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In der Arbeit wird eine Methode aus der Theoric der Ordnungsstruktur der Zustiinde auf die 
der Kolniogorov-Sinai-Entropie ubertragen. Die Funktion h(x) = —z log z wird in allenDefi-
nitionen der Entropietheorie durch beliebige beschrhnkte und konkave Funktionen ersetzt. 
Dieses Verfahren führt zu einer Kiasse von Isoniorphie-Invarianten, wobei die dynamisehe 
Entropie verallgemeinert wird. Ihre aligemeinen Eigenschaften werden untersucht, und in 
cinigen einfachen Fallen 1st die explizite Bercchnung der neuen Invarianten ausgefuhrt. 

OCHOBHOÜ Merog TCOIIII qacTu'Inoro yuopngo'iemrn COCTOHHH( nepeiiociica B TdOMO 

3HTO115I1I HOSM0I'Opona-CHHaO. ilpi! 3TOM no BCex cooaomeunx Teop11H 4ynE0pfa 
h(x) = - z log x oaMelIneTCfl flpOHaBOJIbHOfl orpaHH qeHH0i1 nbmyxJIoii 4yn1CwIefI. 3Ta npo-
uegypa I1PUBOgHT H B031uIHnose}Lluo }uracca aETOMOP IIHI3MOB flOCTHCTB Jle6era, o6o6nan, 
TaRHM o6pa3oM, nousn'ue gliHaMu qecIcofi anTponMH. B pa60re nccjiegyiorccl o6ige CB081CTBa 
3TMX o6o6ELeHHux 311Tpoflel; B IJHOTOLIX IIpOCTE.TX czyanx 5T11 }THBII1!ThI nar'mcaenw 
B HBHOM BHge. 

This paper transfers the theory of the Kolmogorov-Sinai-entropy a method which is a basic 
tool in the theory of the order-structure of states. The function h(x) = —x log z is replaced 
by arbitrary bounded, concave functions in all definitions of the entropy-theory. This proce-
dure leads to a class of isomorphy invariants, thus generalizing the notion of dynamical 
entropy. The general properties of the generalized dynamical entropies are investigated and 
an explicit calculation of the new invariants is accomplished on some simple cases. 

0. Introduction 

In 1958 Kolmogorov introduced the notion of the dynamical entropy into the ergodic 
theory of dynamical systems [3]. He showed, with the aid of the entropy, that there 
are nonisomorphic Bernoulli shifts. In 1969 Ornstein solved the isomorphy problem 
for the class of all Bernoulli shifts by showing that all Bernoulli shifts with the same 
entropy are isomorphic [8, 9]. The isornorphy question for K-systems, however, is 
unsolved at present [10]. Kouchnirenko constructed generalizations of the K-entropy, 
called "sequence entropies". It was shown by Newton that they give new information 
about the isomorphy of transformations only in the zero-entropy case [7]. Versik 
[15] introduced the notion of the scale of a transformation, and Juzvinskij [2] 
proved that for any positive entropy there are count.ably many subclasses of 
K-systems with pairwise distinct scales. 

All the isomorphy invariants listed above, and a large number of others, are suc-
cessfully used in the ergodic theory, but all the invariants we know cannot completely 
solve the isomorphy question for the class of systems with positive entropy, especially 
for K-systems. Therefore new invariants are needed.
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1. Content of this paper 

We construct simple generalizations of entropy using the following idea. The 
K-enEropy H(T) is defined as a supremum over all finite partitions c of the relative 
entropies H(C/T) of the transformation T with respect to Q. (H(C/T) is called in this 
paper "entropy of the process (ç/T)".) The entropy of a process is well defined, be-
cause it is the limit of the entropy of the partitions c V T'Q V ... V T-'Q divided 
by n, which always exists. The reason for the existence of this limit lies in the sub-
additivity of the entropy of partitions, i.e. H(C V ) 5 H(Q) + H(Q). The sub-
additivity is a consequence of special properties of the function h(x) = —x log x 
used in the definition of the entropy [1]. It is well known [1, 121 that 

	

1 ("V
\
	Ki I1(c/T) := urn - H 	T_tC) = urn	hiH 	V _iC

n	 sO	/	n	 =l 
The existence of the right-hand side of (1.1), however, is guaranteed only by the con-
cavity and boundedness of the function h(x) (and h(0) = 0). Consequently, if we 
replace h(x) by any arbitry concave, bounded function g of the closed unit interval 
with g(0) = 0 and then repeat all constructions of the entropy-theory starting with 

II(c/T) = litn H (!91iV",T-'0, we get a large class of new isornorphy invariants. 
in this paper we give the construction and some properties of these new invariants. 

We compute them explicitly for the cases of zero and infinite entropy (H(T) = 0 
= 0(T) = g(1) for all g, H(T) = no	0(T) = lim g'(x) for all continuous g, if the 

xO 
limit exists). These extreme cases cannot give new information, but it is shown that 
or the. case of finite, positive entropy 

g(1) <G(T) <urn g'(x).	 (1.2) 
zLO 

We show, for a special class of concave functions, that G(T) <liin g'(x) provided the 
oz 

entropy is not too large. All these statements depend on the entropy, but the results 
available at present lead us to hope that new information for the solution of the iso-
inorphy problem of the dynamical systems will be obtained from the invariants 
constructed in this paper.	 - 

2. Basic notations and definitions (see [1, ii, 16]) 

Let (I, j8, p) be a Lebesgue space, where 8 is the a-algebra of all measurable sets, 
and u is a probability measure on (X, ). A mapping T: X i—b X, measure-preserving 
and one-to-one a.e. is called an automorphism of (X, 58,,u). An aggregate (X, 58, ,U, T) 
with T being an automorphism of the Lebesgue space (X, $,,u) will be referred to as 
a dynamical .system. 

.Definition 1: 
1., Dynamical systems (X', V, # ', T') and (X, 58, u, T) are isomorphic 1ff there is a 
mapping I: X' —> X measure-preserving and one-to-one a.e. (i.e. I is a measure space 
isomorphism) such that IT' = TI a.e. 

2. If I is not a measure space isomorphism but a measure space homomorphism 
such that IT' = TI a.e., then (I, 58, u, T) is said to be a factor of (X', 58',	T'). 

3. A dynamical invariant is a property of dynamical systems which is invariant 
under isomorphisms of dynamical systems.
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The following definitions are concerned with partitions of (X, 93, u) and sub-a-
algebras of 93. All relations between partitions and a-algebras are understood to hold 
only up to measure zero. We write C V D for the common refinement of the partitions 

C and D. For a finite family {Ct},, the symbol V Qi denotes the partition which is 

the common refinement of all the partitions Qijf n = — 00 or rn = oo, then V ç' 

is the smallest a-algebra containing all the listed partitions. If c V L = 1?, we write 

. Analogously, if {91:}}".. n is a family of sub-a-algebras, we denote with V91, the 
smallest sub-a-algebra of 93 containing all 9I. 

Let 91 be a sub-or-algebra of 93 and C a partition. We write a(ç) = 91: iff Q gene-
rates 91. The-one-to-one correspondence between the set of finite partitions and the 
set of finite subalgebras contained in the relation a(ç) = 91 is freely used throughout 
this paper. 

Definition 2: Let g: [0, 11 —> R be a real, bounded, continuous, concave function 
of the closed unit interval, and let g(0) = 0. Let further (X, 58, ,U) and C be a Lebesgue - 
space and a finite partition, respectively. We define 

I.	0(0) :=	* g(u(C)),-	(C1, ..., C,,).	 (2.1) 

-2. For any measurable set A € 93, /A := (C1 n A, ..., C. n A) is a partition of A 
induced by C. The measure u(.) induces a probability measure ( . /A) on A (A being 
a set of positive measure) by 

1u(B/A) := Au(B n A) 
V BE 93.	 (2.2) 

	

,u(A)	 - 
We define 

o(cIA) := f g(u(C,/A))	 (2.3)


and
G(C/D) := * (D) O(c/D)	 (2.4) 

where j = (D 1 , ..., D,,,) is a second finite partition of I. (See Remark 1.) 
3. Let 91: 93 be a sub-a-algebra of 58. 

0(0/91) := inf G'(C/D),	 (2.5). 
D 

runs over all finite partitions with elements in  

Remarks:	 - 
I. We use the following convention. If A €58 is a set of measure zero, then we set 
u(A) g(u(B/A)) = 0 V  € 93. This is no further restriction on g because u(B n A) 
^5 (A), and g is bounded on [0, 11. With this convention we have a correct definition 
in equ. 2.4.	-	-	 .._

	

 X lo	3 € '0 1' 
2. If we take the function h(x) = 

1 0,
	

g X	V ' 

x=0	
which is continuous, 

- 
bounded, and concave we get the definitions of the entropy theory. H(Q) = ' h(u(C)) 
is the entropy of the partition C. H(!9/') and H(c/91) are the relative entropies of the 
partition Q with respect to the partition D and the sub-a-algebra 91:, respectively.
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3. Generalizations of the K-entropy 

We want to construct new dynamical invariants along the lines of the entropy 
theory. To this end we need the following statements on generalized relative entro-
pies. 

• Proposition 1: Let Q, Q', c2, D, ', D2 be finite partitions and let 0( . /. ) be the 
/unc,tiona2s of Definition 2.2. Then 

1. G(Q/D)	g(1); (3.1) 
2. C' !!^: ç2 => G(c'/D) ^5 G(C21); (3.2) 
:3. D' :!^ D2 => G(C/D') > 0(C/D2); (3.3) 
4. Q=G(Q/)=g(1);	

S (3.4) 

5. 1/ g is strongly concave; C	G(c/) = g(l); (3.5) 
6. G(C/)	0(c); (3.6) 
7. 0(C1D) ;5 lirn g'(x)	(if the limit exists). (3.7) 

zO 

Proof: We use the results of Lemma A. 1 (Appendix). 

I. a(c/D) = Eg(,2(Cl/D))	u(L' /z (c1IDj)) = g(1). (3.8) 

2. For each i, C1 ' =U C, and therefore 

= ; (E (CD)) g((CD)). (3.9)

3. For each j, D5 1 = U D, and therefore 
I, 

u(D1 1 ) g
(1u(C1 n D1)\ ( X iu(D)) g (E y (C1 n D)/X u(1))) 

	

11	
69u(D') ) =  

11(D)g(u(C 1 n D)/1u(D)).	 (3.10) 
Ii 

4. For any j, there is one and only one i such that D,	C1 . Therefore 1u(C1/D1 )	0 
for all but one i = i, and u(C1/Dj) = 1. This leads to 

a(c/D,) = g(1)	V j.	 (3.11) 
5. Because of A.1.2, we have G(C/D) = g(1) if and only if 1u(C 11D) = 0 for all 

but one == -1 and ,(c/D) = 1. This -is equivalent to c	Q (up to measure zero). 
6., 7. are obvious U 

Proposition 2: Let C be a finite partition and {2t,}°° be an increasing sequence 0/ 

sub-a-algebras of 93 (i.e. 91	9(, Vn). If a(C)	then C(C/91)	g(1). 

Proposition 2 is  modified version of Corollary 4.8 of [16]. A sketch of the prQof 
will be given in the Appendix (for details see [11]). 

Definition 3: Let (X, j , y, T) be a dynamical system. If C is a partition of K 
we call the pair (C/T) a process in (X, 93, 1u, T). Let (ç/T) be a process with Q being 
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a finite partition. We define 

G(c/T) := Jim G (c/'T- tc)	 (3.12) 

for all functionals defined as in Def. 2.2. 

Proposition 3: The limit in Equ. 3.12 exists for all processes (Q/T). 

Proof:
ii	 In-i	1	n-i 
V T-C = 71-"CV V T-C	V T'C. 

1=1	 I_i=i	J	j=i 

 
(

21V^_ ic Therefore we get 0 (ci vT- ic) 0 	The sequence of the relative 
i=i	I 

entropies is monotone decreasing and bounded from below by g( 1) I 

Definition 4: Let (X, 58, u, T) be a dynamical system. We define for all func-
tionals, according to Def. 3 

0(T) := sup G(C/T)	 (3.13) 
cE's 

where 1i denotes the set of partitions c measurable 58. 

Theorem 4: All 0(T) in De/. 4 are dynamical invariants. 

Proof: The theorem is clear from the definitions, because all mappings involved 
are measure preserving and 1 .—i a.e., and sets of measure zero can be neglected 
because of g(0) = 0 U 

Remarks: 
I. Actually, the theorem holds if we use arbitrary real functions in the Definitions 
2, 3, 4. The point is, however, that for a bounded concave function g the definition 
of 0(T) makes sense. Only in this case can we be sure to have a supremum over 
well-defined objects (Proposition 3). 

2. Dynamical entropy (K-entropy) is a special case of Def. 4. Therefore the 0(T) 
are called generalized dynamical entropies. 

In the remainder of the paper we derive some properties of the new dynamical 
invariants. The general properties if the. invariants are the content of, this section, 
but in the next section we deal with a special class of concave functions. 

Theorem 5: Let (X', 58', z', T') be a factor of (X, 58, i, T), then we have for all 
invariants 0 

G(T')	0(T).	 (3.14) 

Proof: The transformation T' is isomorphic to T restricted to a T-invariant. 
sub-or-algebra 91r Z. Therefore 

0(T') = 0(Tk(.) = sup G(D/TI's.) = sup 0(&T) ^5 sup G(C/T) I 
DC21T	 pc's2.	 ccn 

Corollary 6: If (X', 93,',u', T') and (.X, 513, a, T) are weakly isomorphic (i.e. each 
system is a factor of the other) then 0(T') = 0(T) for all invariants 0.
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A partition C is said to be a generator for T iffVTC = 58 (up to measure zero). 

Kolmogorov's theorem which says that for any generator € I1(€/T) = H(T) does not 
generally hold for the 0's. We have instead: 

Corollary 7: Suppose T has finite generators.. Then 0(T) = sup G(WT), where 
runs over all finite generators of T. 

	

Proof: Let  be not a generator. Then V T	=	8 and T91 = W. Therefore

T is a factor of T. 

o(C/T) ;5 sup G(D/T1 21 ) = G(T1 2t ) ^ 0(T) 1 
Dc'S 

Remark: The existence of finite generators is guaranteed for ergodic automor-
phisms of finite entropy [5]. 

The aim of the following statements is to compute the new invariants explicitly 
or to give estimations of them. To do this we need the following lemmas. 

Lemma 8: Let Q be a partition such that VT-'C = 58. Then C(C/T) = g(1) for all 
Junctionals defined in Def. 3.	 10 

Proof: We use Proposition 2. Let 21,, = a V nJic). {21,,} isanincreasingsequence 
of sub-a-algebras.	 i=I 

VTC = T-'VT-C = T-' = 8. 

Consequently, because of a(C)c Sb we have a(C) Sb = V T'C = V 91,,. (up to 
measure zero). Therefore Prop. 2 holds I 

Definition 5: We say that a functional G(C12[) (cf. Def. 2.3) has the martingale-
property iff for all increasing sequences {21,,} of sub-a-algebras of SB and for all finite 
partitions C 

Jim G((!191,,) = 0(C/V91).	 (3.15) 

Lemma 9: Let g be strongly concave, and assume the functional (J(C191) constructed 
with the function g has the martingale-property. Then 

G(Q/T) = g(l) ' a(C)c:VT'C.	 (3.16) 

Proof: We have G(C'/T) = a (19/ i Vw T_iC) from the martingale-property. Prop. 
1.5 leads to =1 

G(c/T) = g(1) = Cc:VT-'c?. 

The inverse conclusion follows from Prop. 2 I 
Corollary 10: For all dynamical systems (X, 55, u, T) with entropy H(T) = 0 

and for all generalized dynamical entropies 0(T) = g(1) holds. 

Proof: The relative entropy has the martingale-property (see e.g. [13], Th. 4.28). 
The remainder of the proof follows from Prop. 2 1
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• The suppositions of Lemma 8 can be shown to hold for any finite partition in the 
qasé of transformations with discrete spectrum. So we find G(T) = g(1) without 
explicit use of the entropy for these systems. 

Corollary 10 says that all the new invariants give the same information in the 
case of zero entropy, i.e. they are trivial if the entropy is given to be zero. 

From the point of view of the entropy, the opposites of the dynamical systems 
with 11(T) = 0 are the Bernoulli shifts. The following proposition gives an estimation 
for the generalized entropies for Bernoulli shifts. A Bernoulli shift is defined as a 
shift on X = {1, ..., n} Z (Z being the set of all integers) with a measure 1u given by a 
product measure on the cylinder sets (see e.g. [16]). 

Proposition 11: Let T be the (q 1 ... q0)-Bernoulli shift with the entropy 11(T) 

= Y h(q 1 ) = s. For all invariants C - 

X9(s) := sup L' g(p1 ) 5 0(T) ^ urn g'(x)	 (3.17) 
(MEY	40 

holds. Y denotes the set of all probability vectors {p} with E h(p) = s. 

Proof: The upper bound is clear from Prop. 1.7. The partition Q = (An*, ..., A0) 
(A O4 is the cylinder set of all elements of X which have the value i on the 0-th place. 

.(A0 ) = qj by def.) is a generator for T, and C is independent of R' = V TQ for 
all n. Therefore	 i1 

0(Q/T) = lini G(Q1Q0) = * p(D/) G(C/D,) = _'u(D10) 0(9) = * g(q1). 
0	 )	 7 

According to Ornstein's theorem [8], we find for any probability vector {p} € .' 
an independent generator O for T consisting of sets 01 with (O,) = p,. The pro-
position now follows from the definition of 0(T) I 

Corollary 12: Let T be an ergodic automorphism of positive entropy 11(T) > 0. 
Then the Inequalities 3.17 hold. Moreover, if g is not identically zero then X9(H(T)) 
> g(1). 

Proof: The first assertion is a simple consequence of Sinai's weak-isomorphism 
theorem [12] and Theorem 5. The second is obvious I 

We have computed an explicit (but trivial) result for the zero entropy case and 
an estimation (depending on the entropy) for the case of positive entropy. Now we 
are going to calculate the new invariants for ergodic automorphisms of infinite 
entropy. This again leads to a trivial result. 

Corollary 13: Suppose T is ergodic and let H(T) = co. Then /or all generalized 
dynamical entropies 0(T) = lim g'(x) holds provided the limit exits. 

X10 

Proof: We consider the following sequenceof Bernoulli shifts. T. is the (--, -- 
1 

—I-Bernoulli shift. Then, T0 is a factor of T. iff n 5,'m, and all the T0 (n = 1, 2, ...) 
fl- 

are faátors of T. Therefore we have 

sup L' g(pi )	G(T0) 5 0(T)	Jim g'(x).	 (3.18) 
X10
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Here $°,, denotes the set of all probability vectors with Z h(p 1 ) = log ii. But 
q 

= 
(J_ , ...,-1) € .9',, and therefore ' g(q) = ny (I)	G(T). Now urn 

- g(0)] = g*(0) and g(0) = 0 complete the proof I 

At the end of this section we formulate the obvious 
Proposition 14: All generalized dynamical entropies C are monotone increa8ing 

functions of the entropy on the class of all Bernoulli shifts. 
Proof: We get the desired result if we combine Ornstein's [8, 91 and Sinai's [121 

isomorphism theorems and Theorem 5 I 
This result is not surprising, because the entropy completely determines the iso-

morphy classes of Bernoulli shifts and is itself contained in the new family of iso-
inorphy invariants. Proposition 14 reflects the fact that not more information on 
the isomorphy of Bernoulli shifts is to be expected if we know the entropy. The 
monotonicity results from the fact that all G-invariants are defined in the same 
manner as a supremurn over partitions. 

4. A special class of invariants 

The new dynamical invariants constructed in the previous section are very hard 
to compute in nontrivial cases because there is no analogue of Kolmogorov's theorem. 
To find further nontrivial properties we consider a special family of concave functions 
having a simple structure. We define 

Ix if 0^x^r 
gr(x) = r if x r -	(0 <r<  1)	 (4.1) 

and denote all functionals associated with g, by 0,. In a forthcoming paper [ill 
we will use the 0r to construct an example showing that in 3.17 equality doesn't 
hold in general even for the case of Bernoulli shifts. Here we only want to answer 
the question of whether there are dynamical systems with 0,(T) < 1 = g*(0) or not, 
thus proving the existence of systems with G,(T) between the trivial values g(1) = r 
and g'(0) = 1. 

Proposition 15: Let (X, 8,,u, T) be an ergodic dynamical system with entropy 
0 <H(T) = s < oo and assume r < e 8. Then G,.(T) < 1. 

Remark: The logarithm in the function h(x) = —x log x is to the base e. If 
another basis b is used then Proposition 15 holds if r < fr-3. 

Proof of Prop. 15: Gr(T) = sup G,(c/T). We can restrict ourselves to processes 
C 

(C/T) with H(c/T) = s. For r < e there exist real numbers s, 6, y> 0 such that 
r =	- y and (s + e) (1 - (5) > s. We denote D" = V TC. Because of

H(C/D") .1,. s there is a n0(C, e, 6) such that V n > no 

8 :^-, H(C/D") <(s + e) (1 - 6).	 (4.2) 
Assume n.> n0. We show that in the partition C V Dn there are some elements 
C . n Din the union of which has a measure greater than 6 and which have the property 

n Di") > e(8+) (Jfl)	 (4.3)

The elements of c V Dn not fulfilling (4.3) are denoted by cYk n D1".
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Assume Z /2(C1 n D1') f,- 6. Then we have for the sets Ck n D,", because of 
ij 

n D1 1') ;5 e_(8+8) 1u(D1"), —log 4u(CkID,")	s + E. This in turn leads to 
-	1u(C, n D1") log 1u(CkIDI0)	(.s + ) (1 - (5). By the positivity of h(x) and the 

k# i 

definition of the relative entropy we get 

H(C/Q) (s + €) (1 - (5). 

This contradicts (4.2). Therefore ' y(C i n Di") > 6. From r < e(8+) we get 

= r and gF (1u(Ck1D1'8 ))	z(Ck/Dj"). Now r =	- y leads to 

_Y 1u(C, ii D) + ! 1L(D,") [j.z(C1/D,") - 
k.l 

= 1 - y u(Dj'3) <1 - yô. 
'.1 

Therefore G(C/T) < 1 - yô < 1 for all finite partitions Q, and the upper bound is 
independent of C. So it also holds for the supremum I 

5. Discussion 

We have constructed a large class of dynamical invariants by generalizig the notion 
of K-entropy. The construction is based on the idea of replacing the function 
h(z) = —x log x by an arbitrary, concave, bounded function with g(0) = 0. This 
method stems from the theory of the order-structure of states [14], which has been 
used successfully in the analysis of the irreversible behaviour of physical systems. 

The dynamical entropy can be computed for many systems. The theorem of 
Kolmogorov which is a basic tool for the computation of the entropy does not hold 
in general for the new invariants. Therefore the explicit calculation of the 0(T) 
seems to be a very difficult problem, and results are known only in some cases which 
are trivial from the point of view of the entropy theory. One sees, however, that 
any invariant constructed with a function g which is not identically zero is non-
trivial, i.e. one can find dynamical systems (X, 58, z, T), (X', V, u', T') such that 
0(T) == 0(T)'. 

Whether there are systems with equal entropy and 0(T) =1= 0(T') for some g is 
unknown at present, although it seems that this should be true. This conjecture is 
sustained by the non-validity of an analogue of Kolmogorov's theorem on the 
entropy of a generating process. The new invariants are trivial for systems of zero 
entropy, but in this case there are invariants such as sequence entropy and support 
16] the properties of which are not yet completely investigated and which are trivial 
for K-systems. So the dynamical invariants presented in this paper could become 
a useful supplement to the entropy theory, provided the difficulties of their explicit 
calculation can be overcome. 

At the moment there is no hope finding general methods for the computation .of 
all new invariants. Therefore, as a first step the properties of the class of invariants 
constructed with the functions g are considered. The 0, take values which are not 
trivial (i.e. there are systems T with g(1) = r < 0,(T) < 1 = g'(0)). Moreover, from 
the study of an example, we known that even in the Bernoullian case the supremum 
of 0,(C/T) over the independent generators can be smaller than 0,(T) [11]. This
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example, while illustrating the non-triviality of the new invariants, brings out the 
deep difficulties connected with the explicit computation of the generalized entropies. 

We have already remarked that the construction of the G-invariants is based on 
an idea from the theory of the order-structure of states. This raises the question of 
whether there is a structure in the set of all automorphisms of a measure space which 
is induced by the generalized K-entropies. Theorem 5 gives a first hint, but more 
interesting is a study of the consequences of G(T) G(T') for all g. It is expected 
that this will lead to a physical interpretation of the new invariants, which is still 
an open problem. 

Appendix 1: Concave functions on [0, 1] 

A function g: [0, 1]	I? is called concave iff Vx, y, A € [0, 1]

g(Ax + (1 - A) y) ^ Ag(x) + (1 - )) g(y). 

If the equality holds only for x = y and (or) (A = 0 or 2 = 1), g is called a strongly 
concave function. 

The following properties of concave functions are easily verified [11, 14]. 
Lemma A.1: Let g: [0, 1] —>R be concave and continuous, and let g(0) = 0. 

l.g(x)+g(y)L^g(x+y) Vx,yE[O,1] with x--y1. 
2. If g is strongly concave, g(x) + g(y) = g(x + y) holds if and only if x = 0 and (or) 
Y = 0. 
3. g(x)

	

	x . urn g'(y) 
if 

the limit exists. g' denotes the first derivative of the function g. 
plo 

4. Let (si ), ( ti ) be sequences of the same length, 8,, t, ^-' 0 Vi, i's, < oo. Then 
(E

 
8))(E tilE s)	' 8g(4181). 

Appendix 2: Proposition 2 (Sketch of the proof) 

Proposition 2 is a generalization of Corollary 4.8 of [16]. This corollary holds for the 
relative entropy of a partition with respect to a sub-a-algebra of 93 and is widened 
to the functionals of Def. 2.3. The proof of the generalized version follows exactly 
the line of the statement cited in [16]. 

Lemma A.2: Let .(X, 93, z) and 93 93 be a probability space and an algebra, 
resp. Assume that 930 generates the a-algebra 93. If C is a finite partition measurable 93, 
then for alle > 0 and for any continuous, bounded, concave function g: [0, 1] -- B 
with g(0) = 0, there is a finite subalgebra (— 93 such that 
i) g(1)	G(Q19) <g(1) + 

ii) g(1)	G(&91) <g(l) + e 
where 9t = a(C) and = a(D). 

For the proof we have only to remark that the lower bounds are trivial and that 
there is a 0 < 60 < 1 such that 

i) 0:c^x<0=_-<g(x)<+; 

ii)1 _ô0<x1=g(1)_L<g(x)<g(1)L. 

r is the number of sets which are contained in the partition C. This simple fact is 
the only additional argument to the proof of Th. 4.8 in [16], which is the entropy 
version of the lemma. Lemma A.2 leads directly to Prop. 2 by using the same argu-
ments as in the cited Corollary 4.8.
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