Theorems on polynomials in right invertible operators

D. PRZEWORSKA-ROLEWICZ

Sei D ein rechtsinvertierbarer Operator in einem linearen Raum X und $Q(D)$ ein Polynom von D mit Operatorkoeffizienten. Es wird gezeigt, daß unter gewissen Bedingungen auf X für die Rechtsinverse R und die Koeffizienten des Polynoms $Q(D)$ genau dann $Q(D) = 0$ gilt, fälls $Q(D)$ $R^k z = 0$ $(k = 0, 1, 2, ...)$ für alle z aus ker D .

Предположим, что D - право обратимый оператор, действующий в линейном пространстве X и $Q(D)$ – многочлен с операторными коеффициентами. В этом случае $Q(D) = 0$ тогда и только тогда, когда $Q(D)$ $R^k z = 0$ для всех $z \in \text{ker } D$ $(k = 0, 1, 2, ...)$ если выполнены некоторые условия на X, правый обратный R и коеффициенты многочлена $Q(D)$.

Suppose that $Q(D)$ is a polynomial in a right invertible operator acting in a linear space X, in general, with operator coefficients. Then $Q(D) = 0$ if and only if $Q(D) R^k z = 0$ for all $z \in \text{ker } D$ ($k = 0, 1, 2, ...$) under appropriate assumptions on X, the right inverse R of D and coefficients of $Q(D)$.

Let $P_1(D), P_2(D)$ be polynomial differential operators, i.e. finite sums of monomials of the form

$$
A_0(x) DA_1(x) \dots A_{n-1}(x) DA_n(x) \quad \text{where} \quad D = \frac{d}{dt}
$$

and $A_i(x)$ are given differentiable functions. Using the identity

$$
DA_j(x) = A_j(x) D + A_j'(x)
$$

we can rewrite these polynomials in the form:

$$
P_i(D) = \sum_{j=1}^m P_j^{(i)}(x) D^j \qquad (i = 1, 2).
$$
 (1)

The following theorem holds for polynomial differential operators.

Theorem 1 (cf. CARLITZ [1, 2], INCE [3]): Suppose that $P_1(D)$ and $P_2(D)$ are two polynomial differential operators. Then

$$
P_1(D) = P_2(D)
$$

it and only it

$$
P_1(D) x^k = P_2(D) x^k \quad \text{for} \quad k = 0, 1, 2, ... \tag{2}
$$

In particular, suppose that $P(D)$ is a polynomial differential operator. Then

 $P(D) = 0$

it and only it

$$
P(D) xk = 0 \t (k = 0, 1, 2, ...). \t (3)
$$

8 D. PRZEWORSKA-ROLEWICZ

In order to prove (2) it is enough to prove (3).

This result can be generalized for arbitrary right invertible operators, in particular, for difference operators (cf. $[2]$). Namely, suppose that X is a linear space over a field $\mathscr F$ of scalars, *D* is a right invertible operator and dim ker $D>0$. If $\tilde R$ is an arbitrarily fixed right inverse of *D* then elements of the form $R^k z_k$, where $z_k \in \text{ker } D$ and $k = 0, 1, 2, ...$, play a role of monomials for *D* and are linearly independent (cf. [4]).
The set
 $P(R) = \text{lin } \{R^k z : z \in \text{ker } D \quad (k =$ $k = 0, 1, 2, \ldots$, play a role of monomials for *D* and are linearly independent (cf. [4]). The set er to prove (2) it is enoug
sult can be generalized for
ence operators (cf. [2]).
f scalars, *D* is a right inver
wed right inverse of *D* the
2, ..., play a role of mone
 $P(R) = \text{lin } \{R^k z : z \in \text{ker } i\}$
ndent of the choic *g(d)* $P(R) = \lim_{j \to 0} \{R^k z : z \in \text{ker } D \text{ and } R^k z : z \in \text{ker } D \text{ and } R^k z : z \in \text{ker } D \text{ and } R^k z : z \in \text{ker } D \text{ and } R^k z : z \in \text{ker } D \text{ and } R^k z : z \in \text{ker } D \text{ and } R^k z : z \in \text{ker } D \text{ and } R^k z : z \in \text{ker } D \text{ and } R^k z : z \in \text{ker } D \text{ and } R^k z : z \in \text{ker } D \text{ and } R^k z : z \in$

$$
P(R) = \ln \{R^k z : z \in \ker D \quad (k = 0, 1, 2, \ldots)\}
$$

is independent of the choice of a right inverse *R.*

Now, consider 3 different eases:

Theorem 2: *Let*

$$
q(D) = \sum_{j=0}^{n} q_j D^j \tag{4}
$$

be an arbitrary polynomial with scalar coefficients. Then $q(D) = 0$ *if and only if*

$$
q(D) R^k z = 0 \text{ for all } z \in \text{ker } D \qquad (k = 0, 1, 2, \ldots) \tag{5}
$$

where R is an arbitrarily fixed right inverse of D.

Proof: Necessity is obvious. In order to prove that the condition (4) implies $q(D) = 0$ observe that $R^k z \in \text{ker } D^{k+1}$ $(k = 0, 1, 2, ...)$ for all $z \in \text{ker } D$ (cf. also [4]). Then for all $z \in \text{ker } D$ ($k = 0, 1, 2, ...$) we find

$$
q(D) R^k z = 0 \text{ for all } z \in \ker D \qquad (k = 0
$$

is an arbitrarily fixed right inverse of D.
: Necessity is obvious. In order to prove
observe that $R^k z \in \ker D^{k+1}$ ($k = 0, 1, 2$,
all $z \in \ker D$ ($k = 0, 1, 2, ...$) we find

$$
0 = f(D) R^k z = \sum_{j=0}^n q_j D^j R^k z
$$

$$
= \sum_{j=0}^k q_j R^{k-j} z + \sum_{j=k+1}^n q_j D^{j-k} = \sum_{j=0}^k q_j R^{k-j} z
$$

$$
definition, DR = I \text{ and } Dz = 0. This,
$$

$$
z, Rz, R^2z, ...
$$
 together imply that $q_0, ...$

since, by definition, $DR = I$ and $Dz = 0$. This, and the linear independence of elements *z*, Rz , Rz ²*z*, ... together imply that $q_0, ..., q_k = 0$ for $k = 0, 1, 2, ..., n$, i.e. $q(D) = 0$ **ii** $\sum_{j=0}^{k} q_j R^{k-j} z + \sum_{j=k+1}^{n} q_j D^{j-k} = \sum_{j=0}^{k} q_j R^{k-j} z$

definition, $DR = I$ and $Dz = 0$. This, and the linear independence of
 z, Rz, Rz, Rz ,... together imply that $q_0, \ldots, q_k = 0$ for $k = 0, 1, 2, \ldots, n$, i.e.
 i
 e

Observe that in Theorem *2* it is sufficient to admit only a finite number of conditions of the form (5). Namely, we obtain the same result if $k = 0, 1, 2, \ldots, m$ where $m = n \cdot \dim \ker D + 1$. *z*, *Rz*, *Rz*, ... together imply that $q_0, ..., q_k =$
 e that in Theorem 2 it is sufficient to admit of

f the form (5). Namely, we obtain the same
 $= n \cdot \dim \ker D + 1$.
 $\operatorname{rem 3: Suppose that X is a D-algebra, i.e. a com
\n*l* multiplication) such that
\nif x, y \in dom D then xy \in dom D.$

Theorem 3: *Suppose that X is a D-algebra, i.e. a commutative linear ring (with a non-trivial multiplication) such that*

$$
if x, y \in dom D then xy \in dom D. \tag{6}
$$

Suppose, moreover, that ker D is not an annihilator in X, i.e. if x ker $D = \{0\}$ *for an* $x \in X$ then $x = 0$. Let

$$
= n \cdot \dim \ker D + 1.
$$

\n
$$
= n \cdot \dim \ker D + 1.
$$

\n
$$
= n \cdot \dim \ker D + 1.
$$

\n
$$
= n \cdot \dim \ker D + 1.
$$

\n
$$
= n \cdot \dim \ker D + 1.
$$

\n
$$
= n \cdot \dim \ker D + 1.
$$

\n
$$
= n \cdot \dim \ker D + 1.
$$

\n
$$
= n \cdot \dim \ker D + 1.
$$

\n
$$
= n \cdot \dim \ker D \text{ such that}
$$

\n
$$
= n \cdot \dim U + n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

\n
$$
= n \cdot \dim U + 1.
$$

Then $q(D) = 0$ *if and only if*

$$
q(D) R^k z = 0 \text{ for all } z \in \text{ker } D \qquad (k = 0, 1, 2, ...)
$$
 (8)

where R is an arbitrarily fixed right inverse of D.

Proof: Necessity is obvious. Sufficiency will be proved by induction. Assume that the condition (8) holds. In a similar way, was in the proof of Theorem (8) we shall rewrite (8) in the form

$$
\sum_{j=0}^{k} q_j R^{k-j} z = 0 \text{ for all } z \text{ ker } D \qquad (k = 0, 1, 2, \ldots). \tag{9}
$$

Polynomials in right invertible operators 9
 q_RR^{k-1}z = 0 for all z ker *D* ($k = 0, 1, 2, ...$). (9)

Then we have $q_0R^kz = 0$ and $R^kz + 0$ for $z = 0$ (because if $Ru = 0$ then
 i 0). The arbitrariness of $z \in \text{ker } D$ Let $k = 0$. Then we have $q_0 R^k z = 0$ and $R^k z = 0$ for $z = 0$ (because if $Ru = 0$ then $u = DRu = 0$. The arbitrariness of $z \in \text{ker } D$ and our assumptions together imply that $q_0 = 0$. Suppose that $q_0 = \cdots = q_m = 0$ for an arbitrarily fixed $m \ge 0$. Then for all z ke
 $\frac{1}{2}g_0R^kz = 0$
 $\frac{1}{2}g_0R^kz = 0$
 $\frac{1}{2}g_0 =$

$$
0=\sum_{j=0}^{m+1}q_jR^{m+1-j}z=q_{m+1}z.
$$

Theorem 4: Suppose that X is a complete linear metric space, B is an arbitrarily fixed right inverse of D and

The arbitrariness of z ker D implies
$$
q_{m+1} = 0
$$
, which finishes the proof
\nTheorem 4: Suppose that X is a complete linear metric space, R is an arbitrarily
\nfixed right inverse of D and
\n
$$
Q(D) = \sum_{k=0}^{n} Q_k D^k
$$
\n(10)

where Q_k : dom $D^n \to X$ are arbitrary linear operators. Suppose, moreover, that the *operator* $Q(D)$ *is closed,* $P(R) \subset \text{ker } Q(D)$ *and* $\overline{P(R)} = X$. Then $Q(D) = 0$ *if and only if* **a** $0 = \sum_{j=0}^{m+1} q_j R^{m+1-j} z = q_{m+1} z$.
 Q(D) $= \sum_{j=0}^{n} q_j R^{m+1-j} z = q_{m+1} z$.
 Q(D) $= \sum_{k=0}^{n} Q_k D^k$ (10)
 $Q(D) = \sum_{k=0}^{n} Q_k D^k$ (10)
 $Q(D) = \sum_{k=0}^{n} Q_k D^k$ (20)
 $Q(D) = \sum_{k=0}^{n} Q_k D^k$ (10)
 $Q(D)$ *is closed,* $P(R)$

$$
Q(D) R^k z = 0 \quad \text{for all } z \in \text{ker } D \qquad (k = 0, 1, 2, \ldots). \tag{11}
$$

Proof: Necessity is obvious. Sufficiency follows from the fact that by our assumptions we have

$$
X=\overline{P(R)}\subset\overline{\ker Q(D)}=\ker Q(D).
$$

This implies $Q(D) = 0$

Note that from proofs of Theorems *2* and 3 follows that

$$
P(R) \subset \ker Q(D)
$$

which is assumed in Theorem 4.

REFERENCES

- [1] CARLITZ, L.: Some Operational Formulas. Math. Nachrichten 45 (1970), 379-389.
- [2] CARLITZ, L.: A Theorem on Differential Operators. Amer. Math. Monthly 83 (1976), 351 bis 354.
- [3] INOE, E. L.: Ordinary Differential Equations, London 1927.
- [4] PRZEWORSKA-ROLEWICz, D.: Algebraic Theory of Right Invertible Operators. Studia Math. 48 (1973), 129-143.
- [5] PRZEWORSKA-ROLEV1CZ, D.: Shifts and Periodicity for Right Invertible Operators. Research Notes in Mathematics 43, Pitman Advanced Publish. Program. Boston—London—Melbourne 1980.

Manuskripteingang: 20. 2. 1981

VERFASSER:

Prof. Dr. DANUTA PRZEWORSKA-ROLEWICZ Instytut Matcmatyczny PAN P.00-950 Warszawa, skr. pocztowa 137