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Solution of a degenerated elliptic equation of second order
in an unbounded domain

W. BERNDT

Es wird die Gleichung div (o(z) (Vu + f(z))) = 0 im R¥ untersucht, wobei ¢ € L,(R¥) und
f € Ly(RY, g) vorgegebenc glatte Funktionen sind. Die Gleichung entartet auf der glatten
Fliche I' = {g(z) = 0}, an der sich g(z) wie eine Potenz von dist (z, I') verhilt. Folgende
Resultate werden bewiesen: 1. Existenz und Eindeutigkeit (bis auf additive Konstanten)
einer Losung mit f'IVng'dx < oo; der Beweis benutzt eine Variationsmethode in einem
Sobolewraum mit Gewicht; 2. Regularitit der Losung in der Nihe von I'; 3. Konvergenz und
Korrektheit eines numerischen Verfahrens (Differenzenverfahren); 4. Konvergenz einer
Iterationsmethode zur Losung des diskreten Problems.

Paccmarpusaerca ypasnenue div (o(z) (Vu + f(z))) =0 BR¥, rmep € L, (R¥) uf € Ly(RY, o)
— 3afiaHHele FIankue QyHKIUKM. Y paBHeHHE BHIPOMIACTCA HA MIajKo# noBepXHocTH I = {p(z)
= 0}, y Koropoii p(z) Benér ce6s Kak Hekoropasa creneHb dist (z, I'). Ilosyyennl ciexywimnue
pesyabprarhi: 1. CymecrsoBanue i1 eAMHCTBEHHOCTb (X0 aJIMTUBHOII DOCTOAHHOI) pelwenun
u3 kiaacca [ |Vul? o dz < co; JOKA3aTENLCTBO ONMPAETCA HA BAPHALUMOHHHIN METOR B HEKO-
topom mpocrpaucree Co6onesa ¢ Becom; 2. PerynapHrocts pewenusa B6ausn I'; 3. Cxopu-
MOCTb M KOPPEKTHOCTb HCKOTOPOr'0 BEMUCIMTEJNbHOrO MeToAA (MeTox pasxocreft); 4. Cxonu-
MOCTb HTEPALMOHHOrO METOAR PellcHUA AUCKPeTHOH 3agauH.

The paper deals with the equation div (o(z) (Fu 4+ f(z))) = 0 in R¥, where g € L;(R¥) and
f € Ly(R¥, o) are given smooth functions. The equation degenerates on the smooth surface
I’ = {p(z) = 0} where g(z) behaves like a power of dist (z, I'). The following resultsare proved:
1. Existence and uniqueness (up to additive constants) of a solution with [ |Pu|®e dz < co;
the proof uses a variational method in a weighted Sobolev space; 2. Regularity of the solution
near I'; 3. Convergence and correctness of a numerical (difference) method; 4. Convergence
of an iteration method to solve the discrete problem.

1. Introduetion. Formulation of the prohlem

The subject matter of the present paper is the linear partial differential equation
div [g(x) (Vu + f(x))] =0 (D

in the whole Euclidean space R¥ of indepedent variables!). Thedatagandf = (f,,...,fx)
are C* functions?) in R¥ with the following properties:

0<o® <o [ o) dz< oo, ' (2)
RY
[ a(z) dz = [ (12 + - f?) ol2) dz < co. (3
RN RV

1) Scalar product and norm denoted by z - z and |y|.
%) In the sequel functions and function spaces arc real.
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Equation (1) arises if we consider a system of clectrons (imaginating asa stationary continuous
cloud around the nucleus) under the influence of an external magnetic ficld. In this case, p is
the charge density of the clectrons and the vector function f is determedined by the magnetic
field. Induction processes lead to a stationary motion of the electronic cloud with the velocity
v = Pu 4 f and the current density j = o(Pu - f). This motion may be used for the cal-
culation of some effccts in NMR (nuclewr magnetic resonance). For details sce SORMIEDEL [9],
SALZER [8].

Note some specialities of Equation (1).

Remark 1.1: The density function ¢ may have zeros. In this points the equation
degenerates: it is elliptic only for ¢ > 0. We suppose that

I'= {x € R¥ | p(x) = 0} is an (N — 1)-dimensional (4)
manifold of the class O,

the so called knode surface. I" may be unbounded or disconnected, e.g. two parallel
planes. By the continuity of g, I is a closed set of Lebesgue measure zero and divides
R¥ in a finite or denumerable number of disjoint domains:

Q=R*"\T'=02uQ,u--ufu--.

Remark 1.2: As the physical interpretation shows we shall not look to the
properties of u but to those of the gradient. This concerns for exaniple the behavior
of the solution near the knode surface or the question of uniqueness.

Remark 1.3: We have no boundary conditions or conditions in the infinity and
shall make the only restriction of finite energy:

[ 1Pu?p dz < oo.
RY

After these remarks we can formulate the

Primary problem: Find a function w € C%(Q) with finite energy and satisfying
Eq. (1) in 2. ' (5)

Here and later we assume tacitly that the data are C®-smooth and satisfy (2),
(3), (4). Note that Eq. (1) must be satisfied only in the points of positive density.
We shall see that even in this large class we have a unique solution.

Later we shall need some assumptions about the behavior of ¢ near the knode
surface. The most restrictive but in always all concrete examples fulfilled is the
following one: '

The density function has the form o(x) = y}(x) with an . )
arbitrary smooth function y and Vy(z) 4= 0 on I A (6)

'.l;lhis includes the behavior of g like d%(z) = dist?¥(z, I'). More general we may suppose

that :

' there is a x 2 1 such that

ad (@) £ o(x) = cd¥(x) : (7)
holds locally, in some neigkbourhbod of ang) point of T,

or that . '

o(x) = c-d(z) locally near I'. (8)

Summary of results: It will be shown that the primary problem always has a
solution and that this solution is unique up to additive constants. The proof use a
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variational method in a Sobolev space with weight. The behavior of the solution
near I" will be described. The main subject will be a numerical (difference) method
in a sufficiently large domain for solving the variational equation. We will show
the correctness of replacing R¥ by the domain and the convergence of the discrete
solutions in the energetic norm.

The present paper concludes essentially the results of the dissertation of the
author [1]. The most proofs have been simplified, some facts are new. We shall give
only a brief review of the proofs and of the important ideas.

2. Statement of main results and ideas

2.1. The basic function space

A function % is said to have finite energy if it is locally square integrable in £ (not
necessarily in ‘R¥) and its distribunal gradient (in 2!) belongs to L,(£2, p):

flV‘uIzgd:v<oo. (9)
2

Contrary to the usual weighted Sobolev spaces, in our definition we have essentially
only a restriction on the gradient, not on the function (cf. the spaces in DENY/LioNs
{2}, Théoréme 2.1. or Maz’sa [5], Satz 1.1.). Clearly, two finite energy functions
have the same gradient in Q if and only if they differ (a.e.) by an additive constant
in each component of Q. ’

Definition: H = H(R?) denotes the space of function classes # arising by
identification of finite energy functions with the same gradient.

The following properties of H are fundamental for all later considerations.

Proposition 2.1: H is an Hilbert space with respect to the correctly defined “scalar
product

(4, %) = [ Vu- Pvgda. 4
9

Proposition 2.2: If (8) is satisfied then Cy>(£), the set of arbitrary smooth functions
with support in 2, is dense in H (in a natural sense).

Proposition 2.3 (Imbedding property): Suppose (7) satisfied and let G be any
bounded domain, G, = {x € @ | d(x) > 6} = J with & > 0 sufficiently small. Then we
have for all w € H :

[ o dz < C(j u? dz + [ |i7u|29dx)
_ G G, ¢ _
Au'n'th d constant depending only on G, G,, o. The weight o(x) equals d“"’(éc) for x > 1

and d-)(z) - log~2(const/d(z)) for x = 1. Especially we have u € Ly(R¥, ) locally
because o(x) = C - o(x) holds locally.
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2.2, Existence and uniqueness of the solution

Clearly, every solution of the primary problem is also a solution in the sense of
distributions over £ or, equivalent, a solution of the following :

Variational equation: Find % € H so that
J(Vu+f)- Ppodz =0 : (10)
RN
holds for all ¢ € Cy>(9).
If C,>(R) is dense in H then the variational equation may be also formulated as a minimisation

problem for the full kinetic encrgy:

[ 1Pu + fi* e dz — min! in H.
R¥ .

The proof is a well known Hilbert space technique.

Conversely, by usual regularity arguments in any subdomain ' € 2 we find
that every weak solution is a solution of the primary problem. Consequently, the
problems (5) and (10) are equivalent. It remains to solve the variational equation
in a standard way: Representing the bounded linear functional

Up) = [(—f)- Vpedz, ¢eH,
RN

as a scalar product in H we establish the existence of some weak solution. This will
be the only one if Cy°(R) is dense in H, e.g. if (8) is satisfied. We have proved the
following theorem:

Theorem 2.4 (Existence and uniqueness): Assume (8) fullfilled. Then the primary
problem (5) is solvable. Every two solutions differ by an additive constant in each com-
ponent of . For the soluttons we have ST

J1Ivupodz < C [fi2ede (1)
RN RV .

with a constant indepedent of w and f.

In particular, all solutions have the same gradient and therefore determine the
same current density j = o(Vu + f). Note that we have found a unique solution
without any boundary or contact conditions on I' and without special conditions
in the infinity. All restrictions on the solution are concluded in the finiteness of the

energy (9).

2.3. Regularity

Under more speéial restrictions on ¢ we may describe the current density near I

Theorem 2.5 (Regularity): If ¢ satisfies (6) and 4 is a solution of the primary
problem then j = o(Vu + f) is in H* locally in R¥ with a zero trace on I"'3) Equation (1)
- holds in the sense of distributions over R¥.

In particular, this gives a “‘natural” (= automatically satisfied) contact condition
on I': j-n = 0 (n — normal vector to I'). In other words: there is no current aCcTosy
the knode surface. :

3) HKQ) = {u € Ly(G) | Du € Ly(G), |o] S k), k =0, 1,2, ...
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2.4; The Problem in a hounded domain

The next intention is to solve the variational equation (10) numerically “in a suf-
ficiently large bounded domain”, say in a parallelepiped @ = (a,, b;) X -+ X (ax, by).
More exactly: By analogy to the R¥-case 2.1. we define the space H() replacing
in the definition of the finite energy functions 2 = R¥ \ I" by @ \ I" and formulate
the

_ Q-problem: Find uq € H(Q) such that

[ (Pug +f)- Vo dz = 0, ¢ € HQ). (12)
Q

This problem has exactly one solution the so called Q-solution. The proof is the same
as in the R¥-case, cf. 3.1. The @-solution tends to the ‘“‘true” solution in the energetic
norm as ‘‘Q tends to the R¥”: : -

Theorem 2.6: Suppose (8) satisfied and let & and thg be thé solutions of the primary
and the Q-problem. If the radius of the largest ball — Q with center in O tends to in-
finity then

f [Vu — Vugl? p dz — 0.%)
RY

2.5. The discrete problem

Fix the parallelepiped in (12) in such a way that

in each point of 0@ n I the normal vectors to I" and to the
square surfaces through this point are linarly independent. (13)

This means particulary that the knode surface is not tangential to any side of @
and does not cross any corner of ¢. We shall now describe the so called discrete
problem the solution of which will approximate the @-solution of our problem. For
this reason we shall construct a partition & of the parallelepiped @ in k-cells (= special
small parallelepipedes) and a space of k-function-classes. These will be step functions
(constant on every k-cell) assumed identified if they have the same discrete gradient.
In this space we will find the solution of the discrete problem, the @,-solution. Roughly
speaking, we get the discrete problem if we replace in the ¢-problem all functions
by its discretisations. It follow the precise definitions.

We get a partition & if we divide @ parallel to its surfaces in a finite number of
open parallelepipeds. The only restriction is a “‘regularity” condition: the quotient
of the largest and the smallest lenght is majorated by a absolute constant:

for example L, < 10007,. (14)
The number |

1Al = 1,/2
we call the fineness of the partition. All parallelepipeds without common points

with I" are called h-cells. Note that an k-cell may have boundary points on I'. A
step function with constant values on the k-cells and zero outside of the A-cells is

4) We assume ug = 0 and Vu, = 0 outside of @.
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called an k-function. In view of defining discrete gradients we shall say that k-cells
Z and Z' are neighbours if

they have a common side and belong to the same
component of Q \ I. _ (15)

’

Only in this cases we will write Z < Z’ or Z > Z' in dependence of its position
(Z or Z’ on the left). To any h-cells Z, < Z, neighbouring in the ¢-th direction we
attach an ih-cell Z,, “‘glueing up two halfs” of the h-cells (Fig. 1) and define the
1-th discrete derivative of an h-function u, as a step function of differential quotients:

Unlze) — (1) on any zh-cell Z,,

Ointty = |22 — 24 (16)
0 .outside of the zh-cells.
X4 —
|
il
/7'C0”Wffh| " |
ceritre and |L {
kernel =~ [ & Tih-celiwith
L1 cenireand
i } kernel
] i .
- —
| no N~

neighbours 1
.- 1}

Fig. 1

~ Xq

The vector function J&,us = (14, --., Oxatty) is called the discrete gradient of wu,.
Clearly (cf. 3.6.(b)), two h-functions have the same discrete gradient if and only of
they differ by an additive constant on each component of @ \ I" in an obvious
sense. Identifying A-functions with the same discrete gradient we get the finite
dimensional Hilbert space Hy(@) with the scalar product

('dln 'i’h) = f 6){“}. . 6;,’0h [ dx.
- Q

Finally, denote by f;, and p;, the discretisations of the data: step functions with
constant values f;(z) and g(z) on an tk-cell with the centre z and vanishing outside
of the th-cells.

" Discrete problem: Find 1, € Hy(Q) such that
N A' .
2 [ Giwun + fin) - dingn - 0indz = 0 (17)
i=1 9

holds for all ¢ € Hy(Q).
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This problem also has a unique solution 1, (3.6., H 4). There are two ways to
describe the derivation of #, from the Q-solution %: we may compare #, with 4
directly or with a discretisation r,% defined as follows. In each k-cell let fix a so
called kernel (= a cube with the same centre and with the lenght ]hl) and definc for
all ¥ € H(Q) the h-function-class

1 .

5 Nf’u(x) dz in any k-cell (kernel K),
"o = I | (18)
0 outside of the k-cells.

Theorem 2.7 (Convergence of the discrete solutions): Let (7) be satisfied. If u and 4,
denote the Q- and Q,-solutions then we have in L.(Q, o)

|[l7u —_ 6,,u,,|] ~0 and ”6"7',,1'11 - 6hu,," -0

as |k} — 0.

2.6. Iterative solution of the discrete problen

We can formulate the discrete problem as a square system of linear equations choosing
the test functions in (17) in a special way. Previously we introduce the following
notations:

Oop '= 2 (me)
Jap = i (up)
Vo <= value of
the h-function v
in the h-cell Z,
Then vthe.discrete problem rewrites to
L Z + / Qnﬁlaﬁ af —
;=l xaﬂ

where the inner sum is taken over all A- cells with Z, < Zj in the i-th direction (cf.
(]5)) Choosing test functions of the form

1 in a fixed A-cell
0 - elsewhere

‘¢(x)={
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we get the following system of equations for the determination of the unknown wu,:

‘?1 —Qag Uy q.x .
- = (19)
—Qyp dm 7;'m q’m .

Au=gq
where
m = number of A-cells,

QaﬂAaﬂ
a’aﬂ == af
0 otherwise,

da = Q4 + QAo + M + Ay
9o = X fap0aplap — X fap0apAas-
Za>28

Za<Z8

if Z, is a neighbour of Z,

This as a symmetric system with a singular matrix. Since the discrete problem is
only another form of the problem

4 (4w, ) = (¢, 9) (pe R™)

it is equivalent to the system (19). Regardless of the fact det A = 0 we can apply
a Gauss-Seidel iteration method or an SOR method with the factor w for solving
the system (19):

start: u® € R arbitrary,
iteration: (—1— D~ F) (D — wli-1) = —(4duti-V — q), (20)
where “ :
d 0 0 0
D = ' , F= .
0 d, ap O

Theorem 2.8: For all start vectors and all 0 < w < 2 the method (20) converges to
one of the solutions of Au = q.

Remark 2.1: It is possible to derive the system (19) by a simple heuristic con-
sideration from Equation (1). It is interesting, too, that the iteration method (20)
may be interpreted as an ‘‘agreement of charges” using the physical explanation of
Equation (1). For details cf. BERNDT {1, p. 17).

3. Proofs
3.1. Hilbert space property (Proposition 2.1)
All but the completeness may be proved easily. Let {x,} be a Cauchy sequence in H.

Then by the completeness of L,(£2, o) the gradients converge in Ly(£2, ¢) to a vector
function ». It remains to show v = Vu, u € L4 (£2). At first we do that locally, in
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an arbitrary (smooth) domain G € 2 with a fixed open ball B — G: Choose the
representators %, so that they have zero mean value in B and apply the Poincaré-
inequality

[vlFde < Cq - [ |Vo|2dw,
¢ ¢

sec e.g. KUFNER, JoBN, Fudmx [3, Theorem 5.3.11). It follows that the u, form a
Cauchy sequence in L,(G) and hence converge to some ug € Ly(G). Obviously, ug
has the gradient v and a zero mean value in B. Finally, we get the desired u globally
(in a fixed component @’ of ) if we construct the ug for all domains such that

BeG 6. e --e2, UG, =&

and note that they coincide a.e. in the smaller' domain (all u; have a zero mean
value in B and the same gradient!) 8

Remark 3.1: Proposition 2.1 remains true if we replace H by H(Q) defined in
2.4. The proof is essential the same.

3.2. Density property (Proposition 2.2)

We shall approximate an arbitrary @ € H step by step: first by a bounded function,
then by a function vanishing for large |z|, then by a function vanishing near I"and
finally by a smooth function. ’ '

Step 1: For sufficiently large & > 0 set

—k if wu(x) < —k, N
w(z) = qu(@) if —k=suz) =k,
k if k < u(x).

We have u, € H since u is absolutely continuous on straight lines in a well known
gense, see e.g. KUFNER, JoBN, Fulix [3, Theorem 5.6.3]. [[u — uly — 0 follows
casily from the integrability of g. e

In the next steps it would be sufficient to approximate » by finite energy func-
tions u, having the desired property and satisfying

(i) up, ~u tn 2'(Q),
(ii) gl = const in H.

Indeed, such a sequence contains a weakly convergent subsequence {u,’} (with the
limit % by (i)). Applying Mazur’s theorem (cf. Yosipa [12, Chapter V 1., Theorem 2])
we find some convex combinations of the u,, tending to « in the norm of H.

Step 2: Suppose u bounded and set u,(%) = &,(|z|) u(x) with a piecewise linear
function ¢ equal 1 for |z| < » and equal 0 for |z| > = + 1. Then (i) is obvious and
(ii) follows immediately from the boundedness of u and from the integrability of o.
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Step 3: Suppose u bounded with a compact support and define u,(z) = n,,(x ) w(z)
with a cut-off-function of the following form:

n € CO(RN)’

: 1 2
na(x) = 0 for d(z) < Y and =1 for d(z) > o
|D*na(2)| < c,nle! for any multiindex «.

Clearly, (i) holds again. In derlvmg (ii) note that Fu,(x) is zero “‘near I and equals
Vu “away from I, This gives °

lluull“—fann U+, Vulfodz + [ |Pulfpdz
2
d(z)>—

< C-n® [ odz + |ulf
Fy
2/n
< Cn? [edt + ”u”2 0.

1/n

We have denoted F, = {zr € supp» | 1/n < d(z) < 2/n} and have applied the be-
havior (8) near I" n supp u.

Step 4: Suppose  bounded with the support in G &€ Q. Then u belongs to HY(Q)
and we can it mollify in the classical way §

Remark 3.2: An ana.logous density theorem holds for the space H(Q) defined in
2.4. In bhls case we have the dense subset {u € C®(Q) | suppu n I" = @)}.
3.3. Imbedding property (Proposition 2.3)

Usmg a finite covering of @ n I' by small parallelepipeds we may restrict us to the
follownng situation:

= {(!/, t) = (?/1, ceos YN-1 z) € R¥ I t = O}a
Q(x) == ]tl",
G is a parallelépiped (Fig. 3).
th

a

Fig.-3

N,
<
<y
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The main tool is the classical Hardy inequality which states, roughly speaking, an
estimate of a function by its derivative in an L,-norm with weights: If o(r) and o(r)
are nonnegative measurable weights on (0, 7') with the property .

t T
foydr- fol(r)dr = C  (t€(0, 1),
¢

0
T

then we have for all measurable f with F(¢) = [ f(z) dz

¢
T

T
JIF@)2 o) dt < 4C [ [f(6)| o(t) .
[} . 0

For the proof cf. MuckENHOUPT [6]. Clearly, the pairs

o) =%, or) =7 (x> 1);

a(z) = v~ !log-*a/7), o(r) =1t (»=1) )
satisfy the weight condition with C' = (x — 1)~2 resp. = a~!. Now for fixed 7 and
' = 6 let consider u on a strip orthogonal to I" (Fig. 3) and apply Hardy’s inequality
to
ou _ _ —
I(t) = Tt (?/, t), F(t) = u(!/» T) - u(y: ‘)'5)

We get
T T

J (g, t) — (@, H)2 o(t) dt < C" [ |Fu(F, )2 o(t) At
0 (1]

and after some simple estimate and integration first over 7' € (9, a) then over 7
the desired estimate is proved §

Remark 3.3 The same estimate holds in the space H(Q) defined in 2.4. In this
case we may choose G = @ if @ is a parallelepiped with the property (13), cf. BERNDT

(1} '

3.4. Regularity (Proposition 2.5)

The main idea is the following one: We rewrite Equation (1) in the form

—A(y*u) = div (Pp - yu — v3f) - (21)

and deduce the ‘“‘good’ regularity of y?u from the ‘‘weak” regularity of the right hand
side by the aid of a well known regularity result for elliptic equations.
Fix an arbitrary bounded domain G < R¥.

Step 1 (Regularity ‘‘a prior?”’): By an approximation argument we show that
yu and p2u € HY(G). (22)

Indeed, since « has finite energy we can find u, € C®(R¥) such that yVu, —-phu
in L,(G) {Proposition 2.2) and u, — u in Ly(G) (Proposition 2.3). This gives yu, — yu
in HY(G) and (22) is proved.

5) u(y, -) is absolutely continuous in a well known sense, c¢f. KUFNER, JOBN, Fu¢ixk (3, Theorem
5.6.3).
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Step 2 (Regularity ‘‘a posteriors”): (22) shows that equation (21) holds in the sense
of distributions in G with the right hand side in Ly(G). Thus, by Friedrich’s theorem
(cf. Yosipa [12, Chapter V1/9.]) we have

p2u € HYG). (23)
Together with the imbedding result of Proposition 2.3 the relations (22) and (23)

imply
u, wo;u, 320;0;u € Ly(@)

and therefore the desired result y*Vu € H{(G).

Step 3 (Zero trace): It remains to approximate *9;u in HI(G’) by smooth functions
vanishing in some neighbourhood of I'. We may use the sequence

p2ou, with  u,(x) = 7.(2) - u(%)
where 7, is the cut-off-function from 3.2., Step 3. For example we have

[19:0j(u — u,)|? y* dz
G

< [ jgepulPyide + C [ (100 y* + v |Pul>y* + 0t [ul? y) dz

d(z)>"; “i<d(z)<%
<C [ (|0l y* + |Vul® ¢ + |uf?) dz — 0
d(z)>§

as % —> 0o because the last three summands are integrable over G (Step 2) I

3.5, Replacing of R™ by a bounded domain (Theorem 2.6)

Let {1} be an arbiirary sequence of @,-solutions su;h' that the radius of the largest
ball — @, tends to infinity. We shall extract a subsequence with

L= [|Vu— Vu,ftedz—0.

On

This, of course, proves the theorem.

Choosing ¢ = » in the variational equation (10) and ¢ = %, ¢ = u, in the @,-pro-
blem (12) we get after simple calculations :

—I,= [(Vu+f)Vuedz + [ (Vu +[) Vuedz = 4, + B,.

. cQ, . Qn .

Clearly, A, — 0 by the extending property of the @,. In the second integral we may

suppose Vu, —w weakly in Ly(£,¢)-because the Vu, are uniformly bounded in
this space. If we had w = Vv with some finite energy function » than we would have

B, ——>f(l7u +f)Pvodx=0
RN

in view of (10). But we can state w = Vv with the same method as in the proof
of Proposition 2.1: first locally (u, are bounded in L,(G) by Poincaré’s inequality,
v is the limit of a subsequence of u,) and then globally (approximate 2 by bounded
smooth domains] 8 o

Remark 3.4: We did not use hypothesis (8) but only the fact that » € H satisfies
(10) for all ¢ € H.
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3.6. Convergence of diserete solutlons (Theorem 2.7) .

I‘heorem 2.7 follows by application of an external approximation scheme (TEMmam [11],
ScomruMany [10]):

w T 1 = f°*
l X > X*; Ti=1f;

r Ta

T B X,— i » Xp*; Ty = fy.
In our case the abstract spaces and mappings have the following concretisations: -
X =H(Q); X,=H\Q); F =L@ o);
7y = discretisation operator (18);
py = discrete gradient operator 8, defined in (16);
w = gradient operator wa = Vu.
The two equations stand for the @- and @,-problems:
N
(T, 9y = [ Vu-Vpodz; (Twin, ¢y =3 [ Sirtty - Sinn - 0in dz;
Q

i=10
N
(f, 9 = —ff‘ Voodz; (fndn) = —2X [ fin- Ounpn- oin de.
i=10

In the following proof we have to comparc elements ¥ € X with families {9,}, 9, € X,,
as |k| — 0. For convenience we shall write

Ty —> D (discretely) if |0, — 79| — O,
Uy = (strongly) if |lpaty — wdl] -0, N
oy — © (weakly) if ||o,| < const. and p,3, — 9.
Theorem 2.7 states that the discrete solutions 4, converge discretely and strongly to

the @-solution 7. In accordance with the abstract scheme it would be sufficient to
verify the following hypothesises (ScHUMANN [10]):

Stability: v, and p, are linear operators with uniformly bounded norms.

Convergence I: For any ¥ € X: 79 — v as |h| — 0.

Convergence 11: If we have p,9, — g for some sequence of partitions & — 0 then
gE€ Im w. '

Coercivity: There is a constant C > 0 such that
(Two, o) 2 C |l0all?

for all sufficiently fine partitions and all 9, € X,,.
Approximation property: For any sequence of partitions with |h| ~~ 0 we have

(Thrwo, @n) = (T, @)

(s &) = @)

whenever ¢, — ¢ and v € X.

and

5 Analysis Bd. 1, Heft 3 (1082)
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Remark 3.5: In the following proof we will use some geometrically obvious facts
the proof of which may be found in BErxDT [1]. For example: @ \ I" has only a
finite. number of components and two neighbouring A-cells can’t have.points of I
on the common side. In a fixed component of @ \ I' every two h-cells are conneoted
by a chain of k-cells touching ‘“‘side by side” (for sufficiently fine partitions). Finally,
the values of p in a cell can be uniformly estimated by its values ‘““in the middle of
this cell”: If Z is the union of two neighbouring k-cells and K the convex hull of the
kernels then we have the

fundamental estimate
ex)=C-oly) (z€Z,ycK), ' (24)
with a constant independent of the partition.

Proof of the stability: |[py| = 1 is obvious by the definition. |jr,|] < const. will
follow by some simple estimates (apply (14), (24)) from the equality (cf. Fig. 4)

R 1 R .
Giprad = L f oa(y)dy,  ©€ H(Q). (25)
K* .
ih-cell
I 1
"left" . . "right*
h-cell . h-cell
i
_V—Jbﬁ/—-_—/
- teft part right part
Fig. 4

(25) may be established in every th-cell if we represent the difference between two
values of v by an one-dimensional integral over 9;» and apply Fubini’s theorem and
Ly-continuity -& ‘

Proof of convergence I: Since the stability is proved it would be sufficient to
show 7,9 — ¥ only in a dense subset of X, e.g. for all v € C*(Q) (Remark 3.2). Such »
are uniformly continuous and the result follows easily from (25) I

Proof of convergence I1: We have to show: For an arbitrary sequence 7, ¢ X,
with d;v, — ¢; in Ly(Q, o) there is a v € Ly 1,(@ \ I") such that

fg;<pdx=—fv-6,~<pdz, p € Ce®(@\T).
Q Q
Clearly, it would be sufficient to construct v locally, in an arbitrary domain

G € @ \ I" and to prove the equality for supp ¢ < G. We start from an analogous
discrete relation:

fé;,,v,,-cp,,‘dz = —fv,, . 6,’).(]),, dz.
G G
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Here ¢, denotes the discretisation of ¢ defined in (18) and ¢,' is “almost” equal
to ¢, : on the left part of any ik-cell it is to be defined as the mean value of @ over the
value of ¢ over the right kernel and vice versa. The desired result follows by tending
to the limit 2 — 0. Then we have in L,(®): ;v — g; by hypothesis, ;@y — 0ip
by convergence I and ¢,' —> ¢ by a simple calculation. Finally, we can extract a
subsequence on which v, converges weakly in L,(G) to some v, since the Ly(G)-norms
of the v, are uniformly bounded. Thisfollows from a discrete Poincaré inequality. §

Discrete Poinca.n. inequality: For any h- junction vanishing in a fixzed neigh-

bourhood of 8Q n I', we have in the norm of Ly(Q): l|lval] = }/mes Q |10avsll (|2} suffwzentl Y
small).

~ For the proof let fix a stripe S = Pyu Py u --- u P, of parallelepipeds “from one
s:de of @ to the other”, for convemence in the flrst dJrecmon Denote

- I, = length of P, in the first direction,

Ly = distance between the centres in the first direction,
v, = values of v, (note that v, = 0 by hypothesis),

vy = values of 6140

Applying repeatedly the definition (16) of the discrete gradient we get v, = tolvm,
vy = loywo1 + liov10 ete. That leads to the desired estimate: ,

%‘ lkvk? = (b, — Ql) ;lk,k+lvk,k+l-

j loal? dz < (by — a,)2 f Ouval2 dz B

[N

The proof of coercivity is obvxous in view of (24).

Proof of the approximation property (for T, T,,, for ],,, f analogously)
We have to prove (norms and scalar products in Ly(@Q, ¢); r,¥ denoted by %,):

if |0iagall = C and Sin(gn — Oip in Ly(Q, 0) :
then (6lhvh 0(; ’ 6|qu7h) >(aiv: ai??)- . ‘ (26)

This is proved if we can show that every subsequence consists another suhsequencc-
on’ which

B a;hvh-{;l» dw in LyQ, o). - (27

Now, note that the last relation holds if the term p;,/p is absent (Convergence I; the
subsequence may be choosed so that we have convergence a.e.). Hence, by the domi-
nated convergence theorem, it holds also in the present form if we can show’

ein()
o(z)

?ﬂ'@—>l (x€e@\T) and
] e(z)
The first relation follows from the continuity of g. The second relation is satisfied
only for z “‘away from I'”, e.g. for dist (z, I') = |h|/2. Therefore we divide the left
integral (26) in an essential part over

<cC. (28)

A;, = {all th-cells with a distance to 1" more than |&| and all kernels
of the other ih-cells}
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and in a rest part over B;, = Q;; \ 4;,. By regularity (16), condition (28) is satisfied
for the essential part. Hence, the essential part will tend to the limit (26). The rest
part will tend to zero: ‘

f l = Z laihvh(xa)l ° laihq)h(xa)l Q(xa) * Ies Za

By,
=0 Y. mesK, =C; [ |6i(vnl - 10isgal 0 dz — 0
14l

T<d(2:)<|hl

(summation over all th-cells Z,, dist (Z,, I') < |k|, with centres z, and kernels K,) I

3.7. Convergence of the iteration method (Theorem 2.8)

By a theorem of MaRGUE and KuzNEcov [4, Theorem 3.1.] it remains to show that
(Az, ) = 0 for all z € R™ or, equivalent, that all eigenvalues of 4 are nonnegative.
This follows from a theorem of Gersgorin (cf. Parop1 [7]), which asserts that all
eigenvalues are localized in the union of m circles with the centres a;; and the radii

7, = é’.]aﬁl. ’
i)
In our case we have a;; = r; > 0. Hence, all these circles belong to the half plane

Rez=01
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