| \le \frac{a - br}{1 - b^2 r^2},
$$
\n(7)
\n
$$
|\text{arg } L(f(z))| \le \arcsin \frac{(a - b)r}{1 - abr^2}.
$$
\n(8)
\nequalities are sharp.
\nrem 2. If $f \in \mathcal{V}(a, b; D)$, then for $z \in D$, we have

$$
\left|\text{im } L(f(z))\right| \leq \frac{a - br}{1 - b^2 r^2},\tag{7}
$$

$$
\left|\text{im } L(f(z))\right| \leq \frac{a - br}{1 - b^2 r^2},\tag{7}
$$
\n
$$
\left|\arg L(f(z))\right| \leq \arcsin \frac{(a - b)r}{1 - abr^2}.\tag{8}
$$

These inequalities are sharp.

Theorem 2. If $f \in \mathcal{V}(a, b; D)$, then for $z \in D_r$ we have

$$
|Im L(f(z))| \leq \frac{a - br}{1 - b^2 r^2}, \qquad (7)
$$
\n
$$
|arg L(f(z))| \leq arcsin \frac{(a - b)r}{1 - abr^2}.
$$
\n
$$
equalities are sharp.
$$
\n
$$
rem 2. If $f \in \mathcal{V}(a, b; D)$, then for $z \in D_r$ we have\n
$$
|f(z)| \leq \begin{cases} 1 + \frac{1}{2} ar & \text{for } b = 0, \\ \frac{a}{b} - \frac{a - b}{b^2 r} \log (1 + br) & \text{for } b \neq 0, \\ \frac{a}{b} + \frac{a - b}{b^2 r} \log (1 - br) & \text{for } b = 0, \end{cases}
$$
\n
$$
|f(z)| \geq \begin{cases} 1 - \frac{1}{2} ar & \text{for } b = 0, \\ \frac{a}{b} + \frac{a - b}{b^2 r} \log (1 - br) & \text{for } b \neq 0. \end{cases}
$$
\n
$$
equalities are sharp.
$$
\n(10)
$$

These inequalities are sharp.

Proof. Let $z_0 = (\xi_1, \xi_2, ..., \xi_n)$ be an arbitrary point of the domain D_r . From the *Phese inequalities are sharp.*

Proof. Let $z_0 = (\dot{z}_1, \dot{z}_2, ..., \dot{z}_n)$ be an arbitrary point of the domain D_r . If properties of the domains D_r and D it follows that the point $\frac{\partial z_0}{\partial t} = \left(\frac{\partial \dot{z}_1}{\partial t}, \frac{\partial \dot{$ also belongs to the domain *D* for every $\delta \in \mathbb{C}$, $|\delta| < 1$. We define a function $\delta \to$ *Ain)* where $|f(z)| \ge \begin{cases} 1 - \frac{1}{2} ar & \text{for } b = 0, \\ \frac{a}{b} + \frac{a - b}{b^2r} \log (1 - br) & \text{for } b \ne 0. \end{cases}$
qualities are sharp.
Let $z_0 = \langle z_1, z_2, ..., z_n \rangle$ be an arbitrary point of the domains D_r and D it follows that the point of the domain D

$$
g(\mathfrak{z}) = f\left(\frac{\mathfrak{z}z_0}{r}\right), |\mathfrak{z}| < 1, \quad f \in \mathscr{V}(a, b; D).
$$
 (11)

It is easily to see that the function g is holomorphic in the unit disc, $g(0) = 0$ and = $L\left(f\left(\frac{\partial-0}{r}\right)\right)$. Hence and from (2)–(4) we obtain $=\frac{1+a\tilde{q}(\lambda)}{1+\frac{1}{2}\tilde{q}(\lambda)}$ $=\frac{1\,+\,a\tilde{q}(\mathfrak{z})}{1\,+\,b\tilde{q}(\mathfrak{z})}$

where $\tilde{q}(\mathfrak{z}) = \frac{1 + a\tilde{q}(\mathfrak{z})}{1 + b\tilde{q}(\mathfrak{z})}$,
where $\tilde{q}(\mathfrak{z}) = q\left(\frac{\mathfrak{z}z_0}{r}\right)$, $q \in Q(D)$. Since $\tilde{q}(0) = 0$ and $|\tilde{q}(\mathfrak{z})| < 1$ for $|\mathfrak{z}| < 1$, then
 $g \in \mathscr{V}(a, b)$ (c.f. [2]). By applying $g \in \mathscr{V}(a, b)$ (c.f. [2]). By applying Theorem 2 [2] to the function g we obtain

where

On some class of holomorphic f
\n
$$
\mathfrak{G}(a, b; |\mathfrak{z}|) = \begin{cases}\n|\mathfrak{z}| + \frac{1}{2} a |\mathfrak{z}|^2 & \text{for } b = 0, \\
\frac{a}{b} |\mathfrak{z}| - \frac{a-b}{b^2} \log (1 + b |\mathfrak{z}|) & \text{for } b \neq 0.\n\end{cases}
$$
\n
$$
\text{and from (11) we obtain (9)-(10) for } \mathfrak{z} = r. \text{ The functions}
$$
\n
$$
f(z) = \int_0^1 \frac{1 + a\varepsilon \ln(z_1 + z_2 + \dots + z_n) t}{1 + a\varepsilon \ln(z_1 + z_2 + \dots + z_n) t} dt
$$

Hence and from (11) we obtain (9)–(10) for $\lambda = r$. The functions

$$
f(z) = \int_{0}^{z} \frac{1 + a\varepsilon I_n(z_1 + z_2 + \cdots + z_n) t}{1 + b\varepsilon I_n(z_1 + z_2 + \cdots + z_n) t} dt,
$$

where $\varepsilon = \pm 1$ respectively, at $z = (r, r, ..., r)$ indicate the sharpeness of the result **I**

Let be $z^m = z_1^{m_1} z_2^{m_1} \cdots z_n^{m_n}$, where $m = (m_1, m_1, ..., m_n)$, m_i -being non-negative integers, $|m| = m_1 + m_2 + \cdots + m_n$. From the definition of the family $\mathscr{V}_n(a, b; D)$

and from Theorem 2 [3] we obtain the following result.

Theorem 3. If $f \in \mathscr{V}(a, b; D)$ and
 $f(z) = 1 + \sum_{k=1}^{\infty} \left(\sum_{|m|=k} a_m z^m \right)$

then and from Theorem 2 [3] we obtain the following result. *z*^m = \pm 1 respectively, at $z =$
 z^m = $z_1^{m_1}z_2^{m_1} \cdots z_n^{m_n}$, wh
 $|m| = m_1 + m_2 + \cdots +$

Theorem 2 [3] we obtain

em 3. *If* $f \in \mathscr{V}(a, b; D)$ *a*
 $f(z) = 1 + \sum_{k=1}^{\infty} \left(\sum_{|m| = k} a_m z^m \right)$
 $\sup_{z \in D} \left| \sum_{|m| = k} a$

Theorem 3. If
$$
f \in \mathcal{V}(a, b; D)
$$
 and
\n
$$
f(z) = 1 + \sum_{k=1}^{\infty} \left(\sum_{|m|=k} a_m z^m \right)
$$
\n
$$
\sup_{z \in D} \left| \sum_{|m|=k} a_m z^m \right| \leq \frac{a-b}{k+1}
$$

then

$$
\sup_{z\in D}\left|\sum_{|m|=k}a_mz^m\right|\leq \frac{a-b}{k+1} \quad \text{for } k=1,2,\ldots
$$

Remark. For $a = 1$, $b = -1$ or $a = 1$, $b = 0$ and $n = 2$ we arrive at the known result obtained in [1].

REFERENCES

- [1] BAVBLN, I. I.: Kiassy golomorfnych funkcij mnogich kompleksnych peremennych i ekstremalnye voprosy dija etich klassov funkcij. Moskva: MOPI 1976.
- [2] M&ztm, R.: On some extremal problems in the class of functions with bounded rotation. Scientific Bulletin of Łódź Technical University No. 254, Matematyka z. 9 (1977), 77–88.
- [3] MAzUR, R.: Distortion properties of holomorphic functions of several complex variables. Ann. Polon. Math. (to appear).

Manuskripteingang: 01. 07. 1980

VERFASSER:

Dr. R. MAZUB Instytut Matematyki, Wysza Szkola Pedagogiczna P - 25 . 406 Kielce, ul. M. Konopnickicj 29, Poland