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A note on the penalty correction method 

 W. HACKBUSCR 

Die Methode der Penalty-Defektkorrektur von J. PAscIAR führt ein inhomogenes Dirichlet-
sches Randwertprobleni auf eine Folge von Problëmen finiter Elemente mit natürlichen 
Randwertbedingungen zurUck. In der Arbeit wird gezeigt, dal3 die Methode der Penalty-
Defektkorrektur ein Spezialfall der iterierten Defektkorrektur ist. Dabei gelingen Fehler-
abschitzungen bereits unter sehr schwachen Voraussetzungen. 
MeTo mTpaIIHNx nonpaBOR J. PAScIAX CBOJHT pemene HewHOpwlHou KpaeBOti aaaq 

pnxne K nocnegosaemocn aaja q Koueq Hhxx aJIeMeBToB C ecTecTneHHuMH KpaeBaiMn 
ycJI0mIHMB. B pa6ore iioaauBaeTCR, qTO MeTo fflTiHblX nonpaBoK CCTb qacTnaifl 
cnyafl nTepuposanHotl flOflBXH yeieirra. flpii aTOM oeHHs flOFOIIIHOCTll noiiyei 
npii Gonee cJIa6hix npejwoJio}KeHHHx. 
The penalty correction method of J. PASCIAK reduces the solution of an inhoinogeneous 
Dirichiet boundary value problem to a sequence of finite element problems with natural 
boundary conditions. We show that the penalty correction method is a special case of the 
iterated defect correction. Error estimates are proved under weaker assumptions. 

1. Introduction 

We consider an elliptic boundary value problem with an inhomogeneous Dirichlet 
condition. While inhomogeneous natural boundary conditions can easily be treated 
by finite element discretizations, the given problem is more difficult. Recently, 
J. PASCIAX [6] proposed a penalty correction method (PCM) that solves the Dirichiet 
problem by a small sequence of equations with natural boundary conditions. Error 
estimates can be proved under very weak assumptions. 

The first purpose of this paper is to show that the penalty correction method is a 
special case of the more general iterated defect correction. (IDC) as described by the 
author (cf. [21). The error estimates of the PCM follow from those of the IDC. 

Secondly we weaken the assumptions. PASCIAK required the differential oprator 
to be symmetric and uniformly positive definite. Here we prove the same results 
without these assumptions. 

In Section 2 the iterated defect correction (IDC) is described. Section 3 contains the 
penalty correction method (PCM) and the corresponding error estimates. The proof 
in Section 3.3 shows that PCM can be reformulated as IDC. Section 3.3 contains a 
device for the numerical solving of the discrete equations by the multi-grid iteration. 
The last section contains proofs of the foregoing lemmata. 

2. Iterated defect correction method 

In this section we repeat the iterated defect correction method for a general (abstract) 
equation. The iterated defect correction method is based on two discretizations. The 
basic discretization of accuracy V(h) is solved several times with different right-
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hand sides. By corrections with respect to the second discretization of a higher 
accuracy O(h), the iteration yields a solution of the same order O(h'). 

Consider the abstract linear') equation 

Fx=y.	 (2.1)

Assume that there are two different discretizations 

Fhxh . = y := j4Y,	 (2.2) 

= Yh ' := Rh''y,	 (2.3) 

corresponding to the discretization parameter h E H, where 0 E H. The first dis-
cretization (2.2) should easily to be solved, while the second one has a higher order 
of consistency. The second discretization may be instable, even unsolvable. 

The iterated defect correction is advantageous if the numerical solution of 
Fhxh = y,' is much more difficult than the solution of Fhxh = y, or if Fh ' is instable 
or not invertible. There are many situations, in particular in the field of partial 
differential equations, where discretizations of higher order of consistency lead to 
very difficult equations or even to instable problems. 

The iterated defect correctioa 2) ( IDO) is defined by 

F ly,	xhtfl := Xhi - Fh '(Fh 'xh' - yh') .	 ( 2.4) 

In general the sequence {xht} does not converge, but the order of consistency in-
creases with i till the order of (2.3) is reached. 

The characteristic feature of the analysis of the IDC is the use of norms correspond-
ing to varying orders of differentiability. During the iteration the order of diffe-
rentiability decreases, while the exponent of the discretizat.ion parameter h appearing 
in the right-hand side of the error estimate increases. 

Let X (a varying) be a scale of Banach spaces containing the solution u of (2.1). 
Usually, a is related to the order of differentiability. Examples are the Holder spaces 

= C(Q) or the Sobolev spaces X = H(Q). Similarly, the right-hand side of 
(2.1) is contained in Y a . The discrete functions u, and / belong the some vector 
spaces. Endowing these vector spaces with analogous norms we obtain the scales 
of Banach spaces X1, 1 and h• For details compare [2]. We assume IH[Xh' C(s,t) 
for s	t. 

The following stability and consistency assumptions are needed in Theorem 2.1. 
The stability condition reads as 

C	for all Yh E Y, h € H, and some r > 0. (2.5) 
C always denotes a generic constant independent of h. Assume that (2.2) and (2.3) 
are consistent of the orders x and x' > c, respectively: 

If(Rh 'F	FhRhX) XIIYh	Cho IIXIIX"	 (2.6a)
for j9 € [0, ] and all x E X-'- P , h € H, 

II(Rh'1'F - F,,'R) XIJy,s	CM 11XIJXa'	 (2.6b)

')It is notdilficult to extend the defect correction method to non-linear problems (cf. STETTER 
[7]). 
2) More references to IDC are given in [2] and [7].
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for E [0, x'] and all x E	ii E H. Rhx : X8 -+ Xh8 denotes a restriction to X,8.
Rh7 and Rh'' are restrictions from Y8 to Yh8 An additional condition is 

— Ph) XhIIy	Chfi I!XhIlx+p	 (2.7) 

for fi E [0, x] and for all Xh €	h € H. The following theorem is proved in [2]. 

-

	

	Theorem 2.1: Set t = s + i(a + x). Assume (2.5) for all a E [s + a, t — 4!
(2.6a) for a = t — x and fi = ,c, (2.6b) for all a E [max (s + a, t — x'), t — c] and 
+ = t, (2.7) for all a E [s + a, t — — a] and fi = x. Then the i-th iterate Xh4 of 

the defect correction (2.4) satisfies 

llXh' - Xh* l[xh• ^5 C(i) hm L n(.ix ) llx*llxt,	 (2.8) 

where Xh* = RhXx* and x' solution of 
If s) a, x, and x' are integers, the values of a, P in (2.5)—(2.7) can be restricted to 

integers in the respective intervals. 
Theorem 2.1 will be applied to the special problem described in the next section. 

In Section 3.4 the definitions of the spaces X etc. and of the mappings F, Ph, h 
are given. 

3. Penalty correction method 

3.1. Description 

Consider the elliptic problem 

Lru=f in S2,	 (3.1 a) 

u = g onr=eQ,	 (3.1 b) 

where without loss of generality L is a differential operator of second orde. Assume 
that Green's formula 

a(u, v) = (ha, v) + (Bu, v) = (u, L*v) + (u, Cv)	(u, V E C Q))	(3.2) 

holds for a bilinear form a( . , .). (.,.) and (.,.) are the scalar products in L2(Q) and 
L2(r), respectively. B and C denote boundary operators of first order. For 
h E II := (0, h0] define 

Ah(u, v) := a(u, v) + h 1(u, v). 

Then the variational problem 

Ah(u, v) = (f, v) + h 1(g, v)	for all v € H1 (92)	(3.3)

corresponds to the differential equation (3.1a) with the boundary condition 

u+hBu=g on F.	 (3.1 W)

Assume that 81, is an approximating subspace of H1(Q) of order m: 

inf 1ju — 99h1ll 5 Ch*- ' 1Ju118	for all u € H8(Q), 8 E [1, m].	.	(3.4)
q',,ES 

The norms are defined below. For simplicity we assume that m is an integer	2.
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Algorithm (cf. PASCIAX [61): The penalty correction method starts with the discrete 
solution of (3.3) and continues with correction of the boundary condition. The 
iterates Uh' E Sh are defined by 

Ah(uh ', V) = (f, v) + h' (q, vh)	for all Vh E Sh ,	 (3.5a) 

	

- Un', Vh) = Jr' (g - u, vh)	for all Vh € St,, i = 1, 2, ... (3.5b)
For the numerical solution of (3.5 a, b) compare Section 3.3. 

3.2. Error estimates 

Let H8(92) and fi8(f) (s 0) be the Sobolev spaces of order 8 with norms denoted 
by and IL respectively. H-8(Q) and H 8(P) (s 0) are defined as the re-
spective dual spaces with the dual norms III- II-. 

The bilinear form a( . ,.) is assumed to be continuous and 111(Q)-coercive: 

Ia(u, v)I	C 1jull, IIv1	for all u, v E I!1 (Q),	 (3.6a) 
a(u, u) ^ e 1juji ll - C IuIO2	for all u € HI(Q) and some s > 0.	(3.6b) 

If the boundary of Q and the coefficients of a( . ,.) are sufficiently smooth, the 
following estimates hold for all u € H3(Q): 

I U l!s ^ C[l!Liu 8_2 + U $_1/21	 (2	S < m)	 (3.7 a) 
jUlia	0[IIL*UI1s_2 + UI8_1/21	 (2 !!9 s :< m)	 (37a*) 

jU lia	C[liuJlo + I1 LIU II1_2 + 1Bui._312 1	(2 !!9 5	m)	 (3.7b) 
lull,	C[llul!o + JL*ull,_ 2 + ICui,_312 1	(2 < s	m)	 (3.7b*) 

Bu l,_312 5 C lllL	lCul,_3,2 5 C h ulL (2 ^ s	m)	 (3.7c) 
U 18_1/2 ^5 C 11U 111	 (1	S	ni)	 (3.7d) 

For L, L*, B, and C compare (3.2). In the following we only require (3.4), (3.6), 
(3.7). Symmetry and positive definiteness of a( . ,.) is not necessary. Furthermore 
we need no inverse assumption and no special boundary conditions for S4. (3.7a) 
implies that zero is no eigenvalue of Lu = )u, u lr = 0. A similar condition for 
Lu = ,u, Bu = 0 (I') (or u + hBu = 0) is not required. 

The following lemmata ensure the solvability of the problem (3.1a/lb') and of 
its discretization. Moreover, Lemma 3.1 shows that the solutionu can be estimated 
independently of the penalty parameter h. Also, the constant C of the error estimates 
in Lemma 3.2 does not depend on h. The lemmata are proved in Section 4. 

Lemma 3.1: For sufficiently small h the boundary value problem (3.1 a), (3.1 b') 
has a unique solution u = u(h) satisfying the estimate 

lu, ;5 C[hjfII3_2 + 1911-1/21	(2 - m	5	m)	 (3.8)

with C independent of h, s, f, g. 

Lemma 3.2: Let h € (0, h0] with h0 small enough. Then a unique solution u4 € S4 of 

A4(u4, v) = A(u, v)	for all vh € Sh	 (3.9) 

exists and satisfies (3.10) if u € H'(Q): 

11u6 - UI!3 ;5 Cht ' Jjujj j	for all 2 - m <8 :!^ 1	t	m,	(3.10a) 

lu - u!,. 112 5 Cht' huh:	for all 1 - m 1--- 8 < 1 :^-, t :!^ m.	(3.10b)
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By virtue of Lemma 3.2 the penalty correction method (3.5a, b) is well-defined, 
provided h i-::. h0 . The following theorem shows that the optimal order of approxi-
mation (= 2m — 2, cf. (3.10)) is obtained by Uh2m_2. 

Theorem 3.1: Let h E (0, h0) with h0 > 0 small enough. The errors of Uh can be 
estimated by 

- uJ5	C(i) hmln(i-8.i) [I04-2 + I9I-1/21	(2 - m ^ a :!-, 1 :E^ t <^ m), (3.11 a) 

Uh' - u I,_1i2	C(i) hmln(1-3.i) [II/IJ1-2 + fg_1121 (1 - m	s :!,- 1 :5.' t :5 m), (3.11 b)

where u is the solution of (3.1 a, b). 

The proof will be given in Section 3.4 by verifying the presuppositions of the gene-
ral Theorem 2.1. 

Corollary 3.1: Let hE (0, h0}. h'(g - u) approximates Bu: 

Bu - h- 1	(g - uhf)	Chmln(t-8—l.i+l) [I/I19-2 + Ig !t-1 1 21	(3.12) 
j 1	 13-1/2 

for l—rn:5:s:!-,1^-,t<.^:m. 

Finally we remark that it is possible to obtain an error estimate 9(h'- 8) even for 
the first iterate, if the penalty term is defined by means of the scalar product of 
H(fl. 

Corollary 3.2: The solution Uh of 

a(uh , vh) + h-12° < u, - g, Vh)H c(F) = (f, )	for all Vh E Sh
satisfies

— uJL ^5 Chmtn(t_8.1+20) [I1tI[9-2 + I g -1i21	(2—rn	a	.1	t	rn). 

The use of the scalar product (., • )H-°(r) ist not convenient but possible. For 
integers a = k the scalar product can be defined by (u, v)H_k(f) = (Ar"u, v), 
where Ar is the Laplacean operator on F. 

3.3. Numerical solution by the multi-grid algorithm 

Let Uh E S have the coefficients Uh with respect to a suitable basis: U,, = P,,U,,, 
where F,, maps the coefficient vector onto 8,, H1(Q). The equations (3.5 a, b) are 
of the form 

L,, U,, = Yh,	 (3.13)

where the stiffness matrix L,, is defined by 

(L,,U,,, V,,)h = A,,(P,,U,,, P,,V,,) = a(P,,U,,, P,,V,,) + h'(P,,U,,, P,,V,,). 

Here (., .),, denotes a suitable scalar product on the coeffiCient vector space. 
The multi-grid algorithm described in [3] is a fast iteration solving (3.13). The 

rate Lo . j, of convergence is bounded by a constant L90 , independent of the discretization 
parameter h: e Usually, e, is much smaller than 1. For numerical examples 
compare [4].
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As proved in [3] the convergence follows mainly from two inequalities (Eq. (3.1), 
(3.2) in [3]) involving norms I1 • II1.h I1I12.h (denoted by • IJ	in [3]). These 
estimates can be shown for the choice IJ UhIll.h := IlPh UhI!o and IJ UhI!2h := 
+ h- 112 jP,U,O. 

3.4. Proof of Theorem 3.1 

In order to apply Theorem 2.1 we have to introduce the spaces X, Ya, X,, Y,' 
and the related mappings. We set 

X8 = 118(92), Y8 = H8- 2(Q) x H812(J'). 

The components of y € Y8 are always denoted by y9 and y": y = (y-Q, yr). The norm 
Of Y8 is lyIIy' = 11y%-2 + Y'is-1/2. The Dirichiet problem (3.1 a, b) becomes Fu 
= y := (f, g) if we define 

EU = (Lu, ulr) 

for u E X8 = 118(Q); s :^- 2. 
Y1,8 is the space of y E 1'l endowed with the norm 

inf {h'- 8 Ilyill y ' + I1/2I1Y : y' + Y2 = Y}	for s > 1, 

= 1 IIylli' + h1- 8 I lylly,	 for s	1. 

Each y E Yj,8 gives rise to a solution Ub E Sb of 

A(u,, Vñ) = (y°, Vh) + h' (y', Vh)	for all Vh E 8h -	 (3.14) 

Since different y's- can yield the same Ub, the space X,8 does not consist of ub E 5h 
but of z = (Ub, y) = (Ub, y°, yr): 

Xh8 = {x = (u,, y) E Sh x Y1,8 satisfying (3.14)1 
with

IIXflxh. = IIYIIy• 
Rhxu is (Ub, Lu, u + hBu) with A h(ub , Vh) = Ah(u, Vh) = (Lu, Vh) + h' (u + hBu, Vb) 
(cf. ((3.2)):

= Fb '(LU, U + hBu), 

where Fl, : X 8 - Yh8 is defined by 

Fh(u,, y) = y. 
By Fh'Y, y = (/, g), the solution of the finite element problem (3.5a) is described. 
The second mapping F,,': Xh8 —+ Yb8 is 

Fb'(uh, y) = (y D, UhIr) 

according to the definition of F. Note that F' is not invertible, since the range 
of Fh' is a proper subspace of Yh. Finally we set 

Rhy =	= identity. 
Now we can formulate that the penalty correction method is a special example 

of the iterated defect correction method: 
Note 3.1: The penalty correction method (3.5 a, b) and the iterated defect correction 

(2.4) are equivalent in the following sense: If x t = (Ub+, y,) is the result of (2.4), then 
the sequence uh i satis/ies (3.5 a, b).
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Proof: y = Rh1'(/, g) = (f, g) yields Xh' = (', f, g) satisfying (3.14) with  = (I' g. 
Since Fh(xht+1 - Xht) = .14h1(/, g) - Fh'xn' = (I, g) - (Yh°, Uh+) and y'° = / (to be 
proved by induction), U+ - u' fulfils (3.14) with y = (0, g - Uh'), hence (3.5b) 1 

By the following four notes we verify the four presuppositions (2.5), (2.6 a), (2.6b 
(2.7) of Theorem 2.1. The definition of the norm of X,, 8 implies 

Note 3.2: (2.5) is valid with a = 0/or all x € [2 - m, m]. 

Note 3.3: (2.6a) holds for fi = = 1 and all x E [1, m - 11. 

Proof: Let v E	Since y = (Rh'F - FhRh') v = (Lv, v) - (Lv, v + hBv) 

= (0, —hBv), (3.7c) shows IIII	;5 h IBvi_1 12 ^ Ch IIvIL+i = Ch IJvjjx+p I 
Note 3.4: (2.6b) is valid with x' = 2m - 2 for all ix € [2 - m, m],	0,
+flE[1,rn]. 
Proof: With v,, = Rh'v we have y = (Rh'F - Fh'Rh') v = (0, v - vh). Lemma &2 

implies IY'I1 1 2	CliP IIVIL,p and h' I y"1112 ^5 CM IJvlI;+p if x	1. Thus, (2.6b) 
follows I 

Note 3.5: (2.7) holds /or 	1 and all integers  €[2— m,m — 1]. 

Proof: (i) Consider the case of xE[1,m-1], t=x+fi=x+1In. Let 
= (Wh, ) € X,, with w := IIXhIIXkt• We have y = (Fl,' - Fl,) xi, = (0, w, - 

By definition there is tPi + 922 = ç with I91I1I2 ;5 2wht_, I 922r I_112 5 2w. Define 
w = F,, (i = 1, 2) and let W1 be the solutions of LW = 0, W1 + hBW, =qf 
(i = 1, 2). Lemmata 3.1 and 3.2 yield 

W2 - 97 k"	- 2 lt-3/2 - h IBW2 I,_312	Ch IIW2IIt	C'h 19'2"lt_112	C"wh,	-- 
h'[Iwh.2 - W2112 + IWh . 1 I 112 + I91i1/21 

^5 C[h II W2II + h'(I W1I112 + l Wh.l - W1112) + wh]	C'wh. 

Splitting y into Yi = (0, wh,1 - q' !' + wh ,2 - W2 ) and Y2 = (01 W2 - 992") we 
obtain (2.7): IIYIIYAa ^5 Chw = Ch IIXhII, with t = x + 1. 

(ii) Assume a € [2 - m, 01, t = c + 1 1. x = (Wh, tp) € X,' satisfies [9+]t_l/2 

+ h" q/ 112 ;5 2w, w = IlXhIlxh l. The last inequality implies 1 q ']8+112 Cwh'' for 
s E [t - 1, 01. Define W by LW = 0, W + hBW = 9'(P). The estimates 

1i8 w, - W 8_112	Ch'	 C'hw	(x 15:s :5-, 1), It'	1(2 

	

- 1a-1/2 ^5 Ch IBWL_112	C'h 1W, 1112 ;5 C"h jprj 12 ^S C*hcU, 

h'	W -	1112 ^5 h' (1 1V1112 + 19"1112)	Chw 

(cf. Lemmata 3.1, 3.2, 4.1) prove IlYI[	= 11( 0, wh - 92)I1y ^5 Chw = Ch IJXhIIXft* 
for t = x + 1 :!9 1, too I 

The following lemma connects the norms of H8(.Q), H8112(r) and 'h8• Its prdof 
is given in Section 4. 

Lemma 3.3: For Xh = (Uh, y) € X1,8 we have 

II UhIII	C lI(Uh, y)IIx	for 2 - m :5^ 8 

;5 C II(Uh, y)IIx,,	for 1 - m	s	1. 

Proof of Theorem 3.1: Let uh the first component of Rh'u = (u,, Lu, u + hBu). 
By the Notes 3.2-3.5 the estimate (2.8) of Theorem 2.1 holds. Together with Lemma 

5 Analysis Bd. 1, Heft 1 (1982)



66	W. HACBBUSCH 

3.3 it shows liu—u,l. ^5C(i)h'fulLg for 2  :5^s:!^ 1 :E^:t =s+j :!^m and 
the same estimate for Ju l,' - UhIa_112 also for 8 = 1 - m. The inequality (3.7 a) yields 
the final result I 

Proof of Corollary 3.1: Summing up the equations of (3.5a, b) one obtains 

A h(uA ", VA) = (/, V) + h-1 ( g +	- Uh l), VA) 

for all VA E 2A• Since 

Ah(uA, VA) = AA(I.L, vA) = (f VA) + h''(g + hBu, vA) 

for Xh = (uh , Lu, u + hBu) = RA'U one obtains 

Ah(uh - 1z,, v) = h 1(92", VA) with 9,1 =E (' - UA') - hBu. 

In the foregoing part we estimated xh i+1 - Xh = (uAi+1 - , 0, 9 1')• (3.12) follows 
from 9 ']8112	llX' - XhllX. for 8 E [1 - m, 11 I 
4. Proofs of the lemmata 

4.1. Auxiliary lemmata 

Lemma 4.1: I/Lu = 0 then Bu 3i2 C 1 u l8_212 for all 8 € [2 - m, m. 

Proof: The inequality holds for a = rn ( 2) because of (3.7c), (3.7a). Assume 
8 = 2 - m and let v € HmIz(I'). By (3.7a*) there is V € H tm(Q) with L*V = 0, 
V = von 1'. (3.2) gives 

(Bu, v) = a(u, V) = (u, CV)	U L-112 lCV1 112_8	lu18_112 v1312_3 

proving the estimate for s = 2 - rn. By interpolation Lemma 4.1 follows I 
Lemma 4.2: If Lu = 0 then h ull5 C lu18_3i2 for all s € [2 - rn, rn]. 

Proof: (3.7a) implies the estimate for 8 = m. Let s 2 - m, v E H- 8(Q) and 
define w € 1128(Q) by L*w = V, WI,' = 0. (3.2) and (3.7a*, c) imply 

(u, v) = a(u, w) - (u, Cw) = —(u, Cw) -̂ 5 u18_1 12 ICwIij2_8 5 C u 8_ 112 1M1_8. 

Thus, interpolation yields Lemma 4.2 I 

Lemma 4.3: There is h0 > 0 so that 

lu ll12 	CAA(u, u) for all 4 E (0, h0), u € HI(92) with Lu = 0.	(4.1) 

If (3.6) holds with C	0, i.e., if a( . ,.) is positive definite, then h0 = oo may be
chosen. 

Proof: (3.6b) implies 

Ah(u, u) = a(u, u) + h' (u, u)	e J JU1112 - C IJUJIO2 + h-' JuJO2 
L> e 1 [ u 12 + h' 1 u109 + (1 - e') 4 1u102 - Cllull02, 

where a' = mm (a, 1/2) > 0. Since IJUJIO2	C" l[uIl,2 ^ C' 1u1 0 2 by Lemma 4.2, the 
assertion follows if (1 - a') h - CC'	0, i.e., if 4 :!E^ h0 := (1 - e')/I CC'l or
C;OI
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Lemma 4.4: Choose h0 as in Lemma 4.3 and define R by 
Ru = h0 'u + Bu. 

For all U E H8(Q) with Lu = 0 the following estimate holds: 
1

JI8_3/2	C 1u18_112 for all s E [2 - m, m], u E H8(Q), Lu = 0. (4.2) 

Proof: (i) Since h0 is fixed, the second inequality follows from Lemma 4.1. 
(ii) Consider the cases = 1. Apply (3.7d), (4. 1), and (3.2): 

U 11 12	C' 11u111 2	CA h,(u, u) = C(.u, u) ^ C J.uL112 u1j12. 
(iii)Let s E [1, m]. Using (3.7d), (3.7b), and Lemma 4.2 we obtain 

C h u ll.	C'[hl uhlo + IBuL_3121	C"[lu111_3 12 + 12u1$_3,21. 

Hence, (ii) implies (4.2) for 1 :9 8 :5; 2. This result shows (4.2) -for- 2 :5-, s . :9 3, etc. 
(iv)Lets E [2 m, 1], u E H8- 1I2(fl, v E H112-l(fl Define V E H2-8(Q) by L*V = 0, := CV + h0-'V = von P. Part (iii) (with L*, C instead of L, B) shows lVJ312 
^ C 1'VI 112 _1 = C v 112_8 . Hence, 

(u, v) = A h,(u, V) = (eu, V) ^5 lBuI,_312 I V 3 _8	C u l312 fV11128 

implies (4.2) U 

Lemma 4.5: Let g € H-'12(P) and h € (0, h0121. Then the boundary value problem 
Lu = 0, u + hBu = g has a solution satisfying 

Full,	C l g I.-1 1 2,	h uh. ;5 Ch' hu,L	 (4.3a) -312	(2 - m 5 ^ m),  
uj8_ 1 1 2	C I9I1-1 1 2	(1 - m	s ^-' m).	 (4.3b) 

Proof: (i) The existence follows from (4.1). 
(ii) Proof of (4.3b). By virtue of (4.2) £'l can be viewed as a bounded operator from 
H8-112(p) onto ll8-312(r). Let s = m be an integer. Note that a(h) u + h.0 = u hBu = g for a(h) := 1 - h1h0 1/2. Lemma 4.4 and (4.1) show 

C" l m_lul 2	C' Il mluhhiz :5-, CAh, ( m_lU, ."-u) 
= C < "u, fm-lu) 

C(.J"u, mlU + a(h)' h"u)= Ca(h) 1 ('u, .I"- 'g) 
;5 2C I muI if2 

1.m_I9112 ^5 C" lu I1,,_112 I91m-1,21 

where we identify Rv E H(P) with the solution V of LV = 0, V = .4v on F. Let 
v E Hm_lIa(P) and define V by L* V = 0, V + hCV = von P. The just proved estimate 
(with L*, C instead of L, B) yields 

(u, v) = (u, V + hCV) = hA h(u, V) 
= (g, V) ^S 19I1 12-1 I V,_ 112	C 191112-m I V_l/2, 

hence (4.3b) for s = 1 - m. Interpolation proves (4.3b) for all s. 
(iii) (4.3b) and Lemma 4.2 imply the first inequality of (4.3a). 
(iv) The remaining part o/(4.3 a) follows from Lemma 4.2, (4.2) and (4.3b): 

Hull, ;L- C'	u l,_3i2 = C'h' lg - a(h) u I8_312 5 Ch- '194-312 U 

5*
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Lemma 4.6: Let s € [2 — m, m],' / € H' 2(Q) and define u by Iju = f, u + hBu 
= 0. Then u sati.s/ies	 - 

llul + lBul,_312 + k'la-112 + h' I U IS_3/2 ;5 C 1I/11s-2	(2 — rn :!^; s :—< m). 

Proof: The inequalities are obvious for s = m. Let s = 2 — rn and v € H8128(r). 

Define V by L* V = 0, V + ACV = v. (3.2) yields (u, v) = hA h(u, V) = h(/, V). 
Hence, the estimates	(u, i)j 5 h Il/Il-rn II V llrn	Ch IlIII—,n V Im_il2 and	(u, v)I 

Il/Il-rn lVlrn_3 12 prove l uI,_112 + h' l u l,_312	C Il/Il-rn. The estimate of Bu follows 
from Bu = hu, while 117111,	C 11/118-2 is shown by (u, v) = (/, V) with L* V = v.
V+ ACV =0on1' 

4.2. Proof of Lemmata 3.1-3.3 

Proof of Lemma 3.1: Combine the Lemmata 4.5 and 4.6. 

Proof of Lemma 3.2: Set e = uh— u. (3.6a) implies 

Ah(e, v)l	C IJeIl II!'lli -f- h' 1 e 1112 I V I_112	C IleIll [l1vIl •-f- h	VI_1/21 

Let L*v = 0, v + hCv = A'e on r, where A = A* is defined by IA'2wl 0 = 1w18_112. 
Choosing a suitable 92h E Sh one obtains 

= (e, A281e) = hA h(e, v) = hAh(e,v — ch) 

Ch'-' h e ll, hlv lIi_8	C'h'-' l e l8_112 Ilell, 
hence

I e l,_2,2	Ch'-' h e ll,	(1 - m	s :< 1).	 (4.5a) 

Similarly, the choice of v by L*v = A28e, v + hCv = 0 (I') with A = A* fulfilling 
II A'wi!o = lIwl[, leads to 

llell ;5 Ch'-' lle l[	(2 — m	s :E^; 1).	 (4i5,b) 

From (3.6b) one concludes that 

Je11 1 2 :< CA h(e, e) + C' h e llo2 = CAh(e, u — 91,) + C' Jjejj02 

;5 C"[(fe 1 _f h-' I e l_1,2) I IU — 9'nlli -1- hle1102] 

C[JeJJ 1 ht- 1 llullg -+- h2 lie1112], 

whence 1 e ll1 ;5 Ch'- 1 Jjull i , provided that h is sufficiently small. By (4.5a, b) all 
estimates of Lemma 3.2 are proved I 

Proof of Lemma 3.3: By definition (Uh, y)hlxft. = IMlYh' holds. Let u be the solution 
of Lu = y°, u + hBu = yr. Lemmata 4.5, 4.6 show I jull, C Ilyhly,.' for s € [2 — m, 11 
and lul8_1 12 ;5 C Ilyhlye for s € [1 — m, 1]. Since JjuJ j ;5 Ch" !!yhIy,., Lemma 3.2 
implies the remaining estimates of u — Uh 
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