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Remarks on quadratic optimal control problems in Hubert spaces 

H. IBENKER and S. KOSSERT 

Es werden quadratische Probleme der optimalen Steucrung mx Hilbertraum betrachtet. Für 
(hose Aufgaben werden Eigenschaften der optimalen Steucrung und Schranken hergeleitet. 
B came paccMaTpnsaloTcn IBaLpaTH 'tIII.Ie npO61eMbl onTIlMaJIbHoro HBJ1CHI1H B FIIJIb- 
oepTonoM IIpoCTpaHCTne. Ann MIX npoGJleM ItbIBOJUITCH CBOflCTBa onTnMa.nbHOrO ynpan-
JIeHHH 11 rpalIHubl. 

In this paper quadratic optimal control problems in Hubert spaces are considered. For this 
problem properties of the optimal control and bounds are given. 

1. Introduction 

In this paper we shall consider the following quadratic optimal control problem 
(optimal regulator problem) 

j(Q, u) =	- 1111 2 + K h u 122 Infiniutn,	 (1) 
UEUC H, 

AQ+Bu+/=O
	 (2) 

with 
Hi	- Hilbert spaces with the norm	= ( ., . ) 1I2	(i = 1, 2, 3), 
K	- constant > 0, 
R, /	- given elements of H, and H3, respectively, 
U	H2 - convex, closed set ( =1= ), 
A € .'(H 1 - H3), B € .°(H2 —> H3) — linear operators (additionally we assume 

that A-' exists, A-' and B are bounded and D(A) is dense in H,). 
If the inverse operator A is known, the problem (1), (2) may be written in the 

well-known form 

J(u) = hlLu — rh12 ± K l IU112 2 Infimurn	 (3) 
UEU 

with L = —A'B E £°(H, --H1 ) bounded and r = R + A'/ € ll. 
Quadratic problems of the form (3) have been extensively studied by many authors 
(see [1, 2, 3, 7, 11, 14, 15, 19]). 

Performance indexes of the form (1) arise practically if we want to approximate 
a given state 1? and additionally (for K > 0) to minimize the costs of control. 
Furthermore, the problem (1), (2) is considered in order to obtain the least squares 
solution of minimal norm of the linear operator equation (2) (by solving problem (3) 
the least squares solution of the operator equation Liu = r is obtained). 

The aim of this paper is to give a short survey of known results in the field of 
quadratic optimal control problems described by operator equations, and to derive
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some new results. The survey is given in chapter 2. In chapter 3 properties for the 
problem (3) are proved for the case where the operator L is only closed. Applying 
the spectral theory for closed linear mappings, developed by HESTENES [10] and 
exactly proved in [12], we obtain further properties of the optimal control and upper 
and lower bounds for the optimal control and the cost functional. The given bounds 
are better than the bounds published in the literature. Such bounds are very useful 
for estimating how close a sub-optimal control is to the optimal one, without actually 
calculating the latter. Furthermore, bounds for the optimal control can be success-
fully applied in the proof of bang-bang-ne8s of the optimal control. Sufficient con-
ditions for the bang-bang-ness of an optimal control are derived in chapter 4, making 
use of the bounds given in chapter 3. 

2. Known results 

It is well-known that under the above assumptions the problems (1), (2) and (3) 
for K > 0 have exactly one solution. For K = 0 we must additionally assume, for 
the existence of an optimal control, that the control set U is bounded. In the follow-
ing we denote an optimal control for our problem, belonging to a fixed constant K, 
by u(K). 

Now we give some known results for the problem 

J(u) = ILu - ri12 + K l lull,2 Minimum.	 (3) 
uCH, 

Theorem 1: The following properties are valid for a solution u(K) of problem (3'): 

a) (LTL + KI) u(K) = LTr 1);	 (4) 
and for K> 0 u(K) = (LTL + KI)' LTr;	 (5 

b) 1u(K) 2	 decreasing 
c) J(K) := J(u(K)) are for LTr 0 monotone strictly increasing with resp. to K; 
d) lILu(K) - nh	 increasing 

e) K20ju( K0)112 2 - hlu( .K1)1122) 5 Lu(K) - rll j2 - IIL'u( .K2) - rh112 

^ K(u(K 22 - Ju(K1 )11 2 2) for K1 ^S K2 ;	 (6) 
f) ILTrI 21(K + llL2) ^ lu(K)1 2 5 Minimum {IILTr II21K, 1r112/K112} (for K >.0); (7) 
g) J(K)'I 
h)

u(K) , are continuous /or K E (0, + ); 

1) lim u(K) = Lr if r E D(L)2); 
K—oo 

urn hlu( K )112 = co if r q D(L); 
X—-oo 

j) Problem (3') has a solution for K = 01/ and only if  E D(L) holds and u(0) = Lr 
is then the solution with minimal norm; 

k) lim IL'u(K) - ril l = Infimum JILu - rill; 
uEH1 

1) 1ju - u(K)1 2 5 11(L"L + KI) U - Lmni1 21K	Vu E 2, K > 0;	(8) 

1) L+ denotes the pseudoinverse of £ (Bee [13] and the appendix). 
1) 17 denotes the adjoint of the operator L.
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m) llrll - IIL1'r II22/(K + IILTr II22/11r 111 2 )	J(K) 

^S 11r1j il - IILTr II22/(K + ILL7'rII 1 2/IJL/r11 22) (/or K > 0);	 (9) 

n) J(u) - J(K) JILL + KI) u - L7rII22/K	Vu € H2 , K> 0;	(10) 

o) u(K) is also a solution of the problem 

IDa - r1 1 Minimum. 
IIuD,Du(K)D. 

Proof: a), b), c), d), g), h) were proved in [2, 16, 18], e), f), 1), in), n), o) in [3-61, 
i), j), k) in 11 7] I 

Remarks: 
1. Expansions into series for the optimal control u(K) are given by WEIGAND/ 

D'Souas. [19] and VrDYASAGAR [17]. 
2. Obviously, for hr = 0 (i.e. r E Ker LT) it follows that the optimal control 

u(K) = 0. In this case the functionals J JLiu - r1 1 and 11U112 are simultaneously mini-
mized by n = 0 because Ker LT = R(L) holds. For r q Ker LT itfollows hIu(K)1I2 > 0 
and

r - Iiu(K) K(KI + LLT)- 1 r j Ken)' = R(L)	K >0. 

In this case neither IIL'u - rhl nor IIUI12 are minimized by u(K) (VK> 0). 

3. Further properties 

In the following we assume only that the operator L from (3') is closed (with D(L) 
dense in H2). 

First we investigate the connections between problem (3') and the problems 

llL'u - nh	Inlimuin,	 (11) 
u€D(L),IIuII,8 

lu ll, Infirnum	 (12) 
uED(L),IJLu—rfli 

which also arise in control theory. 
Lemma 1: Problem (11) has a solution for every /9> 0. If  € D(L) and hlLrhl2 /9, 

then, u0 = Lr is a solution. Otherwise (i.e. r 4 D(L 1 ) or llLrl[2 > /9) exactly one K0 > 0 
exists, such that lIu(Ko)112 = /9 holds (u(K) - solution 0/ problem (3')). u(K0) is then 
the unique solution o/ (11). 

Proof: The first part of the lemma follows from the definition of the pseudo-
inverse L. For r j D(L) we have r j Ker L 4 = Ker LT and therefore I[u(K)112 is 
continuous and monotone strictly decreasing (see Theorem 1) with Jim h! u( K)I12 = 0 

K—.*co 

and Jim hlu(K)I12 = cc. From these properties of llu( K )112 it follows that exactly one 

K0 > 0 exists with hlu( Ko)112 = /9 . The inequality 

JLu - r IJ	J.L'u(K0) - r ll	V 1 1 71 112 :5 /9 
which we obtain from 

IJLu - rhh i 2 + K h1u11 22	llLu(Ko) - r 1 112 + K Ilu(Ko)112 2	Vu € D(L), 

concludes the proof I
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Lemma 2: Problem (12) has exactly one solution for every 

a > I := 1nfimum iILu - 
uED(L) 

For a E (I, in!1) exactly one K0 > 0 exists, such that iI Lru( Ko) - nJ[ 1 = a holds (u(K) 
- solution of problem (3')). This u(K0) is then the unique solution. o/ (12). If a 1n!1 
then u0 = 0 is the unique solution o/(12). 

Proof: Let be a € (I, Mi1) . Then it follows that i < lrJ, i.e. r q Ker LT = R(L)1. 
With urn IIL'u( K ) - r1!1 = miii, urn jLu(K) - n1l1 = I and the continuity and strict 

monotonicity of lLu(K) - r[[ 1 we find that exactl y one K > 0 exists such that 
iI L'u( K) - r1!1 = a holds. The inequality 

liLa - nI[2 + K IIUII22 > 111-u(K) - rl1i2 + K iiu( K )112 2 Vu € D(L) 
Yields 

h u12	11u(K)i12 Vu with [Lu - n 1h1	If a	ILnhhi then u0 = 0 is admissible

and therefore the unique solution of (12) I 

Remark: Applying Lemma 1 and 2 we see that the sets 

{u(K)/K E (0, c'c)} u {0} for r j D(L) 
and

{u(K)/K € (0, oo)} u {0, Lr} for r € D(L+) 

are the sets of coefficient points of the vector minimum problem 

(hull2	Infirnum. 
Rilu- TilJ	UED(L) 

Now we investigate the mapping LT(LLT + KI)'. This mapping is continuous 
and defined on the whole space ll (for K> 0). Furthermore, (LTL + KI)- 1 LT is 
the restriction of the mapping LT(LLT + KI) to D(LT). Representing the func-
tional (3') as 

J(u) = ilL'u - ,.u12 + K hlu162 

= iLRu - LT(LLT + KI)--' nil12 

+ K Lu - LT(LL2' + KI)' r112  + K((LLT -{- KI)' r, r) j ,	(13)


we see that the optimal control u(K) can be expressed as 

u(K) = LT(LLT + K1)-' r.	 (5')


Using the equalities 
LT(LLT + KI) - ' = (L + KL T)	( VK>0)	 (14)


and
(L + KL+T)+ = (KL + K(KL+T)+T)+,	 (15) 

we find that u(K) from (5') is also a solution of the problem 

i!KLTu - r1!1 2 + K IJUII,2 Minimum.	 (16) 
UED(LT) 

Employing the spectral representation 

L=f,8d1?p	 (17)
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for the operator L (see appendix), it can he shown by using the expressions (5'), 
(14), (15) that the optimal control for problem (3') can be expressed as 

u(K) = ffi/(K + 2) dR Tr.	 (18) 

This leads to 

Iu(K)1122 = f2/(K + fl2 ) 2 d lRp177-I1 22	 (19) 

and

J(K) = IrII 1 2 - fpa/(K ± fl 2) d I1 T122 .	 (20) 

The expressions (18), (19) and (20) for the optimal control and the cost functional, 
DOW give the possibility of deriving properties of the optimal control. 

Lemma 3: The functions J(K) and IIu(K )112 2 are analytical forK E (0, oo), i.e.there 
is an expansion into a power series for every K > 0 in a neighbourhood of K. Further-

more,	J(K) = fu(K)11 22 holds, and J(K) and IJu( K )1122 are concave and convex, 

respectively. 

Proof: Making use of a theorem of J)rEUDONNE [8] the property of being analytic 
follows from the fact that fl/(K + fl2) is analytic with respect to K. Therefore 

00	 00 

f
192/(K ± /92) d II1?pT422 = f	/(K + 92) d JRpTrII22 

0	 0 

also holds, and particulary J(K) = Iu(K)1122. The remaining results now follow 
immediately from the inequalities 

d2	 d2 
J(K) :5, 0 and	!u(K)1122	0 I dK2

Making use of the spectral representation (19), (20) and the equations 

cl^	 Co	 Co 
JR'r22 = f  IIRp'rII22, IILTrII 2 2 _ f/9zd IRpTrIk2, IJLLTrJI 1 2 = f /94d JJR7r112 2	(21) 

we are able to derive bounds for IJu(K)112 and J(K). 

Theorem 2: Let be r € D(LT) and LT7 rr 0. Then the inequality 

J(K)	IJrIL - L7'rII22/(K + UL2'rH 22/I!R'rII 2 2 )	 (22) 
is fulfilled. 

Proof: Employing Jensen's inequality (see [8, 12]) for f(x) = x/(K + x) we obtain 

/ ( f/92 IJR TrlJ 2 2/fd IRpTrII22)	f/(fl2) d LR TrII 22/fd	I IRpTrII2 2 .	(23) 

2 Analysis Bd. 1, Heft 3(1982)
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From (21) and (23) now follows 

JLTrI[02/(K + jLTrI22/IRTrII22)	f 2/(K + &) d JRpTrII 22 U 

h e ore 3: For all r E H2 and K > 0 the inequality 

IIu (K )2 ^ IR7'rII2/2K 1 /2	 (24) 

is fulfilled. If r E D(LT) and K > }LTrjI22/IIRTrIL0 2 then the better estimation 

IIu(K )112	1L2'r16/(K + IIL1r I122/IIRTr II22 )	 (25) 

joUows. Furthermore, for r E D(LLT), LTr 0 and K> 0 the inequality 

IIn( K )112	IJ L7'r IJ2/(K + II LL2'r IIj2IIlLTr I[22 )	 (26) 

is fulfilled. 

Proof: Obviously, the inequality 282/(K + 8)3 + (K - s) x/(K + 8)3 x/(K ± x)2 
is valid for s E 10, K] and x € [0, oc). Setting x = in this inequality and integrating 
with respect to d !Rp7rl22 we obtain 

2-91 R1rII221(K + 8)3 + (K - s) ItLTr 22I(K + 8)3 > IIu(K)122 
VsE[0,K].	 (27) 

For the minimum s0 of the left hand side of the inequality (27) follows that 

1 if K	IILT7II22/IIRTrII2S, 
= 	if K	11L1'r1122/I!RTrII22. 

This yields the estimations (24) and (25). The inequality (26) again follows by using 
Jen$en's inequality for /(x) = (K + x)- 2 : with 

i (7i IR TrIJ22/f 2d R T 2) rII2 <f/(fl2) 2C1 JRfrJl22 /f2d IRpTrIJ2 

we obtain (K + IILLTr II12IIILTr I!22 ) 2	Iu(K)II22/LT r112 2 • 

Remarks: 
I. If the norm IR77II 2 is unknown, we can replace IIR'1'r112 in the inequalities (22), (24) 
and (25) by 11r1j, (because of jjRTr 112	IIrlIi) and obtain the bounds 

J(K)	II rO - JLTrIt221(K + IlLTr II22/I!r 11 2),	 (22') 

Iu(K)112 

JLlrIii/2K1/2	 if K	!LTrIJ22/1IrI i2 or r j D(LT)	 (24) 

	

IILTrl/(K ± IILTr II2 2 /11r 111 2 if r E D(LT) and K I--JL'rII 22/Ilrl 1 2 .	(25') 

We see that the bound (22') is the same as that given in Theorem 1 and that the 
bounds (24') and (25') are better than the bounds (7) of Theorem 1. 

2. If r € D(LT) then for K - 0 the estimation 

LFrI2	JLTrI[31IIJLLTrM12 if L'r 4= 0, r € J)(LLT ) n D(L)	(28) 

immediately follows from (26) for the pseudoinverse Lt
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3. Applying the fact that u(K) is also a solution of problem (16), we can replace L 
by KLT in the estimations of theorem 3 and obtain 

llu(K)112	lJLrll2/( 1 + K lLrtl22/R1rl12 2	 (29) 
if

r E D(L),	K	JJRTrI102/I1L+r1122 
and

llLrll2/( 1 -F K ILTLrll 211LLrll22)	[u(K)1! 2	 (30)

if Kr =-r 0, K> 0, r € D(LFTLf). 

These estimations are better than the estimations given in Theorem 3 if K is suffi-
ciently small. 

-	4. Bang-bang control 

A more detailed discussion of bang-bang controls is given in [6, 9, 11, 14, 151. In the 
following we only derive, for the problem 

J(u) = llLu - rh12 + K jjujJ,2 Minimum	 (31)

fluii^1 

(L € 2'(H2 -^_ H) - bounded), a sufficient condition for the bang-bang-ness of an 
optimal control employing the bounds given in Chapter 2 and 3. 

Lemma 4: Let u°(K) be an optimal control br the problem (31) (with K > 0 and 
LTr 4= 0). Then 

ju°(K)112 = 1 i/ 1 ^ IILTrI!21( K + IILLTr II1 2111L2'r 1122 )	 (32)

and 

llu°(K)112 < 1 if Minimum {11r111/2K1/2, IILTrII21(K ± llLTrll22/11r11 12)} < 1.	(33) 
Proof: It follows immeditaely byapplying of Theorem 3 I 
Remarks: 

1. The sufficient conditions of Lemma 4 are better than the conditions 

lu°(K)11 2 = 1 if (h U 1 2 + K)	JILTrII21	 (34) 

hlu°(K )112 < 1 if 2 IILTrII 2 < K,	 (35) 
Z'	in [6]. 

2. For the case K = 0 hhu°(0 )112 = 1 is valid if IILTrI12	11 L 11 2. For the case UT = {0}

lJu0(0)11 2 = 1 is valid if llrhhi > IILU. 

Lemma 5: Let be KO	IJLTrI1 2 - ILLTrIJ12 > 
0. Then the problem (31) has the 

same solution uO , with 1lu0112 = 1, for all K € [0, K01. 

Proof: Applying (32), we see that for the optimal control u°(K) it follows that 
hlu°(K )112 = 1 V K € [0, K0 1. With 

Minimum (hiDu - r1b1 ± K 1 171112 2) = hi Lu°( K) - rh1 2 ± K 
11U11.6 1 

(VK € CO, K0]) the lemma is proved I
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5. Appendix 

The spectral theory for closed linear mappings Ii € £°(H2 —> ll) (with D(L) dense 
in H2 ) used in this paper was developed by HESTENES [10] and exactly proved in 
[12]. In this theory it is shown that for a closed linear mapping Ii exactly one partial 
isometry It E 2'(H2 -> H 1) exists, such that L = RLTR , LTR is positive definite 
and Ker L = Ker B. Using this partial isometry, we can give for L the spectral 
representation 

L = f  dJ?, 

which possesses the following properties (Ba — decomposition of B): 

a) f/(fi) dR ,6 is a closed linear mapping with a dense domain, if / is a Borel-measurable 

function; 

b) (ff() dF) =f/(fl) dRT;	

1//() if /() + 0 
C) (i /() dR = f /()+ dRp with /(Th =

	if /(Th = 0; 

d) ( 1 (19) dRT) (T/( dRy) cf g(j9) /(#)dRaTRa; 

e) (f/(fl) dRu, ) =f/(i9) d(Ru, x) Vu ED (f/(Th	Vx € H2; 

dRu = f /(fl)2 d jjRpujj 2, Vu E D (11(11) dRa); 

g) f 1 dR = B. 

The pseudoinverse (generalized inverse) L of the linear operator L may be defined 
in many different ways. We have chosen the Penrose definition, which in our 
notation may be phrased as follows (see [131): 

If L € £°(H1 —> H 1 ) has closed range, then L 4 is the unique operator in 2'(H -- H2) 

satisfying

LL4 = (LL+)T , LL (LfL)T , .LLL = L, LLL = L. 
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