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On the existence of dense ideals in LMC*-algebras

M. FRITZSOHE

In der Arbeit wird folgender Satz bewiesen: Besitzt eine LMC*-Algebra (mit Einselement)
ein unbeschrinktes Element, so gibt es in ihr ein dichtes Ideal.

B palGore morasmBaercA ciueaywomee npenjo:xenne: Ecan LMC*-aarebpa (¢ emuBHYHBIM
3NIEMEHTOM) CONIEP+KUT HEOTPAHIYEHHMI! 3J1eMEeHT, TO OHA COXEePMMUT MJIOTHLIA HAeas.

In this paper we prove the following proposition: The existence of an unbounded element in
an LMC#*-algebra (with unity) implies the existence of a dense ideal in this algebra.

The concept of LMC*-algebras is a natural generalization of the concept of C*-
algebras. LMC*-algebras were investigated in [2, 3, 5—7]. Many of the results on
C*-algebras can be extended to the larger class of LMC*-algebras, nevertheless there
are also essential differences between these classes of algebras. One of these is the
existence of dense ideals in LMC*-algebras. In a C*-algebra with unity every maximal
left (right, two-sided) ideal is automatically closed. This follows from the well known
result that the closure of a proper regular ideal in a Banach algebra is again a proper
ideal. Zelasko proved that in commutative Imc-algebras (locally multiplicatively-
convex algebras) the existence of an unbounded element implies the existence of a
dense ideal (of infinite codimension) {8].
In [2] we conjectured that the following theorem holds. -

Theorem 1: T'he existence of an unbounded element in an LMC*-dlgebra (with
unity) implies the existence of a dense ideal in this algebra.

. For commutative LMC*-algebras this proposition is obviously a special case of
_ the result of Zelasko; thanks to the isomorphy of such algebras to algebras C(X) of
ajl continuous complex-valued functions on a topological space X (see Theorem 3)
the structure of maximal (closed and dense) ideals is known [4]. In this paper we will
prove the conjectured theorem. First of all we recall the definition and some basic
properties of LMC*-algebras.

Definition 2 [6]: An LMC*-algebra is a complete locally convex s-algebra [z},
whose topology T can be given by a system of seminorms p with the following pro-
perties:

() p(zy) < p(z) ply) and
(1) p(x*z) = p(x)® Vz,y € .
Such seminorms are called C*-seminorms.

We will always assume in this paper the existence of a unity e in an LMC*-algebra
[7]). For C*-seminorms p we have p(z*) = p(z) and p(e) = 1. I}, denotes the set
of all z-continuous C*-seminorms on &/[z], it is an upwards directed system under
the order relation p < ¢ iff p(x) < g(z) V z € &Z. By I'" we denote a directed sub-
system of I'%,, which is generating yet the topology .
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The following result parallel to the Gelfand-Neumark-Theorem for C*-algebras
is very useful for our considerations.

Theorem 3 [6): For a commutative LMC*-algebra s7[t) there exists a completely
regular topological space X such that
(i) /(7] ¢s algebraically and topologically isomorpkh to the Algebra C(X) of all continuous
complex-valued functions on X equipped with a topology v, weaker than the compact-
open topology. ’
(We will write o/[7] = C(X) [),.)
(1) Under this isomorphism I the seminorms p were converted into suprema on compact
subsets of X, that means for p € I'* there is a compact subset K, of X such that

P(x) = pk,(I(x)) = sup |z(t)] and U K, = X.
13.4% pert )
Remark: The image of an element of the algebra under I we always denote by
the same letter joining the argument &.

The set &7, = {x € & | sup p(z) < oo} is called the bounded part of &Z. Hence,

pers .
unbounded elements are the elements of &7 \ &7,. 7, is r-dense in &/ and a C*-
algebra under the norm (jz|| = sup p(z) [6].

The set P(F) = ¢ Y x*x; | x; € o} is called the positive cone of .7, it organize
finite

the' hermitian part @/, = {x € & | z = 2*} of &7 to a partially ordered topological
space. We have P(o7,) = &7, n P() where P(}) = { D yi*yi |y € d,,} [6] and

finfte .
#(Z}) is T-dense in P(7), even one can approximate elements of () by increasing
sequences of elements of 2(.7,).- The simple proof of this fact is contained in the
proof of our theorem. o

A further essential result is that every LMC*-algebra is the projective limit of

C*-algebras. For p € I'* the set &, = {x € & | p(z) = 0} is a z-closed two-sided
*-Ideal in 7. Let 7, be the natural homomorphism of & on &7, = /N . &/, is a
C*-algebra under the norm ||z,(z)ll, = p(x) and Z[r] = lim proj (&7, |l - ) [6].

pere

The following facts about continuous linear functionals are immediately clear.
For f € &/[x]’ there exists p € I'* such that |f(z)] < cp(z) V2 € & (c is a positive
constant). Then :

Tolma()) = f(=) ' (%)

defines f, € &Z,[|| - [}’ and converse, for f, € &Z,[]| - [[,] we get by (*) an element f
of &[z]’, continuous with respect to p. f is positive iff f, is positive. Further we have:
f is a continuous state iff f, is a state; f is an extremal continuous state iff fp is an
extremal state [5]. We denote by S (resp. S,) the set of all continuous states of
7] (resp. L[|l - 1,]); by ex § (resp. ex §,) the subsets of extremal states.

We will make use of the following result on the ideal structure of LMC*-algebras.

Proposition 4 [2]:
(1) Bvery maximal closed left ideal # in an LMC*-algebra Z[t] is the left kernel of
an extremal continuous state, i.e. J w € ex S such that F = {x € & | w(z*z) = O}.
(il) Every closed left ideal # in an LMC*-algebra is the intersection of all maximal
- closed left ideals containing £.

Now we prove a lemma on the possibility of extension of continuous states. This
result is well known for C*-algebras (see for instance [1], 2.10.1.).
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Lemma 5: Let &/[r] be an LMC*-algebra, # a closed subalgebra of &/ and ¢ € %.
If g is a continuous state of &, then
(i) g can be extended to a continuous state of &/ and
(i1) the extension can be chosen extremal for extremal g.

Proof: ad (i): There is a seminorm p € I"* such that |g(b)| < p(b) V b € &. Regard
the algebras &7, = oA/ AN ", and B, = B|B 0 N p, n,': B — B, the natural homo-
morphism. &%, is a C*-algebra under the norm ||z,’'(b)|| = p(b) and =,'(b) — m,(b) is
an imbedding of &, in &7, preserving the norm, thus we can regard #, as a C*-
subalgebra of &7,. g, is a state of Z,and so it can be extended to a state fp of ).
Define f by (*). Then fis a contmuous state of &/ and forb € & we have f(b) = /,(n,(b))
= gpl7y(b)) = 9(b)-
ad (fl() pFoZ- extremal g g, is extremal too (Prop. 4). Then one can choose f, extremal
[1] and so f is extremal &

" Remark: We cannot directly use extension theorems, because in general e is not
an inner point of the positive cone. .

We are able now to prove our theorem:

Proof: Let a € o/ be an unbounded element. Without loss of generalitj; we can
assume a € P(&), since for unbounded & a*e is unbounded too. Let us regard the
commutatlve closed subalgebra &/([r] of 2/[7] generated by a and e. We have

.,cfo[r] = C(X) [7] (Th. 3). Thenea(t) =0\t € X and a(t) is an unbounded function.

Set a,(t) = min (a(t), n) €C(X) VYrneN (N is the set of natur&l numbers); a,

= I-Y(a,(t)) € ;. By Theorem 3 we get \/n € N
0<sa,<a, a,€, with |lafl=2, @, =am

and @ = z-lim a,. Therefore 0 < a, < ne and there is a number n, € N-such that
n—>0

a, < neVn =ng

In the following we consider only indices n = n,. Put b, = ne — a,. Regarding

the functions b,(t) one finds: 0 < b, < b,4;. For F, = {t € X | b,(¢) = 0} we obtain

F,+4, F,+=X and F,DF,,,. (*x)

Further, the extremal continuous states of 57, are the ‘“‘point functionals” of C(X),
i.e. the states we(a) = a(ty) (f, € X). These states can be extended to elements of
ex S by Lemma 5. From this considerations and () it follows for the sets
= {w € ex § | w(b,) = 0}:
n_,_ﬂ\/nEV and R, #+exS; R, S R, since b, < by,
Consider now the sets
Fo=NSF, where S, = {r€ | owx*z)=0}.
w€R,

Then, S, is a closed left ideal in &[<], b, € #, (and hence 4, % {0}) and S, © J,.,.
Now, let us regard # = U F .. Obviously, £ is a proper left ideal in &/. Now we

show that 7 is dense. Assummg the converse then by Prop. 4 there is an element
o € ex S such that f C S, = {x € &/ | o(z*z) = 0}. But o(b,) = o(ne — a,) =n
— o(a,) = n — o(a) > 0 for sufficently large n, hence b, ¢ #, for such =, and so
we have a contradiction. Thus, our proof is complete 1

Remarks: 1. The converse of our theorem is not true, i.e. there are LMC*-
algebras without unbounded elements containing dense ideals. Such algebras one
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can find already in the commutative case. To see this take a pseudocompact and

locally compact, but not compact, completely regular space X. (An example of such

a space one finds in [4], it is a space of ordinals with suitable chosen topology.)

We take the algebra &/ = ((X) with the topology z given by the seminorms px(z)

= sup |z(¢)| where K runs over all compact subsets of X. &[7] is a LMC*-algebra,
teX -

the completeness is given by the locally compactness of X. Since X is pseudo-
compact, every continuous function on X is bounded, hence &/, = .. But there is
at least one dense ideal in &/[r]. To see that take the one-point-compactification
X* of X and the ideal of all functions vanishing in a neighbourhood of the adjoint
point.

2. In the commutative case, the dense maximal ideals are in one-to-one corre-
spondence-to the extremal states of &Z,[]| - ||], not extendable to continuous states
of &Z[r]. The question, wether it is so in the general (noncommutative) case, is yet
open. The structure of dense maximal ideals was described only in the case that
the LMC*-algebra is a direct product of C*-algebras [2].
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