Toeplitz determinants with piecewise continuous generating function

A. **BöTTCHER**

Durch konsequente Benutzung der Theorie der Operatordeterminanten und einer speziellen Technik der Storung durch Spuroperatoren wird das asymptotische Verhalten der Toeplitzdeterminanten $D_n(a) = \det \{a_{j-k}\}_{j,k=0}^n$ $(n \to \infty)$ bestimmt, falls die Erzeugerfunktion $a(t)$

 $=\sum_{k=-\infty}^{\infty} \alpha_k t^k$ ($|t|=1$) stückweise stetig ist und gewissen natürlichen Regularitätsbedingungen

Durch konsequents benuzzing der rheorie der operatoreormizationen

Technik der Störung durch Spuroperatoren wird das asymptotische V

determinanten $D_n(a) = \det \{a_{j-k}\}_{j,k=0}^n$ $(n \to \infty)$ bestimmt, falls die
 $\sum_{k=-\infty}^{\infty} a_k$ $log a(t_r - 0)/a(t_r + 0),$ Example Benutzung der Theorie der Operatordeterminant
 1 Störung durch Spuroperatoren wird das asymptotische
 *1 a a 2 d a i*_{*1*} *a a i*_{*n*} *a a d i*_{*n*} *a a a i a a a a a a* $|{\rm Re} \,\beta_r| < \frac{1}{2}$ ist und $t_1, ..., t_R$ die Unstetigkeitsstellen von a(t) sind; die Konstanten *G* und *E* werden explizit berechnet.

Применение теории операторных определителей и одна особая техника возмущения ядерными операторами позвольяют определить асимптотическое поведение теплицевых определителей $D_n(a) = \det \{a_{j-k}\}_{j,k=0}^n$ $(n \to \infty)$, если символ (производящая функция) $a(t) = \sum_{k=-\infty}^{\infty} a_k t^k$ (|t| = 1) является кусочно-непрерывной функцией, удовлетворя- I_{n} некоторым естественным условиям регулярности. Имеет место соотношение $D_{n}(a)$ $F = \sum_{r=1}^{R} \beta_r^*$
 R \cdot *R* $r = 1$ (*n* $\rightarrow \infty$), rge $\beta_r = \frac{1}{2\pi i} \log a(t_r - 0)/a(t_r + 0)$, |Re β_r | $\lt \frac{1}{2}$ *M* rge t_1, \ldots , β_r^*
 $(n \to \infty)$, wobei $\beta_r = \frac{1}{2\pi i} \log a(t_r)$

igkeitsstellen von a(t) sind; die Konst

peggenurenent is ogna ocoбая техник

onpegenurent acummorniveckoe non

on $t_1^n k_{-0}$ $(n \to \infty)$, если символ (произ

ca кусочно-не

 $-$ точки разрыва символа $a(t)$. При этом константы G и E даны в явном виде.

Consequent application *of* the theory of operator determinants and a special technique of perturbing by trace class operators allow to determine the asymptotic behavior of the Toepiitz determinants $D_n(a) = \det \{a_{j-k}\}_{j,k=0}^n (n \to \infty)$, if the generating function $a(t) = \sum_{k=0}^{\infty} a_k t^k (|t| = 1)$ is piecewise continuous and satisfies some natural conditions of regularity. There holds *If* —z s, Consequent application of the theory of operator determinants and a special technique of
perturbing by trace class operators allow to determine the asymptotic behavior of the Toeplitz
determinants $D_n(a) = \det \{a_{j-k}\}_{j,k=0}^n ($ DEREVIEW AND THE MET MET MET MET MET MET A THE $t_r - 0$)/ $a(t_r + 0)$, $|\text{Re } \beta_r| < \frac{1}{2}$ is read to the real or determinants and a special techniquine the asymptotic behavior of the Tome generating function $a(t) = \sum_{k=-\infty}^{\$

 t_1, \ldots, t_R being the points of discontinuity of $a(t)$; thereby the constants *G* und *E* are explicitely

given.

§ 1 Introduction

Let $a(t)$ be a piecewise continuous function given on the complex unit circle $F = \{t \in \mathbb{C} : |t| = 1\}$, i.e. a is continuous on Γ with exception of finitely many points $\hat{t}_1, \ldots, \hat{t}_R$ where, however, a possesses finite limits $a(t_r - 0)$ and $a(t_r + 0)$ ($r = 1, \ldots, R$). By a^* we denote the continuous curve obtained from the range of a by filling in the line segments joining $a(t_r - 0)$ to $a(t_r + 0)$ for each discontinuity. We suppose that a^* does not contain the origin and that the winding number ind a^* of a^* is zero. Then there exist complex numbers $\beta_1, ..., \beta_R$ satisfying $e^{2\pi i \beta_r} = a(t_r - 0)/a(t_r + 0)$, $-1/2 < \text{Re }\beta_r < 1/2$ and a continuous function $b(t)$ on Γ with $\dot{b}(t) \neq 0$ ($|t| = 1$), ind $b = 0$ such that For exist complex numbers β_1 , ...

Re $\beta_r < 1/2$ and a continuous for β and $\alpha(t) = (-t)_{t_1}^{\beta_1} \dots (-t)_{t_n}^{\beta_n} b(t)$ (|t i, β_R satisfying $e^{2\pi i \beta_r} = a(t_r - 0)/a(t_r + 0)$,

unction $b(t)$ on Γ with $b(t) \neq 0$ ($|t| = 1$),
 $|t| = 1$) (1)
 $\arg \left(-\frac{t}{t_r}\right)$, $\arg \left(-\frac{t}{t_r}\right) \leq \pi$; so $(-t)_{t_r}^{\beta_r}$,

that we could take a branch of t^{β_r} ins

$$
a(t) = (-t)_{t_1}^{\beta_1} \dots (-t)_{t_n}^{\beta_n} b(t) \qquad (|t| = 1)
$$
\n(1)

holds. Here $(-t)$ ^{β}r is defined by exp $\left\{i\beta_r \arg\left(-\frac{t}{t_r}\right)\right\}, \left|\arg\left(-\frac{t}{t_r}\right)\right| < \pi$; so $(-t)_{t_r}^{\beta_r}$ has a discontinuity at $t = t_r$. We remark that we could take a branch of t^{β_r} instead a branch of $(-t)^{\beta_r}$ but we choose the latter, since we have a more "symmetrical" factorization

$$
(-t)_{t_r}^{\beta_r} = \left(1 - \frac{t_r}{t}\right)^{-\beta_r} \left(1 - \frac{t}{t_r}\right)^{\beta_r} \quad (|t| = 1)
$$

in this case; here $(1 - t/t_r)^{\beta_r}$ denotes the limit on the unit circle of that branch of the function which is analytic in $|t| < 1$ and takes the value 1 at $t = 0$ and where $(1 - t_r/t)^{-\beta_r}$ is defined similarly.

The asymptotic behavior of the Toeplitz determinants

case; here
$$
(1 - t/t_r)^{\beta_r}
$$
 denotes the limit on the unit circle of that t to which is analytic in $|t| < 1$ and takes the value 1 at $t = 0$ at $t^{-\beta_r}$ is defined similarly.

\nsymptotic behavior of the Toeplitz determinants

\n
$$
D_n(a) = \det \{a_{j-k}\}_{j,k=0}^n, \qquad a_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} a(e^{i\varphi}) e^{-ik\varphi} d\varphi \qquad (k \in \mathbb{Z})
$$

as $n \to \infty$ has been the object of study by many people for some time (cf. [1, 2, 6, 12, 13]). If the so-called generating function $a(t)$ ($|t| = 1$) is continuous, sufficiently smooth, satisfies $a(t) \neq 0$ ($|t| = 1$) and 12, 13]). If the so-called generating function $a(t)$ ($|t| = 1$) is continuous, sufficiently smooth, satisfies $a(t) \doteq 0$ (it = 1) and ind $a = 0$, then one has the well-known asymptotic formula

$$
D_n(a) \sim G(a)^{n+1} E(a) \qquad (n \to \infty),
$$

where $G(a) = \exp(\log a)_0$, $E(a) = \exp \sum_{k}^{n} k(\log a)_k (\log a)_{-k}$, $((\log a)_k \text{ being the})$

Fourier coefficients of $log a$). There exist asymptotic formulas in the case where ind $a \neq 0$ holds or where a has zeros on the unit circle, too. Much less is known, if a has discontinuities. This problem was probably for the first time considered by HARTWIG and FISHER in [2]. Using heuristic arguments they arrived at the conjecture that satisfies $a(t) \neq 0$ ($|t| = 1$) and ind $a = 0$, then one has the well-known
tic formula
 $D_n(a) \sim G(a)^{n+1} E(a)$ $(n \to \infty)$,
 $\mathcal{F}(a) = \exp(\log a)_0$, $E(a) = \exp \sum_{k=1}^{\infty} k(\log a)_k (\log a)_{-k}$, $((\log a)_k$ being the
coefficients of log a). The bolds or where *a* has zeros on the
holds or where *a* has zeros on the
iscontinuities. This problem was p
and FISHER in [2]. Using heurist
at
 $-\frac{R}{\sum \beta_r}$
 $D_n(a) \sim n^{-r-1} G(b)^{n+1} E(t_1, ..., t_R;$
holds, if *a* is given by (1). H

$$
P_n(a) \sim n \stackrel{R}{r=1} G(b)^{n+1} E(t_1, ..., t_R; \beta_1, ..., \beta_R; b)
$$
(2)
obolds, if *a* is given by (1). Here *E* denotes some constant. They were able
(2) in the case $R = 1$, $b(t) = 1$ and they proved

$$
D_n((-t)_{t_0}^{\beta}) \sim n^{-\beta^*} \mathfrak{B}(1+\beta) \mathfrak{B}(1-\beta) \qquad (n \to \infty).
$$
is the *Barnes* \mathfrak{B} -function; this is an entire function defined by

as $n \to \infty$ holds, if a is given by (1). Here E denotes some constant. They were able to verify (2) in the case $R = 1$, $b(t) = 1$ and they proved

$$
D_n\left((-t)_t^{\beta}\right) \sim n^{-\beta^*}\mathfrak{B}(1+\beta) \mathfrak{B}(1-\beta) \qquad (n\to\infty).
$$

Here $\mathfrak{G}(z)$ is the *Barnes* $\mathfrak{G}\text{-}function$; this is an entire function defined by

$$
D_n(u) \sim h \qquad \text{or} \qquad \text{and} \qquad \text{or} \qquad \text{or}
$$

 $(\gamma_E = 0.577...$ Euler's constant) and its role in analysis will be clear if one takes into consideration the relation $\mathfrak{G}(1 + z) = \Gamma(z) \mathfrak{G}(z)$ (cf. [14], p. 264).

In [12] Wroom proved (2) if $R = 1$, Im $\beta_1 = 0$, $-\frac{1}{2} < \beta_1 < \frac{1}{2}$, and if *b* has a derivative satisfying a Lipschitz condition with exponent greater than $|2\beta_1|$. In this case a has only one point of discontinuity $t = t_1$ and there holds arg $a(t_1 + 0)$ $=$ arg $a(t_1 - 0)$. Furthermore, (2) was proved by ESTELLE BASOR in [1] in the case Re $\beta_r = 0$ ($r = 1, ..., R$) and under the assumption that *b* has a derivative satisfying a Lipschitz condition. Moreover, she was able to determine the constant *E* under her conditions. This result corresponds to the case where at the points of discontinuity t_1, \ldots, t_R of a the relations $|a(t_r + 0)| = |a(t_r - 0)|$ hold.

It is the aim of this paper to prove formula (2) and to determine the constant *^E* if a is an arbitrary piecewise continuous function with $0 \notin a^*$, ind $a^* = 0$, and if *b* in (1) satisfies some smoothness conditions.

2 Preliminaries

Here some facts from the theory of Toeplitz operators, the theory of trace class operators and operator determinants are presented.

For $a \in L^{\infty}(\Gamma)$ with Fourier coefficients a_k ($k \in \mathbb{Z}$) we denote by $T(a)$ both the semi-infinite matrix ${a_{j-k}}_{j,k=0}^{\infty}$ and the bounded operator induced by this matrix in a natural way on l^2 , the so-called *Toeplitz operator*. It is well-known that the use of *Hankel operators* in the study of Toeplitz operators is of great importance. The Hankel operator $H(a)$ generated by $a \in L^{\infty}(\Gamma)$ is given by the semi-infinite matrix $\{a_{i+k+1}\}_{i,k=0}^{\infty}$ on l^2 . For $a \in L^{\infty}(\Gamma)$ we write $\tilde{a}(t) = \tilde{a}(1/t)$. Then one has the following simple identities (cf. [13]) *Therefore in the theory of Toeplitz operators, the theory of trace class* and operator determinants are presented.
 $\in L^{\infty}(\Gamma)$ with Fourier coefficients a_k ($k \in \mathbb{Z}$) we denote by $T(a)$ both the matrix $\{a_{j-k}\}_{j$ *Himalities*
 Here facts from the theory of Toeplitz operators, the theory of trace class
 H($\in L^{\infty}(\Gamma)$ with Fourier coefficients a_k ($k \in \mathbb{Z}$) we denote by $T(a)$ both the
 High entrix $\{a_{i-k}\}_{i=-0}^{\infty}$ an

$$
T(fg) = T(f) T(g) + H(f) H(\tilde{g}), \qquad (1)
$$

$$
H(fg) = T(f) H(g) + H(f) T(\tilde{g}). \qquad (2)
$$

By $T_n(a)$ we denote the finite matrix $\{a_{j-k}\}_{j,k=0}^n$. If we define the operators P_n and W_n on l^2 by

$$
P_n: \{\xi_0, \xi_1, \ldots\} \to \{\xi_0, \ldots, \xi_n, 0, \ldots\},
$$

$$
W_n: \{\xi_0, \xi_1, \ldots\} \to \{\xi_n, \ldots, \xi_0, 0, \ldots\}
$$

then $T_n(a)$ may be identified with $P_nT(a)$ P_n /Im P_n . An analogue of (1) is the identity

$$
T_n(fg) = T_n(f) T_n(g) + P_n H(f) H(\tilde{g}) P_n + W_n H(\tilde{f}) H(g) W_n.
$$
 (3)

T.(fg) = *T.(f)* $T(g) + H(f) H(\tilde{g})$, (1)
 $H(fg) = T(f) H(g) + H(f) T(\tilde{g})$. (2)

(a) we denote the finite matrix $\{a_{j-k}\}_{j,k=0}^n$. If we define the operators P_n
 $P_n: \{\xi_0, \xi_1, \ldots\} \rightarrow \{\xi_0, \ldots, \xi_n, 0, \ldots\}$,
 $W_n: \{\xi_0, \xi_1, \$ If *A* is an invertible operator on l^2 , if the operators $A_n = P_n A P_n | \text{Im } P_n$ are invertible for *n* large enough and if A_n^{-1} converges strongly to A^{-1} as $n \to \infty$ then we say that the *reduction method for A converges* and we write $A \in \Pi\{P_n\}$. For a piecewise continuous function a we have the well-known fact *Theory* P_n : $\{ \xi_0, \xi_1, \ldots \} \rightarrow \{ \xi_0, \ldots, \xi_n, 0, \ldots \},$
 P_n : $\{ \xi_0, \xi_1, \ldots \} \rightarrow \{ \xi_0, \ldots, \xi_n, 0, \ldots \},$
 W_n : $\{ \xi_0, \xi_1, \ldots \} \rightarrow \{ \xi_n, \ldots, \xi_0, 0, \ldots \}$
 $T_n(fg) = T_n(f) T_n(g) + P_n H(f) H(g) P_n + W_n H(f) H(g) W_n.$ (3)
 $T_n(fg) = T_n(f)$

$$
T(a) \in \Pi\{P_n\} \Leftrightarrow T(a) \text{ invertible } \Leftrightarrow 0 \notin a^{\#}, \text{ ind } a^{\#} = 0 \tag{4}
$$

(cf. [3]). We remark also that from $A \in \Pi\{P_n\}$, T a compact operator, $A + T$ invertible, it follows that $A + T \in \Pi\{P_n\}$ (cf. [3]).

An important class of operators on **¹²**are the so-called trace operators. An operator *A* $\in \mathscr{L}(l^2)$ is called a *trace operator* (we write $A \in \mathscr{C}_1$), if $\sum_{n=1}^{\infty} s_n(A) < \infty$ where $s_n(A)$
is defined by
 $s_n(A) = \inf \{||A - K||_{\infty} : \text{dim Im } K \leq n\}$
 $(||\cdot||_{\infty}$ denoting the usual norm in the space $\mathscr{L}(l^2$ is defined by

$$
s_n(A) = \inf \left\{ ||A - K||_{\infty} : \dim \operatorname{Im} K \leq n \right\}
$$

 $(\|\cdot\|_{\infty}$ denoting the usual norm, in the space $\mathscr{L}(l^2)$ of bounded operators on l^2).

Under the norm

$$
||A||_1=\sum_{n=1}^\infty s_n(A)
$$

 \mathscr{C}_1 is a closed ideal in $\mathscr{L}(l^2)$. We remark that every trace operator is compact.

If $\{\lambda_n(A)\}$ denotes the sequence of eigenvalues of $A \in \mathscr{C}_1$, then we have $\sum |\lambda_n(A)| < \infty$ and the operator determinant det $(I + A)$ is defined by

$$
\det(I+A)=\prod_n\big(1+\lambda_n(A)\big).
$$

For equivalent definitions and properties of these determinants we refer to the relevant literature (cf. [4, 11]). We should notice here only the following facts:

$$
||A||_1 = \sum_{n=1}^{\infty} s_n(A)
$$

\nlosed ideal in $\mathcal{L}(l^2)$. We remark that every trace operator is compact.
\n4) denotes the sequence of eigenvalues of $A \in \mathcal{C}_1$, then we have $\sum | \lambda_n(A) | < \infty$
\noperator determinant det $(I + A)$ is defined by
\ndet $(I + A) = \prod_{n} (1 + \lambda_n(A))$.
\nivalent definitions and properties of these determinants we refer to the
\nliterature (cf. [4, 11]). We should notice here only the following facts:
\ndet $(I + \cdot)$ is continuous on \mathcal{C}_1 ;
\ndet $(I + A) \cdot$ det $(I + B) =$ det $(I + A) (I + B)$ $(A, B \in \mathcal{C}_1)$;
\ndet $C^{-1}(I + A) C =$ det $(I + C^{-1}AC) =$ det $(I + A)$
\n $(C^{\pm 1} \in \mathcal{L}(l^2), A \in \mathcal{C}_1)$;
\ndet $P(I + A) P =$ det $(I + PAP)$,
\nis a finite-dimensional projection and where the det on the left refers to the
\nis it the dimensional projection and where the det on the left refers to the

where *P* is a finite-dimensional projection and where the det on the left refers to the ordinary finite-dimensional determinant for operators defined on Tm *P.*

Finally, we will often apply the following proposition (cf. [131):

Suppose ${B_n}$ *and* ${C_n}$ *are two sequences of bounded operators satisfying* $B_n \to B$ strongly, $C_n^* \to C^*$ strongly. *Then if* $A \in \mathscr{C}_1$ $\lim_{n \to \infty} ||B_n A C_n - B A C||_1 = 0.$ Suppose $\{B_n\}$ and $\{C_n\}$ are two sequences of both $B_n \rightarrow B$ strongly, $C_n^* \rightarrow C^*$ strongly.

Then if $A \in \mathscr{C}_1$
 \vdots $\lim_{n \to \infty}$ $\|B_n A C_n - B A C\|$
 rbations by operator
 $\text{ving simple proposition 1: If } A \in \Pi$
 $\lim_{n \to \infty} \frac{\det P_n (A + K)}{\det P_n A P_n}$

Putting $P_n A P_n =$

§ **3 Perturbations by operators** of the trace class

The following simple proposition is the key of our investigations.

Proposition 1: *If* $A \in \Pi\{P_a\}$ and $K \in \mathscr{C}_1$ *then*

$$
\lim_{n\to\infty}\frac{\det P_n(A+K)\,P_n}{\det P_nAP_n}=\det\,(I+A^{-1}K).
$$

Proof: Putting $P_nAP_n = A_n$, $P_nKP_n = K_n$ we have for *n* large enough

intining
$$
||D_n A \cup n - D A \cup ||_1 = 0
$$
.

\nurbations by operators of the trace class

\nowing simple proposition is the key of our investigations.

\nosition 1: If $A \in \Pi\{P_n\}$ and $K \in \mathscr{C}_1$ then

\n
$$
\lim_{n \to \infty} \frac{\det P_n(A + K) P_n}{\det P_n A P_n} = \det (I + A^{-1}K).
$$

\nf: Putting $P_n A P_n = A_n$, $P_n K P_n = K_n$ we have for n large enough

\n
$$
\frac{\det (A_n + K_n)}{\det A_n} = \frac{\det A_n \cdot \det (I_n + A_n^{-1}K_n)}{\det A_n}
$$
\n
$$
= \det (I_n + A_n^{-1}K_n) = \det (I + A_n^{-1}P_n \cdot K \cdot P_n)
$$

\nsee $A_n^{-1} P_n \rightarrow A^{-1}$ strongly, $P_n^* \rightarrow I^*$ strongly it follows by the put the end of § 2 that

\n
$$
||A_n^{-1} P_n K P_n - A^{-1} K||_1 \rightarrow 0 \qquad (n \rightarrow \infty),
$$

and since $A_n^{-1}P_n \to A^{-1}$ strongly, $P_n^* \to I^*$ strongly it follows by the proposition stated at the end of § 2 that $d_{n}e^{iA_{n}-1}P_{n} \rightarrow A^{-1}$ strongly, $P_{n}^{*} \rightarrow I^{*}$ strongly it follows
the end of § 2 that
 $||A_{n}^{-1}P_{n}KP_{n} - A^{-1}K||_{1} \rightarrow 0$ ($n \rightarrow \infty$),
det $(I + A_{n}^{-1}P_{n}KP_{n}) \rightarrow det (I + A^{-1}K)$ ($n + \infty$)

$$
||A_n^{-1}P_nKP_n-A^{-1}K||_1\to 0 \qquad (n\to\infty),
$$

thus

$$
\det (I + A_n^{-1}P_nKP_n) \to \det (I + A^{-1}K) \qquad (n + \infty) \blacksquare
$$

Our next concern is the question under which conditions Hankel operators or products of them belong to the trace class \mathscr{C}_1 . More about this will be said at the end of this paper; here we remark only that $H(b) \in \mathscr{C}_1$ if for instance *b* has a derivative satisfying a Lipschitz condition (we write $b \in C^{1+\epsilon}$). This can be proved as follows: if p_n is the trigonometric polynomial of best uniform approximation of degree *n* for *b*, Our next concern is the question under
products of them belong to the trace class
end of this paper; here we remark only that *l*
satisfying a Lipschitz condition (we write *b*
if p_n is the trigonometric polynomial of b $\begin{split} \text{as paper; here we remark only the} \ \text{g a Lipschitz condition (we write} \ \text{trigonometric polynomial of being} \ - \ p_n\|_\infty &\leq C \cdot n^{-1-\epsilon} \ \text{and this impl} \ s_n\big(H(b)\big) &\leq \|H(b) - H(p_n)\|_\infty \leq 1 \ \text{for all } n \leq n-1 \end{split}$ tisfying a Lipschitz condition (we write $b \in C^{1+\epsilon}$). This can be proved as p_n is the trigonometric polynomial of best uniform approximation of degree
en $||b - p_n||_{\infty} \leq C \cdot n^{-1-\epsilon}$ and this implies
 $s_n(H(b)) \leq ||H(b) - H(p_n)||_{\in$

$$
s_n\big(H(b)\big) \leq ||H(b) - H(p_n)||_{\infty} \leq ||b - p_n||_{\infty} \leq C \cdot n^{-1-\epsilon}
$$

 $|b^{\prime\prime}||_{\infty}$.

Proof: If p_n denotes the trigonometric polynomial of best uniform approximation

degree *n* for *b*, then (cf. [7], eq. (9.5))
 $s_n(H(b)) \leq ||H(b) - H(p_n)||_{\infty} \leq ||b - p_n||_{\infty}$
 $\leq \frac{\pi}{2n} \omega\left(b', \frac{\pi}{n}\right) \leq \frac{\pi}{2n} ||b''||_{\infty} \frac{\pi$ of degree *n* for *b*, then *(cf. [7], eq. (9.5)*)
 $s_n(H(b)) \leq ||H(b) - H(p_n)||_{\infty} \leq ||b - p_n||_{\infty}$

thus
$$
\sum_{n=1}^{\infty} s_n(H(b)) < \infty
$$
. Later we will need the following fact. Lemma 1: If *b* has a continuous second derivative *b*'', the: $\text{Proof: If } p_n \text{ denotes the trigonometric polynomial of best of degree } n \text{ for } b, \text{ then (cf. [7], eq. (9.5))}$. $s_n(H(b)) \leq ||H(b) - H(p_n)||_{\infty} \leq ||b - p_n||_{\infty}$. $\leq \frac{\pi}{2n} \omega \left(b', \frac{\pi}{n} \right) \leq \frac{\pi}{2n} ||b''||_{\infty} \frac{\pi}{n},$ thus $||H(b)||_1 = \sum_{n=1}^{\infty} s_n(H(b)) \leq \sum_{n=1}^{\infty} \frac{\pi^2}{2n^2} ||b''||_{\infty} = \frac{\pi^4}{12} ||b''||_{\infty}$. Lemma 2: If $H(b) \in \mathcal{C}_1$ and $H(\tilde{b}) \in \mathcal{C}_1$, then there holds *b* ∞ . We insert algebra of all functions on Γ with absolutely convergent.

thus

$$
||H(b)||_1 = \sum_{n=1}^{\infty} s_n(H(b)) \leq \sum_{n=1}^{\infty} \frac{\pi^2}{2n^2} ||b''||_{\infty} = \frac{\pi^4}{12} ||b''||_{\infty} \blacksquare
$$

Lemma 2: If $H(b) \in \mathscr{C}_1$ and $H(\tilde{b}) \in \mathscr{C}_1$, then there holds $b \in W$. Here W denotes the *Wiener algebra of all functions on I' with absolutely convergent Fourier series.*

Proof: ${e_n}_{n=0}^{\infty}$, ${e_n} = {δ_n}_i}_{r=0}^{\infty} ∈ l^2$ is an orthonormal basis in l^2 and from $H(b) ∈ ℓ_1$,
 δ) ∈ $ℑ_1$ it follows (cf. [11])
 Σ $|(H(b) e_n, e_n)| = |b_1| + |b_3| + \cdots < ∞$,
 Σ $|(H(\delta) e_n, e_n)| = |b_{-1}| + |b_{-3}| + \cd$ $H(\tilde{b}) \in \mathscr{C}_1$ it follows (cf. [11])

$$
\sum |(H(b) e_n, e_n)| = |b_1| + |b_3| + \cdots < \infty,
$$

$$
\sum |(H(\tilde{b}) e_n, e_n)| = |b_{-1}| + |b_{-3}| + \cdots < \infty.
$$

From (2.2) we get

$$
H(tb) = T(t) H(b) + H(t) T(\tilde{b}) \in \mathscr{C}_1,
$$

$$
H(\tilde{t}\tilde{b}) = T(t^{-1}) H(\tilde{b}) + H(t^{-1}) T(b) \in \mathscr{C}_1,
$$

and therefore

$$
H(\tilde{i}\tilde{b}) = T(t^{-1}) H(\tilde{b}) + H(t^{-1}) T(b) \in \mathscr{C}_1,
$$

\nd therefore
\n
$$
\sum |(H(tb) e_n, e_n)| = |b_0| + |b_2| + \cdots < \infty,
$$

\n
$$
\sum |(H(\tilde{i}\tilde{b}) e_n, e_n)| = |b_{-2}| + |b_{-4}| + \cdots < \infty
$$

\nEvery $b \in W$, $b(t) \neq 0$ ($|t| = 1$), ind $b = 0$ has a canonical factorization $b = b_b$,
\nhere
\n
$$
b_{-}(t) = \exp\left\{\sum_{k=-\infty}^{-1} (\log b)_k t^k\right\}, \qquad b_{+}(t) = \exp\left\{\sum_{k=0}^{\infty} (\log b)_k t^k\right\}
$$
(1)

where

and therefore
\n
$$
\sum |(H(tb) e_n, e_n)| = |b_0| + |b_2| + \cdots < \infty,
$$
\n
$$
\sum |(H(\tilde{t}\tilde{b}) e_n, e_n)| = |b_{-2}| + |b_{-4}| + \cdots < \infty
$$
\nEvery $b \in W$, $b(t) \neq 0$ ($|t| = 1$), ind $b = 0$ has a canonical factorization $b = b_b$, where
\n
$$
b_{-}(t) = \exp\left\{\sum_{k=-\infty}^{-1} (\log b)_k t^k\right\}, \qquad b_{+}(t) = \exp\left\{\sum_{k=0}^{\infty} (\log b)_k t^k\right\} \qquad (1)
$$
\nand there holds $b_{-} \pm 1 \in W \cap \overline{H^{\infty}}$, $b_{+} \pm 1 \in W \cap H^{\infty}$ (cf. [3]). If $H(b) \in \mathscr{C}_1$, $H(\tilde{b}) \in \mathscr{C}_1$, then we have $H(b_{-}) \in \mathscr{C}$ and $H(\tilde{t}) \in \mathscr{C}_2$, this follows:

then we have $H(b_+) \in \mathscr{C}_1$ and $H(\tilde{b}_-) \in \mathscr{C}_1$; this follows immediately from.

$$
H(b_+) = H(bb_-^{-1}) = T(b) H(b_-^{-1}) + H(b) T(\tilde{b}_-^{-1}) = H(b) T(\tilde{b}_-^{-1}).
$$

It is a well-known fact (cf. [5]) that $H(f)$ $H(\tilde{g})$ is a compact operator, if *f* and *g* are piecewise continuous functions having no common point of discontinuity. Even much more is true.

Proposition 2: *Suppose that / and* g *are piecewise continuous junctions on f* without common points of discontinuity. If each of these functions belongs to $C^{1+\epsilon}$ on *each closed subset of* Γ *which contains no of its points of discontinuity, then* $H(f) H(\tilde{g}) \in \mathscr{C}_1$ *.* **c** is the top $2: Suppose that f and mon points of discontinuity. It
the set of I which contains no of it
line f and g have only a finite
of f are
 f and f are constants

$$
= \sum_{k=1}^{n} f_k(t), \qquad g(t) = \sum_{k=1}^{n} g_k(t)
$$$

Proof: Since */* and g have only a finite number of points of discontinuity, in virtue of the representations

$$
f(t) = \sum_{k=1}^{n} f_k(t), \qquad g(t) = \sum_{k=1}^{n} g_k(t)
$$

where $f_k(t)$ and $g_k(t)$ have only one point of discontinuity and belong to $C^{1+\epsilon}$ on each closed arc of Γ which does not contain this point of discontinuity, we may reduce the proof to the case when both */* and g have only one point of discontinuity t_0 and t_1 , respectively, and $t_0 \neq t_1$. In this case we can choose two open arcs γ and Δ of *I*' such that $t_0 \in \gamma$, $\overline{\gamma} \subset \Delta$, $t_1 \notin \overline{\Delta}$ holds. From $g \in C^{1+\epsilon}(\overline{\Delta})$ it follows the existence of a function $b \in C^{1+\epsilon}(\Gamma)$ satisfying *b* are of Γ which does not contain this point of discomption of Γ and Γ of Γ and Γ and g have only one poin respectively, and $t_0 \neq t_1$. In this case we can choose two Γ that $t_0 \in \gamma$, $\overline{\gamma} \subset \Delta$ *c*(*t*) $\phi \in \mathcal{V}$, $\gamma \subseteq \Delta$, $t_1 \notin \Delta$ holds. From $g \in C^{1+\epsilon}(\Delta)$ it foltion $b \in C^{1+\epsilon}(\Gamma)$ satisfying
 $b(t) = g(t)$ $(t \in \gamma)$, $b(t) \neq g(t)$ $(t \in \partial \Delta = \overline{\Delta} \setminus \Delta)$
 $c(t) = g(t) - b(t)$ $(t \in \Delta)$, $c(t) \neq 0$ $(t \in \Gamma \setminus \Delta)$.
 $c(t) = f$

$$
b(t) = g(t) \qquad (t \in \gamma), \qquad b(t) + g(t) \qquad (t \in \partial \Delta = \overline{\Delta} \setminus \Delta).
$$

Furthermore, there exists a function $c \in C^{1+\epsilon}(\Gamma)$ with

$$
c(t) = g(t) - b(t) \qquad (t \in \Delta), \qquad c(t) \neq 0 \qquad (t \in \Gamma \setminus \Delta).
$$

In particular there holds $c(t) = 0$ for $t \in \gamma$. Finally, put

$$
d(t) = \begin{cases} 1, & t \in \Delta \\ [g(t) - b(t)]/c(t), & t \in \Gamma \setminus \Delta. \end{cases}
$$

We have $g = b + cd$ by construction and applying (2.1) some times, we obtain

$$
T(fcd) = T(fc) T(d) + H(fc) H(\tilde{d})
$$

= $T(f) T(c) T(d) + H(f) H(\tilde{c}) T(d) + H(fc) H(\tilde{d})$
= $T(f) T(cd) - T(f) H(c) H(\tilde{d}) + H(f) H(\tilde{c}) T(d) + H(fc) H(\tilde{d})$

and

$$
T(fb) = T(f) T(b) + H(f) H(\tilde{b}).
$$

This implies

$$
H(f) H(\tilde{g}) = T(fg) - T(f) T(g) = T(tcd + fb) - T(f) T(b + cd)
$$

= $T(tcd) - T(f) T(cd) + T(fb) - T(f) T(b)$
= $-T(f) H(c) H(\tilde{d}) + H(f) H(\tilde{c}) T(d) + H(tcd) H(\tilde{d}) + H(f) H(\tilde{b}).$ (2)

From *b, c, fc* $\in C^{1+\epsilon}(\Gamma)$ (we remark once more that $c=0$ in a neighbourhood of the point of discontinuity of *f*) we get $H(\tilde{b})$, $H(c)$, $H(\tilde{c})$, $H(tc) \in \mathscr{C}_1$, and since all the other operators on the right of (2) are bounded, the assertion follows.

§ 4 The existence of the limit $\lim_{n} D_n(qb)/G(b)^{n+1}n^{-\sum \beta r^*}$

We write $\varphi(t) = (-t)_{t_1}^{\beta_1} \ldots (-t)_{t_n}^{\beta_r}$ and $\varphi_r(t) = (-t)_{t_r}^{\beta_r}$. Suppose that $H(b)$, $H(\tilde{b}) \in \mathscr{C}_1$ holds (according to Lemma 2 it follows $b \in W$) and that $b(t) \neq 0$ ($|t| = 1$), ind $b = 0$ is fulfilled. Let \bar{b}_- and b_+ be given by (3.1) from the canonical factorization $b = b_-b_+$. In order to apply Proposition 1 we put')

$$
A = T(b_+) T(\varphi) T(b_-)
$$

and

$$
A + K = T(b_-) T(\varphi) T(b_+) = T(\varphi b).
$$

We have $K \in \mathscr{C}_1$, since

$$
K = T(\varphi b) - T(b_+) T(\varphi) T(b_-)
$$

= $H(b_+) H(\tilde{\varphi} b_-) + T(b_+) H(\varphi) H(b_-)$

and $H(b_+), H(\tilde{b}_-) \in \mathscr{C}_1$. From $A + K = T(\varphi b) \in \Pi\{P_n\}$ (cf. (2.4)), the compactness of *K* and the invertibility of *A* we may deduce that $A \in H(P_n)$. Now, applying Proposition 1 and the identity

$$
P_nAP_n = P_nT(b_+) T(\varphi) T(b_-) P_n = T_n(b_+) T_n(\varphi) T_n(b_-)
$$

following from (2.3), we get

$$
P_nAP_n = P_nT(b_+) T(\varphi) T(b_-) P_n = T_n(b_+) T_n(\varphi) T_n(b_-)
$$

\n
$$
T_n(P_n) = P_n(T(b_+) T(\varphi)) D_n(b_-)
$$

\n
$$
T_n(\varphi b)/D_n(b_+) D_n(\varphi) D_n(b_-)
$$

\n
$$
= \det \{I + T^{-1}(b_-) T^{-1}(\varphi) T^{-1}(b_+) [T(\varphi b) - T(b_+) T(\varphi) T(b_-)]\}
$$

\n
$$
= \det T^{-1}(b_-) T^{-1}(\varphi) T^{-1}(b_+) T(\varphi b).
$$

\n
$$
T_n = \text{triangular matrices and therefore we have } D_n(b_+) D_n(b_-) = G(b_+)^{n+1} G(b_-)^{n+1}
$$

\n
$$
T_1 = \text{and because of } T^{-1}(f) = T(f^{-1}) \text{ for } f \in \overline{H^{\infty}} \text{ or } f \in H^{\infty} \text{ we arrive at}
$$

\n
$$
\lim_{n \to \infty} D_n(\varphi b)/G(b)^{n+1} D_n(\varphi) = \det T(b_-^{-1}) T^{-1}(\varphi) T(b_+^{-1}) T(\varphi b).
$$

\nwe have eliminated the "regular" factor $b(t)$ from the generating function.
\nthe generating function
\n \therefore are going to delete successively one factor φ_r $(r = 1, ..., R - 1)$ from

 $T_n(b_+)$ are triangular matrices and therefore we have $D_n(b_+) D_n(b_-) = G(b_+)^{n+1} G(b_-)^{n+1}$ $= G(b)^{n+1}$ and because of $T^{-1}(f) = T(f^{-1})$ for $f \in \overline{H^{\infty}}$ or $f \in H^{\infty}$ we arrive at

$$
\lim_{n\to\infty} D_n(\varphi b)/G(b)^{n+1} D_n(\varphi) = \det T(b_-^{-1}) T^{-1}(\varphi) T(b_+^{-1}) T(\varphi b).
$$
 (1)

Thus, we have eliminated the "regular" factor $b(t)$ from the generating function.
 A = *T(p_i) B* = *φ_iw* and put
 A = *T(φ_i) T(y),* $K = H(p_1) H(\tilde{\psi})$.
 A = $T(p_1) T(p)$, $K \in \mathcal{L}$ by Proposition 2 *A* is inve Now we are going to delete successively one factor φ_r ($r = 1, ..., R-1$) from $D_n(\varphi)$.

We write $\varphi = \varphi_1 \psi$ and put

$$
A = T(\varphi_1) T(\psi), \qquad K = H(\varphi_1) H(\widetilde{\psi}).
$$

Then we have $T(\varphi_1 \psi) \in \Pi\{P_n\}$, $K \in \mathscr{C}_1$ by Proposition 2, *A* is invertible and *A* $= T(\varphi_1 \psi) - K$ yields $A \in \Pi\{P_n\}$. Thus, we may apply Proposition 1 and we obtain

we have eliminated the "regular" factor
$$
o(t)
$$
 from the generating function. are going to delete successively one factor φ_r $(r = 1, ..., R - 1)$ from the $q = \varphi_1 \varphi$ and put\n
$$
A = T(\varphi_1) T(\psi), \qquad K = H(\varphi_1) H(\tilde{\psi}).
$$
\nWe have $T(\varphi_1 \psi) \in \Pi\{P_n\}$, $K \in \mathscr{C}_1$ by Proposition 2, A is invertible and A ψ) - K yields $A \in \Pi\{P_n\}$. Thus, we may apply Proposition 1 and we obtain\n
$$
\lim_{n \to \infty} D_n(\varphi_1 \psi)/\det P_n T(\varphi_1) T(\psi) P_n
$$
\n
$$
= \det \{I + T^{-1}(\psi) T^{-1}(\varphi_1) H(\varphi_1) H(\tilde{\psi})\}
$$
\n
$$
= \det T^{-1}(\psi) T^{-1}(\varphi_1) T(\varphi_1 \psi).
$$
\n(2)\n\n
$$
= \text{following identity may easily be verified:}
$$
\n
$$
P_n T(f) T(g) P_n = T_n(f) T_n(g) + W_n H(\tilde{f}) H(g) W_n \qquad (f, g \in L^{\infty}(\Gamma)).
$$

Now, the following identity may **easily be verified:**

$$
P_nT(f) T(g) P_n = T_n(f) T_n(g) + W_nH(\tilde{f}) H(g) W_n \qquad (f, g \in L^{\infty}(\Gamma)).
$$

It follows

$$
P_nT(\varphi_1) T(\psi) P_n = T_n(\varphi_1) T_n(\psi) \{I_n + T_n^{-1}(\psi) T_n^{-1}(\varphi_1) W_n H(\tilde{\varphi}_1) H(\psi) W_n\}
$$

^{&#}x27;)This idea is duo to Prof. B. Silbermann.

hence

det
$$
P_n T(\varphi_1) T(\psi) P_n/D_n(\varphi_1) D_n(\psi)
$$

\n= det $\{I_n + T_n^{-1}(\psi) T_n^{-1}(\varphi_1) W_n H(\tilde{\varphi}_1) H(\psi) W_n\}$
\n= det $W_n \{I_n + W_n T_n^{-1}(\psi) W_n W_n T_n^{-1}(\varphi_1) W_n H(\tilde{\varphi}_1) H(\psi) P_n\} W_n$
\n= det $\{I + T_n^{-1}(\tilde{\psi}) T_n^{-1}(\tilde{\varphi}_1) H(\tilde{\varphi}_1) H(\psi) P_n\}$.

Here we have used $W_n^2 = P_n = I_n$, $W_n T_n^{-1}(f) W_n = T_n^{-1}(\tilde{f})$, det $W_n A W_n$ $=$ det P_nAP_n , det ${I_n + P_nAP_n} =$ det ${I + P_nAP_n}$. Proposition 2 applied to $\tilde{\varphi}_1$ and $\tilde{\psi}$ implies $H(\tilde{\varphi}_1)$ $H(\psi) \in \mathscr{C}_1$ and since $T_n^{-1}(\tilde{\psi})$ $T_n^{-1}(\tilde{\varphi}_1) \to T^{-1}(\tilde{\psi})$ $T^{-1}(\tilde{\varphi}_1)$ strongly, the proposition stated at the end of *§* 2 leads to

$$
= \det \{I_n + T_n^{-1}(\psi) T_n^{-1}(\varphi_1) W_n H(\tilde{\varphi}_1) H(\psi) W_n\}
$$

\n
$$
= \det W_n \{I_n + W_n T_n^{-1}(\psi) W_n W_n T_n^{-1}(\varphi_1) W_n H(\tilde{\varphi}_1) H(\psi) P_n\} W_n
$$

\n
$$
= \det \{I + T_n^{-1}(\tilde{\psi}) T_n^{-1}(\tilde{\varphi}_1) H(\tilde{\varphi}_1) H(\psi) P_n\}.
$$

\nWe have used $W_n^2 = P_n = I_n$, $W_n T_n^{-1}(f) W_n = T_n^{-1}(\tilde{f})$, det $W_n A W_n$
\n $_{n} A P_n$, det $\{I_n + P_n A P_n\} = \det \{I + P_n A P_n\}$. Proposition 2 applied to $\tilde{\varphi}_1$
\npplies $H(\tilde{\varphi}_1) H(\psi) \in \mathscr{C}_1$ and since $T_n^{-1}(\tilde{\psi}) T_n^{-1}(\tilde{\varphi}_1) \rightarrow T^{-1}(\tilde{\varphi}_1) \text{ strongly,}$
\nostituon stated at the end of § 2 leads to
\n $\lim_{n \to \infty} \det P_n T(\varphi_1) T(\psi) P_n / D_n(\varphi_1) D_n(\psi)$
\n $\Rightarrow \det \{I + T^{-1}(\tilde{\psi}) T^{-1}(\tilde{\varphi}_1) H(\tilde{\varphi}_1) H(\psi)\}$
\n $= \det \{I + T^{-1}(\tilde{\psi}) T^{-1}(\tilde{\varphi}_1) T(\tilde{\varphi}_1 \tilde{\psi})\}.$
\ngously as this was done in (2) and (3) we may now delete φ_2 from $D_n(\psi)$
\n \therefore Continuing this process, we get from (1), (2), (3)

Analogously as this was done in (2) and (3) we may now delete φ_2 from $D_n(\psi)$ and so on. Continuing this process, we get from (1) , (2) , (3)

Analogously as this was done in (2) and (3) we may now delete
$$
\varphi_2
$$
 from $D_n(\varphi)$
and so on. Continuing this process, we get from (1), (2), (3)

$$
\lim_{n\to\infty} D_n(\varphi_1 \dots \varphi_R b) / G(b)^{n+1} D_n(\varphi_1) \dots D_n(\varphi_R)
$$

$$
= \det T(b_1^{-1}) T^{-1}(\varphi) T(b_1^{-1}) T(b_1\varphi b_1)
$$

$$
\times \prod_{r=1}^{R-1} \det T^{-1}(\varphi_r) T^{-1}(\varphi_r) T(\varphi_r\psi_r)
$$

$$
\times \prod_{r=1}^{R-1} \det T^{-1}(\tilde{\psi}_r) T^{-1}(\tilde{\varphi}_r) T(\tilde{\varphi}_r\tilde{\psi}_r),
$$
(4)
where

$$
\psi_r = \varphi_{r+1} \dots \varphi_R \qquad (r = 1, \dots, R-1).
$$

From the computations of HARTWIG and FISHER [2] follows

$$
D_n(\varphi_r) = D_n((-t)_{i_r}^{\ell_r}) \sim n^{-\beta_r} \mathcal{G}(1 + \beta_r) \mathcal{G}(1 - \beta_r)
$$

$$
(5)
$$
and therefore the existence of the limit

$$
\lim D_n(\varphi b) / G(b)^{n+1} n^{-\sum \beta_r} = E.
$$

where

$$
\psi_r = \varphi_{r+1} \dots \varphi_R \qquad (r = 1, ..., R-1).
$$

$$
D_n(\varphi_r) = D_n\left((-t)_{i_r}^{\beta_r}\right) \sim n^{-\beta_r} \mathfrak{B}(1+\beta_r) \mathfrak{B}(1-\beta_r) \tag{5}
$$

and therefore the existence of the limit

$$
\lim_{n\to\infty}D_n(\varphi b)/G(b)^{n+1} n^{-\sum\beta_r{}^*}=E.
$$

By (4) and (5) we have a preliminary information about the constant E , it remains to evaluate the occuring operator determinants. This is straightforward but somewhat extensiv, since we are constrained to use some approximation arguments. (5) we have
 e the occuristiv, since with
 x intervalses the state of intervalses
 t intervalses the state of t intervalses
 $(t) = \left(1 - \frac{1}{t}\right)$

§ 5 Approximation of Toeplitz and **Ilankel** operators with piecewise continuous generating function

As already stated in the Introduction, the function $\varphi(t) = (-t)_{i_0}^{\beta}, -1/2 < \text{Re}\,\beta < 1/2$ possesses a factorization

\n**roximation of Toeplitz and Hankel operator**
\n**training function**
\n**dy stated in the Introduction, the function**
\n**g**
\n**a factorization**
\n
$$
\varphi(t) = \left(1 - \frac{t_0}{t}\right)^{-\beta} \left(1 - \frac{t}{t_0}\right)^{\beta} \qquad (|t| = 1).
$$
\n

We put

We put

\n
$$
\varphi_{\mu}(t) = \left(1 - \frac{t_0}{\mu t}\right)^{-\beta} \left(1 - \frac{t}{\mu t_0}\right)^{\beta} \qquad (|t| = 1),
$$
\nwhere $\mu > 1$ is a real parameter. Obviously, we have

\n
$$
\varphi_{\mu} \in W, \qquad \varphi_{\mu} \in C^{\infty}, \quad \varphi_{\mu}(t) \neq 0 \qquad (|t| = 1), \qquad \text{ind } \varphi_{\mu} = 0
$$
\nif μ is sufficiently close to 1. Furthermore, it is easily seen that $T(\varphi_{\mu}) \to T(\varphi)$ strongly

 $\varphi_{\mu} \in W$, $\varphi_{\mu} \in C^{\infty}$, $\varphi_{\mu}(t) \neq 0$ $(|t|=1)$, ind $\varphi_u=0$

and $H(\varphi_\mu) \to H(\varphi)$ strongly as $\mu \to 1+0$. Somewhat less obvious is the following fact.

Lemma 3: $T^{-1}(\varphi_\mu) \to T^{-1}(\varphi)$ strongly as $\mu \to 1 + 0$.

Proof: From $\varphi_{\mu}(t) \neq 0$ (|t| = 1), ind $\varphi_{\mu} = 0$ it follows the invertibility of $T(\varphi_{\mu})$ for $\mu \in (1, 1 + \varepsilon)$. It is not difficult to show that $\frac{1}{\mu} \int_{-\infty}^{\infty} \left[\frac{1}{\mu} + \frac{1}{\mu} \right]_{-\infty}^{\infty}$

Lemma 3:
$$
T^{-1}(\varphi_{\mu}) \to T^{-1}(\varphi)
$$
 strongly as $\mu \to 1 + 0$.
\nProof: From $\varphi_{\mu}(t) \neq 0$ $|\{t\} = 1$, and $\varphi_{\mu} = 0$ it follows the invertibility of $T(\varphi_{\mu})$
\nfor $\mu \in (1, 1 + \varepsilon)$. It is not difficult to show that
\n
$$
T^{-1}(\varphi_{\mu}) e_n = T\left[\left(1 - \frac{t}{\mu t_0}\right)^{-\beta}\right] T\left[\left(1 - \frac{t_0}{\mu t}\right)^{\beta}\right] e_n
$$
\n
$$
\to T\left[\left(1 - \frac{t}{t_0}\right)^{-\beta}\right] T\left[\left(1 - \frac{t_0}{t}\right)^{\beta}\right] e_n = T^{-1}(\varphi) e_n
$$
\nin the norm of l^2 , where $e_n = {\delta_n j}_{j=0} \in l^2$. The set of all finite linear combinations
\nof $\{e_0, e_1, ...\}$ is dense in l^3 and the assertion will follow if we prove the uniform

boundedness of the norms $||T^{-1}(\varphi_\mu)||_\infty$ with respect to $\mu \in (1, 1 + \varepsilon)$. It is elementary function theory to show that the range of $\varphi_{\mu}(t)$ for $t \in \Gamma$, $\mu \in (1, 1 + \varepsilon)$ is contained in a *closed* sector of an annulus spanned by an angle $2\pi \cdot |\text{Re } \beta| < \pi$ and having the radii exp $\{\pm \pi \cdot |\text{Im } \beta|\}$. Thus, there exists a real number $c > 0$ such that the disk with the centre in *c* and the radius *c* contains this sector of an annulus in its interior. Therefore we have *d* sector of an annulus spanned by an angle $\exp\left\{\pm \pi \cdot |\text{Im } \beta|\right\}$. Thus, there exists a real n the centre in c and the radius c contains this therefore we have $\varphi_{\mu}(t) - c| < q|c|$, $t \in \Gamma$, $\mu \in (1, 1 + \varepsilon)$. Therefore we have
 $|\varphi_{\mu}(t) - c| < q|c|, \qquad t \in \Gamma, \qquad \mu \in$
 $e q$ satisfying $0 < q < 1$. This implie
 $||\varphi_{\mu} - c||_{\infty} \leq q|c|, \qquad \mu \in (1, 1 + \varepsilon),$

$$
|\varphi_{\mu}(t)-c|
$$

with some q satisfying $0 < q < 1$. This implies

$$
\|\varphi_{\mu}-c\|_{\infty}\leqq q|c|,\qquad\mu\in(1,\,1+\varepsilon),
$$

hence

$$
| \varphi_{\mu}(v) - \varphi | < q | \varphi|, \quad v \in \mathcal{I}, \quad \mu \in (1, 1)
$$
\n
$$
| \varphi_{\mu} - c |_{\infty} \leq q | c |, \quad \mu \in (1, 1 + \varepsilon),
$$
\n
$$
| | T(\varphi_{\mu}) - cI |_{\infty} \leq q | c |, \quad \mu \in (1, 1 + \varepsilon),
$$
\nhtsin

and we obtain

and we obtain
\n
$$
T(\varphi_{\mu}) = cI + T(\varphi_{\mu}) - cI = cI\{I + c^{-1}(T(\varphi_{\mu}) - cI)\},
$$
\n
$$
T^{-1}(\varphi_{\mu}) = \left\{I + \sum_{n=1}^{\infty} (-1)^n [c^{-1}(T(\varphi_{\mu}) - cI)]^n\right\} \cdot \frac{1}{c}.
$$
\nFrom $||c^{-1}(T(\varphi_{\mu}) - cI)||_{\infty} \leq q < 1$ it follows $||T^{-1}(\varphi_{\mu})||_{\infty} \leq \frac{1}{c} \cdot \frac{1}{1}$

 $q < 1$ it follows $||T^{-1}(\varphi_{\mu})||_{\infty} \leqq \frac{1}{c} \cdot \frac{1}{1-q}, \ \mu \in (1, 1 + \varepsilon)$

Lemma 4: Let $\psi(t)$ ($|t| = 1$) *be a piecewise continuous function which is continuous* at $t = t_0$ and which belongs to C^2 on each closed subset of Γ containing no point of *discontinuity of* ψ *. Then we have*

$$
||H(\varphi_{\mu}) H(\tilde{\psi}) - H(\varphi) H(\tilde{\psi})||_1 = o(1)
$$

as $\mu \rightarrow 1$, $\mu \in (1, 1 + \varepsilon)$.

it is possible to choose *b*, $c \in C^2(\Gamma)$. Then (3.2) leads to

Proof: We construct b, c, d as in the proof of Proposition 2 and by our assumption
it is possible to choose b,
$$
c \in C^2(\Gamma)
$$
. Then (3.2) leads to

$$
||H(\varphi_{\mu}) H(\tilde{\psi}) - H(\varphi) H(\tilde{\psi})||_1
$$

$$
\leq ||(T(\varphi_{\mu}) - T(\varphi)) H(c) H(\tilde{d})||_1 + ||(H(\varphi_{\mu}) - H(\varphi)) H(\tilde{c}) T(d)||_1
$$

$$
+ ||H[(\varphi_{\mu} - \varphi) c] H(\tilde{d})||_1 + ||(H(\varphi_{\mu}) - H(\varphi)) H(\tilde{b})||_1
$$
and since $T(\varphi_{\mu}) \rightarrow T(\varphi)$, $H(\varphi_{\mu}) \rightarrow H(\varphi)$ strongly, $H(c)$, $H(\tilde{c})$, $H(\tilde{b}) \in \mathcal{C}_1$, it follows
from the proposition stated at the end of § 2 that all items on the right, with
exception of the third, are $o(1)$. Applying Lemma 1 we obtain

$$
||H[(\varphi_{\mu} - \varphi) c]||_1 \leq \pi^4/12 \cdot ||[(\varphi_{\mu} - \varphi) c]''||_{\infty}
$$

$$
= \pi^4/12 \cdot ||[(\varphi_{\mu} - \varphi) c]''||_{L^{\infty}(\Gamma \setminus \mathcal{V})} = o(1)
$$
since $c(t) = 0$ $(t \in \gamma)$ and $||\varphi_{\mu}^{(k)} - \varphi^{(k)}||_{L^{\infty}(\Gamma \setminus \mathcal{V})} = o(1)$, $k = 1, 2, ...$). Thus, the third
item is $o(1)$, too **II**

and since $T(\varphi_\mu) \to T(\varphi)$, $H(\varphi_\mu) \to H(\varphi)$ strongly, $H(c), H(\tilde{c}), H(\tilde{b}) \in \mathscr{C}_1$, it follows from the proposition stated at the end of *§* 2 that all items on the right, with exception of the third, are $o(1)$. Applying Lemma 1 we obtain $\left(\begin{array}{c} \varphi_{\mu})-T(\varphi)\right)H(\ \varphi_{\mu}-\varphi)\mathit{c}\end{array}\right]\ \rightarrow T(\varphi),\;\;H(\varphi),\nonumber\ \text{F}(\varphi),\;\;H(\varphi),\;\text{F}(\varphi),\;\text{F}(\varphi),\;\text{F}(\varphi),\;\text{F}(\varphi),\;\text{F}(\varphi),\;\text{F}(\varphi),\;\text{F}(\varphi),\;\text{F}(\varphi),\;\text{F}(\varphi),\;\text{F}(\varphi),\;\text{F}(\varphi),\;\text{F}(\varphi),\;\text{F}(\varphi),\;\text{F}$

$$
||H[(\varphi_{\mu} - \varphi) c]||_1 \leq \pi^4/12 \cdot ||[(\varphi_{\mu} - \varphi) c]''||_{\infty}
$$

= $\pi^4/12 \cdot ||[(\varphi_{\mu} - \varphi) c]''||_{L^{\infty}(\Gamma \setminus \gamma)} = o(1)$

since $c(t) = 0$ $(t \in \gamma)$ and $\|\varphi_{\mu}^{(k)} - \varphi^{(k)}\|_{L^{\infty}(\Gamma \setminus \gamma)} = o(1), k = 1, 2, ...$). Thus, the third item is $o(1)$, too \blacksquare

§ 6 The determination of the constant $E(t_1, \ldots, t_R; \beta_1, \ldots, \beta_R; b)$

The evaluation of the operator determinants det $(I + C)$, $C \in \mathscr{C}_1$ occuring in (4.4) is based on the representation of $I + C$ as a multiplicative commutator $I + C$ $= e^A e^B e^{-A} e^{-B} (A, B \in \mathscr{L}(l^2))$ and the formula $||H|(\varphi_{\mu} - \varphi) c||_1 \leq \pi^4/12 \cdot ||[(\varphi_{\mu} - \varphi) c]'||_{L^{\infty}(\Gamma_{\mathcal{W}})} = o(1)$
 $= \pi^4/12 \cdot ||[(\varphi_{\mu} - \varphi) c]'||_{L^{\infty}(\Gamma_{\mathcal{W}})} = o(1)$
 $= 0$ ($t \in \gamma$) and $||\varphi_{\mu}^{(k)} - \varphi^{(k)}||_{L^{\infty}(\Gamma_{\mathcal{W}})} = o(1), k = 1, 2, ...$). Thus, the third

$$
\det e^A e^B e^{-A} e^{-B} = \exp \operatorname{tr} (AB - BA), \tag{1}
$$

being valid if $AB - BA \in \mathscr{C}_1$ (cf. [13]). An immediate application of (1) to our problem, however, is not possible, since the arising operators do not, in general, satisfy $AB - BA \in \mathscr{C}_1$. Thus, we have to use some approximation arguments.

First of all, we split up the right side of (4.4) into in a certain sense "more elementary" factors. Thereby we continuously make use of (2.1) , (2.5) , (2.6) without to mention this each time.

We have

det
$$
T(b_1^{-1})
$$
 $T^{-1}(\varphi)$ $T(b_1^{-1})$ $T(\varphi b)$
\n= det $T(b_1^{-1})$ $T^{-1}(\varphi)$ $T(\varphi b_1) \cdot T^{-1}(\varphi b_1)$ $T(b_1^{-1})$ $T(\varphi b)$
\n= det $T(b_1^{-1})$ $T^{-1}(\varphi)$ $T(b_1)$ $T(\varphi)$ \cdot det $T^{-1}(\varphi b_1)$ $T(b_1^{-1})$ $T(\varphi b)$

and the second determinant is equal to

det
$$
T^{-1}(\varphi)
$$
 $T(b_{-}^{-1})$ $T(b_{+}^{-1})$ $T(b_{-})$ $T(\varphi)$ $T(b_{+})$
\n= det $T(b_{-}^{-1})$ $T(b_{+}^{-1})$ $T(b_{-})$ $T(\varphi)$ $T(b_{+})$ $T^{-1}(\varphi)$
\n= det $T(b_{-}^{-1})$ $T(b_{+}^{-1})$ $T(b_{-})$ $T(b_{+})$ \cdot det $T(b_{+}^{-1})$ $T(\varphi)$ $T(b_{+})$ $T^{-1}(\varphi)$.

Let us now write

$$
E(f,g) = \det T^{-1}(f) T^{-1}(g) T(f) T(g)
$$

whenever this has a sense. We remark that in virtue of

$$
T^{-1}(f) T^{-1}(g) T(f) T(g) = I + T^{-1}(f) T^{-1}(g) [H(g) H(\tilde{f}) - H(f) H(\tilde{g})]
$$

 $E(f, g)$ is always defined, if $H(g) H(\tilde{f}) \in \mathscr{C}_1$ and $H(f) H(\tilde{g}) \in \mathscr{C}_1$. By our assumptions we have $H(b_+), H(\bar{b}_-) \in \mathscr{C}_1$ and so we may conclude in this way that $E(\varphi, b_+), E(b_-, b_+)$ and $E(b_-, \varphi)$ are defined and from our calculations follows

Toeplitz determinants with p.c. generating function

\n33

\n7.
$$
\varphi
$$
 are defined and from our calculations follows

\n7. φ are defined and from our calculations follows

\n7. $T^{-1}(\varphi) T(b_+^{-1}) T(\varphi) = E(\varphi, b_+) E(b_-, b_+) E(b_-, \varphi)$.

\n7. $T^{-1}(\varphi) T(b_+^{-1}) T(\varphi) = E(\varphi, b_+) E(b_-, b_+) E(b_-, \varphi)$.

\n7. $T^{-1}(\varphi) T(b_+^{-1}) T(b_+) = E(\varphi, b_+) E(b_-, b_+)$

\n8. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

\n9. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

\n10. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

\n11. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

\n12. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

\n13. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

\n14. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

\n15. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

\n16. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

\n17. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

\n18. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

\n19. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

\n10. $T^{-1}(\varphi) F(b_-, b_+) = F(b_-, b_+)$

It turns out that $E(f, g)$ has a remarkable multiplicative property.

Lemma 5: *If* $H(\tilde{f}) H(g) \in \mathscr{C}_1$ *,* $H(\tilde{b}_-) \in \mathscr{C}_1$ *,* $b_- \in \overline{H^\infty}$ *then*

$$
E(b_-, fg) = E(b_-, f) E(b_-, g),
$$

and if $H(f)$ $H(\tilde{g}) \in \mathscr{C}_1$, $H(b_+) \in \mathscr{C}_1$, $b_+ \in H^\infty$ then

 $E((q, b_+) = E((f, b_+) E((g, b_+)).$

Here we suppose that all occuring in $E(\cdot, \cdot)$ *inverses* $T^{-1}(f), \ldots$ *exist.*

Proof: From $H(f)$ $H(\tilde{g}) \in \mathscr{C}_1$ it follows that $T(fg)$ $T^{-1}(g)$ $T^{-1}(f) - I \in \mathscr{C}_1$ and we obtain

$$
E(f, b_+) \cdot \det T(fg) T^{-1}(g) T^{-1}(f) \cdot E(g, b_+)
$$

= det $T^{-1}(f) T(b_+^{-1}) T(f) T(b_+) \cdot \det T(b_+^{-1}) T^{-1}(f) T(fg) T^{-1}(g) T(b_+)$
 $\times \det T(b_+^{-1}) T(g) T(b_+) T^{-1}(g)$

and

$$
E((g, b_{+}) = \det T^{-1}(fg) T(b_{+}^{-1}) T((g) T(b_{+})
$$

= $\det T(f) T(g) T^{-1}(fg) \cdot T(b_{+}^{-1}) T((g) T(b_{+}) \cdot T^{-1}(g) T^{-1}(f)$
= $\det T(f) T(g) T^{-1}(fg) \cdot \det T^{-1}(f) T(b_{+}^{-1}) T((g) T(b_{+}) T^{-1}(g) .$

From

$$
\det T(f) T(g) T^{-1}(fg) \cdot \det T(fg) T^{-1}(g) T^{-1}(f) = 1
$$

the second assertion follows. The first may be proved analogously \blacksquare

Lemma 6: If f resp. b_+ are invertible elements with index zero in W resp. W \cap H^{∞} *and if* $H(b_+) \in \mathscr{C}_1$ *then*

$$
E(f, b_+) = \exp \sum_{k=1}^{\infty} k(\log f)_{-k}(\log b_+)_k.
$$

If f resp. b_ are invertible elements with index zero in W resp. *W* \cap $\overline{H^{\infty}}$ *and if* $H(\tilde{b}_-) \in \mathscr{C}_1$ then

$$
E(b_-,f)=\exp\sum_{k=1}^{\infty}k(\log b_-)_{-k}(\log f)_k.
$$

Proof: From the assumptions it follows that *f* has a canonical factorization $f = f_-\cdot f_+$. Thus

$$
E(f, b_{+}) = \det T^{-1}(f) T(b_{+}^{-1}) T(f) T(b_{+})
$$

= $\det T(f_{+}^{-1}) T(f_{-}^{-1}) T(b_{+}^{-1}) T(fb_{+})$
= $\det T(f_{-}^{-1}) T(b_{+}^{-1}) T(fb_{+}f_{+}^{-1})$
= $\det T(f_{-}^{-1}) T(b_{+}^{-1}) T(f_{-}) T(b_{+}).$

3 AnalysIs Bd. 1, Heft 2 (1982)

Now there holds $T(\psi) = \exp T(\log \psi)$, if ψ is an invertible element with index zero in *W* \cap *H*[∞] or *W* \cap *H*[∞] and we get (applying (1))

$$
E(f, b_+) = \exp \{-T(\log f_-)\} \exp \{-T(\log b_+)\} \exp T(\log f_-) \exp T(\log b_+)
$$

= $\exp \text{tr } \{T(\log f_-) T(\log b_+) - T(\log b_+) T(\log f_-)\}$
= $\exp \text{tr } H(\log b_+) H((\log f_-)^{\sim})$

if only $H(\log b_+) H((\log f_-)^-) \in \mathscr{C}_1$. But from $H(\psi) \in \mathscr{C}_1$, ψ being invertible with index zero in *W* it follows $H(\log \psi) \in \mathscr{C}_1$ (cf. [8]) and so by our assumptions we have $H(\log b_+) \in \mathscr{C}_1$. An easy computation shows

$$
\mathrm{tr} H(f) H(\tilde{g}) = \sum_{k=1}^{\infty} k f_k g_{-k}
$$

for $H(f)$ $H(\bar{g}) \in \mathscr{C}_1$ and now the assertion follows immediately. The second may be proved in the same way \blacksquare

Looking at (4.4) we still must investigate expressions of the form det $T^{-1}(g)T^{-1}(f)$ $\times T(fg)$. We write

$$
F(f,g) = \det T^{-1}(g) T^{-1}(f) T(fg)
$$

whenever this has a sense (e.g. if $H(f)$ $H(g) \in \mathscr{C}_1$).

Lemma 7: Put $\varphi(t) = (-t)_{i_0}^{\beta}$ and suppose that ψ , f, g satisfy the conditions of *Lemma* 4. *Them*

$$
F(\varphi,\psi)=\lim_{\mu\to 1+0}F(\varphi_{\mu},\psi)
$$

where φ_u *is defined as in* \S 5. Furthermore, there holds

$$
F(\varphi_\mu,\,\psi)=E\big(\psi,\,(\varphi_\mu)_+\big)
$$

with $(\varphi_{\mu})_{+} (t) = \left(1 - \frac{t}{\mu} \right)^{\nu}$ and *\ at/*

$$
F(\varphi, fg) = F(\varphi, f) F(\varphi, g).
$$

Here we suppose that all inverses occuring in $F(\cdot, \cdot)$ exist.

Proof: We have

$$
F(\varphi, \psi) = \det T^{-1}(\psi) T^{-1}(\varphi) T(\varphi \psi)
$$

= $\det \{I + T^{-1}(\psi) T^{-1}(\varphi) H(\varphi) H(\tilde{\psi})\}$

and from $T^{-1}(\varphi_\mu) \to T^{-1}(\varphi)$ strongly according to Lemma 3 and $\|H(\varphi_\mu) H(\tilde{\psi})\|$ $- H(\varphi) H(\tilde{\psi})$ ₁ = $\varphi(1)$ according to Lemma 4, we may conclude that

$$
F(\varphi, \psi) = \lim_{\mu \to 1+0} \det \left\{ I + T^{-1}(\psi) T^{-1}(\varphi_{\mu}) H(\varphi_{\mu}) H(\tilde{\psi}) \right\}
$$

=
$$
\lim_{\mu \to 1+0} \det T^{-1}(\psi) T^{-1}(\varphi_{\mu}) T(\varphi_{\mu} \psi)
$$

=
$$
\lim_{\mu \to 1+0} F(\varphi_{\mu}, \psi).
$$

Now there holds

\n
$$
\text{Toeplitz determinants with p.c.}
$$
\n

\n\n $F(\varphi_\mu, \psi) = \det T^{-1}(\psi) T((\varphi_\mu)_-^{-1}) T((\varphi_\mu)_-^{-1}) T(\varphi_\mu \psi)$ \n

\n\n $= \det T^{-1}(\psi) T((\varphi_\mu)_+^{-1}) T(\psi) T((\varphi_\mu)_+)$ \n

\n\n $\int (-1)^{\int \phi_\mu} \left(\frac{t_0}{\mu t_0} \right)^{-\beta}, \quad (\varphi_\mu)_+ = \left(1 - \frac{t}{\mu t_0} \right)^{\beta}, \quad \text{hence}$ \n

\n\n $F(\varphi_\mu, \psi) = E(\psi, (\varphi_\mu)_+).$ \n

where $(\varphi_\mu)_- = \Big(1\; -$

$$
F(\varphi_\mu,\psi)=E\big(\psi,(\varphi_\mu)_+\big).
$$

If *f* and *g* satisfy the conditions of Lemma 4, then in virtue of $H((\varphi_{\mu})_{+}) \in \mathscr{C}_{1}$ Lemma 5 may be applied and what results is = det 1
 $-\frac{t_0}{\mu t}$ $\Big)^{-\beta}$,

= E(y, (q

he condit

= F(\q^{p},
 \Rightarrow 1 +

 $\left(1-\frac{t}{\mu t}\right)^{\nu}$, hence

$$
F(\varphi_\mu, fg) = F(\varphi_\mu, f) \cdot F(\varphi_\mu, g).
$$

Taking the limit $\mu \to 1 + 0$ we get the last assertion. \blacksquare

Now we are ready to evaluate the operator determinants in question. From Lemma 6 and Lemma 2 immediately follows that

$$
L_{\mu} = \left(1 - \frac{t_0}{\mu t}\right)^{\mu}, \quad (\varphi_{\mu})_+ = \left(1 - \frac{t}{\mu t_0}\right)^{\mu}, \text{ hence}
$$
\n
$$
F(\varphi_{\mu}, \psi) = E(\psi, (\varphi_{\mu})_+).
$$
\nisatisfy the conditions of Lemma 4, then in virtue of $H((\varphi_{\mu})_+) \in \mathscr{C}_1$ Lemma 5 applied and what results is

\n
$$
F(\varphi_{\mu}, fg) = F(\varphi_{\mu}, f) \cdot F(\varphi_{\mu}, g).
$$
\nthe limit $\mu \to 1 + 0$ we get the last assertion.

\nWe are ready to evaluate the operator determinants in question.

\nLemma 6 and Lemma 2 immediately follows that

\n
$$
E(b_-, b_+) = \exp \sum_{k=1}^{\infty} k(\log b)_{-k} (\log b)_{+k} =: E(b).
$$
\n(3)

\n
$$
= (-t)_{t}^{\rho} \cdot \text{in virtue of } H(b_+) \in \mathscr{C}_1 \cdot E(\varphi, b_+) \text{ is defined and we have}
$$

For $\varphi(t) = (-t)_{t_*}^{\beta_r}$ in virtue of $H(b_+) \in \mathscr{C}_1$ $E(\varphi, b_+)$ is defined and we have

pppied and what results is
\n
$$
F(\varphi_{\mu}, fg) = F(\varphi_{\mu}, f) \cdot F(\varphi_{\mu}, g).
$$
\nthe limit $\mu \to 1 + 0$ we get the last assertion. \blacksquare
\nwe are ready to evaluate the operator determinants in ques
\nLemma 6 and Lemma 2 immediately follows that
\n
$$
E(b_-, b_+) = \exp \sum_{k=1}^{\infty} k(\log b)_{-k} (\log b)_{+k} =: E(b).
$$
\n
$$
= (-t)_{t_r}^{\beta_r} \text{ in virtue of } H(b_+) \in \mathscr{C}_1 E(\varphi, b_+) \text{ is defined and we}
$$
\n
$$
E(\varphi, b_+) = \det T^{-1}(\varphi) T(b_+^{-1}) T(\varphi) T(b_+)
$$
\n
$$
= \det \{I + T^{-1}(\varphi) T(b_+^{-1}) H(b_+) H(\tilde{\varphi})\}
$$
\n
$$
= \lim_{\mu \to 1+0} \det \{I + T^{-1}(\varphi_{\mu}) T(b_+^{-1}) H(b_+) H(\tilde{\varphi}_{\mu})\},
$$
\n
$$
H(\tilde{\varphi}) = \frac{1}{\mu} \int_{0}^{1} \exp \{f(\varphi_{\mu}, \varphi) H(\tilde{\varphi}) H(\tilde{\varphi}) H(\tilde{\varphi}) \} d\mu
$$

since $T^{-1}(\varphi_\mu) \to T^{-1}(\varphi)$ strongly by Lemma 3, $H(\tilde{\varphi}_\mu) \to H(\tilde{\varphi})$ strongly (obviously) and $H(b_+) \in \mathscr{C}_1$ was supposed. Because of

$$
\det \{ I + T^{-1}(\varphi_{\mu}) \; T(b_{+}^{-1}) \; H(b_{+}) \; H(\tilde{\varphi}_{\mu}) \}
$$
\n
$$
= \det T^{-1}(\varphi_{\mu}) \; T(b_{+}^{-1}) \; T(\varphi_{\mu}) \; T(b_{+}) = E(\varphi_{\mu}, b_{+})
$$

we get finally $E(\varphi, b_+) = \lim_{\mu \to 1+0} E(\varphi_\mu, b_+)$. Now $E(\varphi_\mu, b_+)$ may be calculated using
 E(φ_μ, b_+) = exp $\sum_{k=1}^{\infty} k(\log \varphi_\mu)_{-k} (\log b_+)_k$ Lemma 6. What results is μ .

$$
E(\varphi_{\mu}, b_{+}) = \exp \sum_{k=1}^{\infty} k(\log \varphi_{\mu})_{-k} (\log b_{+})_{k}
$$

$$
= \exp \beta_{r} \sum_{k=1}^{\infty} (\log b_{+})_{k} \cdot t_{r}^{k}/\mu^{k}
$$

(since $(\log \varphi_{\mu})_{-k} = \beta_r t_k / k \mu^k$) and therefore

$$
\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} (\log \theta_{\mu})_k \cdot t_r^k / \mu^k
$$

\n
$$
= \exp \beta_r \sum_{k=1}^{\infty} (\log b_{+})_k \cdot t_r^k / \mu^k
$$

\n
$$
g \varphi_{\mu})_{-k} = \beta_r t_r^k / k \mu^k
$$
 and therefore
\n
$$
E(\varphi, b_+) = \lim_{\mu \to 1+0} \exp \beta_r \sum_{k=1}^{\infty} (\log b_{+})_k \cdot t_r^k / \mu^k
$$

\n
$$
= \exp \beta_r \sum_{k=1}^{\infty} (\log b_{+})_k \cdot t_r^k = b_{+}(t_r)^{\beta_r}
$$

(we remark that $log b_+ \in W$ holds!).

Analogously one can show that

$$
E(b_-, \varphi) = b_-(t_r)^{-\beta_r}.
$$

 $3*$

Lemma 5 now gives

A. Börrchen
\n5 now gives
\n
$$
E(\varphi_1 \ldots \varphi_R, b_+) E(b_-, b_+) E(b_-, \varphi_1 \ldots \varphi_R)
$$
\n
$$
= E(b) \prod_{r=1}^R b_+(t_r)^{s_r} \prod_{r=1}^R b_-(t_r)^{-\beta r},
$$
\n(b) is defined by (3).
\n
$$
E(b)
$$
\n
$$
E(b)
$$
\n
$$
F(b)
$$
\n
$$
F(b)
$$
\n
$$
F(b)
$$
\n
$$
F(c)
$$
\n
$$
F(a)
$$
\n
$$
F(b)
$$
\n
$$
F(\tilde{\varphi}_r, \tilde{\psi}_r) = \prod_{r < s} F(\varphi_r, \varphi_s) F(\tilde{\varphi}_r, \tilde{\varphi}_s)
$$
\n
$$
= \prod_{r=1}^{R-1} F(\varphi_r, \varphi_r) \prod_{r < s} F(\varphi_r, \varphi_s) F(\tilde{\varphi}_r, \tilde{\varphi}_s)
$$
\n
$$
= \prod_{r=1}^{R-1} F(\varphi_r, \varphi_r) \prod_{r < s} F(\varphi_r, \varphi_s) \prod_{r < s} F(\tilde{\varphi}_r, \tilde{\varphi}_s)
$$

where $E(b)$ is defined by (3).

Applying Lemma 7 to (4.4) we obtain

(b) is defined by (3).
\n
$$
F_{r-1}
$$
\n
$$
\prod_{r=1}^{R-1} F(\varphi_r, \psi_r) F(\tilde{\varphi}_r, \tilde{\psi}_r) = \prod_{r < s} F(\varphi_r, \varphi_s) F(\tilde{\varphi}_r, \tilde{\varphi}_s)
$$
\nstill must evaluate $F(\varphi_r, \varphi_s)$, $\varphi_r(t) = (-t)_{t_r}^{\beta_r}$,
\na 7 we have
\n
$$
F(\varphi_r, \varphi_s) = \lim_{\mu \to 1+0} F[(\varphi_r)_{\mu}, \varphi_s] = \lim_{\mu \to 1+0} \lim_{\lambda \to 1+0} F[(\varphi_r)_{\mu}, (\varphi_s)_{\lambda}] = E[(\varphi_s)_{\lambda}, (\varphi_r)_{\mu, +}]
$$
 we obtain

Lemma 5 now gives
 $E(p_1 \ldots p_R, b_+) E(b_-, b_+) E(b_-, \varphi_1 \ldots \varphi_R)$
 $= E(b) \prod_{r=1}^R b_+(t_r)^{\beta r} \prod_{r=1}^R b_-(t_r)^{-\beta r}$,

where $E(b)$ is defined by (3).

Applying Lemma 7 to (4.4) we obtain
 $\prod_{r=1}^R F(\varphi_r, \psi_r) F(\tilde{\varphi}_r, \tilde{\psi}_r) = \prod_{r \$ to Lemma 7 we have and we still must evaluate $F(\varphi_r, \varphi_s)$, $\varphi_r(t) = (-t)_{t}^{\beta_r}$, $\varphi_s(t) = (-t)_{t}^{\beta_s}$. Also according

j

$$
F(\varphi_r, \varphi_s) = \lim_{\mu \to 1+0} F[(\varphi_r)_{\mu}, \varphi_s] = \lim_{\mu \to 1+0} \lim_{\lambda \to 1+0} F[(\varphi_r)_{\mu}, (\varphi_s)_{\lambda}]
$$

and because of $F[(\varphi_r)_\mu, (\varphi_s)_\lambda] = E[(\varphi_s)_\lambda, (\varphi_r)_\mu+]$ we obtain applying Lemma 6

use of
$$
F[(\varphi_r)_{\mu}, (\varphi_s)_{\lambda}] = E[(\varphi_s)_{\lambda}, (\varphi_r)_{\mu, +}]
$$
 we obtain applying
$$
F[(\varphi_r)_{\mu}, (\varphi_s)_{\lambda}] = \exp \sum_{k=1}^{\infty} k [\log (\varphi_r)_{\mu}]_{-k} [\log (\varphi_s)_{\lambda}]_{k}
$$

$$
= \exp \sum_{k=1}^{\infty} k \left(\frac{\beta_r t_r^k}{\mu^k k} \right) \left(-\frac{\beta_s}{\lambda^k k t_s^k} \right)
$$

$$
= \exp \left\{ \beta_r \beta_s \log \left(1 - \frac{t_r}{\mu \lambda t_s} \right) \right\} = \left(1 - \frac{t_r}{\mu \lambda t_s} \right)^{\beta_r \beta_s}.
$$

$$
\therefore \mu \to 1 + 0, \lambda \to 1 + 0 \text{ then gives}
$$

The limit $\mu \to 1 + 0$, $\lambda \to 1 + 0$ then gives

$$
-\exp\left\{\mu_r,\
$$

$$
t \mu \to 1 + 0, \lambda \to 1 + 0
$$

$$
(F\varphi_r, \varphi_s) = \left(1 - \frac{t_r}{t_s}\right)^{\beta_r \beta_s}.
$$

Analogously one can show that

$$
F(\tilde{\varphi}_r, \tilde{\varphi}_s) = \left(1 - \frac{t_s}{t_r}\right)^{\beta_r \beta_s}.
$$

§7 Summary

Let $\varphi_r(t) = (-t)_{L_r}^{\beta_r}, -1/2 < \text{Re }\beta_r < 1/2$, be defined as in § 1. Suppose that $b \in L^{\infty}(\Gamma)$ and $H(b)$, $H(\tilde{b})$ are operators of the trace class. Then necessarily $b \in W$. If $b(t) \neq 0$ $(k|i| = 1)$, ind $b = 0$ then *b* has a canonical factorization $b = b_{-} \cdot b_{+}$, where the factors b_{\pm} are defined by (3.1).

We have proved that

The proved that
\n
$$
\lim_{n \to \infty} \frac{D_n(\varphi_1 \dots \varphi_R b)}{R_n} = \tilde{E}(t_1, \dots, t_R; \beta_1, \dots, \beta_R; b) E(b)
$$
\n
$$
\frac{G(b)^{n+1} n^{r-1}}{B(n+1)} = \tilde{E}(t_1, \dots, t_R; \beta_1, \dots, \beta_R; b) E(b)
$$

holds. Here

Teoplitz determinants with p.c. generating function

\nHere

\n
$$
G(b) = \exp(\log b)_0,
$$
\n
$$
E(b) = \exp\sum_{k=1}^{\infty} k(\log b)_{-k} (\log b)_k,
$$
\n
$$
\tilde{E}(t_1, \ldots, t_R; \beta_1, \ldots, \beta_R; b)
$$
\n
$$
= \prod_{r=1}^R \mathfrak{G}(1 + \beta_r) \mathfrak{G}(1 - \beta_r) \prod_{r=1}^R E(b_-, \varphi_r) E(\varphi_r, b_+) \prod_{r < s} F(\varphi_r, \varphi_s) F(\tilde{\varphi}_r, \tilde{\varphi}_s),
$$
\n
$$
E(f, g) = \det T^{-1}(f) T^{-1}(g) T(f) T(g),
$$
\n
$$
F(f, g) = \det T^{-1}(g) T^{-1}(f) T(fg).
$$
\nvalent expression is

\n
$$
\tilde{E}(t_1, \ldots, t_R; \beta_1, \ldots, \beta_R; b)
$$
\n
$$
= \prod_{r=1}^R \mathfrak{G}(1 + \beta_r) \mathfrak{G}(1 - \beta_r) \prod_{r=1}^R b_+(t_r)^{\beta_r} b_-(t_r)^{-\beta_r} \prod_{r+s} \left(1 - \frac{t_r}{t_s}\right)^{\beta_r \beta_r}.
$$
\nthe *Barnes* \mathfrak{G} -function defined in § 1.

and

$$
E(f, g) = \det T^{-1}(f) T^{-1}(g) T(f) T(g),
$$

$$
F(f, g) = \det T^{-1}(g) T^{-1}(f) T(fg).
$$

An equivalent expression is

$$
F=1 \t r < s
$$

\n
$$
E(f, g) = \det T^{-1}(f) T^{-1}(g) T(f) T(g),
$$

\n
$$
F(f, g) = \det T^{-1}(g) T^{-1}(f) T(fg).
$$

\n
$$
E(t_1, ..., t_R; \beta_1, ..., \beta_R; b)
$$

\n
$$
= \prod_{r=1}^R \mathfrak{G}(1 + \beta_r) \mathfrak{G}(1 - \beta_r) \prod_{r=1}^R b_r(t_r)^{\beta_r} b_{-(t_r)^{-\beta_r} \prod_{r+s} \left(1 - \frac{t_r}{t_s}\right)^{\beta_r \beta_r}
$$

W(z) is the *Barnes 03-/unction* defined in *§* **1.**

Appendix A: Hankel operators of the trace class

We remark that V. V. PELLER in a recent paper [9] announced a necessary and suffi-Appendix A: Hankel operators of the trace class
We remark that V. V. PELLER in a recent paper [9] announced a necessary and
cient condition for a Hankel operator to belong to the ideal $\mathscr{C}_p(1 \leq p < \infty)$.

Given a function $b(t) = \sum_{k=0}^{\infty} b_n t^n$ (|t| = 1), we denote by *Pb* the function defined by (*Pb*) $(t) = \sum_{n=0}^{\infty} b_n t^n$, whenever this series converges. By $B_p^{-1/p}$ $(1 \leq p < \infty)$ we denote

the Besov class of all measurable functions on
$$
\Gamma
$$
 satisfying\n
$$
\int_{-\pi}^{\pi} y^{-2} \int_{-\pi}^{\pi} |f(e^{ix+iy}) + f(e^{ix-iy}) - 2f(e^{ix})|^p dx dy < \infty,
$$

which for $p > 1$ is equivalent to

$$
\int_{-\pi}^{\pi} y^{-2} \int_{-\pi}^{\pi} |f(e^{ix+iy}) - f(e^{ix})|^p \, dx \, dy < \infty.
$$

Further, we put

$$
\int_{\pi}^{\pi} y^{-2} \int_{-\pi}^{\pi} |f(e^{ix+iy}) - f(e^{ix})|^p dx dy < \infty.
$$

we put

$$
A_p^{1/p} = \left\{ f \in B_p^{1/p} : \int_{-\pi}^{\pi} f(e^{ix}) e^{ikx} dx = 0, \quad k > 0 \right\},\
$$

i.e. $A_p^{-1/p}$ is the subclass of all analytical functions of $B_p^{-1/p}$. Then one has $f \in A_p^{-1/p}$ $A_p^{1/p} = \begin{cases} f \in B_p^{1/p} \end{cases}$
e. $A_p^{1/p}$ is the subclass of
 $1 \leq p < \infty$) if and only if

$$
\int_{\mathbf{D}} |f'|^p \chi(1-|z|)^{2p-2} \, dx \, dy < \infty,
$$

which for $p > 1$ is equivalent to

$$
\int_{\mathbf{D}} |f'|^p (1-|z|)^{p-2} dx dy < \infty.
$$

Here a function $f \in A_p^{1/p}$ is identified with its analytical extension into $D = \{z \in \mathbb{C} :$ $|z| < 1$. anction $f \in A_p^{1/p}$ is identified with its analytical extension
sult of Peller then reads:
 $H(b) \in \mathscr{C}_p \Leftrightarrow Pb \in B_p^{1/p} \Leftrightarrow Pb \in A_p^{1/p}$ $(1 \leq p < \infty)$.
where obtain

The result of Peller then reads:

$$
H(b) \in \mathscr{C}_p \Leftrightarrow Pb \in B_p^{-1/p} \Leftrightarrow Pb \in A_p^{-1/p} \qquad (1 \leq p < \infty).
$$

In particular we obtain

$$
H(b), H(\tilde{b}) \in \mathscr{C}_1 \Leftrightarrow Pb \in B_1^1, \quad (I - P) b \in B_1^1 \Leftrightarrow b_- \in B_1^1, \quad b_+ \in B_1^1,
$$

 b_{\pm} being the factors in the canonical factorization $b = b_{-}b_{+}$. Furthermore using the *b*₁ *b*₁*(b)*, $H(b) \in \mathcal{C}_1 \Leftrightarrow Pb \in B_1^1$, $(I - P) b \in B_1^1 \Leftrightarrow b_0 \in B_1^1$,
 b_{\pm} being the factors in the canonical factorization $b = b_0 b_+$. Furth

boundedness of *P* on B_1^1 (cf. [9]) we get $H(b)$, $H(b) \in \mathcal{$

Appendix **B: The** block case

We remark that the techniques used here are available in the block case, too. In fact, given a matrix generating function $a(t) = \{a_{ij}(t)\}_{i,j=1}^N$ with elements being piecewise continuous, then we have a factorization $a = b\varphi c$ if only det $a(t \pm 0) \neq 0$ $(|t| = 1)$ holds; here *b* and *c* are continuous matrix functions and φ is an upper triangular matrix with piecewise continuous elements (cf. [10], p. 124). Under certain conditions concerning smoothness and invertibility one may eliminate *b* and *c* and then, in virtue of the triangular form of φ , the results for the scalar case lead to ($|i| = 1$) holds; here *b* and *c* are continuous matrix function
angular matrix with piecewise continuous elements (cf. [10]
conditions concerning smoothness and invertibility one may
then, in virtue of the triangular fo

$$
D_n(a) \sim G^{n+1} \cdot E \cdot n \xrightarrow{k-1} \sum_{r=1}^N \beta_{kr}^2
$$

with some constants *G* and *E*; the β_{rk} 's are given by $\beta_{rk} = \frac{1}{2\pi i} \log \lambda_{rk}$, $-1/2 < \text{Re } \beta_{rk}$
 $< 1/2$ where λ_{rk} ($k = 1, ..., N$) are the *N* eigenvalues of the matrices $a(t_r + 0)^{-1}$
 $\times a(t_r - 0)$, and $t_1, ..., t_R$ $\langle 1/2 \text{ where } \lambda_{rk} \ (k = 1, ..., N)$ are the *N* eigenvalues of the matrices $a(t, +0)^{-1}$
 $\langle a(t, -0), \text{ and } t_1, ..., t_R \text{ being the points of discontinuity. More about this will be$ published elsewhere.

Acknowledgement: I would like to thank Prof. B. Silbermann for suggesting this problem and for numerous stimulating and helpful discussions.

REFERENCES

- [1] BASOR, E.: Asymptotic formulas for Toeplitz determinants. Trans. Amer. Math. Soc. 289 $(1978), 33-65.$
- [2] FISHER, M. E., and R. E. *HARTWIG: Toeplitz determinants: some applications, theorems* and conjectures. Adv. Chem. Phys. 16 (1968), 333-353.
- [3] GOHBERG, I. C., and I. A. FELDMAN: Convolution equations and projection methods for their solution. Transi. of Math. Monographs, Vol. **41.** Providence 1974.
- [4] GOHBERG, I. C., and M. G. KREIN: Introduction to the theory of linear nonselfadjoint operators. Trans). of Math. Monographs, Vol. **18.** Providence 1969.
- [5] Гохверг, И. Ц., и Н. Я. Крупник: Введение в теорию одномерных сингулярных интегральных операторов. Изд-во "Штиннца": Кишинев 1973.
- [6] GRENANDER, U., and G. SZEOö: Toeplitz forms and their applications. Univ. of Calif. Press: Berkeley 1958.
- [7] Корнейчук, Н. П.: Экстремальные задачи теории приближения. Изд-во "Наука": Mocusa 1976.
- [8] Крейн, М. Г.: О некоторых новых Банаховых алгебрах и теоремах типа теоремы Винера-Леви для рядов и интегралов фурье. Мат. Иссл. 1 (1961), 82-109.
- (9) HEJuIEP, B. B.: Pjiaauue oneparopu PanReJIR **it** ux npnJ1oKeHUH (ueaiu *lep,* KJ1aCC& BecoBa, *cny'iaiiue* npoieccu). *AA* ^H CCCP 252 (1980), 43-48.
- [10] PRÖSSDORF, S., und S. G. MICHLIN: Singuläre Integraloperatoren. Akademie-Verlag: Berlin 1980.
- [11] SIMON, B.: Notes on infinite determinants of Hilbert space operators. Adv. in Math. 24 $(1977), 244 - 273.$
- [12] WIDOM, H.: Toeplitz determinants with singular generating functions. Amer. J. of Math. 95 (1973), 333-383.
- [13]WIDOM, H.: Asymptotic behavior of block Toeplitz matrices and determinants. II. Adv. in Math. 21 (1976), $1-29$.
- [14]WH1TTAXER, E. T., and G. N. WATSON: A Course in Modern Analysis. 4th ed. Cambridge 1963.

Added in Proof. Having already submitted the present paper to the Editors. I observed that the same problem was considered in

BAS0R, E. L.: A Localization Theorem for Toeplitz Determinants. Indiana Univ. Math. J. 28 (1979), 975-983, and for the special case were the generating function has only one point of discontinuity in

Блехвр, П. М.: О гипотезе Фишера - Хартвига в теории теплицевых матриц. Функц. анализ и его прилож. 16, вып. 2 (1982), 1-6.

Manuskripteingang: 09. 01-1981

VERFASSER:

Dipl.-Math. ALBRECHT BÖTTCHER Sektion Mathematik der Technischen Hochschule DDR-9010 Karl-Marx-Stadt, PSF 964