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Toeplitz determinants with piecewise continuous generating function

A. B6TTCHER

Durch konsequente Benutzung der Theorie der Operatordeterminanten und einer speziellen
Technik der Storung durch Spuroperatoren wird das asymptotische Verhalten der Toeplitz-
determinanten Dg(a) = det {@;4}} -0 (7 — o) bestimmt, falls die Erzeugerfunktion af(t)

oo .
= X aut* (jt| = 1) stiickweise stetig ist und gewissen natiirlichen Regularitdtsbedingungen
k= — o0 R .

~ X8

geniigt. Es gilt D,(a) ~ G- E.n =1 (n - 00), wobei 8, = 2—1— log a(¢t, — 0)/a(t, + 0),
. £

IRe 8,] < —;— ist und ¢t,, ..., tg die Unstetigkeitsstellen von a(t) sind; die Konstanten G und E

werden explizit berechnet.

TIpuMenenne TEOPHM ONEPATOPHHIX ONpenennTeNe#t it OfHA 0cobad TEXRHKA BO3MYMEHHA
ANEPHBIMH ONEPATOPAMH [MO3BOJILAIOT ONDPEAEJHTH ACHMITOTAYECKOE TNOBENeHHE TEMu-
ueBux onpeneauredeit D,(a) = det {ai_‘.];{k_o (r — oco), ecau cuMBOJ (IPOUBBOAAAA (yH-
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Consequent application of the theory of operator determinants and a special technique of
perturbing by trace class operators allow to determine the asymptotic behavior of the Toeplitz
oo
determinants D,(a) = det {aj—k};",k-o (n — o0), if the generating function a(t) = J apt*(jt| = 1)
k=—o0
is piecewisc continuous and satisfies some natural conditions of regularity. There holds
R
-z 8 " 1
Dya) ~ G . E-n""! (n-> o), where g, = 5 log a(t, — 0)/a(t, + 0), |Re B,| < - with
)

t,,...,tg being the points of discontinuity of a(t); thereby the constants G und E are explicitely
given. ’

§ 1 Introduction -

Let a(f) be a piecewise continuous function given on the complex unit circle
I' = {t € C: |t] = 1}, i.e. a i8 continuous on I" with exception of finitely many points
t,, ..., tr where, however, a possesses finite limits a(t, — 0) and a(t, + 0) (» = 1,...,R).
By a#* we denote the continuous curve obtained from the range of a by filling in the
line segments joining a(t, — 0) to a(t, + 0) for each discontinuity. We suppose that
~ a* does not contain the origin and that the winding number ind a* of a¥ is zero.
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Then there exist complex numbers 8, ..., fz satisfying e = a(t, — 0)/a(t, + 0),
—1/2 < Re f, < 1/2 and a continuous function b(f) on I" with b(t) =0 (jt| = 1),
ind & = 0 such that

at) = (—Of ... (—ORb(t) (| =1) (1)

holds. Here (—t){" is defined by exp {iﬂ, arg (—--:—)}, arg (-— {—)
T r

has a discontinuity at ¢ = ¢,. We remark that we could take a branch of t4 instead
a branch of (—¢)#- but we choose the latter, since we have a more “symmetrical” fac-
torization

-8, 8,
o= (1= %) (1= ) wm=n

in this case; here (1 — ¢/t,)% denotes the limit on the unit circle of that branch of
the function which is analytic in |t| << 1 and takes the value 1 at ¢ = 0 and where
(1 — t,/ty#- is defined similarly.

The asymptotic behavior of the Toeplitz determinants

<=m; 80 (—t)

1 d . .
Dy@) = dot dfure, =g [alemeivdp (ke

as » — co has been the object of study by many people for some time (cf. [1, 2, 6,
12, 13)). If the so-called generating function a(¢) (|t| = 1) is continuous, sufficiently
smooth, satisfies a(t) &= 0 (|{| = 1) and ind a = 0, then one has the well-known
asymptotic formula

Difa) ~ G(a)*** E(a)  (n — o0),

where G(a) = exp (log a),, E(a) = exp J k(log a), (log a)_,, ((log @), being the -
k=1

Fourier coefficients of log a). There exist asymptotic formulas in the case where
ind @ 5= 0 holds or where a has zeros on the unit circle, too. Much less is known,
if a has discontinuities. This problem was probably for the first time considered by
HarTwic and FisHER in [2]. Using heuristic arguments they arrived at the con-
jecture that '
_‘gﬂr'
Dy(a) ~n """ GY# By, ..., tr; By, ..., Br; ) (2)

as n — co holds, if @ is given by (1). Here £ denotes some constant. They were able
to verify (2) in the case R = 1, b(f) ='1 and they proved

Dy((—t)f) ~nPG(L+ B) B(1 — )  (n— o).
Here ®(z) is the Barnes &-function; this is an entire function defined by

1 1 1
— 7 —z41)——myp2?
2 2 (z+1) 278 Rad

G(1 4+ z) = (2n)° e I {(1 + i)" e—:+z'/2n}
n=1 ’ n
(ye = 0.577... Euler’s constant) and its role in analysis will be clear if one takes
into consideration the relation ®(1 + z) = I'(z) G(2) (cf. [14], p. 264).
In [12] Wipom proved (2) if R =1, Im 8, = 0, —/, < B, < Yo, and if b has a
derivative satisfying a Lipschitz condition with exponent greater than [28,|. In this
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case a has only one point of discontinuity ¢ =¢, and there holds arga(t, + 0)
= arg a(t; — 0). Furthermore, (2) was proved by ESTELLE Basor in [1] in the case
Ref, = 0(r =1, ..., R) and under the assumption that b has a derivative satisfying
a Lipschitz condition. Moreover, she was able to determine the constant E under
her conditions. This result corresponds to the case where at the points of disconti-
nuity ¢, ..., tg of @ the relations |a(t, + 0)| = |a(t, — 0)| hold.

It is the aim of this paper to prove formula (2) and to determine the constant E
if @ is an arbitrary piecewise continuous function with 0 ¢ ¥, inda* = 0, and if b
in (1) satisfies some smoothness conditions.

§ 2 Preliminaries

Here some facts from the theory of Toeplitz operators, the theory of trace class
operators and operator determinants are presented.

For a € L>(I') with Fourier coefficients a, (k € Z) we denote by 7(a) both the
semi-infinite matrix {a; ;}%., and the bounded operator induced by this matrix
in a natural way on 2, the so-called Toeplitz operator. It is well-known that the use
of Hankel operators in the study of Toeplitz operators is of great importance. The
Hankel operator H(a) generated by a € L*(I') is given by the semi-infinite matrix
{@+641)5%m0 On 12 For a € L>(I") we write @(t) = a(1/t). Then one has the following
simple identities (cf. [137])

T(fgy = T() T(9) + H(f) H(3), (1
H(fg) = T(f) H(g) + H(f) T(§). (2)

By 7,(a) we denote the finite matrix {@j-4}]k~o- If we define the operators P,
and W, on 2 by |

Pp{ég, &, .0 = &gy ooy 50, 0,000,
Waiibos &rsooid = s e 80,0, .0

then T',(a) may be identified with P,T(a) P,/Im P,. An analogue of (1) is the identity
Tulf9) = Tulf) Talg) + P.H(f) H(§) P, + W,H(f) H(g) W,. (3)

If 4 is an invertible operator on I3, if the operators 4, = P,AP, | Im P, are inver-
tible for n large enough and if 4,7 converges strongly to A-1as # — oo then we say
that the reduction method for A converges and we write A € IT{P,}. For a piecewisc
continuous function @ we have the well-known fact

T(a) € II{P,} < T(a) invertible © 0 ¢ a*, inda* = 0 (4)

(cf. [3]). We remark also that from 4 € JT{P,}, T a compact operator, 4 + T in-
vertible, it follows that 4 4+ T' € IT{P,} (cf. [3)).
An important class of operators on /2 are the so-called trace operators. An operator

A € L(I?) is called a trace operator (we write 4 € €,), if } 5,(A) < co where s5,(4)
is defined by n=1

8x(A4) = inf {|4 — Kljeo: dim Im K < n}

(Il - llo denoting the usual norm. in the space £(I*) of bounded operators on [2).
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Under the norm
14y, = Z,;sn(A)
e

%, is a closed ideal in .£(I%). We remark that every trace operator is compact.
If {4,(A)} denotes the sequence of eigenvalues of A € €,, then we have 3 |1.(A4)| < o0
and the operator determinant det (I + A) is defined by

det (I + A) =1”7(1 + ia(4)).
For equivalent definitions and properties of these determinants we refer to the
relevant literature (cf. [4, 11]). We should notice here only the following facts:
det (I + -) i8 continuous on €;;
det (I + 4)-det (I + B) =det (I + 4)(I + B) (A, B €%,);
det C-Y(I + A)C = det (I + C2AC) = det (I + A)
(CEr e Z(I?), 4 € €1);
det P(I + A) P — det (I + PAP), )

where P is a finite-dimensional projection and where the det on the left refers to the
ordinary finite-dimensional determinant for operators defined on Im P.
Finally, we will often apply the following proposition (cf. [13]):

(5)

(6)

Suppose {B,} and {C,} are two sequences of bounded operators satisfying
B, — B strongly, C,* — C* strongly.

Then if A € €,

lim |B,4C, — BAC|}; = 0.

7n—>00

§ 3 Perturbations by operators of the trace class

The following simple proposition is the key of our investigations.
Proposition 1: If 4 € ITI{P,} and K € €, then
. det P,(4 + K) P,
lim
1—>00 det P,AP,
Proof: Putting P, AP, = A,, P,KP, = K, we have for n large enough
det (A, + K,) det A, -det (I, + 4,7'K,)
det 4, - det 4,
=det (I, + 4,7 'K,;) =det (I + 4,7'P,- K - P,)

and since 4, 1P, — A! strongly, P,* — I* strongly it follows by the proposition
stated at the end of § 2 that

14,7 1P, EP, — A K|, >0  (n - o),

— det (I + A1K).

thus
" det(I + A, 'P,KP,) >det (I + A'K) (n +4o00) B
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Our next concern is the question under which conditions Hankel operators or
products of them belong to the trace class &,. More about this will be said at the
end of this paper; here we remark only that H(b) € &, if for instance b has a derivative
satisfying a Lipschitz condition (we write b € C**). This can be proved as follows:
if p, is the trigonometric polynomial of best uniform approximation of degree n forb,
then [[b — pulle =< C - n7'~¢ and this implies

S,,(H(b)) = H®) — Hpollow S 10 — Pullec < C - 071"
thus 3 s,(H(b)) < co. Later we will need the following fact.
n=1
Lemma 1: If b has a continuous second derivative b"', then |H(b)||, < % (15" Jloo -

Proof: If p, denotes the trigonometric polynomial of best uniform approximation
of degree » for b, then (cf. [7], eq. (9.5))
sa(H(b)) < IIH(b) — H(Pa)llo < 116 — Palleo

1 ’ "
=%, % (b )_2z”b ”w_’
o ] nz y 7!4 .,
lH (®)Ilx =n§1 s.(H(b)) gné’l ot b llc = IF) "]l W

Lemma 2: If H(b) € €, and H(b) € €,, then there holds b € W. Here W denotes the
Wiener algebra of all functions on I' with absolutely convergent Fourier series.

thus

Proof: {eq)ano, €n = {04}520 € 1 is an orthonormal basis in 12 and from H(b) € &,
H(b) € %, it follows (cf. [11])

Z(H®) en, €0)] = 1by] + [b] + -+ < 00

2 \HE) e, e)] = [b_y] + [bosl + -+ < oo.
From (2.2) we get

Htb) = T(t) H®) + H() T(B) € %),

H(ib) = T(t7*) H(®) + H(t™") T(b) € &,
and therefore

 [(H (D) e, e)] = [bo] + [ba] + -+ < o0,

© X [(H(EB) 5, €0)] = lbg + Ib_g] + -+~ < o0 B

Every b e W, b(t) &= 0 (|t| = 1), ind b = O has a canonical factorization b = b_b,
where

b_(¢) = eXP{ Z (IOg b t“} b.(t) = eXP{ 2. (log b), t"} (1)
and there holds b_%*'¢ W n H®, b,*1 ¢ W n H® (cf. [3]). If H) € %,, Hb)ec ¥,
then we have H(b,) € €, and H(b_) € %,; this follows immediately from .

H(b,) = H(bb_"") = T(b) H(b-") + H(b) T(b-7*) = H(b) T(b_7Y).

It is & well-known fact (cf. [5]) that H(f) H(§) is a compact operator, if f and ¢
are piecewise continuous functions having no common point of discontinuity. Even
much more is true.
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Proposition 2: Suppose that f and g are piecewise continuous functions on I’
without common potnts of discontinuity. If each of these funclions belongs to C'** on
each closed subset of I'which contains no of its points of discontinuity, then H(f) H(§) € €y

Proof: Since f and g have only a finite number of points of discontinuity, in
virtue of the representations

=3k, 9= 5o
k=1 k=1

~where f,(t) and g,(t) have only one point of discontinuity and belong to C'** on
each closed arc of I" which does not contain this point of discontinuity, we may
reduce the proof to the case when both f and g have only one point of discontinuity
t, and t,, respectively, and ¢, = ¢,. In this case we can choose two open arcs y and 4
of I" such that t, € y, y— 4, t, ¢ 4 holds. From g € C'*¢(4) it follows the existence
of a function b € C'*¢(I") satisfying

b(ty=g(t) (tey), bl)+gt) (t€ad=a\4).
Furthermore, there exists a function ¢ € C**<(I") with

oty =gty — b{t). (t€D), ) +0 (e '\ 4).
In particular there holds c(¢) = 0 for ¢ € y. Finally, put

1, ted
) = {[g(t) — b(t)le(t), t€ I'\ 4.

We have g = b 4 cd by construction and applying (2.1) some times, we obtain’
T(fed) = T'(fc) T(d) + H(fe) H(d)
= T(f) T(c) T(d) + H(f) HE) T(d) + H(fe) H(d)
= T(f) T(ed) — T(f) H(c) H(d) + H(f) H(E) T(d) + H(fc) H(d)
and
T(fb) = T(f) T(b) + H(f) H(b)
This implies
. H(f) H(G) = T(fg) — T(f) T(g) = T(fed + fb) — T(f) T(b + ed)
= T(fed) — T(f) T(cd) + T(f6) — Tf) T(b)
= —T(f) H(c) H(d) + H(f) H(#) T(d) + H(fo) H(d) + H(f) H(5()2-)

From b, ¢, fc € C1*¢(I") (we remark once more that ¢ = 0 in a nelghbourhood of the
point of discontinuity of f) we get H(b), H(c), H(¢), H(fc) € %,, and since all the
other operators on the right of (2) are bounded, the assertion follows.

§ 4 The existenee of the limit lim D,.(q)b)/G(b)"+1n DX

n—>00

We write g(f) = (—t)f1 ... (—t)f" and ¢,(t) = (—t)7". Suppose that H(b), H(b) € &,
holds (according to Lemma 2 it follows b € W) and that b(¢) &= 0 (|ff = 1), indb =0
is fulfilled. Let b_ and b, be given by (3.1) from the canonical factorization b = b_b..
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In order to apply Proposition 1 we put?!)
A = T(b,) T(p) T(b-) |
and ,
A + K = T(b_) T(p) T(bs) = T(gb).
We have K € %,, since
K = T(gb) — T'(b,) T(g) T(b-)
= H(b,) H(gb_) + T(b,) H(g) H(b.)

and H(b,), H(b_) € ¢,. From A 4 K = T(¢b) € IT{P,} (cf. (2.4)), the compactness
of K and the invertibility of 4 we may deduce that 4 € II{P,}. Now, applying
Proposition 1 and the identity

PLAP, = P,T(b,) T(9) T(b_) Py = Tn(b,) Tulg) Ta(b)
following from (2.3), we get
lim D,(gb)/D,(b,) Da(g) Dafb)

= det {I + T-*(b.) T~Xg) T%(b,) [T(¢b) — T(b) T(p) T(b-)]}
= det T-Y(b_) T (¢) T-'(bs) T(¢b)-

T,.(b.) are triangular matrices and therefore we ha._v_e_ D,(b,) Dy(b) = G(b,)*+ G(b-)"+?
= G(b)**! and because of T-(f) =-T(f~1) for f €¢ H® or f € H® we arrive at

lim D,(¢b)/G(b)*"* D,(@) = det T(b-"*) T-Yg) T(b,™*) T(¢b). (1y

n—>00

Thus, we have eliminated the ‘“‘regular” factor b(t) from the generating function.
Now we are going to delete successively one factor ¢, (r =1,..., R — 1) from

D(g)-
We write ¢ = ¢,p and put

A=T)T(y), K= H(p)H().

Then we have T(gyy) € II{P,}, K € ¢, by Proposition 2, 4 is invertible and 4
= T(g1p) — K yields 4 ¢ [T{P,}. Thus, we may apply Proposition 1 and we obtain

lim D,(¢p)/det P,T(9)) T(y) P,

= det {I + T~Xy) T~Y¢) H(p)) H(P)}

= det 77(y) 77(q1) T(pry)- ) (2)
Now, the following identity may easily be verified:
1t follows '

P,T(@,) T(y) Pn = Tulpr) Toly) In + T w) TN @y) W.H(G) H(y) W,}

1) This idea is due to Prof. B. Silbermann.
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hence
det P,T(@,) T(v) P/ Dulpy) Du(w)

= det {In + Tn_l(w) Tn—l(q’l) WnH((ﬁl) H(V") Wn}
= det Wn{In + W,,T,,—l(‘lp) WanTn—l(‘pl) WnH(éjl) H(W) Pn} Wn
= det {I + T, (%) T, ($1) H($1) H(y) Py).

Here we have used W2=P,=1, W,T,N)W,=T,Yj), det W, AW,
= det P,AP,, det {I, + P,AP,} = det {I + P,AP,). Proposition 2 applied to &,
and § implies H(§,) H(y) € %, and since T,~Y(§) T, (1) — T-1p) T-Y§,) strongly,
the proposition stated at the end of § 2 leads to

lim det P, T(g;) T() Pu/Du(1) Dalw)

= det {I + T-4§) T-X§,) H(§) H(y)}
= det T-Y%) T-4§) T(§:¥)- (3)

Analogously as this was done in (2) and (3) we may now delete ¢, from D,(v)
and so on. Continuing this process, we get from (1), (2), (3)

Jim Dy(@; ... @rb)/G(6)*1 Duly) ... Dalpr)

n—oo

= det T(b_") T~X¢) T(b,™") T(b.pb-)

R—1
X 1? det Y y) T Yo, T(@eys) -
r=
R-1 _ ’ _
X l—{ det T-Y§,) T-X,) T(F:P,)» (4)
r= o . . -
where
Yr = @r41 -+ PR (r=1,..,R—1).
"From the computations of HarTwic and FisrERr [2] follows
Do) = Df(—t)fr) ~ n#*B(1 + B,) B(1 — B,) (5)
and therefore the existence of the limit
lim D, (@b)/G(b)**1 n-Z¢* = E.

n—r00

By (4) and (5) we have a preliminary information about the constant E, it remains
to evaluate the occuring operator determinants. This is straightforward but some-
what extensiv, since we are constrained to use some approximation arguments.

§ 5 Approximation of Toeplitz anid Hankel operators with piccewise continuous
generating fanction

Asalready stated in the Introduction, the function ¢(¢) = (—¢)f, —1/2 < Re < 1/2
possesses a factorization

-8 8
o= (1=2)"(1-2f w-n.
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We put
(1B (1 _ i)’ =1
Pult) (1 #t) (1 pr (=1,

where ¢ > 1 i8 a real parameter. Obviously, we have
ou€ W, Pu€C®, @) +0 (Ie|l = 1), indg, =0

if u is sufficiently close to 1. Furthermore, it is easily seen that T'(¢,) — T'(¢) strongly
and H(g,) — H(p) strongly as x — 1 + 0. Somewhat less obvious is the following
fact.

Lemma 3: TYg,) — T~Yg) strongly as 4 =1 + 0.

Proof: From ¢,(t) 3= 0 (|t| = 1), ind ¢, = 0 it follows the invertibility of T(g,)
for p € (1, 1 + ¢). It is not difficult to show that

[ o[- 47
ol el ]

in the norm of 2, where e, = {d;}{2, € I?. The set of all finite linear combinations
of {ey, e, ...} is dense in I? and the assertion will follow if we prove the uniform
boundedness of the norms ||7}(@,)ll With respect to u € (1, 1 + ¢). It is elementary
function theory to show that the range of ¢,(¢) fort € I', u € (1, 1 4- &) is contained
in a closed sector of an annulus spanned by an angle 27 - |Re f| < n and having
the radii exp {4+ = - |Im B|}. Thus, there exists a real number ¢ > 0 such that the
disk with the centre in ¢ and the radius ¢ contains this sector of an annulus in its
interior. Therefore we have

I‘Pu(‘)—cl<9|c|» ter) /‘6(1’1'*'8)
with some ¢ satisfying 0 < ¢ < 1. This implies

”‘P# — ¢l = qlel, re(l,1+4 ¢,
hence

“T(?’p) — o = qlel, u € (L, 1 4 ¢,

and we obtain

T(p,) = cI + T(g,) — cI = cI{I + ¢ (T(p,) — cl)},

o 1
T Yo = {I +"§; (—-1)"[0"(7'((7)“) - cI)]“} =
From |lc}(T(p,) — ¢f)||w = ¢ < 1it follows [T pu)llee = %.I._i_é, pe(l,1+¢) 8

Lemma 4: Let y(t) (it] = 1) be a piecewise continuous function which is continuous
at t = t, and which belongs to C* on each closed subset of I" containing no point of
discontinuity of y. Then we have

|H(p,) H(§) — H(p) HH)ll, = o(1)
asu—1,pe(l,14¢).
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Proof: We construct b, ¢, d as in the proof of Proposition 2 and by our assumption
it is possible to choose b, ¢ € C*(TI'"). Then (3.2) leads to

1H(gu) H(9) — H(p) H(H)Ilx
= (T(90) — T(e)) He) H@)|h + |[(H(pn) — H()) H(E) T(d)]),
+ 1H{(pu — @) ¢} H(d)l + [[(H(ga) —~ H(g)) HO)x

and since T(p,) — T(p), H(p,) — H(p) strongly, H(c), H(§), H(b) € %,, it follows
from the proposition stated at the end of §2 that all items on the right, with
exception of the third, are o(1). Applying Lemma 1 we obtain

1H[(pn — @) cllly < 2/12 - (s — @) €] "lloo

= /12 - |[[(pu — @) €] lzeoirny) = o(1)

since ¢(¢) = 0 (¢t € ) and [jg, ¥ — @] o0y = (1), k = 1,2, ...). Thus, the third
item is »(1), too | :

§ 6 The determination of the constant E(%,..., £r; B1,..., Br; b)

The evaluation of the operator determinants det (I + C), C € €, occuring in (4.4)
is based on the representation of I + C as a multiplicative commutator I 4+ C
= edePe 4e B (4, B ¢ #(1?)) and the formula
det e4eBe~4e~B = exp tr (4B — B4), (1)
being valid if AB — BA € %, (cf. [13]). An immediate application of (1) to our
problem, however, is not possible, since the arising operators do not, in general,
satisfy AB — BA € ¢,. Thus, we have to use some approximation arguments.
First of all, we split up the right side of (4.4) into in a certain sense ‘“‘more ele-
mentary” factors. Thereby we continuously make use of (2.1), (2.5), (2.6) without

to mention this each time.
We have

det T(b_~%) T-Y(g) T(b,~) T(gh)

= det T(b_"") T-(p) T(pb-) - T-*(b_) T'(b,*) T(pb)

= det T(b_7") T~X(g) T(b-) T(p) - det T-}gb.) T(b,~?) T(pb)
and the second determinant is equal to

det T-(g) T(b_"1) T(b,") T'(b-) T(9) T'(bs)

= det 7'(b-71) T'(b,") T(b-) T(@) T'(by) T~ X(g)

= det 7(b_"") T'(b,~") T(b-) T(b,) - det T(b,~") T(g) T(b,) T-Y(g).
Let us now write

E(f, g) = det T-X(f) T~X(g) T(f) T(g)
whenever this has a sense. We remark that in virtue of

T-Y(f) T-Xg) T(f) T(g) = I + T-X(f) T~Xg) [H(g) H(}) — H(f) H()]

E(f, g) is always defined, if H(g) H(f) € ¢, and H(f) H(§) € €,. By our assumptions
we have H(b,), H(b_) € €, and so we may conclude in this way that E(g, b,), E(b_, b,)
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and E(b_, @) are defined and from our calculations follows
det T(b_"1) T-Y(g) T(6,) T(gb) = Elg,b,) B_,b) Bb_ 9). (2)
It turns out that E(f, g) has a remarkable multiplicative property.
Lemma 5: If H(f) H(g) € €,, H(b.) € €,, b_ € H> then
E(b_, fg) = E(b-, /) E(b-, 9),
and if H(f) H(§) € €,, H(b,) € €,, b, € H® then
E(fg, b.) = E(f, b.) E(g, b.).
Here we suppose that all occuring in E(- , -) tnverses T-1(f), ... exist

Proof: From H(fy H(§) € ¥, it follows that T'(fg) T-Yg) T~ l(f) — I €%, and we
obtain

E((, b,)- det T(fg) T~Hg) T~ - E(g, b,)
= det T)(f) T(b,~) T(f) T(b.) - det T(b,*) T-X(f) T(fg)- T~ *(g) T(b,)
x det T'(b,~Y) T(g) T(bs) T~Y(9)

and
B(fg, b,) = det T~X(fg) T(b,™) T(fg T(b.)
= det T(f) T(9) T*(fg) - T(b.~") T(fg) T(b) - T~X(g) T YhH
= det T(f) T(g) T-X(fg) - det T~X(f) T(b,7") T'(fg) T'(b+) T~X(9).
From

det T(f) T(g) T~)(fg) - det T(fg) T-Hg) TX(f) =1
the second assertion follows. The first may be proved analogously 0
Lemma 6: If f resp. b, are mvertzble elements with tndex zero in W resp. W ¢ H®

and if H(b,) € €, then

E(f,b.) = exp X k{log f)-ulog b.)-

If { resp. b_ are invertible elements wnth index zero in W resp. W nH>® and if
H(b.) € €, then

B, f) = exp 3 klog b-)-¢ (log /).
Proof: From the assumptions it follows that f has a canonical factorization
f=f--f+ Thus
E(f, b,) = det T-Y(f) T(b,™%) T(f) T(b.)
— det T(f,™) T(-Y) T(b,™) T(jb.)
= det T(£"") T(5,™) T(fb,f,™)
— det T(/-") T(b,~) T(1.) T(b,).

3 Analysis Bd. 1, Heft 2 (1982)
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Now there holds T'(y) = exp T(log y), if y is an invertible element with index zero
in W nH= or W n H* and we get (applying (1))
E(f,b,) = exp {—T(log {-)} exp {—T'(log b,)} exp T(log {.) exp T'(log b,)
- = exptr {T(log {.) T(log b,) — T(log b,) T(log {.)}
= exp tr H(log b,) H((log f_)~)

if only H(log b.) H((log /_)“') € €;. But from H(y) € %,, y being invertible with index
zero in W it follows H(log y) € %, (cf. [8]) and so by our assumptions we have
H(log b,) € €,. An easy computation shows .

tr H(f) H(§) = X kfig-«

k—

for H(j) H(§) € €, and now the assertlon follows 1mmed1ately ‘'The second may be
proved in the same way i

Looking at (4.4) we still must investigate expressions of the form det 7'-1(g)T"~(f)
X T(fg). We write

F(f, 9) = det T-Xg) T7X(f) T(f9)
whenever this has a sense (e.g. if H(f) H(g) € €,).

Lemma 7: Put ¢(t) = (—t), and suppose that v, f, g wtzs/y the conditions of
Lemma 4. Then :

F(p,y) = lim F(g,, y)
#—>1+4+0
where @, is defined as in § 5. Furthermore, there holds
Flou, v) = E('I’s (‘Pp)—!‘)
. t\f
with (@), (t) = (1 - —;) and
Mo

F(p, f9) = F(g, /) F(g, 9)-
Here we suppose that all inverses occuring in F(-, -) exist.

Proof: We have
F(g, ) = det T~ (y) T ) T(py)
- = det {I + T () T"Y¢) H(p) H(p)}

and from T-Y¢,) — T~Yg) strongly according to Lemma 3 and |H(g.) H(¥)
— H(p) H#H)|) = (1) according to Lemma 4, we may conclude that

Flo, y) = liﬂodet I+ T y) T Hip,) H(%))

= lim det 7"Y(yp) T“(%) T(‘Py'/’)

u—140

= lim F(g,, p).

k=140
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Now there holds

F(@u, ) = det T-Y(y) T((.):7Y) T((n)-"1) T(puy)
= det TX(y) T((gu)s"?) T(y) T((@0)-)

o\~ : ty
where (@,)- = ( — ﬁ) y (@u)e = (1 — ,u—to) , hence

F(gu v) = E(y, (9):)-

- I { and g satisfy the conditions of Lemma 4, then in virtue of H(( %)+) € %, Lemma 5
may be applled and what results is

F(@u: 19) = Flgu ) - Fl@u: 9)-
Taking the limit z — 1 + 0 we get the last assertion. W
Now we are ready to evaluate the operator determinants in question.
From Lemma 6 and Lemma 2 immediately follows that
E@®_,b,) = ekagl k(log b)_, (log b),x =: E(b). (3)

For ¢(t) = (—t)f" in virtue of H(b,) € ¥, E(g, b,) is defined and we have
E(p, b)) = det T-X(g) T(6,7*) T(g) T(d.)
= det {I + T-}(g) T(b,”) H(b,) H()) -
= lim det (I + T-Yg,) T(b,™) H(b,) H(,)},

#—>1+0

since T-Yg,) — T-(¢) strongly by Lemma 3, H(q;,,) — H(@) strongly (obv1ously)
and H(b,) € ¥, was supposed. Because of

det {I + T-g,) T(b,™") H(b,) H(,)} '

= det @) T(b:7) T(gu) T(bs) = E(qur bs)
we get finally E(g, b,) = hm E(%, b,). Now E(g,, b,) may be calculated usmg
Lemma 6. What results 1s

E(@u by) = eXPkZ k(log @,)-« (log b,);

= expp, 3 (logb)s "

(since (log @,)_x = B /ku*) and therefore

E(p b,) = lim exp B, X (log ) - t/ut
+

= exp ﬂrkZ‘ (log b,) - 4,* = b.(t,)"

(we remark that log b, € W holds!).
Analogously one can show that
Eb_, ¢) = b_(t;) .

3*
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Lermma 5 now gives

E(g, ... pr, b)) E(b_, b)) E'(b_, @1 oo Pi)
b)Hb+(f )"'Hb (t)*",
r=1

where E(b) is defined by (3).
Applying Lemma 7 to (4.4) we obtain

R—-1

11 F(@r, o) F(§ry ¥) = [1 F(@rs 95) F(Frs Fs)

r<sg

and we still must evaluate F(q),, (p,,), @(t) = (—t , @s(t) = (—10); "' Also according
to Lemma 7 we have

F(‘pn @s) = hm F[(Wr)w @s] = 1"1710 lllln F(g,) Jur (@s)1]

and because of F[(g,),, (®s)1] = E[(@s)1, (#,)u.+] we obtain applying Lemma 6

Fll@n) (ga)a] = expk.i klog (9),)« [10g (@l
= exp Zlc (ﬂ't;c) (_ﬂ."_%t—‘)

BrBe
R B

The limit 4 -1 + 0, 1 — 1 4 O then gives

Fpop0 = (1= )"

4
Analogously one can show that

. t B:8s
F(‘Pr, ‘Pa) = (1 - "t—) .
T

§ 7 Summary

Let ,(t) = (—t) —1/2 < Re f; < 1/2, be defined as in § 1. Suppose that b € L>(I")
and H(b), H(b) are operators of the trace class. Then necessarlly beW. I bty +=
(Jt} = 1), ind b = O then b has a canonical factorization b =-b_ - b,, where the factors
b, are defined by (3.1).

We have proved that

tim 2o PO g ke B B B) B

n—>co -z8.

G(by™+! n !
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holds. Here
G(b) = exp (log b),,

[--]

E(b) = eXPkZ k(log b)_ (log b),
=1

E(t,y ..., ta; b1 .., Brs b)

= [T61 + £ O(1 — ) [T BO-, ) B b2) [T Pl 2 PG 7).
and
' E(f, g) = det T7(f) T~%(g) T'(f) T(9),
F(f, 9) = det T-Yg) T7X/) T(fg)-
- An equivalent expression is

E(ty, ... tr; Byy -y Br3 D)

B R t,\Prts
= [1 61 + ) 61 — ) [T bt b0 [T (1 _ t_)

®(z) is the Barnes @-function defined in § 1.

Appendix A: Hankel operators of the trace class

We remark that V. V. PELLER in a recent paper [9] announced a necessary and suffi- '
cient condition for a Hankel operator to belong to the ideal €,(1 < p < o0).

Given a.functlon b(t) = )_': but® (t| = 1), we denote by Pb the function defined by
e
(Pb) (t) = ): b,t®, whenever thls series converges. By B,VP (1 < p < o0) we denote
n=0
the Besov class of all measurable functions on I satisfying

[ 72 [ e . feis=in) — gfieta)e dz dy < oo,

which for p > 1 is equivalent to

f“y..z f If(efz+ivy — f(e®*)|Pdx dy < oo.

Further, we put
AP = {f € B,V7: [ f(e'*) olks dg — 0, k> 0},

i.e. 4,17 is the subclass of all analytical functions of B,!/P. Then one has f € 4,7
1 £ p < o0) if and only if

AP x(1 — |zh?-2de dy < oo,
D
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which for p > 1 is equivalent to

JIIP (1 — [2))P2 dz dy < oo.
D

Here a function f € 4,'? is identified with its analytical extension into D = {z € C:
2} < 1}. '
The result of Peller then reads:

H(b) e €y © Pbe Bl & Pb e A,0P (1=p< o).
In particular we obtain
H(b), H(b) e ¢, & Pbe B}, (I — P)be B« b_€ B, b, € B,

b, being the factors in the canonical fa,ctorizdtior} b = b_b,. Furthermore using the
boundedness of P on B,! (cf. [9]) we get H(b), H(b) € €, & b € B,

Appendix B: The block case

We remark that the techniques used here are available in the block case, too. In
fact, given a matrix generating function a(f) = {a;;(¢) -1 with elements being piece-
wise continuous, then we have a factorization a = bec if only deta(t + 0) =0
(Jt] = 1) holds; here b and ¢ are continuous matrix functions and ¢ is an upper tri-
angular matrix with piecewise continuous elements (cf. [10], p. 124). Under certain
conditions concerning smoothness and invertibility one may eliminate b and ¢ and
then, in virtue of the triangular form of ¢, the results for. the scalar case lead to
XN R
-z I8
Dy(a) ~ G+ . E.p k=t 7=l

. : 1
with some constants G and E; the §,,’s are given by 8, = om log 7, —1/2 < Re B

< 1/2 where 4, (k= 1,..., N) are the N eigenvalues of the matrices a(f, + 0)-!
X a{t, — 0), and ¢,, ..., g being the points of discontinuity. More about this will be
published elsewhere.
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