On the existence of dense ideals in LMC*-algebras

M. FRITZSCHE

In der Arbeit wird folgender Satz bewiesen: Besitzt eine LMC*-Algebra (mit Einselement) ein unbeschränktes Element, so gibt es in ihr ein dichtes Ideal.

В работе доказывается следующее предложение: Если LMC*-алгебра (с единичным элементом) содержит пеограниченный элемент, то она содержит плотный идеал.

In this paper we prove the following proposition: The existence of an unbounded element in an LMC*-algebra (with unity) implies the existence of a dense ideal in this algebra.

The concept of LMC*-algebras is a natural generalization of the concept of C*algebras. LMC*-algebras were investigated in [2, 3, 5-7]. Many of the results on C*-algebras can be extended to the larger class of LMC*-algebras, nevertheless there are also essential differences between these classes of algebras. One of these is the existence of dense ideals in LMC*-algebras. In a C*-algebra with unity every maximal left (right, two-sided) ideal is automatically closed. This follows from the well known result that the closure of a proper regular ideal in a Banach algebra is again a proper ideal. Želasko proved that in commutative lmc-algebras (locally multiplicativelyconvex algebras) the existence of an unbounded element implies the existence of a dense ideal (of infinite codimension) [8].

In [2] we conjectured that the following theorem holds.

Theorem 1: The existence of an unbounded element in an LMC*-algebra (with unity) implies the existence of a dense ideal in this algebra.

For commutative LMC*-algebras this proposition is obviously a special case of the result of Želasko; thanks to the isomorphy of such algebras to algebras C(X) of all continuous complex-valued functions on a topological space X (see Theorem 3) the structure of maximal (closed and dense) ideals is known [4]. In this paper we will prove the conjectured theorem. First of all we recall the definition and some basic properties of LMC*-algebras.

Definition 2 [6]: An LMC*-algebra is a complete locally convex *-algebra $\mathscr{A}[\tau]$, whose topology τ can be given by a system of seminorms p with the following properties:

(i)
$$p(xy) \leq p(x) p(y)$$
 and

(ii) $p(x^*x) = p(x)^2 \forall x, y \in \mathscr{A}$.

Such seminorms are called C*-seminorms.

We will always assume in this paper the existence of a unity e in an LMC*-algebra $\mathscr{A}[\tau]$. For C*-seminorms p we have $p(x^*) = p(x)$ and p(e) = 1. Γ_{\max}^r denotes the set of all τ -continuous C*-seminorms on $\mathscr{A}[\tau]$, it is an upwards directed system under the order relation $p \leq q$ iff $p(x) \leq q(x) \forall x \in \mathscr{A}$. By Γ^r we denote a directed subsystem of Γ_{\max}^r which is generating yet the topology τ .

6 Analysis Bd. 1, Heft 3 (1982)

The following result parallel to the Gelfand-Neumark-Theorem for C*-algebras is very useful for our considerations.

Theorem 3 [6]: For a commutative LMC*-algebra $\mathscr{A}[\tau]$ there exists a completely regular topological space X such that

(i) $\mathscr{A}[\tau]$ is algebraically and topologically isomorph to the Algebra C(X) of all continuous complex-valued functions on X equipped with a topology τ_0 weaker than the compact-open topology.

(We will write $\mathscr{A}[\tau] \stackrel{!}{\simeq} C(X) [\tau]_{0}$.)

(ii) Under this isomorphism I the seminorms p were converted into suprema on compact subsets of X, that means for $p \in \Gamma^r$ there is a compact subset K_p of X such that

$$p(x) = p_{K_p}(I(x)) = \sup_{t \in K_p} |x(t)| \quad and \quad \bigcup_{p \in \Gamma^*} K_p = X.$$

Remark: The image of an element of the algebra under I we always denote by the same letter joining the argument t.

The set $\mathscr{A}_b = \left\{ x \in \mathscr{A} \mid \sup_{p \in \Gamma^{\tau}} p(x) < \infty \right\}$ is called the bounded part of \mathscr{A} . Hence, unbounded elements are the elements of $\mathscr{A} \setminus \mathscr{A}_b$. \mathscr{A}_b is τ -dense in \mathscr{A} and a C*-algebra under the norm $||x|| = \sup p(x)$ [6].

The set $\mathscr{P}(\mathscr{A}) = \left\{ \sum_{\text{finite}} x_i^* x_i \mid x_i \in \mathscr{A} \right\}$ is called the positive cone of \mathscr{A} , it organize the hermitian part $\mathscr{A}_h = \{x \in \mathscr{A} \mid x = x^*\}$ of \mathscr{A} to a partially ordered topological space. We have $\mathscr{P}(\mathscr{A}_b) = \mathscr{A}_b \cap \mathscr{P}(\mathscr{A})$ where $\mathscr{P}(\mathscr{A}_b) = \left\{ \sum_{\text{finite}} y_i^* y_i \mid y_i \in \mathscr{A}_b \right\}$ [6] and $\mathscr{P}(\mathscr{A}_b)$ is τ -dense in $\mathscr{P}(\mathscr{A})$, even one can approximate elements of $\mathscr{P}(\mathscr{A})$ by increasing sequences of elements of $\mathscr{P}(\mathscr{A}_b)$. The simple proof of this fact is contained in the proof of our theorem.

A further essential result is that every LMC*-algebra is the projective limit of C*-algebras. For $p \in \Gamma^{\tau}$ the set $\mathcal{N}_p = \{x \in \mathcal{A} \mid p(x) = 0\}$ is a τ -closed two-sided *-Ideal in \mathcal{A} . Let π_p be the natural homomorphism of \mathcal{A} on $\mathcal{A}_p = \mathcal{A}/\mathcal{N}_p$. \mathcal{A}_p is a C*-algebra under the norm $\|\pi_p(x)\|_p = p(x)$ and $\mathcal{A}[\tau] = \lim_{p \in \Gamma^{\tau}} \operatorname{proj}(\mathcal{A}_p, \|\cdot\|_p)$ [6].

The following facts about continuous linear functionals are immediately clear. For $f \in \mathscr{A}[\tau]'$ there exists $p \in \Gamma^r$ such that $|f(x)| \leq cp(x) \quad \forall x \in \mathscr{A}$ (c is a positive constant). Then

$$f_p(\pi_p(x)) = f(x) \tag{(*)}$$

defines $f_p \in \mathscr{A}_p[\|\cdot\|_p]'$ and converse, for $f_p \in \mathscr{A}_p[\|\cdot\|_p]'$ we get by (*) an element f of $\mathscr{A}[\tau]'$, continuous with respect to p. f is positive iff f_p is positive. Further we have: f is a continuous state iff f_p is a state; f is an extremal continuous state iff f_p is a state; f is an extremal continuous state iff f_p is an extremal state [5]. We denote by S (resp. S_p) the set of all continuous states of $\mathscr{A}[\tau]$ (resp. $\mathscr{A}_p[\|\cdot\|_p]$), by ex S (resp. ex S_p) the subsets of extremal states.

We will make use of the following result on the ideal structure of LMC*-algebras.

Proposition 4 [2]:

- (i) Every maximal closed left ideal \mathscr{J} in an LMC*-algebra $\mathscr{A}[\tau]$ is the left kernel of an extremal continuous state, i.e. $\exists \omega \in ex S$ such that $\mathscr{J} = \{x \in \mathscr{A} \mid \omega(x^*x) = 0\}$.
- (ii) Every closed left ideal I in an LMC*-algebra is the intersection of all maximal closed left ideals containing I.

Now we prove a lemma on the possibility of extension of continuous states. This result is well known for C*-algebras (see for instance [1], 2.10.1.).

Lemma 5: Let $\mathscr{A}[\tau]$ be an LMC*-algebra, \mathscr{B} a closed subalgebra of \mathscr{A} and $e \in \mathscr{B}$. If g is a continuous state of \mathscr{B} , then

(i) g can be extended to a continuous state of \mathcal{A} and

(ii) the extension can be chosen extremal for extremal g.

Proof: ad (i): There is a seminorm $p \in \Gamma^r$ such that $|g(b)| \leq p(b) \forall b \in \mathscr{B}$. Regard the algebras $\mathscr{A}_p = \mathscr{A}/\mathscr{N}_p$ and $\mathscr{B}_p = \mathscr{B}/\mathscr{B} \cap \mathscr{N}_p$, $\pi_p': \mathscr{B} \to \mathscr{B}_p$ the natural homomorphism. \mathscr{B}_p is a C*-algebra under the norm $||\pi_p'(b)|| = p(b)$ and $\pi_p'(b) \to \pi_p(b)$ is an imbedding of \mathscr{B}_p in \mathscr{A}_p preserving the norm, thus we can regard \mathscr{B}_p as a C*subalgebra of \mathscr{A}_p . g_p is a state of \mathscr{B}_p and so it can be extended to a state f_p of \mathscr{A}_p . Define f by (*). Then f is a continuous state of \mathscr{A} and for $b \in \mathscr{B}$ we have $f(b) = f_p(\pi_p(b))$ $= g_p(\pi_p(b)) = g(b)$.

ad (ii): For extremal $g g_p$ is extremal too (Prop. 4). Then one can choose f_p extremal [1] and so f is extremal **2**

Remark: We cannot directly use extension theorems, because in general e is not an inner point of the positive cone.

We are able now to prove our theorem:

Proof: Let $a \in \mathscr{A}$ be an unbounded element. Without loss of generality we can assume $a \in \mathscr{P}(\mathscr{A})$, since for unbounded $a \ a^*a$ is unbounded too. Let us regard the commutative closed subalgebra $\mathscr{A}_0[\tau]$ of $\mathscr{A}[\tau]$ generated by a and e. We have $\mathscr{A}_0[\tau] \stackrel{I}{=} C(X)[\tau_0]$ (Th. 3). Then $a(t) \ge 0 \forall t \in X$ and a(t) is an unbounded function. Set $a_n(t) = \min(a(t), n) \in C(X) \forall n \in \mathbb{N}$ (N is the set of natural numbers); $a_n = I^{-1}(a_n(t)) \in \mathscr{A}_0$. By Theorem 3 we get $\forall n \in \mathbb{N}$

$$0 \leq a_n < a, \quad a_n \in \mathscr{A}_b \quad ext{with} \quad ||a_n|| = n, \quad a_n \leq a_{n+1}$$

and $a = \tau$ -lim a_n . Therefore $0 < a_n \leq ne$ and there is a number $n_0 \in \mathbb{N}$ such that $a_n < ne \forall n \geq n_0$.

In the following we consider only indices $n \ge n_0$. Put $b_n = ne - a_n$. Regarding the functions $b_n(t)$ one finds: $0 < b_n \le b_{n+1}$. For $F_n = \{t \in X \mid b_n(t) = 0\}$ we obtain

$$F_n \neq \emptyset$$
, $F_n \neq X$ and $F_n \supseteq F_{n+1}$. (**)

Further, the extremal continuous states of \mathscr{A}_0 are the "point functionals" of C(X), i.e. the states $\omega_{t_0}(a) = a(t_0)$ ($t_0 \in X$). These states can be extended to elements of ex S by Lemma 5. From this considerations and (**) it follows for the sets

$$\begin{aligned} R_n &= \{ \omega \in \text{ex } S \mid \omega(b_n) = 0 \} : \\ R_n &= \emptyset \ \forall \ n \in \mathbb{N} \quad \text{and} \quad R_n \neq \text{ex } S ; \qquad R_{n+1} \subseteq R_n \quad \text{since} \quad b_n \leq b_{n+1}. \end{aligned}$$

Consider now the sets

$$\mathscr{I}_n = \bigcap_{\omega \in R_n} \mathscr{I}_{\omega} \quad \text{where} \quad \mathscr{I}_{\omega} = \left\{ x \in \mathscr{A} \mid \omega(x^*x) = 0 \right\}.$$

Then, \mathscr{I}_n is a closed left ideal in $\mathscr{I}[\tau]$, $b_n \in \mathscr{I}_n$ (and hence $\mathscr{I}_n \neq \{0\}$) and $\mathscr{I}_n \subseteq \mathscr{I}_{n+1}$. Now, let us regard $\mathscr{J} = \bigcup_{n \in \mathbb{N}} \mathscr{I}_n$. Obviously, \mathscr{J} is a proper left ideal in \mathscr{A} . Now we

show that \mathscr{J} is dense. Assuming the converse then by Prop. 4 there is an element $\sigma \in \operatorname{ex} S$ such that $\mathscr{J} \subseteq \mathscr{I}_{\sigma} = \{x \in \mathscr{A} \mid \sigma(x^*x) = 0\}$. But $\sigma(b_n) = \sigma(ne - a_n) = n - \sigma(a_n) \ge n - \sigma(a) > 0$ for sufficiently large n, hence $b_n \notin \mathscr{I}_{\sigma}$ for such n, and so we have a contradiction. Thus, our proof is complete

Remarks: 1. The converse of our theorem is not true, i.e. there are LMC*algebras without unbounded elements containing dense ideals. Such algebras one can find already in the commutative case. To see this take a pseudocompact and locally compact, but not compact, completely regular space X. (An example of such a space one finds in [4], it is a space of ordinals with suitable chosen topology.) We take the algebra $\mathscr{A} = C(X)$ with the topology τ given by the seminorms $p_K(x) = \sup_{t \in K} |x(t)|$ where K runs over all compact subsets of X. $\mathscr{A}[\tau]$ is a LMC*-algebra,

the completeness is given by the locally compactness of X. Since X is pseudocompact, every continuous function on X is bounded, hence $\mathscr{A}_b = \mathscr{A}$. But there is at least one dense ideal in $\mathscr{A}[\tau]$. To see that take the one-point-compactification X^* of X and the ideal of all functions vanishing in a neighbourhood of the adjoint point.

2. In the commutative case, the dense maximal ideals are in one-to-one correspondence to the extremal states of $\mathscr{A}_{b}[|| \cdot ||]$, not extendable to continuous states of $\mathscr{A}[\tau]$. The question, wether it is so in the general (noncommutative) case, is yet open. The structure of dense maximal ideals was described only in the case that the LMC*-algebra is a direct product of C*-algebras [2].

REFERENCES:

- [1] DIXMIER, J.: Les C*-algebres et leurs representations. Gauthier-Villars: Paris 1969.
- [2] FEITZSCHE, M.: Zur Idealtheorie topologischer *-Algebren. Diss. A: Leipzig 1978.
- [3] FRITZSCHE, M.: Über Ideale in LMC*-Algebren. Wiss. Zeitschr. der KMU Leipzig 3 (1978), 253-259.
- [4] GILLMAN, L., and N. JERISON: Rings of Continuous Functions. Van Nostrand: Princeton 1960.
- [5] INOUE, A.: Locally C*-algebras. Mem. Fac. Sci. Kyushu Univ. Ser. A 25 (1971), 197-235.
- [6] SCHMÜDGEN, K.: Beiträge zur Theorie topologischer *-Algebren und ihrer Realisierungen. Diss. A: Leipzig 1973.
- [7] SCHMÜDGEN, K.: Über LMC*-Algebren. Math. Nachrichten 68 (1975), 167-181.
- [8] ŽELASKO, W.: On maximal ideals in commutative m-convex algebras. Studia mathematica 58 (1976), 291-298.

Manuskripteingang: 25.05.1981

VERFASSER:

Dr. rer. nat. MARLEN FRITZSCHE Sektion Mathematik der Karl-Marx-Universität DDR-7010 Leipzig, Karl-Marx-Platz 10