Toeplitz determinants with piecewise continuous generating function

A. BÖTTCHEB

Durch konsequente Benutzung der Theorie der Operatordeterminanten und einer speziellen Technik der Störung durch Spuroperatoren wird das asymptotische Verhalten der Toeplitzdeterminanten $D_n(a) = \det \{a_{j-k}\}_{j,k=0}^n \ (n \to \infty)$ bestimmt, falls die Erzeugerfunktion a(t)

 $= \sum_{k=-\infty}^{\infty} a_k t^k (|t| = 1) \text{ stückweise stetig ist und gewissen natürlichen Regularitätsbedingungen}$ genügt. Es gilt $D_n(a) \sim G^{n+1} \cdot E \cdot n^{r-1} (n \to \infty)$, wobei $\beta_r = \frac{1}{2\pi i} \log a(t_r - 0)/a(t_r + 0)$,

genügt. Es gilt $D_n(a) \sim G^{n+1} \cdot E \cdot n^{r-1}$ $(n \to \infty)$, wobei $\beta_r = \frac{1}{2\pi i} \log a(t_r - 0)/a(t_r + 0)$, $|\operatorname{Re} \beta_r| < \frac{1}{2}$ ist und t_1, \ldots, t_R die Unstetigkeitsstellen von a(t) sind; die Konstanten G und E werden explizit berechnet.

Применение теории операторных определителей и одна особая техника возмущения ядерными операторами позвольяют определить асимптотическое поведение теплицевых определителей $D_n(a) = \det \{a_{j-k}\}_{j,k=0}^n (n \to \infty)$, если символ (производящая функция) $a(t) = \sum_{k=-\infty}^{\infty} a_k t^k (|t| = 1)$ является кусочно-непрерывной функцией, удовлетворяющей некоторым естественным условиям регулярности. Имеет место соотношение $D_n(a) = C_n(a) = \frac{R}{2\pi i} \beta_r^{*}$, $C_n(n \to \infty)$, где $\beta_r = \frac{1}{2\pi i} \log a(t_r - 0)/a(t_r + 0)$, $|\text{Re } \beta_r| < \frac{1}{2}$ и где t_1, \ldots, t_R

— точки разрыва символа a(t). При этом константы G и E даны в явном виде.

Consequent application of the theory of operator determinants and a special technique of perturbing by trace class operators allow to determine the asymptotic behavior of the Toeplitz determinants $D_n(a) = \det \{a_{j-k}\}_{j,k=0}^n (n \to \infty)$, if the generating function $a(t) = \sum_{k=-\infty}^{\infty} a_k t^k (|t|=1)$ is piecewise continuous and satisfies some natural conditions of regularity. There holds $D_n(a) \sim G^{n+1} \cdot E \cdot n^{r=1} \quad (n \to \infty)$, where $\beta_r = \frac{1}{2\pi i} \log a(t_r - 0)/a(t_r + 0)$, $|\text{Re }\beta_r| < \frac{1}{2}$ with

 t_1, \ldots, t_R being the points of discontinuity of a(t); thereby the constants G und E are explicitly given.

§ 1 Introduction

Let a(t) be a piecewise continuous function given on the complex unit circle $\Gamma = \{t \in \mathbb{C} : |t| = 1\}$, i.e. *a* is continuous on Γ with exception of finitely many points t_1, \ldots, t_R where, however, *a* possesses finite limits $a(t_r - 0)$ and $a(t_r + 0)$ $(r = 1, \ldots, R)$. By $a^{\#}$ we denote the continuous curve obtained from the range of *a* by filling in the line segments joining $a(t_r - 0)$ to $a(t_r + 0)$ for each discontinuity. We suppose that $a^{\#}$ does not contain the origin and that the winding number ind $a^{\#}$ of $a^{\#}$ is zero.

Then there exist complex numbers β_1, \ldots, β_R satisfying $e^{2\pi i \beta_r} = a(t_r - 0)/a(t_r + 0)$, $-1/2 < \operatorname{Re} \beta_r < 1/2$ and a continuous function b(t) on Γ with $b(t) \neq 0$ (|t| = 1), ind b = 0 such that

$$a(t) = (-t)_{t_1}^{\beta_1} \dots (-t)_{t_n}^{\beta_n} b(t) \qquad (|t| = 1)$$
(1)

holds. Here $(-t)_{t_r}^{\beta_r}$ is defined by $\exp\left\{i\beta_r \arg\left(-\frac{t}{t_r}\right)\right\}$, $\left|\arg\left(-\frac{t}{t_r}\right)\right| < \pi$; so $(-t)_{t_r}^{\beta_r}$ has a discontinuity at $t = t_r$. We remark that we could take a branch of t^{β_r} instead a branch of $(-t)^{\beta_r}$ but we choose the latter, since we have a more "symmetrical" factorization

$$(-t)_{t_r}^{\beta_r} = \left(1 - \frac{t_r}{t}\right)^{-\beta_r} \left(1 - \frac{t}{t_r}\right)^{\beta_r} \quad (|t| = 1)$$

in this case; here $(1 - t/t_r)^{\beta_r}$ denotes the limit on the unit circle of that branch of the function which is analytic in |t| < 1 and takes the value 1 at t = 0 and where $(1 - t_r/t)^{-\beta_r}$ is defined similarly.

The asymptotic behavior of the Toeplitz determinants

$$D_n(a) = \det \{a_{j-k}\}_{j,k=0}^n, \qquad a_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} a(e^{i\varphi}) e^{-ik\varphi} d\varphi \qquad (k \in \mathbb{Z})$$

as $n \to \infty$ has been the object of study by many people for some time (cf. [1, 2, 6, 12, 13]). If the so-called generating function a(t) (|t| = 1) is continuous, sufficiently smooth, satisfies $a(t) \neq 0$ (|t| = 1) and ind a = 0, then one has the well-known asymptotic formula

$$D_n(a) \sim G(a)^{n+1} E(a) \qquad (n \to \infty),$$

where $G(a) = \exp(\log a)_0$, $E(a) = \exp\sum_{k=1}^{\infty} k(\log a)_k (\log a)_{-k}$, $((\log a)_k$ being the

Fourier coefficients of $\log a$). There exist asymptotic formulas in the case where ind $a \neq 0$ holds or where a has zeros on the unit circle, too. Much less is known, if a has discontinuities. This problem was probably for the first time considered by HARTWIG and FISHER in [2]. Using heuristic arguments they arrived at the conjecture that

$$D_n(a) \sim n^{-\sum \beta_r^{*}} G(b)^{n+1} E(t_1, ..., t_R; \beta_1, ..., \beta_R; b)$$
(2)

as $n \to \infty$ holds, if a is given by (1). Here E denotes some constant. They were able to verify (2) in the case R = 1, b(t) = 1 and they proved

$$D_n((-t)_{t_0}^{\beta}) \sim n^{-\beta^*} \mathfrak{G}(1+\beta) \mathfrak{G}(1-\beta) \qquad (n \to \infty).$$

Here $\mathfrak{G}(z)$ is the Barnes \mathfrak{G} -function; this is an entire function defined by

$$\mathfrak{G}(1+z) = (2\pi)^{\frac{1}{2}z} e^{-\frac{1}{2}z(z+1) - \frac{1}{2}\gamma_{g}z^{2}} \prod_{n=1}^{\infty} \left\{ \left(1 + \frac{z}{n}\right)^{n} e^{-z + z^{2}/2n} \right\}$$

 $(\gamma_E = 0.577...$ Euler's constant) and its role in analysis will be clear if one takes into consideration the relation $\mathfrak{G}(1+z) = \Gamma(z) \mathfrak{G}(z)$ (cf. [14], p. 264).

In [12] WIDOM proved (2) if R = 1, Im $\beta_1 = 0$, $-1/2 < \beta_1 < 1/2$, and if b has a derivative satisfying a Lipschitz condition with exponent greater than $|2\beta_1|$. In this

case a has only one point of discontinuity $t = t_1$ and there holds $\arg a(t_1 + 0) = \arg a(t_1 - 0)$. Furthermore, (2) was proved by ESTELLE BASOR in [1] in the case Re $\beta_r = 0$ (r = 1, ..., R) and under the assumption that b has a derivative satisfying a Lipschitz condition. Moreover, she was able to determine the constant E under her conditions. This result corresponds to the case where at the points of discontinuity $t_1, ..., t_R$ of a the relations $|a(t_r + 0)| = |a(t_r - 0)|$ hold.

It is the aim of this paper to prove formula (2) and to determine the constant E if a is an arbitrary piecewise continuous function with $0 \notin a^{\#}$, ind $a^{\#} = 0$, and if b in (1) satisfies some smoothness conditions.

§ 2 Preliminaries

Here some facts from the theory of Toeplitz operators, the theory of trace class operators and operator determinants are presented.

For $a \in L^{\infty}(\Gamma)$ with Fourier coefficients a_k $(k \in \mathbb{Z})$ we denote by T(a) both the semi-infinite matrix $\{a_{j-k}\}_{j,k=0}^{\infty}$ and the bounded operator induced by this matrix in a natural way on l^2 , the so-called *Toeplitz operator*. It is well-known that the use of *Hankel operators* in the study of Toeplitz operators is of great importance. The Hankel operator H(a) generated by $a \in L^{\infty}(\Gamma)$ is given by the semi-infinite matrix $\{a_{j+k+1}\}_{j,k=0}^{\infty}$ on l^2 . For $a \in L^{\infty}(\Gamma)$ we write $\tilde{a}(t) = a(1/t)$. Then one has the following simple identities (cf. [13])

$$T(fg) = T(f) T(g) + H(f) H(\tilde{g}),$$
(1)

$$H(fg) = T(f) H(g) + H(f) T(\tilde{g}).$$
 (2)

By $T_n(a)$ we denote the finite matrix $\{a_{j-k}\}_{j,k=0}^n$. If we define the operators P_n and W_n on l^2 by

$$P_n: \{\xi_0, \xi_1, \ldots\} \to \{\xi_0, \ldots, \xi_n, 0, \ldots\},$$
$$W_n: \{\xi_0, \xi_1, \ldots\} \to \{\xi_n, \ldots, \xi_0, 0, \ldots\}$$

then $T_n(a)$ may be identified with $P_n T(a) P_n / \text{Im } P_n$. An analogue of (1) is the identity

$$T_{n}(fg) = T_{n}(f) T_{n}(g) + P_{n}H(f) H(\tilde{g}) P_{n} + W_{n}H(\tilde{f}) H(g) W_{n}.$$
(3)

If A is an invertible operator on l^2 , if the operators $A_n = P_n A P_n | \operatorname{Im} P_n$ are invertible for n large enough and if A_n^{-1} converges strongly to A^{-1} as $n \to \infty$ then we say that the reduction method for A converges and we write $A \in \Pi\{P_n\}$. For a piecewise continuous function a we have the well-known fact

$$T(a) \in \Pi\{P_n\} \Leftrightarrow T(a) \text{ invertible } \Leftrightarrow 0 \notin a^{\#}, \text{ ind } a^{\#} = 0$$

$$\tag{4}$$

(cf. [3]). We remark also that from $A \in \Pi\{P_n\}$, T a compact operator, A + T invertible, it follows that $A + T \in \Pi\{P_n\}$ (cf. [3]).

An important class of operators on l^2 are the so-called trace operators. An operator $A \in \mathcal{L}(l^2)$ is called a *trace operator* (we write $A \in \mathcal{C}_1$), if $\sum_{n=1}^{\infty} s_n(A) < \infty$ where $s_n(A)$ is defined by

$$s_n(A) = \inf \{ \|A - K\|_{\infty} \colon \dim \operatorname{Im} K \leq n \}$$

 $(\|\cdot\|_{\infty}$ denoting the usual norm in the space $\mathscr{L}(l^2)$ of bounded operators on l^2).

Under the norm

$$||A||_1 = \sum_{n=1}^{\infty} s_n(A)$$

 \mathscr{C}_1 is a closed ideal in $\mathscr{L}(l^2)$. We remark that every trace operator is compact.

If $\{\lambda_n(A)\}$ denotes the sequence of eigenvalues of $A \in \mathscr{C}_1$, then we have $\sum |\lambda_n(A)| < \infty$ and the operator determinant det (I + A) is defined by

$$\det (I + A) = \prod_{n} (1 + \lambda_n(A)).$$

For equivalent definitions and properties of these determinants we refer to the relevant literature (cf. [4, 11]). We should notice here only the following facts:

$$det (I + \cdot) is continuous on \mathscr{C}_{1};$$

$$det (I + A) \cdot det (I + B) = det (I + A) (I + B) \quad (A, B \in \mathscr{C}_{1});$$

$$det C^{-1}(I + A) C = det (I + C^{-1}AC) = det (I + A)$$

$$(C^{\pm 1} \in \mathscr{L}(l^{2}), A \in \mathscr{C}_{1});$$

$$det P(I + A) P = det (I + PAP),$$
(5)
(7)

where P is a finite-dimensional projection and where the det on the left refers to the ordinary finite-dimensional determinant for operators defined on Im P.

Finally, we will often apply the following proposition (cf. [13]):

Suppose $\{B_n\}$ and $\{C_n\}$ are two sequences of bounded operators satisfying $B_n \to B$ strongly, $C_n^* \to C^*$ strongly. Then if $A \in \mathscr{C}_1$ $\lim_{n \to \infty} ||B_n A C_n - B A C||_1 = 0.$

§ 3 Perturbations by operators of the trace class

The following simple proposition is the key of our investigations.

Proposition 1: If $A \in \Pi\{P_a\}$ and $K \in \mathscr{C}_1$ then

$$\lim_{n\to\infty}\frac{\det P_n(A+K)P_n}{\det P_nAP_n}=\det\left(I+A^{-1}K\right).$$

Proof: Putting $P_nAP_n = A_n$, $P_nKP_n = K_n$ we have for n large enough

$$\frac{\det (A_n + K_n)}{\det A_n} = \frac{\det A_n \cdot \det (I_n + A_n^{-1}K_n)}{\det A_n}$$
$$= \det (I_n + A_n^{-1}K_n) = \det (I + A_n^{-1}P_n \cdot K \cdot P_n)$$

and since $A_n^{-1}P_n \to A^{-1}$ strongly, $P_n^* \to I^*$ strongly it follows by the proposition stated at the end of § 2 that

$$||A_n^{-1}P_nKP_n - A^{-1}K||_1 \to 0 \qquad (n \to \infty),$$

thus

$$\det \left(I + A_n^{-1} P_n K P_n\right) \to \det \left(I + A^{-1} K\right) \qquad (n + \infty) \blacksquare$$

Our next concern is the question under which conditions Hankel operators or products of them belong to the trace class \mathscr{C}_1 . More about this will be said at the end of this paper; here we remark only that $H(b) \in \mathscr{C}_1$ if for instance b has a derivative satisfying a Lipschitz condition (we write $b \in C^{1+\epsilon}$). This can be proved as follows: if p_n is the trigonometric polynomial of best uniform approximation of degree n for b, then $||b - p_n||_{\infty} \leq C \cdot n^{-1-\epsilon}$ and this implies

$$s_n(H(b)) \leq ||H(b) - H(p_n)||_{\infty} \leq ||b - p_n||_{\infty} \leq C \cdot n^{-1-\epsilon}$$

thus $\sum_{n=1}^{\infty} s_n(H(b)) < \infty$. Later we will need the following fact.

Lemma 1: If b has a continuous second derivative b'', then $||H(b)||_1 \leq \frac{\pi^4}{12} ||b''||_{\infty}$.

Proof: If p_n denotes the trigonometric polynomial of best uniform approximation of degree n for b, then (cf. [7], eq. (9.5))

$$egin{aligned} &s_n(H(b)) \leq \|H(b) - H(p_n)\|_\infty \leq \|b - p_n\|_\infty \ &\leq rac{\pi}{2n} \ \omega\left(b', rac{\pi}{n}
ight) \leq rac{\pi}{2n} \ \|b''\|_\infty rac{\pi}{n}, \end{aligned}$$

thus

$$\|H(b)\|_{1} = \sum_{n=1}^{\infty} s_{n}(H(b)) \leq \sum_{n=1}^{\infty} \frac{\pi^{2}}{2n^{2}} \|b^{\prime\prime}\|_{\infty} = \frac{\pi^{4}}{12} \|b^{\prime\prime}\|_{\infty} \blacksquare$$

Lemma 2: If $H(b) \in \mathscr{C}_1$ and $H(\tilde{b}) \in \mathscr{C}_1$, then there holds $b \in W$. Here W denotes the Wiener algebra of all functions on Γ with absolutely convergent Fourier series.

Proof: $\{e_n\}_{n=0}^{\infty}$, $e_n = \{\delta_{nj}\}_{j=0}^{\infty} \in l^2$ is an orthonormal basis in l^2 and from $H(b) \in \mathscr{C}_1$, $H(\tilde{b}) \in \mathscr{C}_1$ it follows (cf. [11])

$$\sum |(H(b) e_n, e_n)| = |b_1| + |b_3| + \dots < \infty,$$

$$\sum |(H(\tilde{b}) e_n, e_n)| = |b_{-1}| + |b_{-3}| + \dots < \infty.$$

From (2.2) we get

$$\begin{split} H(tb) &= T(t) H(b) + H(t) T(\tilde{b}) \in \mathscr{C}_1, \\ H(\tilde{t}\tilde{b}) &= T(t^{-1}) H(\tilde{b}) + H(t^{-1}) T(b) \in \mathscr{C}_1, \end{split}$$

and therefore

$$\sum |(H(tb) e_n, e_n)| = |b_0| + |b_2| + \dots < \infty,$$

$$\sum |(H(\tilde{t}\tilde{b}) e_n, e_n)| = |b_{-2}| + |b_{-4}| + \dots < \infty \square$$

Every $b \in W$, $b(t) \neq 0$ (|t| = 1), ind b = 0 has a canonical factorization $b = b_{-}b_{+}$ where

$$b_{-}(t) = \exp\left\{\sum_{k=-\infty}^{-1} (\log b)_{k} t^{k}\right\}, \qquad b_{+}(t) = \exp\left\{\sum_{k=0}^{\infty} (\log b)_{k} t^{k}\right\}$$
(1)

and there holds $b_{-}^{\pm 1} \in W \cap \overline{H^{\infty}}, b_{+}^{\pm 1} \in W \cap H^{\infty}$ (cf. [3]). If $H(b) \in \mathscr{C}_{1}, H(\tilde{b}) \in \mathscr{C}_{1}$ then we have $H(b_{+}) \in \mathscr{C}_{1}$ and $H(\tilde{b}_{-}) \in \mathscr{C}_{1}$; this follows immediately from

$$H(b_{+}) = H(bb_{-}^{-1}) = T(b) H(b_{-}^{-1}) + H(b) T(\tilde{b}_{-}^{-1}) = H(b) T(\tilde{b}_{-}^{-1}).$$

It is a well-known fact (cf. [5]) that $H(f) H(\tilde{g})$ is a compact operator, if f and g are piecewise continuous functions having no common point of discontinuity. Even much more is true.

27

Proposition 2: Suppose that f and g are piecewise continuous functions on Γ without common points of discontinuity. If each of these functions belongs to $C^{1+\epsilon}$ on each closed subset of Γ which contains no of its points of discontinuity, then H(f) $H(\tilde{g}) \in \mathscr{C}_1$;

Proof: Since f and g have only a finite number of points of discontinuity, in virtue of the representations

$$f(t) = \sum_{k=1}^{n} f_k(t), \qquad g(t) = \sum_{k=1}^{n} g_k(t)$$

where $f_k(t)$ and $g_k(t)$ have only one point of discontinuity and belong to $C^{1+\epsilon}$ on each closed arc of Γ which does not contain this point of discontinuity, we may reduce the proof to the case when both f and g have only one point of discontinuity t_0 and t_1 , respectively, and $t_0 \neq t_1$. In this case we can choose two open arcs γ and Δ of Γ such that $t_0 \in \gamma$, $\overline{\gamma} \subset \Delta$, $t_1 \notin \overline{\Delta}$ holds. From $g \in C^{1+\epsilon}(\overline{\Delta})$ it follows the existence of a function $b \in C^{1+\epsilon}(\Gamma)$ satisfying

$$b(t) = g(t)$$
 $(t \in \gamma)$, $b(t) = g(t)$ $(t \in \partial \Delta = \overline{\Delta} \setminus \Delta)$.

Furthermore, there exists a function $c \in C^{1+\epsilon}(\Gamma)$ with

$$c(t) = g(t) - b(t)$$
 $(t \in \Delta), \quad c(t) \neq 0$ $(t \in \Gamma \setminus \Delta).$

In particular there holds c(t) = 0 for $t \in \gamma$. Finally, put

$$d(t) = \begin{cases} 1, & t \in \Delta \\ [g(t) - b(t)]/c(t), & t \in \Gamma \setminus \Delta \end{cases}$$

We have g = b + cd by construction and applying (2.1) some times, we obtain

$$T(fcd) = T(fc) T(d) + H(fc) H(\tilde{d})$$

= $T(f) T(c) T(d) + H(f) H(\tilde{c}) T(d) + H(fc) H(\tilde{d})$
= $T(f) T(cd) - T(f) H(c) H(\tilde{d}) + H(f) H(\tilde{c}) T(d) + H(fc) H(\tilde{d})$

and

$$T(fb) = T(f) T(b) + H(f) H(\tilde{b}).$$

This implies

$$H(f) H(\tilde{g}) = T(fg) - T(f) T(g) = T(fcd + fb) - T(f) T(b + cd)$$

= T(fcd) - T(f) T(cd) + T(fb) - T(f) T(b)
= -T(f) H(c) H(\tilde{d}) + H(f) H(\tilde{c}) T(d) + H(fc) H(\tilde{d}) + H(f) H(\tilde{b}).
(2)

From b, c, $fc \in C^{1+\epsilon}(\Gamma)$ (we remark once more that c = 0 in a neighbourhood of the point of discontinuity of f) we get $H(\tilde{b})$, H(c), $H(\tilde{c})$, $H(fc) \in \mathscr{C}_1$, and since all the other operators on the right of (2) are bounded, the assertion follows.

§ 4 The existence of the limit $\lim_{n\to\infty} D_n(\varphi b)/G(b)^{n+1}n^{-\Sigma\beta,*}$

We write $\varphi(t) = (-t)_{t_1}^{\beta_1} \dots (-t)_{t_n}^{\beta_r}$ and $\varphi_r(t) = (-t)_{t_r}^{\beta_r}$. Suppose that H(b), $H(\tilde{b}) \in \mathscr{C}_1$ holds (according to Lemma 2 it follows $b \in W$) and that $b(t) \neq 0$ (|t| = 1), ind b = 0 is fulfilled. Let b_- and b_+ be given by (3.1) from the canonical factorization $b = b_-b_+$.

In order to apply Proposition 1 we put¹)

$$A = T(b_{+}) T(\varphi) T(b_{-})$$

and

$$A + K = T(b_{-}) T(\varphi) T(b_{+}) = T(\varphi b).$$

We have $K \in \mathscr{C}_1$, since

$$egin{aligned} K &= T(arphi b) - T(b_+) \ T(arphi) \ T(b_-) \ &= H(b_+) \ H(ilde{arphi} ilde{b}_-) + T(b_+) \ H(arphi) \ H(ilde{arphi} ilde{b}_-) \end{aligned}$$

and $H(b_+)$, $H(\tilde{b}_-) \in \mathscr{C}_1$. From $A + K = T(\varphi b) \in \Pi\{P_n\}$ (cf. (2.4)), the compactness of K and the invertibility of A we may deduce that $A \in \Pi\{P_n\}$. Now, applying Proposition 1 and the identity

$$P_n A P_n = P_n T(b_+) T(\varphi) T(b_-) P_n = T_n(b_+) T_n(\varphi) T_n(b_-)$$

following from (2.3), we get

$$\begin{split} &\lim_{n \to \infty} D_n(\varphi b) / D_n(b_+) \ D_n(\varphi) \ D_n(b_-) \\ &= \det \{ I + T^{-1}(b_-) \ T^{-1}(\varphi) \ T^{-1}(b_+) \ [T(\varphi b) - T(b_+) \ T(\varphi) \ T(b_-)] \} \\ &= \det T^{-1}(b_-) \ T^{-1}(\varphi) \ T^{-1}(b_+) \ T(\varphi b) \,. \end{split}$$

 $T_n(b_{\pm})$ are triangular matrices and therefore we have $D_n(b_+) D_n(b_-) = G(b_+)^{n+1} G(b_-)^{n+1}$ = $G(b)^{n+1}$ and because of $T^{-1}(f) = T(f^{-1})$ for $f \in \overline{H^{\infty}}$ or $f \in H^{\infty}$ we arrive at

$$\lim_{n \to \infty} D_n(\varphi b) / G(b)^{n+1} D_n(\varphi) = \det T(b_{-}^{-1}) T^{-1}(\varphi) T(b_{+}^{-1}) T(\varphi b).$$
(1)

Thus, we have eliminated the "regular" factor b(t) from the generating function. Now we are going to delete successively one factor φ_r (r = 1, ..., R - 1) from $D_n(\varphi)$.

We write $\varphi = \varphi_1 \psi$ and put

$$A = T(\varphi_1) T(\psi), \qquad K = H(\varphi_1) H(\tilde{\psi}).$$

Then we have $T(\varphi_1\psi) \in \Pi\{P_n\}$, $K \in \mathscr{C}_1$ by Proposition 2, A is invertible and $A = T(\varphi_1\psi) - K$ yields $A \in \Pi\{P_n\}$. Thus, we may apply Proposition 1 and we obtain

$$\lim_{n \to \infty} \frac{D_n(\varphi_1 \psi)/\det P_n T(\varphi_1) T(\psi) P_n}{= \det \{I + T^{-1}(\psi) T^{-1}(\varphi_1) H(\varphi_1) H(\tilde{\psi})\}}$$
$$= \det T^{-1}(\psi) T^{-1}(\varphi_1) T(\varphi_1 \psi).$$
(2)

Now, the following identity may easily be verified:

$$P_nT(f) T(g) P_n = T_n(f) T_n(g) + W_nH(\tilde{f}) H(g) W_n \qquad (f, g \in L^{\infty}(\Gamma)).$$

It follows

$$P_n T(\varphi_1) T(\psi) P_n = T_n(\varphi_1) T_n(\psi) \{I_n + T_n^{-1}(\psi) T_n^{-1}(\varphi_1) W_n H(\tilde{\varphi}_1) H(\psi) W_n\}$$

¹⁾ This idea is due to Prof. B. Silbermann.

hence

$$\det P_n T(\varphi_1) T(\psi) P_n / D_n(\varphi_1) D_n(\psi) = \det \{I_n + T_n^{-1}(\psi) T_n^{-1}(\varphi_1) W_n H(\tilde{\varphi}_1) H(\psi) W_n\} = \det W_n \{I_n + W_n T_n^{-1}(\psi) W_n W_n T_n^{-1}(\varphi_1) W_n H(\tilde{\varphi}_1) H(\psi) P_n\} W_n = \det \{I + T_n^{-1}(\tilde{\psi}) T_n^{-1}(\tilde{\varphi}_1) H(\tilde{\varphi}_1) H(\psi) P_n\}.$$

Here we have used $W_n^2 = P_n = I_n$, $W_n T_n^{-1}(f) W_n = T_n^{-1}(\tilde{f})$, det $W_n A W_n = \det P_n A P_n$, det $\{I_n + P_n A P_n\} = \det \{I + P_n A P_n\}$. Proposition 2 applied to $\tilde{\varphi}_1$ and $\tilde{\psi}$ implies $H(\tilde{\varphi}_1) H(\psi) \in \mathscr{C}_1$ and since $T_n^{-1}(\tilde{\psi}) T_n^{-1}(\tilde{\varphi}_1) \to T^{-1}(\tilde{\psi}) T^{-1}(\tilde{\varphi}_1)$ strongly, the proposition stated at the end of § 2 leads to

$$\lim_{n \to \infty} \det P_n T(\varphi_1) T(\psi) P_n / D_n(\varphi_1) D_n(\psi)$$

= det {I + T⁻¹($\tilde{\psi}$) T⁻¹($\tilde{\varphi}_1$) H($\tilde{\varphi}_1$) H(ψ)}
= det T⁻¹($\tilde{\psi}$) T⁻¹($\tilde{\varphi}_1$) T($\tilde{\varphi}_1 \tilde{\psi}$). (3)

Analogously as this was done in (2) and (3) we may now delete φ_2 from $D_n(\psi)$ and so on. Continuing this process, we get from (1), (2), (3)

$$\lim_{n \to \infty} D_n(\varphi_1 \dots \varphi_R b)/G(b)^{n+1} D_n(\varphi_1) \dots D_n(\varphi_R)$$

$$= \det T(b_{-1}^{-1}) T^{-1}(\varphi) T(b_{+}^{-1}) T(b_{+}\varphi b_{-})$$

$$\times \prod_{r=1}^{R-1} \det T^{-1}(\psi_r) T^{-1}(\varphi_r) T(\varphi_r \psi_r)$$

$$\times \prod_{r=1}^{R-1} \det T^{-1}(\tilde{\psi}_r) T^{-1}(\tilde{\varphi}_r) T(\tilde{\varphi}_r \tilde{\psi}_r), \qquad (4)$$

where

$$\psi_r = \varphi_{r+1} \dots \varphi_R \qquad (r = 1, \dots, R-1).$$

From the computations of HARTWIG and FISHER [2] follows

$$D_n(\varphi_r) = D_n((-t)_{t_r}^{\beta_r}) \sim n^{-\beta_r} \mathfrak{G}(1+\beta_r) \mathfrak{G}(1-\beta_r)$$
(5)

and therefore the existence of the limit

$$\lim_{n\to\infty} D_n(\varphi b)/G(b)^{n+1} n^{-\sum \beta_r^*} = E.$$

By (4) and (5) we have a preliminary information about the constant E, it remains to evaluate the occuring operator determinants. This is straightforward but somewhat extensiv, since we are constrained to use some approximation arguments.

§ 5 Approximation of Toeplitz and Hankel operators with piecewise continuous generating function

As already stated in the Introduction, the function $\varphi(t) = (-t)_{l_0}^{\beta}, -1/2 < \text{Re }\beta < 1/2$ possesses a factorization

$$\varphi(t) = \left(1 - \frac{t_0}{t}\right)^{-\beta} \left(1 - \frac{t}{t_0}\right)^{\beta} \quad (|t| = 1).$$

We put

$$\varphi_{\mu}(t) = \left(1 - \frac{t_0}{\mu t}\right)^{-\beta} \left(1 - \frac{t}{\mu t_0}\right)^{\beta} \quad (|t| = 1),$$

where $\mu > 1$ is a real parameter. Obviously, we have

 $\varphi_{\mu} \in W, \qquad \varphi_{\mu} \in C^{\infty}, \quad \varphi_{\mu}(t) \neq 0 \qquad (|t| = 1), \qquad \text{ind } \varphi_{\mu} = 0$

if μ is sufficiently close to 1. Furthermore, it is easily seen that $T(\varphi_{\mu}) \rightarrow T(\varphi)$ strongly and $H(\varphi_{\mu}) \rightarrow H(\varphi)$ strongly as $\mu \rightarrow 1 + 0$. Somewhat less obvious is the following fact.

Lemma 3: $T^{-1}(\varphi_{\mu}) \rightarrow T^{-1}(\varphi)$ strongly as $\mu \rightarrow 1 + 0$.

Proof: From $\varphi_{\mu}(t) \neq 0$ (|t| = 1), ind $\varphi_{\mu} = 0$ it follows the invertibility of $T(\varphi_{\mu})$ for $\mu \in (1, 1 + \varepsilon)$. It is not difficult to show that

$$T^{-1}(\varphi_{\mu}) e_{n} = T\left[\left(1 - \frac{t}{\mu t_{0}}\right)^{-\beta}\right] T\left[\left(1 - \frac{t_{0}}{\mu t}\right)^{\beta}\right] e_{n}$$

$$\rightarrow T\left[\left(1 - \frac{t}{t_{0}}\right)^{-\beta}\right] T\left[\left(1 - \frac{t_{0}}{t}\right)^{\beta}\right] e_{n} = T^{-1}(\varphi) e_{n}$$

in the norm of l^2 , where $e_n = \{\delta_{nj}\}_{j=0}^{\infty} \in l^2$. The set of all finite linear combinations of $\{e_0, e_1, \ldots\}$ is dense in l^2 and the assertion will follow if we prove the uniform boundedness of the norms $||T^{-1}(\varphi_{\mu})||_{\infty}$ with respect to $\mu \in (1, 1 + \varepsilon)$. It is elementary function theory to show that the range of $\varphi_{\mu}(t)$ for $t \in \Gamma$, $\mu \in (1, 1 + \varepsilon)$ is contained in a *closed* sector of an annulus spanned by an angle $2\pi \cdot |\operatorname{Re} \beta| < \pi$ and having the radii exp $\{\pm \pi \cdot |\operatorname{Im} \beta|\}$. Thus, there exists a real number c > 0 such that the disk with the centre in c and the radius c contains this sector of an annulus in its interior. Therefore we have

$$|\varphi_{\mu}(t)-c| < q|c|, \quad t \in \Gamma, \quad \mu \in (1, 1+\varepsilon)$$

with some q satisfying 0 < q < 1. This implies

$$\||\varphi_{\mu}-c||_{\infty} \leq q|c|, \quad \mu \in (1, 1+\varepsilon),$$

hence

$$||T(\varphi_{\mu}) - cI||_{\infty} \leq q|c|, \qquad \mu \in (1, 1 + \varepsilon),$$

and we obtain

$$T(\varphi_{\mu}) = cI + T(\varphi_{\mu}) - cI = cI \{I + c^{-1} (T(\varphi_{\mu}) - cI)\},\$$
$$T^{-1}(\varphi_{\mu}) = \{I + \sum_{n=1}^{\infty} (-1)^{n} [c^{-1} (T(\varphi_{\mu}) - cI)]^{n}\} \cdot \frac{1}{c}.$$

 $\operatorname{From} \|c^{-1}(T(\varphi_{\mu}) - cI)\|_{\infty} \leq q < 1 \text{ it follows } \|T^{-1}(\varphi_{\mu})\|_{\infty} \leq \frac{1}{c} \cdot \frac{1}{1-q}, \ \mu \in (1, 1+\varepsilon)$

Lemma 4: Let $\psi(t)$ (|t| = 1) be a piecewise continuous function which is continuous at $t = t_0$ and which belongs to C^2 on each closed subset of Γ containing no point of discontinuity of ψ . Then we have

$$||H(\varphi_{\mu}) H(\tilde{\psi}) - H(\varphi) H(\tilde{\psi})||_{1} = o(1)$$

as $\mu \rightarrow 1$, $\mu \in (1, 1 + \varepsilon)$.

Proof: We construct b, c, d as in the proof of Proposition 2 and by our assumption it is possible to choose b, $c \in C^{2}(\Gamma)$. Then (3.2) leads to

$$\begin{split} \|H(\varphi_{\mu}) H(\tilde{\psi}) - H(\varphi) H(\tilde{\psi})\|_{1} \\ &\leq || \big(T(\varphi_{\mu}) - T(\varphi) \big) H(c) H(\tilde{d}) ||_{1} + || (H(\varphi_{\mu}) - H(\varphi)) H(\tilde{c}) T(d) ||_{1} \\ &+ \|H[(\varphi_{\mu} - \varphi) c] H(\tilde{d}) ||_{1} + || (H(\varphi_{\mu}) - H(\varphi)) H(\tilde{b}) ||_{1} \end{split}$$

and since $T(\varphi_{\mu}) \to T(\varphi)$, $H(\varphi_{\mu}) \to H(\varphi)$ strongly, H(c), $H(\tilde{c})$, $H(\tilde{b}) \in \mathscr{C}_1$, it follows from the proposition stated at the end of §2 that all items on the right, with exception of the third, are o(1). Applying Lemma 1 we obtain

$$\begin{aligned} \|H[(\varphi_{\mu} - \varphi) c]\|_{1} &\leq \pi^{4}/12 \cdot \|[(\varphi_{\mu} - \varphi) c]''\|_{\infty} \\ &= \pi^{4}/12 \cdot \|[(\varphi_{\mu} - \varphi) c]''\|_{L^{\infty}(\Gamma \setminus \gamma)} = o(1) \end{aligned}$$

since c(t) = 0 $(t \in \gamma)$ and $\|\varphi_{\mu}^{(k)} - \varphi^{(k)}\|_{L^{\infty}(\Gamma \setminus \gamma)} = o(1), k = 1, 2, ...$). Thus, the third item is o(1), too

§ 6 The determination of the constant $E(t_1, ..., t_R; \beta_1, ..., \beta_R; b)$

The evaluation of the operator determinants det (I + C), $C \in \mathscr{C}_1$ occuring in (4.4) is based on the representation of I + C as a multiplicative commutator $I + C = e^A e^B e^{-A} e^{-B} (A, B \in \mathscr{L}(l^2))$ and the formula

$$\det e^{A}e^{B}e^{-A}e^{-B} = \exp \operatorname{tr} (AB - BA), \tag{1}$$

being valid if $AB - BA \in \mathscr{C}_1$ (cf. [13]). An immediate application of (1) to our problem, however, is not possible, since the arising operators do not, in general, satisfy $AB - BA \in \mathscr{C}_1$. Thus, we have to use some approximation arguments.

First of all, we split up the right side of (4.4) into in a certain sense "more elementary" factors. Thereby we continuously make use of (2.1), (2.5), (2.6) without to mention this each time.

We have

$$\det T(b_{-}^{-1}) T^{-1}(\varphi) T(b_{+}^{-1}) T(\varphi b) = \det T(b_{-}^{-1}) T^{-1}(\varphi) T(\varphi b_{-}) \cdot T^{-1}(\varphi b_{-}) T(b_{+}^{-1}) T(\varphi b) = \det T(b_{-}^{-1}) T^{-1}(\varphi) T(b_{-}) T(\varphi) \cdot \det T^{-1}(\varphi b_{-}) T(b_{+}^{-1}) T(\varphi b)$$

and the second determinant is equal to

$$\det T^{-1}(\varphi) T(b_{-}^{-1}) T(b_{+}^{-1}) T(b_{-}) T(\varphi) T(b_{+}) = \det T(b_{-}^{-1}) T(b_{+}^{-1}) T(b_{-}) T(\varphi) T(b_{+}) T^{-1}(\varphi) = \det T(b_{-}^{-1}) T(b_{+}^{-1}) T(b_{-}) T(b_{+}) \cdot \det T(b_{+}^{-1}) T(\varphi) T(b_{+}) T^{-1}(\varphi) .$$

Let us now write

$$E(f,g) = \det T^{-1}(f) T^{-1}(g) T(f) T(g)$$

whenever this has a sense. We remark that in virtue of

$$T^{-1}(f) T^{-1}(g) T(f) T(g) = I + T^{-1}(f) T^{-1}(g) [H(g) H(\tilde{f}) - H(f) H(\tilde{g})]$$

E(f, g) is always defined, if $H(g) H(\tilde{f}) \in \mathscr{C}_1$ and $H(f) H(\tilde{g}) \in \mathscr{C}_1$. By our assumptions we have $H(b_+), H(\tilde{b}_-) \in \mathscr{C}_1$ and so we may conclude in this way that $E(\varphi, b_+), E(b_-, b_+)$

and $E(b_{-}, \varphi)$ are defined and from our calculations follows

$$\det T(b_{-}^{-1}) T^{-1}(\varphi) T(b_{+}^{-1}) T(\varphi b) = E(\varphi, b_{+}) E(b_{-}, b_{+}) E(b_{-}, \varphi).$$
(2)

It turns out that E(f, g) has a remarkable multiplicative property.

Lemma 5: If $H(\tilde{f})$ $H(g) \in \mathscr{C}_1$, $H(\tilde{b}_-) \in \mathscr{C}_1$, $b_- \in \overline{H^{\infty}}$ then

$$E(b_{-}, fg) = E(b_{-}, f) E(b_{-}, g),$$

and if $H(f) H(\tilde{g}) \in \mathscr{C}_1$, $H(b_+) \in \mathscr{C}_1$, $b_+ \in H^{\infty}$ then

 $E(fg, b_{+}) = E(f, b_{+}) E(g, b_{+}).$

Here we suppose that all occuring in $E(\cdot, \cdot)$ inverses $T^{-1}(f), \ldots$ exist.

Proof: From H(f) $H(\tilde{g}) \in \mathcal{C}_1$ it follows that T(fg) $T^{-1}(g)$ $T^{-1}(f) - I \in \mathcal{C}_1$ and we obtain

$$\begin{split} E(f, b_{+}) \cdot \det T(fg) \ T^{-1}(g) \ T^{-1}(f) \cdot E(g, b_{+}) \\ = \det T^{-1}(f) \ T(b_{+}^{-1}) \ T(f) \ T(b_{+}) \cdot \det T(b_{+}^{-1}) \ T^{-1}(f) \ T(fg) \ T^{-1}(g) \ T(b_{+}) \\ \times \ \det T(b_{+}^{-1}) \ T(g) \ T(b_{+}) \ T^{-1}(g) \end{split}$$

and

$$\begin{split} E(fg, b_{+}) &= \det T^{-1}(fg) \ T(b_{+}^{-1}) \ T(fg) \ T(b_{+}) \\ &= \det T(f) \ T(g) \ T^{-1}(fg) \cdot T(b_{+}^{-1}) \ T(fg) \ T(b_{+}) \cdot T^{-1}(g) \ T^{-1}(f) \\ &= \det T(f) \ T(g) \ T^{-1}(fg) \cdot \det T^{-1}(f) \ T(b_{+}^{-1}) \ T(fg) \ T(b_{+}) \ T^{-1}(g) \, . \end{split}$$

From

det
$$T(f) T(g) T^{-1}(fg) \cdot \det T(fg) T^{-1}(g) T^{-1}(f) = 1$$

the second assertion follows. The first may be proved analogously

Lemma 6: If f resp. b_+ are invertible elements with index zero in W resp. $W \cap H^{\infty}$ and if $H(b_+) \in \mathcal{C}_1$ then

$$E(f, b_{+}) = \exp \sum_{k=1}^{\infty} k(\log f)_{-k} (\log b_{+})_{k}.$$

If f resp. b_{-} are invertible elements with index zero in W resp. $W \cap \overline{H^{\infty}}$ and if $H(\tilde{b}_{-}) \in \mathscr{C}_{1}$ then

$$E(b_{-}, f) = \exp \sum_{k=1}^{\infty} k(\log b_{-})_{-k} (\log f)_{k}.$$

Proof: From the assumptions it follows that f has a canonical factorization $f = f_{-} \cdot f_{+}$. Thus

$$\begin{split} E(f, b_{+}) &= \det T^{-1}(f) \ T(b_{+}^{-1}) \ T(f) \ T(b_{+}) \\ &= \det T(f_{+}^{-1}) \ T(f_{-}^{-1}) \ T(b_{+}^{-1}) \ T(f_{+}^{-1}) \\ &= \det T(f_{-}^{-1}) \ T(b_{+}^{-1}) \ \dot{T}(f_{+}^{-1}) \\ &= \det T(f_{-}^{-1}) \ T(b_{+}^{-1}) \ T(f_{-}) \ T(b_{+}). \end{split}$$

3 Analysis Bd. 1, Heft 2 (1982)

Now there holds $T(\psi) = \exp T(\log \psi)$, if ψ is an invertible element with index zero in $W \cap H^{\infty}$ or $W \cap \overline{H^{\infty}}$ and we get (applying (1))

$$E(f, b_{+}) = \exp \{-T(\log f_{-})\} \exp \{-T(\log b_{+})\} \exp T(\log f_{-}) \exp T(\log b_{+})$$

= exp tr {T(log f_{-}) T(log b_{+}) - T(log b_{+}) T(log f_{-})}
= exp tr H(log b_{+}) H((log f_{-})^{\sim})

if only $H(\log b_+) H((\log f_-)^{\sim}) \in \mathscr{C}_1$. But from $H(\psi) \in \mathscr{C}_1$, ψ being invertible with index zero in W it follows $H(\log \psi) \in \mathscr{C}_1$ (cf. [8]) and so by our assumptions we have $H(\log b_+) \in \mathscr{C}_1$. An easy computation shows

tr
$$H(f)$$
 $H(\tilde{g}) = \sum_{k=1}^{\infty} k f_k g_{-k}$

for H(j) $H(\tilde{g}) \in \mathscr{C}_1$ and now the assertion follows immediately. The second may be proved in the same way

Looking at (4.4) we still must investigate expressions of the form det $T^{-1}(g)T^{-1}(f) \times T(fg)$. We write

$$F(f,g) = \det T^{-1}(g) T^{-1}(f) T(fg)$$

whenever this has a sense (e.g. if $H(f) H(g) \in \mathscr{C}_1$).

Lemma 7: Put $\varphi(t) = (-t)_{t_0}^{\beta}$ and suppose that ψ , f, g satisfy the conditions of Lemma 4. Then

$$F(\varphi, \psi) = \lim_{\mu \to 1+0} F(\varphi_{\mu}, \psi)$$

where φ_{μ} is defined as in § 5. Furthermore, there holds

$$F(\varphi_{\mu}, \psi) = E(\psi, (\varphi_{\mu})_{+})$$

with $(\varphi_{\mu})_{+}(t) = \left(1 - \frac{t}{\mu t_{0}}\right)^{\beta}$ and

$$F(\varphi, fg) = F(\varphi, f) F(\varphi, g).$$

Here we suppose that all inverses occuring in $F(\cdot, \cdot)$ exist.

Proof: We have

$$\begin{split} F(\varphi, \psi) &= \det T^{-1}(\psi) \ T^{-1}(\varphi) \ T(\varphi \psi) \\ &= \det \left\{ I + T^{-1}(\psi) \ T^{-1}(\varphi) \ H(\varphi) \ H(\tilde{\psi}) \right\} \end{split}$$

and from $T^{-1}(\varphi_{\mu}) \to T^{-1}(\varphi)$ strongly according to Lemma 3 and $||H(\varphi_{\mu}) H(\tilde{\psi})| = -H(\varphi) H(\tilde{\psi})||_1 = c(1)$ according to Lemma 4, we may conclude that

$$F(\varphi, \psi) = \lim_{\mu \to 1+0} \det \{I + T^{-1}(\psi) \ T^{-1}(\varphi_{\mu}) \ H(\varphi_{\mu}) \ H(\tilde{\psi})\}$$
$$= \lim_{\mu \to 1+0} \det T^{-1}(\psi) \ T^{-1}(\varphi_{\mu}) \ T(\varphi_{\mu}\psi)$$
$$= \lim_{\mu \to 1+0} F(\varphi_{\mu}, \psi).$$

Now there holds

$$F(\varphi_{\mu}, \psi) = \det T^{-1}(\psi) T((\varphi_{\mu})_{+}^{-1}) T((\varphi_{\mu})_{-}^{-1}) T(\varphi_{\mu}\psi)$$

= det $T^{-1}(\psi) T((\varphi_{\mu})_{+}^{-1}) T(\psi) T((\varphi_{\mu})_{+})$

where $(\varphi_{\mu})_{-} = \left(1 - \frac{t_0}{\mu t}\right)^{-\beta}$, $(\varphi_{\mu})_{+} = \left(1 - \frac{t}{\mu t_0}\right)^{\beta}$, hence

$$F(\varphi_{\mu}, \psi) = E(\psi, (\varphi_{\mu})_{+}).$$

If *i* and *g* satisfy the conditions of Lemma 4, then in virtue of $H((\varphi_{\mu})_{+}) \in \mathscr{C}_{1}$ Lemma 5 may be applied and what results is

$$F(\varphi_{\mu}, fg) = F(\varphi_{\mu}, f) \cdot F(\varphi_{\mu}, g).$$

Taking the limit $\mu \rightarrow 1 + 0$ we get the last assertion.

Now we are ready to evaluate the operator determinants in question. From Lemma 6 and Lemma 2 immediately follows that

$$E(b_{-}, b_{+}) = \exp \sum_{k=1}^{\infty} k(\log b)_{-k} (\log b)_{+k} = :E(b).$$
(3)

For $\varphi(t) = (-t)_{t_r}^{\beta_r}$ in virtue of $H(b_+) \in \mathscr{C}_1 E(\varphi, b_+)$ is defined and we have

$$\begin{split} E(\varphi, b_{+}) &= \det T^{-1}(\varphi) \ T(b_{+}^{-1}) \ T(\varphi) \ T(b_{+}) \\ &= \det \left\{ I + T^{-1}(\varphi) \ T(b_{+}^{-1}) \ H(b_{+}) \ H(\tilde{\varphi}) \right\} \\ &= \lim_{\mu \to 1+0} \det \left\{ I + T^{-1}(\varphi_{\mu}) \ T(b_{+}^{-1}) \ H(b_{+}) \ H(\tilde{\varphi}_{\mu}) \right\}, \end{split}$$

since $T^{-1}(\varphi_{\mu}) \to T^{-1}(\varphi)$ strongly by Lemma 3, $H(\tilde{\varphi}_{\mu}) \to H(\tilde{\varphi})$ strongly (obviously) and $H(b_{+}) \in \mathscr{C}_{1}$ was supposed. Because of

det {
$$I + T^{-1}(\varphi_{\mu}) T(b_{+}^{-1}) H(b_{+}) H(\tilde{\varphi}_{\mu})$$
}
= det $T^{-1}(\varphi_{\mu}) T(b_{+}^{-1}) T(\varphi_{\mu}) T(b_{+}) = E(\varphi_{\mu}, b_{+})$

we get finally $E(\varphi, b_+) = \lim_{\mu \to 1+0} E(\varphi_{\mu}, b_+)$. Now $E(\varphi_{\mu}, b_+)$ may be calculated using Lemma 6. What results is

$$E(\varphi_{\mu}, b_{+}) = \exp \sum_{k=1}^{\infty} k(\log \varphi_{\mu})_{-k} (\log b_{+})_{k}$$
$$= \exp \beta_{r} \sum_{k=1}^{\infty} (\log b_{+})_{k} \cdot t_{r}^{k} / \mu^{k}$$

(since $(\log \varphi_{\mu})_{-k} = \beta_r t_r^{\ k} / k \mu^k$) and therefore

$$E(\varphi, b_+) = \lim_{\mu \to 1+0} \exp \beta_r \sum_{k=1}^{\infty} (\log b_+)_k \cdot t_r^k / \mu^k$$
$$= \exp \beta_r \sum_{k=1}^{\infty} (\log b_+)_k \cdot t_r^k = b_+ (t_r)^{\beta_r}$$

(we remark that $\log b_+ \in W$ holds!).

Analogously one can show that

$$E(b_{-},\varphi)=b_{-}(t_{r})^{-\beta_{r}}.$$

Lemma 5 now gives

$$E(\varphi_1 \dots \varphi_R, b_+) E(b_-, b_+) E(b_-, \varphi_1 \dots \varphi_R)$$

= $E(b) \prod_{r=1}^R b_+(t_r)^{\beta r} \prod_{r=1}^R b_-(t_r)^{-\beta r},$

where E(b) is defined by (3).

Applying Lemma 7 to (4.4) we obtain

$$\prod_{r=1}^{R-1} F(\varphi_r, \psi_r) F(\tilde{\varphi}_r, \tilde{\psi}_r) = \prod_{r$$

and we still must evaluate $F(\varphi_r, \varphi_s)$, $\varphi_r(t) = (-t)_{t_r}^{\beta_r}$, $\varphi_s(t) = (-t)_{t_s}^{\beta_s}$. Also according to Lemma 7 we have

į

$$F(\varphi_r, \varphi_s) = \lim_{\mu \to 1+0} F[(\varphi_r)_{\mu}, \varphi_s] = \lim_{\mu \to 1+0} \lim_{\lambda \to 1+0} F[(\varphi_r)_{\mu}, (\varphi_s)_{\lambda}]$$

and because of $F[(\varphi_r)_{\mu}, (\varphi_s)_{\lambda}] = E[(\varphi_s)_{\lambda}, (\varphi_r)_{\mu,+}]$ we obtain applying Lemma 6

$$F[(\varphi_r)_{\mu}, (\varphi_s)_l] = \exp \sum_{k=1}^{\infty} k[\log (\varphi_r)_{\mu}]_{-k} [\log (\varphi_s)_l]_k$$
$$= \exp \sum_{k=1}^{\infty} k \left(\frac{\beta_r t_r^k}{\mu^k k}\right) \left(-\frac{\beta_s}{\lambda^k k t_s^k}\right)$$
$$= \exp \left\{\beta_r \beta_s \log \left(1 - \frac{t_r}{\mu \lambda t_s}\right)\right\} = \left(1 - \frac{t_r}{\mu \lambda t_s}\right)^{\beta_r \beta_s}.$$

The limit $\mu \rightarrow 1 + 0$, $\lambda \rightarrow 1 + 0$ then gives

$$(F\varphi_r,\varphi_s)=\left(1-\frac{t_r}{t_s}\right)^{\beta_r\beta_s}.$$

Analogously one can show that

$$F(\tilde{\varphi}_r, \tilde{\varphi}_s) = \left(1 - \frac{t_s}{t_r}\right)^{\beta_r \beta_s}.$$

§ 7 Summary

Let $\varphi_r(t) = (-t)_{l_r}^{\beta_r}$, $-1/2 < \text{Re } \beta_r < 1/2$, be defined as in § 1. Suppose that $b \in L^{\infty}(\Gamma)$ and H(b), $H(\tilde{b})$ are operators of the trace class. Then necessarily $b \in W$. If $b(t) \neq 0$ (|t| = 1), ind b = 0 then b has a canonical factorization $b = b_- \cdot b_+$, where the factors b_{\pm} are defined by (3.1).

We have proved that

$$\lim_{n\to\infty}\frac{D_n(\varphi_1\ldots\varphi_R b)}{\frac{-\sum\beta_r^*}{G(b)^{n+1}n^{r-1}}}=\tilde{E}(t_1,\ldots,t_R;\beta_1,\ldots,\beta_R;b) E(b)$$

holds. Here

$$\begin{aligned} G(b) &= \exp(\log b)_0, \\ E(b) &= \exp\sum_{k=1}^{\infty} k(\log b)_{-k} (\log b)_k, \\ \tilde{E}(t_1, \dots, t_R; \beta_1, \dots, \beta_R; b) \\ &= \prod_{r=1}^R \mathfrak{G}(1 + \beta_r) \mathfrak{G}(1 - \beta_r) \prod_{r=1}^R E(b_r, \varphi_r) E(\varphi_r, b_r) \prod_{r < \delta} F(\varphi_r, \varphi_\delta) F(\tilde{\varphi}_r, \tilde{\varphi}_\delta), \end{aligned}$$

and

$$E(f,g) = \det T^{-1}(f) T^{-1}(g) T(f) T(g),$$

$$F(f,g) = \det T^{-1}(g) T^{-1}(f) T(fg).$$

An equivalent expression is

$$\tilde{E}(t_1, \ldots, t_R; \beta_1, \ldots, \beta_R; b) = \prod_{r=1}^R \mathfrak{G}(1+\beta_r) \mathfrak{G}(1-\beta_r) \prod_{r=1}^R b_+(t_r)^{\beta_r} b_-(t_r)^{-\beta_r} \prod_{r\neq \delta} \left(1-\frac{t_r}{t_s}\right)^{\beta_r \beta_s}$$

 $\mathfrak{G}(z)$ is the Barnes \mathfrak{G} -function defined in § 1.

Appendix A: Hankel operators of the trace class

We remark that V. V. PELLER in a recent paper [9] announced a necessary and sufficient condition for a Hankel operator to belong to the ideal $\mathscr{C}_p(1 \leq p < \infty)$.

Given a function $b(t) = \sum_{n=-\infty}^{\infty} b_n t^n$ (|t| = 1), we denote by Pb the function defined by $(Pb)(t) = \sum_{n=0}^{\infty} b_n t^n$, whenever this series converges. By $B_p^{1/p}$ $(1 \le p < \infty)$ we denote the Besov class of all measurable functions on Γ satisfying

$$\int_{-\pi}^{\pi} y^{-2} \int_{-\pi}^{\pi} |f(e^{ix+iy}) + f(e^{ix-iy}) - 2f(e^{ix})|^p \, dx \, dy < \infty,$$

which for p > 1 is equivalent to

$$\int_{-\pi}^{\pi} y^{-2} \int_{-\pi}^{\pi} |f(e^{ix+iy}) - f(e^{ix})|^p \, dx \, dy < \infty$$

Further, we put

$$A_p^{1/p} = \left\{ f \in B_p^{1/p} : \int_{-\pi}^{\pi} f(e^{ix}) e^{ikx} dx = 0, \qquad k > 0 \right\},$$

i.e. $A_p^{1/p}$ is the subclass of all analytical functions of $B_p^{1/p}$. Then one has $f \in A_p^{1/p}$ $1 \leq p < \infty$) if and only if

$$\int_{\mathbf{D}} |f''|^p \, \chi(1-|z|)^{2p-2} \, dx \, dy < \infty,$$

which for p > 1 is equivalent to

$$\int_{0} |f'|^{p} (1-|z|)^{p-2} \, dx \, dy < \infty.$$

Here a function $f \in A_p^{1/p}$ is identified with its analytical extension into $\mathbf{D} = \{z \in \mathbb{C} : |z| < 1\}$.

The result of Peller then reads:

$$H(b) \in \mathscr{C}_p \Leftrightarrow Pb \in B_p^{1/p} \Leftrightarrow Pb \in A_p^{1/p} \qquad (1 \leq p < \infty).$$

In particular we obtain

$$H(b), H(\tilde{b}) \in \mathscr{C}_1 \Leftrightarrow Pb \in B_1^1, \quad (I-P) \ b \in B_1^1 \Leftrightarrow b_- \in B_1^1, \quad b_+ \in B_1^1,$$

 b_{\pm} being the factors in the canonical factorization $b = b_{-}b_{+}$. Furthermore using the boundedness of P on B_1^1 (cf. [9]) we get H(b), $H(\tilde{b}) \in \mathscr{C}_1 \Leftrightarrow b \in B_1^{-1}$.

Appendix B: The block case

We remark that the techniques used here are available in the block case, too. In fact, given a matrix generating function $a(t) = \{a_{ij}(t)\}_{i,j=1}^N$ with elements being piecewise continuous, then we have a factorization $a = b\varphi c$ if only det $a(t \pm 0) \neq 0$ (|t| = 1) holds; here b and c are continuous matrix functions and φ is an upper triangular matrix with piecewise continuous elements (cf. [10], p. 124). Under certain conditions concerning smoothness and invertibility one may eliminate b and c and then, in virtue of the triangular form of φ , the results for the scalar case lead to

$$D_n(a) \sim G^{n+1} \cdot E \cdot n^{\sum_{k=1}^{N} \sum_{r=1}^{R} \beta_{kr}^2}$$

with some constants G and E; the β_{rk} 's are given by $\beta_{rk} = \frac{1}{2\pi i} \log \lambda_{rk}, -1/2 < \operatorname{Re} \beta_{rk}$

< 1/2 where λ_{rk} (k = 1, ..., N) are the N eigenvalues of the matrices $a(t_r + 0)^{-1} \times a(t_r - 0)$, and $t_1, ..., t_R$ being the points of discontinuity. More about this will be published elsewhere.

Acknowledgement: I would like to thank Prof. B. Silbermann for suggesting this problem and for numerous stimulating and helpful discussions.

REFERENCES

- BASOR, E.: Asymptotic formulas for Toeplitz determinants. Trans. Amer. Math. Soc. 239 (1978), 33-65.
- [2] FISHER, M. E., and R. E. HARTWIG: Toeplitz determinants: some applications, theorems and conjectures. Adv. Chem. Phys. 15 (1968), 333-353.
- [3] GOHBERG, I. C., and I. A. FELDMAN: Convolution equations and projection methods for their solution. Transl. of Math. Monographs, Vol. 41. Providence 1974.
- [4] GOHBERG, I. C., and M. G. KREIN: Introduction to the theory of linear nonselfadjoint operators. Transl. of Math. Monographs, Vol. 18. Providence 1969.
- [5] Гохберг, И. Ц., и Н. Я. Крупник: Введение в теорию одномерных сингулярных интегральных операторов. Изд-во ,,Штипнца": Кишинев 1973.
- [6] GRENANDER, U., and G. SZEGÖ: Toeplitz forms and their applications. Univ. of Calif. Press: Berkeley 1958.

- [7] Корнейчук, Н. П.: Экстремальные задачи теории приближения. Изд-во "Наука": Москва 1976.
- [8] Крейн, М. Г.: О некоторых новых Банаховых алгебрах и теоремах типа теоремы Винера-Леви для рядов и интегралов фурье. Мат. Иссл. 1 (1961), 82-109.
- [9] ПЕЛЛЕР, В. В.: Гладкие операторы Ганкеля и их приложения (идеалы C_p, классы Бесова, случайные процессы). ДАН СССР 252 (1980), 43-48.
- [10] PRÖSSDORF, S., und S. G. MICHLIN: Singuläre Integraloperatoren. Akademie-Verlag: Berlin 1980.
- [11] SIMON, B.: Notes on infinite determinants of Hilbert space operators. Adv. in Math. 24 (1977), 244-273.
- [12] WIDOM, H.: Toeplitz determinants with singular generating functions. Amer. J. of Math. 95 (1973), 333-383.
- [13] WIDOM, H.: Asymptotic behavior of block Toeplitz matrices and determinants. II. Adv. in Math. 21 (1976), 1-29.
- [14] WHITTAKER, E. T., and G. N. WATSON: A Course in Modern Analysis. 4th ed. Cambridge 1963.

Added in Proof. Having already submitted the present paper to the Editors. I observed that the same problem was considered in

BASOR, E. L.: A Localization Theorem for Toeplitz Determinants. Indiana Univ. Math. J. 28 (1979), 975-983, and for the special case were the generating function has only one point of discontinuity in

Блехер, П. М.: О гипотезе Фишера — Хартвига в теории теплицевых матриц. Функц. анализ и его прилож. 16, вып. 2 (1982), 1-6.

Manuskripteingang: 09.01.1981

VERFASSER:

Dipl.-Math. ALBRECHT BÖTTOHER Sektion Mathematik der Technischen Hochschule DDR-9010 Karl-Marx-Stadt, PSF 964