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A note on the penalty correction method

W. HaCcKBUSCH

Die Methode der Penalty-Defektkorrektur von J. Pasciak fuhrt ein inhomogenes Dirichlet-
sches Randwertproblem auf eine Folge von Problémen finiter Elemente mit natiirlicher
Randwertbedingungen zuriick. In der Arbeit wird gezeigt, daB die Methode der Penalty-
Defektkorrektur ein Spezialfall der iterierten Defektkorrektur . ist. Dabei gelmgen Fehler-
abschitzungen bereits unter sehr schwachen Voraussetzungen.

Merox wrpadsux nonpaBok J. PASCIAK CBOZUT pelleHile HEONXHOPOXHON KpaeBoi 3amaumu
Jdupnxie K NMOCNELOBATEILHOCTA 3aJa¥ KOHEYHHIX 2JIEMEHTOB C €CTECTBEHHBIMH KPaeBHMH
ycuoBuAMu. B paloTe nokaswBaeTcA, 4TO MeTO] IUTPAQHWX MONPABOK €CTh YaCTHHMH
cay4alt urepupoBarHON nonpaBku Aedexta. IIpH 3TOM OUEAKHM NOrpPelIHOCTH NOJYYEHH
npn Gojee ciRabLX NPENNONOKEHUAX.

The penalty correction method of J. Pasciak reduces the solution of an inhomogeneous
Dirichlet boundary value problem to a sequence of finite element problems with natural
boundary conditions. We show that the penalty correction method is a special case of the
iterated defect correction. Error estimates are proved under weaker assumptions.

1. Introduction

We consider an elliptic boundary value problem with an inhomogeneous Dirichlet
condition. While inhomogeneous natural boundary conditions can easily be treated
by finite element discretizations, the given problem is more difficult. Recently,
J. Pasc1ak [6] proposed a penalty correction method (PCM) that solves the Dirichlet
problem by a small sequence of equations with natural boundary conditions. Error
estimates can be proved under very weak assumptions.

-The first purpose of this paper is to show that the penalty correction method is a
special case of the more general iterated defect correction (IDC) as described by the
author (cf. [2]). The error estimates of the PCM follow from those of the IDC.

Secondly we weaken the assumptions. PAscIAK required the differential opérator
to be symmetric and uniformly positive definite. Here we prove the same results
‘without these assumptions.

In Section 2 the iterated defect correction (IDC) is described. Section 3 contains the
penalty correction method (PCM) and the corresponding error estimates. The proof
in Section 3.3 shows that PCM can be reformulated as IDC. Section 3.3 contains a
device for the numerical solving of the discrete equations by the multi-grid iteration.
The last section contains proofs of the foregoing lemmata.

2. Iterated defect correction method

In this section we repeat the iterated defect correction method for a general (abstract)
equation. The iterated defect correction method is based on two discretizations. The
basic discretization of accuracy O(kh*) is solved several times with different right-
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hand sides. By corrections with respect to the second discretization of a higher
accuracy O(h~), the iteration yields a solution of the same order O(%~).
Consider the abstract linear!) equation

Fr=y. . (2.1)
Assume that there are two different discretizations

Fyop=yn = Ry, A (2.2)

Fyz' =y 1= RyYy, (2.3)

corresponding to the discretization parameter % ¢ H, where O ¢ H. The first dis-
cretization (2.2) should easily to be solved, while the second one has a higher order
of consistency. The second discretization may be instable, even unsolvable.

The iterated defect correction is advantageous if the numerical solution of
Fy'z,' =y, is much more difficult than the solution of Fyx, = y,, or if F,’ is instable
or not invertible. There are many situations, in particular in the field of partial
differential equations, where discretizations of higher order of consistency lead to
very difficult equations or even to instable problems. :

The iterated defect correction?) (IDC) is defined by
oyt = Fy 7y, it i= ¢ — By Y(Fy'zd — yy). (2.4)

In general the sequence {z,'} does not converge, hut the order of consistency in-
creases with ¢ till the order of (2.3) is reached.

The characteristic feature of the analysis of the IDC is the use of norms correspond-
ing to varying orders of differentiability. During the itcration the order of diffe-
rentiability decreases, while the exponent of the discretization parameter & appearing
in the right-hand side of the error estimate increases.

Let X* (« varying) be a scale of Banach spaces containing the solution » of (2.1).
Usually, « is related to the order of differentiability. Examples are the Holder spaces
X = C*(£2) or the Sobolev spaces X* = H=*({2). Similarly, the right-hand side of
(2.1) is contained in Y. The discrete functions %, and f, belong the some vector
spaces. Endowing these vector spaces with analogous norms we obtain the scales
of Banach spaces X,* and Y,*. Fordetails compare [2]. We assume ||-|Lx,. < C(s,?) (]
fors <t

The following stability and consistency assumptions are needed in Theorem 2.1.
The stability condition reads as

IF ylixe-o = C |ynlly,e forall y, € Y%,k € H, and some o = 0. (2.5)

C always denotes a generic constant independent of k. Assume that (2.2) and (2.3)
are consistent of the orders » and »' > x, respectively:

(RFF — FyRy%) 2lly,e < OB |lal]yers (2.6a)
for B € [0,x] and all z € X=+#, h ¢ H,
(BYTF — Fy/Ry%) ally,e < OB [z xasp - (2.6D)

1) It is not difficult to extend the defect correction method to non-linear problems (cf. STETTER

[7]).
%) More references to IDC are given in (2] and [7].
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for B € [0, '] and all z € X*+5, h € H. R,*: X* — X,* denotes a restriction to X,°.
R,Y and R,’Y are restrictions from Y* to Y,°. An additional condition is

I(Fa" — Fa) Zally,e < CB ||Zpllxsa+8 (2.7)
for B € [0, #] and for all z, € X,*+#, h € H. The following theorem is proved in [2].

Theorem 2.1: Set t = s + (o + ). Assume (2.5) for all « €[s+ o, t — x],
(2.6a) for x =t — % and B = x, (2.6b) for all x € [max (s + o, — %'),t — x] and
x4+ B=t, (2.7 forall « € [s + 0.t — » — o] and B = x. Then the i-th iterate z,* oj
the defect correction (2.4) satisfies

ll2a* — Zp*|lape < C(3) RN ||z ge, - (2.8
where 2,* = R)Xx* and x* solution of (2.1). .

If s, g, %, and »’ are integers, the values of «, f in (2.5)—(2.7) can be restricted to
integers in the respective intervals.

Theorem 2.1 will be applied to the special problem described in the next section.
In Section 3.4 the definitions of the spaces X* etc. and of the mappings F, F,, F)’
are given.

3. Penalty correction method

3.1. Description

Consider the elliptic problem
Lu=f in Q, (3.1a)
u=g¢g on I'= 202, (3.1b)

where without loss of generality L is a differential operator of second orde.. Assume
that Green’s formula

a(u, v) = (Lu, v) + (Bu, v) = (u, L*v) + (u, Cv) (u, v € C*® .Q)) (3.2)

nolds for a bilinear form af(-, -). (-, -) and (-, ) are the scalar products in L?(£) and
L¥I"), respectively. B and C denote boundary operators of first order. For
h € H := (0, hy] define

Ah(u, v) 1= a(u, v) + A" Ku, v).

Then the variational problem

Apu, v) = (f,v) + h~¥g, v) for all v € HY(£2) (3.3)
corresponds to the differential equation (3.1a) with the boundary condition

u+ hBu=g¢g on TI. (3.ib')
Assume that S, is an approximating subspace of H({2) of order m:

inf u — gilh < Ch|ul, forall w € HYRQ),s € [1, m). L (3.4)

PrES)

The norms are defined below. For simplicity we assume that m is an integer = 2.
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Algorithm (cf. Pasciax [6]): The penalty correction method starts with the discrete
solution of (3.3) and continues with correction of the boundary condition. The
iterates u,! € S, are defined by

Ap(up®, vp) = (f, vp) + 272 (g, vp) for all v, € S,, (3.5a)
Ap(uy 5 — wyf, v) = B71{g — wyt, vp) forallv, € S,,i=1,2,... (3.5b)

For the numerical solution of (3.5a, b) compare Section 3.3.

2. Error estimates

Let H¥Q) and H*I') (s = 0) be the Sobolev spaces of order s with norms denoted
by {lls and |-|;, respectively. H=%£2) and H-%[I") (s = 0) are defined as the re-
spective dual spaces with the dual norms ||-||_,, |-|_,-
+ The bilinear form af(-, -) is assumed to be continuous and H(L2)-coercive:
la(u, v)| = C full, ol for all u, v € H(£2), ’ (3.6a)
alu, u) = ¢ llull 2 — C |jull? for all u € H1() and some ¢ > 0. - (3.6b)

If the boundary of 2 and the coefficients of a(-, -) are sufficiently smooth, the
following estimates hold for all « € H*(£):

lulls = ClllLadlls—2 + |uls-1/2] 2Z=ss=m) (3.7a)
llull, = CllIL*ulls— + |2%]5-1/2] 2=ss=m) (3.7a%)
flulls < Clllello + IMaells—2 + |Butlsre] (2= s =m) (3.7b)
llulls < Cllielly + IL*ulls-2 + |Ctlszre] (2 =8 < m) (3.7b%)
[Buly-ge = C llully, [Culs—ge = Cllully (2 =8=m) (3.7¢)
[tserje < O lulls (1=s=m) - (3.7d)

For L, L*, B, and C compare (3.2). In the following we only require (3.4), (3.6),
(3.7). Symmetry and positive definiteness of a(-,-) is not necessary. Furthermore
we need no inverse assumption and no special boundary conditions for S;. (3.7a)
implies that zero i3 no eigenvalue of Lu = iu, u|r = 0. A similar condition for
Lu = Au, Bu = 0 (I') (or v 4+ hBu = 0) is not required.

The following lemmata ensure the solvability of the problem (3.1a/1b’) and of
its discretization. Moreover, Lemma 3.1 shows that the solution % can be estimated
independently of the penalty parameter k. Also, the constant C of the error estimates
in Lemma 3.2 does not depend on k. The lemmata are proved in Section 4.

Lemma 3.1: For sufficiently small h the boundary value problem (3.1a), (3.1b’)
has a unique solution w = u(h) satisfying the estimate

llls < Clliflls-2 + lgle-1e]l (2 —m=s=m) (3.8)
with C mdependent of h, s, f, g.
Lemma, 3.2: Let b € (0, ko) with hy small enough Then a unique solution u, € Sy of

Ap(uy, vy) = Au(u, vy) for all v, € Sy 3.9
exists and satisfies (3.10) of uw € HY(Q):
[y — ully = Ch*=2 jlull, forall2 —m s <158 <m, (3.10a)

[y — wlymyje = CR ||u), forall —m T s <1 Sts=m (3.10b)
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By virtue of Lemma 3.2 the penalty correction method (3.5a, b) is well-defined,
provided % < k,. The following theorem shows that the optimal order of approxi-
mation (= 2m — 2, cf. (3.10)) is obtained by u,2™2. .

Théorem 3.1: Let h € (0, ky) with ky > O small enough. The errors of u,* can be
estimated by
ey — ully < C(3) hmint=2 [lif]|,_p 4 |9|;—1/2] —m=s<s1=<t=m), (311a)
fupt — wls-rjp = C(@) A=) [Ifllig + lgle-rps] (1—mSs <1<t <m), (3.11b)
where u s the solution of (3.1a, b).

The proof will be given in Section 3.4 by verifying the presuppositions of the gene-
ral Theorem 2.1,

Corollary 3.1: Let k€ (0, hol- 272 3 (g — wyf) apmozimdw Bu:
j=1 )

Bu — k7 3 (9 — w') < Chmint—e—Li+D (jIfll_, + |gle-y2) (3.12)
i=1

s-1/2

for1 —m=ZssS15t<Sm.

Finally we remark that it is possible to obtain an error estimate O(A‘~*) even for
the first iterate, if the penalty term is defined by means of the scalar product of
H-(I'). : :

Corollary 3.2: The solution u, of _
a(up, vy + BV <wp — g, ooy = (fvn)  forall v, €8,
satisfies
llun — ully, < Chmin¢=a1+22 [iifily_, + |gle-y/2] E—m<Ss<1<t<m).

The use of the scalar product (-, -)y—o(ry ist not convenient but possible. For
integers o = k the scalar product can be defined by (u, V)i, = (4r*u,v),
where Ar is the Laplacean operator on I'. : .

3.3. Numerical solution by the multi-grid algorithm

Let u, € S, have the coefficients U, with respect to a suitable basis: u, = P,U,,
where P, maps the coefficient vector onto S, — HY(£). The equations (3.5a, b) are
of the form ,

LU, = Y,, . (3.13)
where the stiffness matrix L, is defined by
(LaUy, Vidn = ANPaUn, PhVy) = a(PyUs, PyVi) + bKPUy, PoVy).

Here (-, -), denotes a suitable scalar product on the coefficient vector space.

The multi-grid algorithm described in [3] is a fast iteration solving (3.13). The
rate g, of convergence is bounded by a constant g,, independent of the discretization
parameter h: gy < go- Usually, g, is much smaller than 1. For numerical examples
compare [4].
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As proved in [3] the convergence follows mainly from two inequalities (Eg. (3.1),
(3.2) in [3]) involving norms ||ll.p |I|le.s (denoted by {lll;, [l. in [3]). These
estimates can be shown for the choice ||Uyll1.x := ||PaUslle and ||Ull, 1= {|PAUI
+ A2 |PLU .

3.4. Proof of Theorem 3.1

In order to apply Theorem 2.1 wé have to introduce the spaces X¢, Y°, X,2*, Y n°
and the related mappings. We set

X = HYQ), Y* = H () x H-VYT).
The components of y € Y* are always denoted by y?and y": y = (¥%, y"). The norm
of Y* is |jyllys = [y%ls-2 + 1% ls-1/2- The Dirichlet problem (3.1a, b) becomes Fu
= y := (f, g) if we define

Fu = (Lu, u|r) -
for u € X* = H*);s = 2.

Y,? is the space of y € Y! endowed with the norm
Wiy = {inf B2 yllys + lyellys 2 90 + g2 =y} fors>1,
™ Ul + 5 Iyl fors < 1.

Each y € Y,? gives rise to a solution u, € S}, of

A(up, vp) = (¥% 0) + b1y, 0)  forallw, €8, (3.14)
Since different y’s can yield the same u,, the space X,* does not consist of u, € S,
but of = (uy, ¥) = (un, ¥%, ¥y"):

X,? = {x = (uy, y) € Sy X Y;° satisfying (3.14)}
with

llell e = Yllwe -
Ry%u i8 (uy, I/u u + hBu) with Ay(uy, vy) = Ap(u, v3) = (Lu, vy) + A7t (u + hBu, v)
(cf. ((3.2)):

: Ry*u = FyY(Lu, u + hBu),

where F,, : X, — Y,* is defined by

, Fyup, y) = y- _
By F, ™, y = (f, ), the solution of the finite element problem (3.5a) is described.
The second mapping F,' : X! — ¥,’ is

Fy'(un, y) = (¥° wlr)
according to the definition of F. Note that F),’ is not invertible, since the range
of F)’ is a proper subspace of Y,*. Finally we set

RhY = Rh'Y = ldentlty.

Now we can formulate that the penalty correction method is a special example

of the iterated defect correction method:

Note 3.1: The penalty correction method (3.5a, b) and the iterated defect correction’
(2.4) are equivalent in the following sense: If 2 = (wyf, yxt) is the result of (2.4), then
the sequence w,’ satisfies (3.5a, b).
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Proof:y, = R (f, 9) = (f, 9) yields z,! = (w,}, f,9) satisfying (3.14) with y = (f, g7.
Since Fy(zy'** — 2') = By'¥(f, 9) — Fy'zt = (f, 9) — (44'% wa’) and 9,2 = | (to-be
proved by induction), u,*** — u,* fulfils (3.14) with y = (0, g — %), hence (3.5b) 1

By the following four notes we verify the four presuppositions (2.5), (2.6a), (2.6b)
(2.7) of Theorem 2.1. The definition of the norm of X,? implies

Note 3.2: (2.5) is valid with 6 = O for all x € [2 — m, m].
Note 3.3: (2.6a) holds for § = x = 1 and all x € [1, m — 1].

Proof: Let »¢€ X**A. Since y = (RYF — F,RX)v=(Lv,v) — (Iw,v + th)

= (0, —hBv), (3.7c) shows [[ylly,e < b |Bvle—yje < Ch |ollasy = Ch [[p]xess B oy

Note 3.4: (2.6b) is valid with »' =2m — 2 for.all x € [2 — m,m], =0,
«+ pge[l,m]. - ,

Proof: With v, = R,*» we have y = (R,’YF — Fy'Ry*) v = (0, v — v). Lemma 332
implies [y fu_yje < Ch |llass and h'=2 |yT|ye < CKP |lfz,p if '« = 1. Thus, (2.6h)
follows 1

Note 3.5: (2.7) holds for B = » = 1 and all integers x € [2 — m, m — 1]. A

Proof: (i) Consider the case of x €[l,m — 1], t=a+f=a+1=m. Let‘.
Ty = (wy, @) € Xpf with w:= |z)llx,. We have y = (F)’ — F}) 2, = (0, w, — @O}
By definition there is ¢, + @, = @ with @, |y;p = 20k, @/ li—yz = 2w. Define
w,,; = Fylp; (1 = 1, 2) and let W; be the solutions of LW; =0, W; + kBW,; = ¢
(¢ = 1,2). Lemmata 3.1 and 3.2 yield

|W2 - ‘Pzrlt—s/z =h IBW2|t—3/2 SCh||Wy = Ch l%rlt-n/e =< C"wh, )
Rr{lwy,e — Walye + |[Waalye + |91 (1) ' - o
< ClR||Woalle + B3| Walye + lwsa — Wilye) + wk] = C'wh.
Splitting y into y; = (0, wyyy — @17 + wpe — W) and y, = (0, W, — @), we
obtain (2.7): |ly|ly,e £ Chw = Ch ||zl x,s with ¢ = & 4 1.

(ii) Assume x € {2 —m,0], t=a + 1= 1. z, = (wy, p) € X, satisfies ](prh _1j2
+ Rt Ty < 20, © = ||Z4llx, The last inequality implies [¢p7|s4y2 < Cwbt~2-* for
s 6 [t — 1, 0. Define W by LW = 0, W + hBW = ¢"(I'). The estimates ST

e jwy — Wieoye = CR¢ @My, < C'ho (x=s=1),
|W — @lacyjz < Ch |BW|acyp < Ok [Wasspe < C7h (97 asype < C*hoo, =4
hi=o |W — @]y < B(|Wlyz + |971hy2) = Cho

(cf. Lemmata 3.1, 3.2, 4.1) prove |jylly,e = (0, ws — @)y, = Chow = Ch ||zl xp
fort=a+1=1,to0 i Y

The followmg lemma connects the norms of H*(Q), H*-Y3(I") and X,*. Its proof
is given in Section 4.

S
OT

Lemma 3.3: For x, = (u, ¥) € X,® we have

lleall, = C li(un, Wiy for2—m=<s=1,
[uple-ype = C |I(%as Y)llxys forl —m s < 1.

Proof of Theorem 3.1: Let u, the first component of R,¥u = (u,, Lu, u + hBu)
By the Notes 3.2—3.5 the estimate (2.8) of Theorem 2.1 holds. Together with Lemma

5 Analysis Bd. 1, Heft 1 (1082)
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3.3 it shows [fu,t — uyll, S C@) At jull, for 2 —m<s=<1<t=8+i<m and
the same estimate for |u,! — wuy,-y; 8lso for s = 1 — m. The inequality (3.7a) yields
the final result i

Proof of Corollary 3.1: Summing up the equations of (3.5a, b) one obtains

A, vy) = (f, v) + b1 (.‘I + é;(g —wf), vh)
for all v, € S,. Since ’

Ap(up, v3) = Ap(u, v3) = (f, va) + k"Xg + hBu, v,)
for z, = (w;, Lu, w 4+ hBu) = R,%u one obtains

Aup'*t — wy, ) = b gl v,) with @ = 3 (g9 — uyf) — hBu.
=1

I‘nb the foregoing part we estimated z,*! — z, = (™! — u,, 0, ¢7). (3.12) follows
from ||,y < [l2p*! — 2| xe fors € {1 — m, 1] B

4. Proofs of the lemmata

4.1. Auxiliary lemmata

Lemma. 4.1: If Lu = O then |Bu|,3p < C |t]syye for all 3 € [2 — m, m].

Proof: The inequality holds for 8 = m (= 2) because of (3.7¢), (3.7a). Assume
8=2 —m and let v € H™12(I"). By (3.7a*) there is V € H™Q) with L*V = 0,
V =von I'. (3.2) gives

(Bu,v) = a(u, V) = (u, CV) < [tls-112 |CV |1ja-s = tils-yyz [V]3j2-s
proving the estimate for s = 2 — m. By interpolation Lemma 4.1 follows B
Lemma 4.2: If Lu = O then |[ull, = C |u|s—ye for all s € [2 — m, m].

Proof: (3.7a) implies the estimate for s = m. Let s = 2 — m, v € H-5(Q) and
define w € H2-*(2) by L*w = v, w|r = 0. (3.2) and (3.7a*, c) imply

(%, v) = a(u, w) — (4, Cw) = —(u, Cw) < |uls_y2 |CWye—y S C |Us-yys V]l-e-
Thus, interpolation yields Lemma 4.2 § ‘
Lemma 4.3: There is by > 0 so that
ulh? < CAp(u, w) for all b € (0, hy), u € HYQ) with Lu = 0. (4.1)

If (3.6) holds with C =0, i.e., if a(-, ) is positive: definite, then ky = oo may be
chosen.

Proof: (3.6b) implies
Ap(w, w) = a(u, w) + 271 (u, u) 2 ¢ |lull,® — C fjufl® + 277 Jule?
2 &'(llully® + A" ule®] + (1 — &) A7 Jule® — Cllullo?,

where ¢ = min (¢, 1/2) > 0. Since |[ulp2 < C” |[ul?},, = C’ |ulo® by Lemma 4.2, the
assertion follows if (1 — ¢)h! — CC' =0, ie., if b < hy:=(1—¢)/|CC'} or
csol
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Lemma 4.4: Choose k, as in Lemma 4.3 and define B by
PBu = hy~'u 4 Bu. i
For all u ¢ HY Q) with Lu = O the following estimate holds:

. .
ol [uls—yje < |Buly_gp < C [ulg-1je for alls € [2 — m,m),u € H(Q), Lu = 0. (4.2)

Proof: (i) Since &, is fixed, the second inequality follows from Lemma 4.1.
(ii) Consider the case s = 1. Apply (3.7d), (4.1), and (3.2):

[ulfe < €' llull® < CAp(u, w) = C(Bu, u) < C |Bul_yp |uly,-
(iii) Let s € [1, m). Using (3.7d), (3.7b), and Lemma 4.2 we obtain
|“'a—1/2 = Clully, = C'lljelle + |Bu|,_3,2] = C”[Iuls—alz + Iguia—s,‘z]-

Hence, (ii)- implies (4.2) for 1 < & < 2. This result shows. (4.2) for-2 < 5. < 3, ete..
(iv) Let s € [2 — m, 1], w € H*"VX(T'), v € H'*~%(I"). Define V ¢ H*-*%(Q) by L*V = 0,
GV :=CV + hy™'V = v on I. Part (iii) (with L*, C instead of L, B) shows 1 V3j2-s
= C|€V]yj2-s = C |9]y)9-5- Hence,

(%, v) = Ap(u, V) = (Bu, V)= IBula—s/z [ Vige-s = C "@uls—:i/? [¥]1/2-s
implies (4.2) §

Lemma 4.5: Let g € H*"V%(I") and h € (0, ho/2). Then the boundary value problem
Lu = 0, u 4 hBu = g has a solution satisfying

lulls = Clgla-rres  lulls < CE Y Uglogre (2 — m < 5 < m), (4.3a)
[Uls-172 = Clglse (1 —m S s < m). (4.3b)
Proof: (i) The existence follows from (4.1).

(ii) Proof of (4.3b). By virtue of (4.2) & can be viewed as a bounded operator from
H*"U¥TI') onto H*~3%T'). Let s = m be an integer. Note that olh)u + hBu = u
i+ hBu = g for a(h) := 1 — h/hy = 1/2. Lemma 4.4 and (4.1) show

Ui < O 1B™1uf}, < C ™l < CAp (B, Bo-u)
= C < B™u, B')

= ZB™u, B™ u + «(hy? hB™u)'= Cu(k)~) (B™u, B™g)

= 20 | B™u)r 2 |B™ G2 S CF [Ulmesje |9)me1j2s

where we identify %v € HY(I') with the solution V of LV = 0, V = @v on I'. Let
v € H™ Y% T') and define V by L*V =0, V + hCV = von I. The just proved estimate
(with L*, C instead of L, B) yields

(u,v) =(u, V + hCV) = hA,(u, V) ) i
={( V)= 1911/2-1m IVIm—l/2 =C |9l1/2-m 10lm-1s2,

* hence (4.3b) for s = 1 — m. Interpolation proves (4.3b) for all s.
(iii) (4.3b) and Lemma 4.2 imply the first inequality of (4.3a).
(iv) The remaining part of (4.3a) follows from Lemma 4.2, (4.2) and (4.3b):

lfull, = €’ |Buly-3;p = C'h1 |g — a(k) Ulsge = Ch71 [gy—z) B

5‘
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Lemma 4.6: Let s € [2 — m, m], | € H* %) and define w by Lu = f, u 4- kBu

= 0. Then u satisfies

(Jells + |B’”'|a—3/2 + fuls-yje + R1 [els-3p2 = C |Iflls— 2—m=s=m).

Proof: The inequalities are gbvious for s = m. Let s = 2 — m and v € H32-5(I").
Define .V by L*¥V =0, V + hCV = v. (3.2) yields (u,v) = hdy(u, V) = h(f, V).

Hence’ the estimates K’M, 'I))I S h ”/”—m ”V”m g Ch' ”/”-m Ivlm—llt

and (%, v)|

= Ml 0l m-3j2 PTOVE |]y_yj + A1 |uls -3/2 = Clfll-m- The estimate of Bu follows
from Bu = h~'u, while |||, = C |f|l;-z is shown by (u,v) = (f, V) with L*V = v.

V+RCV =00nrlg

4.2. Proof of Lemmata 3.1—3.3

Proof of Lemma 3.1: Combine the Lemmata 4.5 and 4.6.
Proof of Lemma 3.2: Set e = uy — u. (3.6a) implies

[i(e, )| < C lell ol + A2 lelyje [2l-ye < C llelly Ulelh + £ [ol-ye).-
Let L*» = 0, v + hCv = A% 'eon I, where ‘A = A* is defined by IA‘ U2gp|y = lw!S_l,o

Choosing a suitable ¢, € S, one obtains
lels-172 = (&, A¥7e) = hdy(e, v) = hdx(e, v — @u)

= ChY2 Jlelly llvlh-s =< C'AY2 |es_yy2 llelly,
hence
lels—zje = CR 2 lel, (1—m =s=1).

Similarly, the choice of v by L*y = A%e, v + hCv =0 (F) with 4 =
fjA%wily = |lwll; leads to

llell, < CR*=* e, (2—m=s=1).
From (3.6b) one concludes that
llelli® < CAple, €) + C’ |lefl® = CAnle, u — @n) + C7 [lefle®
= C"[(llelh + 27 lel-aze) llw — @all + llello®]
= C*llelh A7 flulle + A2 llefl,?],

(4.5a)
A* fulfilling

(4:6b)

whence ell, < Ch!*-! |ju||;, provided that h is sufficiently small. By (4.5a, b) all

estimates of Lemma 3.2 are proved 1

Proof of Lemma 3.3: By definition ||(%;, ¥)! x,s = [[¥lly,s holds. Let u be the solution
of Lu = 4%, u + hBu = y". Lemmata 4.5, 4.6 show |ju||, =< C [[y||y,. fors € [2 — m, 1}
and |u|s 0 = C |lylly,e for s € [1 —m,1]. Since |u|l, = Ch*!ly|ly,,, Lemma 3.2

implies the remaining estimates of u — u, i
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