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Remarks on quadratic optimal control problems in Hilbert spaces

H BENKER and S. KOSSERT

Es werden quadratische Probleme der optimalen Steuerung im Hilbertraum betrachtet. Fiir
diese Aufgaben werden Eigenschaften der optimalen Stcuerung und Schranken hergeleitet.

B cTathe paccMaTpPHBAIOTCA KBAAPATHUHHE NPOOIeML OATHMAJBLHOrO YNPABJIEHWA B FHib-
Geprosom npocrpancrne. Jas 9THX npodaeM BHBOAATCA CBOACTBA ONTAMANLHONO VIPAR-
JleHUA M CPaAHIIBL.

In this paper quadratic optimal control problems in Hilbert spaces are considered. For this
problem properties of the optimal control and bounds are given.

1. Introduction

In this paper we shall consider the following quadratic optimal control problem
(optimal regulator problem)

(@ @) = 1@ — Rl + K Jlull? < Infimum, (1)
ueUc H,
AQ+ Bu+ =0 2
with ’
H,; — Hilbert spaces with the norm |- = ( -, - );** (i=1,2,3),
K — constant = 0,
R, f — given elements of H, and Hj;, respectively,

Uc H, — convex, closed set (+ 9),
Ae¢ #$H,—~H;), Be ¥(H,—~ H;) — linear operators (additionally we assume
that 4! exists, A-! and B are bounded and D(A) is dense in H,).
If the inverse operator A-! is known, the problem (1), (2) may be written in the
well-known form

J(u) = | Lu — 7||,* + K |jul;® = Infimum (3)
uey

with L = —A4-'B ¢ ¥(H, — H,) bounded and r = R + A~'f ¢ H,.
Quadratic problems of the form (3) have been extensively studied by many authors
(see [1, 2, 3, 7, 11, 14, 15, 19]).

Performance indexes of the form (1) arise practically if we want to approximate
a given state R and additionally (for K > 0) to minimize the costs of control.
Furthermore, the problem (1), (2) is considered in order to obtain the least squares
solution of minimal norm of the linear operator equation (2) (by solving problem (3)
the least squares solution of the operator equation Lu = r is obtained).

The aim of this paper is to give a short survey of known results in the field of
quadratic optimal control problems described by operator equations, and to derive
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some new results. The survey is given in chapter 2. In chapter 3 properties for the
problem (3) are proved for the case where the operator L is only closed. Applying
the spectral theory for closed linear mappings, developed by HEsTENEs [10] and
exactly proved in [12], we obtain further properties of the optimal control and upper
and lower bounds for the optimal control and the cost functional. The given bounds
are better than the bounds published in the literature. Such bounds are very useful
for estimating how close a sub-optimal control is to the optimal one, without actually
calculating the latter. Furthermore, bounds for the optimal control can be success-
fully applied in the proof of bang-bang-ness of the optimal control. Sufficient con-
ditions for the bang-bang-ness of an optimal control are derived in chapter 4, making
use of the bounds given in chapter 3.

2. Known results

It is well-known that under the above assumptions the problems (1), (2) and (3)
for K > 0 have exactly one solution. For K = 0 we must additionally assume, for
the existence of an optimal control, that the control set U is bounded. In the follow-
ing we denote an optimal control for our problem, belonging to a fixed constant K,
by «(K). '
Now we give some known results for the problem
J(u) = |lLu — r],® + K |[ull,* £ Minimum. 3"

ucH,

Theorem 1: The following properties are valid for a solution u(K) of problem (3'):

a) (LTL + KI)w(K) = LTr}Y); (4)

and for K > 0 w(K)= (LTL + KI)™* L7r; (5)
b) [fu(K)lle ‘ decreasing
c) J(K):=J (u(K )) are for LTr <= O monotone strictly q increasing ¢ with resp. to K ;
d) [[Lu(K) — ]}, increasing
e) Ko(llu(Ko)ll:® — (K y)lle?*) < Mw(Ky) — 7l — ||ILaw(Ky) — 7lly?

= Ky(Ju(Kolle® — (K )IR?)  for K, < Ko; (6)

f) WLTr/(K + ILIP) < w(B)l, < Minimum {|L7r|l,/K, |Ir|/K*?  (jor K > 0); (T)
g) J(K)

h) %K)
)) lim u(K) = L*r [/ r€ D(L+)2)’
K00

} are continuous for K € (0, + o0);

xlim e K)lle = o0 ¢f 7§ D(L*);

j) Problem (3’) has a solution for K = 0if and only if r € D(L*) holds and u(0) = L*r
18 then the solution with minimal norm;

k) lim |Lw(K) — 7|, = Infimum ||[Zu — 7||;;
K—0 u€H,
) Ju— wEK), < I(LTL + KI)u — LTrls/K Yu€eH, K>O0; 8)

1) L* denotes the pseudoinverse of L (see [13] and the appendix).
2) LT denotes the adjoint of the operator L.
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m) |irfi® — [IL72/(K + §L7rll*irh®) = J(K)
< lIrll® — L7 riL2(K + RLLTrIA/IL/R?) - (for K > 0); 9
n) Ju)— J(K) < ||LTL + KIyu — LTr|,}/K VueH, K>O0; (10)
o) u(K) is also a solution of the problem
||[Lw — r}}; £ Minimum.
[l fut Kl
Proof: a), b), c), d), g), h) were proved in [2, 16, 18], e), {), 1), m), n), o) in [3— 6},
i), j), k)in[7] B
Remarks: -
1. Expansions into series for the optimal control %(K) are given by WEicaND/
D’Sovuza [19] and VIDYASAGAR {17].
2. Obviously, for LTr = 0 (i.e. r € Ker LT) it follows that the optimal control
u(K) = 0. Tn this case the functionals |[L# — 7][; and’ |ju|], are simultaneously mini-

mized by u = 0 because Ker LT = R(L)* holds. For » ¢ Ker LT itfollows |ju(K)|, > 0
and

r — Lu(K) = K(KI + LL7)'r § Ker LT = R(L)* VK > 0.
In this case neither |Lu — 7||; nor [lu}j, are minimized by %(K) (V K > 0).

3. Further properties

In the following we assume only that the operator L from (3') is closed (with D(L)
dense in H,).
First we investigate the connections between prob]em (3') and the problems

1w — ||, = Infimum, (11)
ueD(L)||ulls =8
Jufls = Infimum (12)

weD(L) | Lu—r[y Sa
which also arise in control theory.

Lemma 1: Problem (11) kas a solution for every § > 0. If r € D(L*) and |L*r|, < B,
then u® = L*r is a solution. Otherwise (i.e. r § D(L*) or ||L*r|; > B) exactly one Ko >0
exists, such that [[w(K,)|l. = B holds (u(K) — solution of problem (3')). u(K,) is then
the unique solution of (11).

Proof: The first part of the lemma follows from the definition of the pseudo-
inverse L*. For r ¢ D(L*) we have r ¢ Ker L* = Ker LT and therefore |[u(K)||; is
continuous and monotone strictly decreasing (see Theorem 1) with lim |[u(K)|l; = 0

K

and lim ||¢(K)|l; = co. From these properties of [u(K)|, it follows that exactly one
K, >A -(;Oexists with [[u(K,)lls = B. The inequality

1L — 7l = [ Lw(Ko) — rily” Ve = B
which we obtain from

|Lw — rily® -+ K |lull* 2 |Lw(Ko) — 7 L2 + K [[u(Ko)ilz® Vu € D),

concludes the proof B
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Lemma 2: Problem (12) has exactly one solution for every

« > I := Infimum ||Lw — 7|};.
ueD(L)

For « € (1, |Ir]),) exactly one Ky > O exists, such that |Lu(Ky) — 7|[, = « holds (u(K)
— solution of problem (3')). This w(K,) is then the unigue solution of (12). If x = |ir|,
then u® = 0 is the unique solution of (12).

Proof: Let be & € (I, |I7|l;). Then it follows that n < [i7|l,, i.e. 7 ¢ Ker LT = R(L)*.
With lim [|[Zu(K) — 7|}, = |irll, hm ']I/u(K) — 7]}, = I and the continuity and strict

K—oo
monotonicity of ||[Lu(K) — rl[, we find that exactly one K > 0 exists such that
|ILu(K) — 7|l = « holds. The mequahty

lLw — 7l + K Mull;® = LK) — 71h® + K [(K)ll;*  / « € D(L)

yields |jull, = jju(K)|l; V » with [[Lu — 7'||l =< «. f x = {|r||; then «® = O is admissible
and therefore the unique solution of (12) i

Remark: Applying Lemma 1 and 2 we see that the sets

{u(K)/K € (0, o)} u {0} for r ¢ D(L*)
and
{uw(K)/K € (0, c0)} u {0, L*7} for r € D(L¥) -

are the sets of coefficient points of the vector minimum problem
(feell2 ) LT g
< Infimum.
(”I/“ — 7l ueD(L)

Now we investigate the mapping LT(LLT 4 KI)='. This mapping is continuous,
and defined on the whole space H, (for K > 0). Furthermore, (LTL + KI)™* LT is
the restriction of the mapping LT(LLT 4+ KI)™! to D(LT). Representing the func-
tional (3') as

J) = [[Lu — rll® + K |ull®
= |L(w — L™(LLT + KI)™ 7|}y

+ K |[w — LT(LL" + KI)™*rll,? + R((LLT 4- KI)™' 7, 7),, (13)

we see that the optimal control 4(K) can be expressed as

w(K) = LT(LLT + KI)r. (5")
Using the equalities .

LT(LLT + KI)' = (L + KL*T)* (VK >0 (14)
and (L + KL+T)+ — (KL+U + K(KL+T)+T)+ s (15)
we find that »(K) from (5') is also a solution of the problem

IKL*Tu — 7,2 + K Jju;? = Minimum. (16)

u€D(L*T)

Employing the spectral representation

L= [pdR, (17)
0
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for the operator L (see appendix), it can be shown by using the expressions (5'),
(14), (15) that the optimal control for problem (3‘) can be expressed as

wWK) = fw BIK + B%) dR,Tr. ‘ (18)
This leads to 0

flu( K )il = fw BI(K + B°)* d || Rs™r]s* (19)
and ’

J(K) = [rll,* — ofw BIK + %) d || Rerll2. (20)

The expressions (18), (19) and (20) for the optimal control and the cost functional,
now give the possibility of deriving properties of the optimal control.

Lemma 3: The functions J(K) and |[u(K)||,® are analytical for 'K € (0, co), i.e. there
is an expansion into 'a power series for every K > 0 in a neighbourhood of K. Further-
more, diK J(K) = fu(K)|ls* holds, and J(K) and |u(K)|,2 are concave and convex,
respectively.

Proof: Making use of a theorem of DIEUDONNE [8] the property of being analytic
follows from the fact that f%/(K - f?) is analytic with respect to K. Therefore

d» ~ . - d»
a5 | UK+ aurin = [ S8 + o d iRy

0 0
also holds, and particulary % J(K) = |[u(K)||;2. The remaining results now follow
immediately from the inequalities 4

d? K d d
m J( ) é 0 an dK?

[ K)ll* = 0 B

Making use of the spectral representation (19), (20) and the equations

| RTr)? = [ d |Rerl 2,  ILTr2 = J B2 N\ReTrlk?,  ILLT7),® = [ B'd [RsTrlly?  (21)
0 ' [} 0

we are able to derive bounds for |[u(K), and J(K).

Theorem 2: Let be r € D(LT) and LTr <= 0. Then the inequality ,
J(K) 2 lIrllh® — [ILTrll?/(K + WL rip%/ || RTrl|2) .(22)
is fulfilled.
Proof: Employing Jensen’s inequality (see |8, 12]) for f(z) = z/(K + z) we obtain

/( [ B4 |Bg™l)* / [d IIRﬂTfIIz2) = [ (8% d IRt / Ja IR, (23)
0 0 0 0

2 . Analysis Bd. 1, Heft 3 (1082) .
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From (21) and (23) now follows
ILTri* /(K + \LTrl*\BTrll?) = [ B*/(K + B%) & ||R"7]l;® @
0

Theorem 3: Forall r € H, and K > O the inequality

(K)o < |[RTrlo/2K? : (24)
is fulfilled. If r € D(LT) and K = [|LTr{|o2/||RT7||2? then the better estimation

l(K)lle < IE7/(K + LR/ RT?) | (25)
follows. Furthermore, for r € D(LLT), LTr &= 0 and K > 0 the inequality

(K )lle = |ILrllo/(K + I|LLFr|[,2/|\LTrl?) - (26)
is fulfilled.

Proof: Obviously, the inequality 2s*/(K + s)® + (K — s) 2/(K + s)® = z/(K -+ )*
is valid for s € [0, K] and x € [0, o0). Setting x = §°in this mequahty and integrating
with respect to d ||[R4"r]j,> we obtain

28® ||[RTrlo®/(K + 9)* + (K — 8) [IL7r[l*/(K + 8)° = (K)fl2?
Vs €0, K]. (27
For the minimum s° of the left hand side of the inequality (27) follows that

o {K if K < |\L7rl /BT,
ULTrl2/|R 72 if K = LT/ RT3

This yields the estimations (24) and (25). The inequality (26) again follows by -using
Jensen’s inequality for f(x) = (K + z)~%: with

/( [ B IIR e / [ 84 llRffllz’) = [ KB*) prd |1Rs 7)) / [ B \ByTr||*
0 0 ] 0

we obtain (K + |LLTrL/ILTr) % < [fu(K)2/ILTrl? B

Remarks:
1. If the norm ||RT7||, is unknown, we can replace ||[RTr{|, in the inequalities (22), (24)
and (25) by ||rll, (because of ||RTr|l; < {jr]l,) and obtain the bounds

J(K) = ril® — ILT2AE + (LPr2r?), (22)

e K )l | |
{urul/wﬂ | i K S LRt o v g D(LT) (24)
ILTrL/(K + |Lo/rle i 7€ D(LT) and K = [|Lr|2/lrli2. (25')

We see that the bound (22') is the same as that given in Theorem 1 and that the
bounds (24’) and (25') are better than the bounds (7) of Theorem 1.
2. If r € D(L") then for K — 0 the estimation

IL¥rlly = ILTr#LL ® i LTr =0, r € D(LLT) n D(LY) (28)

immediately follows from (26) for the pseudoinverse L*.
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3. Applying the fact that «(K) is also a solution of problem (16), we can replace L
by KL*7 in the estimations of theorem 3 and obtain
(K)lle = IIL*7llo/(1 + K |L¥r{l,%/ RT7]l,? (29)
if
r€ D(LY), K < ||RTrjg*/||L*r,?
and '
NL*7lle/(1 + K LT L7y 2/ | L) < Jfu(K)ile (30)

if K*r =0, K >0, re D(L*TL").

These estimations are better than the estimations given in Theorem 3 if K is suffi-
ciently small. :

4. Bang-bang control

A more detailed discussion of bang-bang controls is given in [6, 9, 11, 14 15] In ‘the
following we only derive, for the problem .

J(u) = [[Lu — 7|);2 + K |[u|j,2 £ Minimum . : (31)

fJulla=1

(L€ #£(H, —~ H,) — bounded), a sufficient condition for the bang- bang ness of an
optimal control employing the bounds given in Chapter 2 and 3.

Lemma 4: Let u%K) be an optimal control for the problem (31) (with K > 0 and
LTr %= 0). Then

W K)fle = 1 4f 1 < |ILTrjb/(K + |LLTr| /|| L7ri]?) (32)
and o
flu(K)le < 1 ¢f Minimum {jirlh/2K*2,  [|LTr{lo/(K + |L7rll:2/|Irh?)} < 1. (33)
Proof: It follows immeditaely byeapp]ying of Theorem 3 1
Remarks:
1. The sufficient conditions of Lemma 4 are better than the conditions
WKl = 1 i (IL* + K) = |L77]);, (34)
(Kl < 1 if 2 L7, < K, (35)

given in [6].

2. For the case K = 0 |[u®(0)|l, = 1 is valid if |LT7)j, = ||L|*. For the case LT = {0}
[[u2(0)lls = 1 is valid if |j|}; > ||LI}.

. Tp|| 2

Lemma 5: Let be K := ||LTr|, — IL LT,

LTl

same solution u®, with W), = 1, for all K € [0, K,].

> 0. Then the problem (31) has the

Proof: Apblying (32), we see that for the optimal control u%(K) it follows that
[ K)le = 1 V K € [0, K,). With

Minimum ([[Lu — 7)), + K |Jull,?) = ||Lu®(K) — r||,® + K
lluflss1

(V K € [0, K,)]) the lemma is proved B

D
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5. Appendix

The spectral theory for closed linear mappings L € £(H, — H,) (with D(L) dense
in H,) used in this paper was developed by HEsTENES [10] and exactly proved in
[12]. In this theory it is shown that for a closed linear mapping L exactly one partial
isometry R € #(H, — H,) exists, such that L = RLTR, LTR is positive definite
and Ker L = Ker R. Using this partial isometry, we can give for L the spectral
representation

L=fﬂdRﬂ,
1]

which possesses the following propefties (Rs — decomposition of R):
a) f {(B) ARy is a closed linear mapping with a dense domain, if f is a Borel-imeasurable
0

function;
o0 T [ <]
b) (f/(ﬂ) de) = [ {(B) dRsT;
0 0
e - o [URB) I f(B) £ 0,
) ( J1® dRa) = J 16y BT with [ = {0 15— 0
d) (f 9(8) dRpT) (f () tﬂ?a)c [ 9(B) /(B) dR4"Rs; o
0 0 0
¢) (f!(ﬁ) dRju, x) = [ () d(Rgu, 2) Vu €D ( 1B dRﬂ), V€ Hs;
o 0 0
Il oo 2 oo ) . S
f) [ [ 7B) dRpu|| = [ (B d iR’ YueD ( [ 18 dRﬂ)§
0 0 0:

g) [1dR, = R.
(1]

The pseudoinverse (generalized inverse) L* of the linear operator L may be defined
in many different ways. We have chosen the Penrose definition, which in our
notation may be phrased as follows (see [13]):

M L € $(H, — H,) has closed range, then L* is the unique operator in £(H, —- Hy)
satisfying

LL* = (LL*)?, L*L= (L*L)T, LL”_*L =L, L*Ll:ﬁ = L+.
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