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On Entropy-Like Invariants for Dynamical Systems

T. pE PALY

In der Arbeit wird eine Methode aus der Theoric der Ordnungsstruktur der Zustiinde aufdie
der Kolmogorov-Sinai-Entropie iibertragen. Die Funktion k(z) = —z log z wird in allen Defi-
npitionen der Entropietheorie durch beliebige beschrinkte und konkave Funktionen ersetzt.
Dieses Verfahren fiihrt zu einer Klasse von Isomorphie-Invarianten, wobei die dynamische
Entropie verallgemeinert wird. lhre allgemeinen Eigenschaften werden untersucht, und in
cinigen einfachen Fillen ist die explizite Bercchnung der neuen Invarianten ausgefithrt.

OCHOBHOIT MeTOj TEeOpUH YACTHYHOTO YMOPAAOuYEHWA COCTOAHHH INEepeHOCHTCA B TEOpHMio
aurponun Honamoroposa-Curati. Ilpn 3TomM BO BCeX COOTHOmMEHHAX TeOpHH QYHKOHMA
h(x) = — zlog z 3ameHseTCA NPOKH3BOJILHON OrpanMyeHHoil BHNyKIoil yRKuLed. ITa npo-
HEAYpa NPABOAHMT K BO3HUKHOBEHIO KiIacca aBToMopduamos npocrpadcts Jlebera, 06o06mas,
TakuM 06pasoM, MOHATHE AUHAMItYeckol snTponuun. B paGore nccaeayworea obuwue cBoicTBa
3THX 0600IeHHEX OHTPONMHA; B HEKOTOPHX MPOCTHX CIYYanX 3TH WHBAPHAHTH BEMHCIEHH
B SIBHOM BHJE.

This paper transfers the theory of the Kolmogorov-Sinai-entropy a method which is a basic
tool in the theory of the order-structure of states. The function k(z) = —=z log z is replaced
by arbitrary bounded, concave functions in all definitions of the entropy-theory. This proce-
dure leads to a class of isomorphy invariants, thus generalizing the notion of dynamical
entropy. The general properties of the generalized dynamical entropies are investigated and
an explicit calculation of the new invariants is accomplished on some simple cases.

0. Introduetion

In 1958 Kolmogorov introduced the notion of the dynamical entropy into the ergodic
theory of dynamical systems [3]. He showed, with the aid of the entropy, that there
are nonisomorphic Bernoulli shifts. In 1969 Ornstein solved the isomorphy problem
for the class of all Bernoulli shifts by showing that all Bernoulli shifts with the same
entropy are isomorphic [8, 9]. The isomorphy question for K-systems, however, is
unsolved at present [10]. Kouchnirenko constructed generalizations of the K-entropy,
called ‘‘sequence entropies”. It was shown by Newton that they give new information
about the isomorphy of transformations only in the zero-entropy case [7]. Versik
[15] introduced the notion of the scale of a transformation, and Juzvinskij [2]
proved that for any positive entropy there are countably many subclasses of
K-systems with pairwise distinct scales.

All the isomorphy invariants listed above, and a large number of others, are suc-
cessfully used in the ergodic theory, but all the invariants we know cannot completely
solve the isomorphy question for the class of systems with positive entropy, especially
for K-systems. Therefore new invariants are needed.
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1. Content of this paper

We construct snmple generalizations of cntropy using the following idea. The
K-entropy H(T) is defined as a supremum over all finite partitions C of the relative
entropies H(C/T) of the transformation 7' with respect to C. (H(C/T) is called in this
paper ‘“‘entropy of the process (C/T)”.) The entropy of a process is well defined, be-
cause it is the limit of the entropy of the partitions CV 7-1C V... V T-1C divided
by =, which always exists. The reason for the existence of this limit lies in the sub-
additivity of the entropy of partitions, i.e. H(CV D) < H(C) + H(D). The sub-
additivity is a consequence of special properties of the function A(z) = —zlogx
used in the definition of the entropy [1]. It is well known [1, 12] that

n—1 n

H(C/T) := lim 1 H ( \ T"Q) = lim H'(Q/ \ ’1""Q). (1.1)
n n i=0’ n i=1

The existence of the right-hand side of (1.1), however, is guaranteed only by the con-

cavity and boundedness of the function k(z) (and k(0) = 0). Consequently, if we

replace A(x) by any arbitry concave, bounded function g of the closed unit interval

with ¢(0) = 0 and then repeat all constructions of the entropy-theory starting with

H(C/T) = lim H( /V T- ‘C), we get a large class of new isomorphy invariants.

t=1 .
In this paper we give the construction and some properties of these new invariants.
We compute them explicitly for the cases of zero and infinite entropy (H(T) = 0
= G(T) = g(1) for all g, H(T) = 00 = G(T) = llm g'(z) for all continuous g, if the

limit exists). These extreme cases cannot give new mformatlon but it is shown that
or the.case of finite, positive entropy

g < (T < lim g'(z). - (1.2)

We show, for a special class of concave functions, that G(T) < hm g'(z) provided the

entropy is not too large. All these statements depend on the entropy, but the results
available at present lead us to hope that new information for the solution of the iso-
morphy problem of the dynamical systems will bc obtained from the invariants
constructed in this paper. :

2. Basic notations and definitions (see [1, 11, 16))

Let (X, 9B, n) be a Lebesgue space, where $ is the o-algebra of all measurable sets,
and pis a probablhty measure on (X, B). A mapping 7': X > X, measure-preserving
and one-to-one a.e. is called an automorphism of (X, B, u). An aggregate (X, B, u, T)
with T" being an automorphism of the Lebesgue space (X, 8, u) will be referred to as
a dynamical system.

Definition 1: C
1. Dyhamica] systems (X', B’, ', T") and (X, B, p1, T') are isomorphic iff there is a
mapping I: X' = X measure-preserving and one-to-one a.e. (i.e. I is a measure space
isomorphism) such that IT" = T'I a.e.

- 2: If I is not a measure space lsomorphlsm but a measure space homomorphxsm i
such that IT" = TI a.e., then (X, B, u, T) is said to be a factor of (X', B’, u', T").

3. A dynamical invariant is a property of dynamical systems which is invariant
under isomorphisms of dynamical systems.
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The following definitions are concerned with partitions of (X, 9B, ) and sub-o-
algebras of 8. All relations between partitions and o-algebras are understood to hold
only up to measure zero. We write C V D for the common refinement of the partitions

C and D. For a finite family {CH}., the symbol V Ct denotes the partition whlc,h is
i=n

the common refinement of all the partitions C%. If » = —o0 or m = oo, then V ci

!l='l -

is the smallest o-algebra containing all the listed partitions. If C VD = D, we write

C = 'D. Analogously, if (%}, is a family of sub-o-algebras, we denote with V %; the
smallest sub-o-algebra of B containing all %;. i=t

Let 9 be a sub-o-algebra of B and C a partition. We write o(C) = U iff C gene-
rates A. The.one-to-one correspondence between the set of finite partitions and the
set of finite subalgebras contained in the relation o(C) = A is freely used throughout:
this-paper. .

Definition 2: Let g: [0, 1] — R be a real, bounded, continuous, concave function
of the closed unit interval, and let g(0) = 0. Let further (X, 8, 1) and C be a Lebesgue .
space and a finite partition, respectively. We define

L G0):= XgluCy), C(Cy ..., Ch). (2.1)

2. For any measurable set 4 € 8, C/4A:= (C;n 4, ...,C, n 4) i8 a partition of 4
mduced by C. The rmeasure u(.) induces a probablhty measure u(-/A) on A (A being
a set of positive measure) by

wBlA) =B\ g g (2.2)
. w(4) .
We define
G(C/A): 29(#(0 /4)) (2.3)
and
G(C/D):= X w(Dy) G(C/Dy) (2.4)
j

where D = (D,, ..., D,,) is a second finite partition of X. (See Remark 1.)
3. Let A — B be a sub-o-algebra of B.

G(C/20) := inf G(C/D), | (2.5)-
D

D runs over all finite partitions with elements in U.

Remarks: :

1. We use the following convention. If 4 €3 is a set of measure zero, then we set
m(A) g(,u(B/A ) = 0 V B ¢ B. This is no further restriction on g because u(B n 4)
= u(d),and g is bounded on [0, 1]. With this convention we have a correct definition

in equ. 2.4.
2.  we take the function h(z) = 0, —zlog x,zé_((()) 1

bounded, nnd concave we get the definitions of the entropy theory. H(C) = J; k(,u(C;))
is the entropy of the partition C. H(C/D) and H(C/¥) are the relative entropies of the
partition C with respect to the partition D and the sub-¢-algebra %, respectively.

which is continuous,
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3. Generalizations of the K-entropy

We want to construct new dynamical invariants along the lines of the entropy
theory. To this end we need the following statements on generalized relative entro-
" pies.

. Proposition 1: Let Q, L, Q’, D, D', D2 be finite partitions and let G(-/-) be the
functionals of Definition 2.2. Then :

1. G(C/D) = ¢(1); (3.1
2. ¢' £ 0*= G(C'/D) = G(C*Dy; : (3.2)
3. D' < D®*= G(C/DY) = G(C/DY; (3-3)
4. € = D= G(C/D) = ¢g(1); : (3.4)
5. If g is strongly concave, C < D < G(C/D) = g(1); ’ (8.5)
. 6. G(C/D) = A(C); . (3.6)
7. GC/ID) = ligl g'(x) (if the limit exists). _ (3.7

Proof: We use the results of Lemma A. 1 (Appendix).
1. 6€ID) = £oluCiDy) 2 o £ u(CID)) = ot (3.8)

2. For cach 7, O = U Cf‘, and therefore
&

ouCHD)) = o (2 MCED)) = Z oluciny). - (39)
3. For each j, D = U Dj, and therefore
U]

#(Ci n Djt)

1 _ 2 o2 2
w09 (BE52) = (£ uob) o (£ (0D [ 5 )

2 5 wD) g{u(Ci n DYIuDY). (310

4. For any j, there is one and only one ¢ such that D; = C;. Therefore u(Ci/D;) = 0
for all but one ¢ = %, and u(C;/D;) = 1. This leads to

GEID) =g(1)  Vj.. ©(3.11)

5. Because of A.1.2, we have G(C/D;) = g(1) if and only if 4(Ci/D;) = 0 for all
but one i = i and u(C/D;) = 1. Thisis equivalent to C < D (up to measure zero).
6., 7. are obvious B )

Propoéition 2: Let C be a finite partition and {N,},™ be an increasing sequence of
sub-a-algebras of B (i.e. A, Ay V ). If 6(C) S V A, then C(C/N,) —— g(1).
n=1
Proposition 2 isa modified version of Corollary 4.8 of [16]. A sketch of the proof
will be given in the Appendix (for details see [11]).

Definition 3: Let (X, 9, u, T) be a dynamical system. If C is a partition of X
we call the pair (C/T) a process in (X, B, u, T'). Let (C/T) be a process with C being
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a finite partition. We define
"G(CIT):= lim @ (Q/VT“Q) (3.12)
n i=1
for all functionals defined as in Def. 2.2.
Proposition 3: The limit in Equ. 3.12 exists for all processes (C/T).
" Proof: »
n n—1 . n—1 i
VT-C = T-7CV [ \% T“‘Q] =V T-iC.
i=1 i=1 i=1
- . n—1 )
Therefore we get ¢ (_C_' / GT“Q) <G (_Q / VT“'Q). The sequence of the relative
i=1 i=1
entropies is monotone decreasing and bounded from below by g(1) ‘B

Definition 4: Let (X, B, u, T) be a dynamical system. We define for all func-
tionals, according to Def. 3

G(T) := sup G(C/T) : o (3.13)
cex v

where U denotes the set of partitions C measurable B.
Theorem 4: All G(T') in Def. 4 are dynamical invariants.

Proof: The theorem is clear from the definitions, because all mappings involved
are measure preserving and 1—1 a.e., and sets of measure zero can be neglected
because of g(0) = 0 1

Remarks:

1. Actually the theorem holds if we use arbitrary real functions in the Definitions
2, 3, 4. The point is, however, that for a bounded concave function g the definition
of G(T) makes sense. Only in this case can we be sure to have a supremum over
well-defined objects (Proposition 3).

2. Dynamical entropy (K-entropy) is a special case of Def. 4. Therefore the G(T')
are called generalized dynamical entropies.

In the remainder of the paper we derive some properties of the new dynamical
invariants. The general properties if the. invariants are the content of this section,
but in the next section we deal with a special class of concave functions.

Theorem 5: Let (X', V', u', T') be a factor of (X, B, u, T), then we luwe for all
tnvariants G

(T < G(T). (3.14)

Proof: The transformation 7" is isomorphic to 7 restricted to a 7T-invariant
sub-o-algebra Yy = B. Therefore

G(T") = G(Tlu,) = sup G(D/T|y,) = sup G(D/T) < sup Ge/m
DcAr DcUyp

CoroIla.ry 6: If (X', B, ', T") and (X, B, u, T) are weakly zsomorphzc (v.e. each
system is a factor of the other) then G(T") = G (T) for all invariants G.
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A partition C is said to be a generator for T' iff V T-'C = B (up to measure zero).

Kolmogorov’s theorem which says that for any ge;]eré.tor C H(C/T) = H(T) does not
generally hold for the G’s. We have instead:

Corollary 7: Suppose T has finite generators.. Then Q(T') = sup G(C/T), where C
runsg over all finite generalors of T.

Proof: Let € be not a generator. Then V T-4 Q =A< Band TQI = Y. Therefore
T\q is a factor of T'. -

G(CIT) = sup G(DITlw) = G(Tho) < G(T) ¥
Remark: The existence of finite generators is guaranteed for ergodic automor-
phisms of finite entropy [5].

The aim of the following statements is to compute the new invariants explicitly
or to give estimations of them. To do this we need the following lemmas.

Lemma 8: Let C be a partition such that V T-C = 8. Then C(C/T) = g(1) for all
Junctionals defined in Def. 3. i=0

Proof: We use Proposition 2. Let 9, = a( \% 1"'0) {Y,} is an increasing sequence
of sub-o-algebras. =1

VT‘C TIVT‘C ’I“SB Y.

i=1 ©i=0

Consequently, because of o(C) = B we have oC) =B = v T-C = V A,. (up to.
measure zero). Therefore Prop. 2 holds 1 ) i=1

Definition 5: We say that a functional G(C/¥) (cf. Def. 2.3) has the martingale-
property iff for all increasing sequences {3} of sub-g-algebras of B and for all finite
partitions C T

lim G(C/U,) = @ (g /v 9[”). (3-15)4

Lemma 9: Let g be strongly concave, and assume the functional G(C/U) constructed
with the function g has the martngale -property. Then

GICIT) =g(h) & G(Q)C,V T-C. (3.16)

t=1
Proof: We have G(C/T) = G (Q/ \ T“Q) from the martingale-property. Prop.
1.5 leads to i=1
GICIT)=9g(1)=>C=VTC.
i=1

The inverse conclusion follows from Prop. 2 1

. Corollary 10: For all dynamical systems (X, B, u, T) with entropy H(T) = 0
and for all generalized dynamical entropies G(T) = g(1) holds.

Proof: The relative entropy has the martingale-property (see e.g. [13), Th. 4.28).
The remainder of the proof follows from Prop. 2 1
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**The suppositions of Lemma 8 can be shown to hold for any finite partition in the
case. of transformations with discrete spectrum. So we find G(T') = g(1) without
explicit use of the entropy for these systems.

Corollary 10 says that all the new invariants give the same information in the
case of zero entropy, i.c. they are trivial if the entropy is given to be zero.

From the point of view of the entropy, the opposites of the dynamical systems
with H(T) = 0 are the Bernoulli shifts. The following proposition gives an estimation
for the generalized entropies for Bernoulli shifts. A Bernoulli shift is defined as a
shift on X = {1, ..., n}Z (Z being the set of all integers) with a measure u given by a
product measure on the cylinder sets (see e.g. [16]).

Proposition 11: Let T be the (g, ... q,)-Bernoulli shift with the entropy H(T)
.. B .

= Y k) = s. For all invariants G
i<

Xy(s) = sup Y g(p:) < G(T) < lim g'(x) (317
{raes zi0

holds. & denotes the set of all probability vectors {p;} with 3, h(p;) = s.

Proof: The upper bound is clear from Prép. 1.7. The partition C = (4, ..., 4,")
(A, is the cylinder set of all elements of X which have the value ¢ on the 0-th place.

n
u(Aof) = ¢; by def.) is a generator for 7, and C is independent of D* = V T-C for
all n. Therefore =1

G(OIT) = lim GEIDY = £ u(DP) GCID) = X wDy 60) = X 900,

According to Ornstein’s theorem [8], we find for any_ probablllty vector {p;} € &
an independent generator € for T consisting of sets C, with w(C;) = p;. The pro-
posntlon now follows from the definition of G(T') §

Corollary 12: Let T be an ergodic automorphism of positive entropy H(T) > 0.
Then the Inequalities 3.17 hold. Moreover, if g is not identically zero then X,(H(T))
> g(1).

Proof: The first assertion is a simple consequence of Sinai’s weak-isomorphism
theorem [12] and Theorem 5. The second is obvious 1

We have computed an explicit (but trivial) result for the zero entropy case and
an estimation (depending on the entropy) for the case of positive entropy. Now we
are going to calculate the new invariants for ergodic a,utomorphlsms of infinite
entropy. This again leads to a trivial result:

Corollary 13: Suppose T is ergodic and let H(T) = oo. Then for all generalized
dynamical entropies G(T) = lim g'(z) holds provided the limit exists.
zl0

-Proof: We consider the following sequence of Bernoulli shifts. 7', is the (%, %,

-:T)-Berjnoul]i shift. Then, T, is afactor of 7', iff n < m, and allthe 7, (n = 1, 2, ...)

are faétors of 7. Therefore we have

sup J’ g(p,) ST =6 = hm g'(z). (3.18) .

{pite
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Here &, denotes the set of all probability vectors with 3 A(p;) = logn. But

1 : 1
qg= (%, ces ;) € &, and therefore } ¢(g;) = ng (%) < G(T). Now limn [g (—1;)

- g(O)] = ¢'(0) and g(0) = 0 complete the proof B

At the end of this section we formulate the obvious

Proposition 14: All generalized dynamical entropies G are monotone increasing
functions of the entropy on the class of all Bernoulli shifts.

Proof: We get the desired result if we combine Ornstein’s [8, 9] and Sinai’s [12]
isomorphism theorems and Theorem 5 A

This result is not surprising, because the entropy completely determines the iso-
morphy classes of Bernoulli shifts and is itself contained in the new family of iso-
morphy invariants. Proposition 14 reflects the fact that not more information on
the isomorphy of Bernoulli shifts is to be expected if we know the entropy. The
monotonicity results from the fact that all G-invariants are defined in the same
manner as a supremum over partitions.

4. A special class of invariants

The new dynamical invariants constructed in the previous section are very hard
to compute in nontrivial cases because there is no analogue of Kolmogorov’s theorem.
To find further nontrivial properties we consider a special family of concave functions
having a simple structure. We define
z if 027

gi(x) = {r § oasa o O<r<y (4.1)
and denote all functionals associated with g, by G,. In a forthcoming paper [11}
we will use the G, to construct an example showing that in 3.17 equality doesn’t
hold in general even for the case of Bernoulli shifts. Here we only want to answer
the question of whether there are dynamical systems with G,(T") < 1 = ¢’(0) or not,
thus proving the existence of systems with G,(7') between the trivial values g(1) = »
and ¢'(0) = 1.

' Proposition 15: Let (X, B, u, T) be an ergodic dynamical system with entropy
0 < H(T) = s < o0 and assume r << e~2. Then G(T) < 1. '

. Remark: The logarithm in the function k(z) = —xlog > is to the base e. If
another basis b is used then Proposition 15 holds if » < b-2. :

Proof of Prop. 15: G(T) = sup G,(C/T). We can restrict ourselves to processes
c
(CIT) with H(C/T) = s. For r < e~* there exist real numbers ¢, 8, y > 0 such that

n
r=e Y+ — 5 and (s &) (1 — ) >s. We denote D® =V T-!C. Because of
H(C/D") | s there is a ny(C, ¢, 8) such that \/ n > n, i=1

s = H(C/D™) < (s + #) (1 — 9). - (42

Assume 7 > n,. We show that in the partition CV D" there are some elements”
C; n D" the union of which has & measure greater than ¢ and which have the property

/J(C, n .Dj") > e—(ste) /l,(Df") . (4.3)
'The elements of €'V D* not fulfilling (4.3) are denoted by C, n D".
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Assume ):‘ #(C; n D"y < 6. Then we have for the sets Cp n D", because of

W(C, N D) = e~0+9 u(D), —log u(Ci/D") = s +¢. This in turn leads to
— X w(Ci n D) log u(Ci/Dy™) = (s + ) (1 — &). By the positivity of k(z) and the

k1
] \

k+ \
deﬁn,jtion of the relative entropy we get
H(C/DM\Z (s + &) (1 — §).

This contradicts (4.2). Therefore }' #(C; n D;%) > 6. From r < e+ e get
i.j
9 (1(Ci/D;") = r and g,(u(Ce/D")) < p(Ci/Di#). Now r = e~ 6+ — y leads to

G(C/D" < ‘Zl‘;u(ck n D) + 3 w(Dy®) [w(Ci/Dj*) — )
3 TG
=1—y 2 uDff) <1 —yd.
ij

Therefore G,(C/T) < 1 — y6 < 1 for all finite partitions C, and the upper bound is
independent of C. So it also holds for the supremum 1§

b. Discussion

We have constructed a large class of dynamical invariants by generalizing the notion
of K-entropy. The construction is based on the idea of replacing the function
h(z) = —zlog z by an arbitrary, concave, bounded function with g(0) = 0. This
method stems from the theory of the order-structure of states [14], which has been
used successfully in the analysis of the irreversible behaviour of physical systems.

The dynamical entropy can be computed for many systems. The theorem of
Kolmogorov which is a basic tool for the computation of the entropy does not hold
in general for the new invariants. Therefore the explicit calculation of the G(T)
seems to be a very difficult problem, and results are known only in some cases which
are trivial from the point of view of the entropy theory. One sees, however, that
any invariant constructed with a function g which is not identically zero is non-
trivial, i.e. one can find dynamical systems (X, B, g, T), (X', 8’, ¢, T') such that
G(T) = Q(TY'. :

Whether there are systems with equal entropy and G(T') == G(T") for some g is
unknown at present, although it seems that this should be true. This conjecture is
sustained by the non-validity of an analogue of Kolmogorov’s theorem on the
entropy of a generating process. The new invariants are trivial for systems of zero
entropy, but in this case there are invariants such as sequence entropy and support
[6] the properties of which are not yet completely investigated and which are trivial
for K-systems. So the dynamical invariants presented in this paper could become
a useful supplement to the entropy theory, provided the difficulties of their explicit
calculation can be overcome.

At the moment there is no hope finding general methods for the computation .of
all new invariants. Therefore, as a first step the properties of the class of invariants
constructed with the functions g, are considered. The G, take values which are not
trivial (i.e. there are systems 7 with g(1) = r < G(T) < 1 = ¢’(0)). Moreover, from
the study of an example, we known that even in the Bernoullian case the supremum
of G,(C/T) over the independent generators can be smaller than G,(T') [11]. This

»
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-

example, while illustrating the non-triviality of the new invariants, brings out the
deep difficulties connected with the explicit computation of the generalized entropies.

We have already remarked that the construction of the G-invariants is based on -
an idea from the theory of the order-structure of states. This raises the question of
whether there is a structure in the set of all automorphisms of a measure space which
18 induced by the generalized K-entropies. Theorem 5 gives a first hint, but more
interesting is a study of the consequences of G(T) < G(T") for all g. It is expected
that this will lead to a physical interpretation-of the new invariants, which is still
an open problem.

Appendix 1: Concave functions on [0, 1]

A function g: [0, 1] — R is called concave iff \/z, ¥, A €[0, 1]}
92z + (1 — ) ) = 29(=) + (1 — 2) g(y).
If the equality holds only for # = y and (or) (A = O or 2 = 1), g is called a strongly
concave function.
The following properties of concave functions are easily verified [11, 14].

Lemma A.1: Let g: [0, 1} — R be concave and continuous, and let g(0) = 0.
L.g(z) +9(y) 29z +y) Va,ye[0,withae +y < 1.
2. If g is strongly concave, g(z) + g(y) = g(x + y) holds if and only if x = 0 and (or)
y=0.
3..9(2) = z - lim g'(y) f the Limit exists. g’ denotes the first derivative of the function g.
lo

4. Let (s;), (t;)”be' sequences of the same length, s;, t; = 0 \/ i, 3 s; < co. Then
(Z 8.‘))'9(2&/2 i) = X sigtilsi).

Appendix 2: Proposition 2 (Sketch of the proof)

Proposition 2 is a generalization of Corollary 4.8 of [16). This corollary holds for the
relative entropy of a partition with respect to a sub-o-algebra of B and is widened
to the functionals of Def. 2.3. The proof of the generalized version follows exactly
the line of the statement cited in [16].

Lemma A.2: Let (X, B, u) and B, = B be a probability space and an algebra,
resp. Assume that B, generales the o-algebra B. If C is a finite partition measurable B,
then for all ¢ > 0 and for any continuous, bounded, concave function 9:[(0,11 —R
with g(0) = 0, there is a finite subalgebra D — B, such that , :

1) g(1) = G(C/2) < g(1) + ¢ -
i) g(1) = G(D/A) < g(1) + ¢
where N = 6(C) and 2D = o(D).

For the proof we have only to remark that the lower bounds are trivial and théi;
there is a 0 < J, < 1 such that o

0=z <= —= <g@) <=

i) 1— 6 <z S1=g(1) — = <g(x) <g(l) + =

7 i8 the number of sets which are contained in the partition C. This simple fact is
the only additional argument to the proof of Th. 4.8 in [16), which is the entropy
version of the lemma. Lemma A.2 leads directly to Prop. 2 by using the same argu-
ments as in the cited Corollary 4.8.
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