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Remarks on the dual least action principle 

M. WILLEM 

Es sei L ein selbstadjungierter Operator mit abgeschlossenem Wertevorrat in einem Hubert-
raum H, und es eel : H -+ R eine konvexe Funktion. Unter der Voraussotzung, daB keine 
Resonanz vorhanden 1st, wird die Frage behandelt, ob der Wertevorrat von L + 0V mit 
ganz H zusammenftllt. 
HyCm L — caAioconpnmeHHw11 onepaTop C 3aMKHyTO(1 o61lacm!o 3Ha qeF[Htt B rHJ1b6epT0n0M 
llOCTHCTB H, ip: H -* B — BEanywiaFi 4quialim. B OHOM B3OHBCHOM ciyae 
aioTca gocTaToqable ycosna AJIR. Toro, 'ITo6br o6iacm 3HaqeHIeft onepaopa L + aw cosnaaiia C H0CTUCTfl0M H. 

ItL bea self .adjointoperator with a closed range in a Hubert space H and let ip be a convex 
function on H. Under a non resonance assumption the surjectivity of L + VV is studied. 

Introduction 

Let H be a real Hubert space, let L: D(L) c H -> H be a self-adjoint operator with 
a closed range and let : H —> B be a continuous convex function. The surjeotivity 
of L + aip is studied under a non resonance condition due to DOLPH [8]. The basic 
tool is the dual least action principle of Clarke and Ekeland. In contrast to the 
previous applications of this principle, we consider the case when the right inverse 
of L is not necessarily a compact operator. 

1. The dual least action principle 

Let H be a real Hubert space with inner product (.,.) and corresponding norm 
Let L: D(L)= H —>11 be a self-adjoint operator with a closed range and let tp: H —>- It 
be a continuous convex function. Let a, fi, , and c be real numbers such that 
0 <1 5 y <ix and 

(A 1 )c(L) n]— ix, 

where r(L) denotes the spectrum of L, (A 2) for every u € H, 
uJ 

j9----c^-çp(u)	y — +c. 

Let us write 
K = (L I D(L) n R(L))-i, 
ip*(v) = sup [(v, u) — e(u)J,	v E II, 

U( 11 
and

= -- (Ky, v) ± *(v) ,	v € R(L).
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The function is the Fenchel transform of V. The present formulation of the "dual 
action" T was introduced in [5] for hyperbolic problems and in [9] for hainiltonian 
systems. See [7] and [10] for other abstract formulations. 

Lemma 1: Under assumption'  A 2 , if q has a local minimum on R(L), then equation 

—L'uE ø(u)	 (I) 

is solvable. 

Proof: If ç, has a local minimum at v E R(L), then for every h E R(L) sufficiently 
small and for every t € 10, 1[, we have 

ip*(v)	ip(v + th) + t(Kv, h) +	(Kh, h). 

Thus

—(Kv,h)	*( + th) - *(v) + (Kh, h).

t 

If t 4. 0, we obtain denoting by 64p*(v,.) the right Gateaux variation at v 

—(Ky, h)	6*(v, h). 

Since 6 3 p*(v,.) is positively homogeneous and subadditive, the Hahn-Banach 
theorem insures the existence of w E Ker L such that, for every h € H, 

(w, h) - (Ky, h)	64 (v, h). 

But then

(w - Ky, h) ;5 p*(v + h) 

i.e. w - Ky € Fhp*(v). It follows that v € &ti(w Ky). If u = w - Ky, —Lu v 
and u is a solution of (1) I 

The following lemma has been widely used in the study of hainiltoniau systems 
(see [9]). 

Lemma 2: Under assumptions A 1 and A 2 , 99 is coercive on R(L), i.e. ç(v) -> 
as lv -a. 00. 

Proof: It suffices to observe that A 1 and A2 imply that 

Vv E R(L)	_! Jv1 2 (Ky , v) 
OC 

and
1 1v12 

V v E H	___c*(v) I

0
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2. Surjectivity theorems 

:The following result generalizes Theorem 2.1 of [8] and Theorem 3.2 of [6]. It extends 
Theorem 1 of [7]. 

Theorem 1: Under aw.Lmption.s A 1 and A21 if a(L) n ]—oo, 0[ consists of isolated 
eigenvalues with finite multiplicity, then L + 4 is onto. 

Proof: Since, for any / E H, the function (u) - (/, u) has the same properties 

as vp(u), it suffices to prove that (1) is solvable. By assumption -- (Ky, v) is weakly 

lower semi-continuous (w.l.s.c.). Therefore q itself is w.l.s.c. By Lemma 2, 97 has a 
minimum on R(L) and, by Lemma 1, (1) is solvable I 

The following result extends Theorem 3.7 of [1]. 

Theorem 2: Under assumptions A 1 and A2 , if 
(a) vp is differentiable and OV is Lipschitzian with constant Ic 
(b) a(L) n 1—k, 0[ consists of isolated eigenvatues with finite multiplicity, them L + v 
is onto. 

Proof: As in Theorem 1, it suffices to prove that (1) is solvable. If ji € *(v1) 

we have v• = f)tp(11 ) (i = 1, 2). By Corollary 10 of [3], assumption (a) implies that 

•	 (V1 - V21	- /2)	Vj	V212. /1  

Thus q 1 (v) = *(v) - -- i!J_. is convex. 

Let (P2 :). E R} be the spectral resolution of L and let us write 

= f dP2 ,	Q2 = f dP1 ,	u = Q,u	(i = 1, 2; u E H). 
—co'—kJ 

It follows from assumption (b) that p2(v) =	(Ks,21 v2) is w.l.s.c. on R(L). Moreover, 
for any v € R(L), 

(Ky 1 , V j )	_. v	_- -

Thus 9;3(v) = ._ (Ky 1 , v 1 ) + ... i!_ is convex. Finally 99= q' + T. + 4P3 is w.l.s.c. 

and, by Lemmas I and 2, (1) i8 solvable I 

As an obvious consequence of Theorem 2 we obtain: 

• Corollary 1: Under assumptions A 1 and A2, if ip is differentiable and OV is Lip-
.schitzian with constant a, then L + &, is onto. 

Remark: Corollary 1 generalizes Theorem 1.2 of [8], Theorem 1 of [11] and 
extends Theorem 1.12 of [4].
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3. Periodic solutions of a nonlinear hyperbolic equation 

This section is devoted to the existence of 2-periodic solutions in t and x of the 
nonlinear hyperbolic equation 

uu — u+2u+ aj(u) = At ' x) 

where j: .R R is convex and / E H = L2([O, 2n] 2). We shall only consider the case 
when A = 1. The other cases are left to the reader. The ease when 2 = 0 is treated 
in [7]. 

Let A be the linear operator defined by 
D(A) = {u € C2([0 , 2n] 2): u(O, 	u(2n, .) = u,(O,.) — u(2,-r, •) 

zr 1L( . ,O)—u(.,2x)u(,0)—u(,2n)0} 

Au = uu — U. 

Let us write A = A* . Then A is self-adjoint and a(A), which is the set of odd integers 
and of multiples of 4, consists of eigenvalues which are of finite multiplicity except 0 
(see [12]).	 — 
':.Let ns define p:11—>Rby 

2n 2. 

t(u) =1	j(u(t, x)) dt dx. 
0 0  

The following theorem extends the results of [13]. 

Theorem 3: Assume that there exists fl, y and c E R such that 0 <f y < 2 
and, for every u E R, 

U2	 U2	 -
(2) 

then equation 

Au + u + o(u) = I 

is solvable for every •/ € H. 

Proof: It suffices to apply Theorem 1 with L = A + I and a = 2 I 

4. The growth of ip 

A sharp estimate of the growth of OV under assumption A 2 is given. 

Proposition 1: Under assumption A 21 there ex08 C' E R such that, /or every f, 
u E H,

/€ 4(u) => I/I	2y Jul + c'.	 (3) 

Proof: Let u € H and / E &(u). Assuming / + 0, let us write g = Ill/I. We have, 
for every t € It, 

(I, tg — u) + (u)	(1g)
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or
0	(tg) - ti/I + (I' u) - 

By assumption 

Ot2 j+ c_t I/l+ Jul /1—c" 

where c" = infv(u)> —co. Then 
otH 

I/I 2 4(c_c"+ Jul Ill) 

and (3) follows easly I 

Remark: The argument of the proof is due to BREZJs and NIRuBEBG [4, p. 3121. 

The following example shows that estimate (3) is •sharp. Let y E 1112, 1[, 

€]O,2y— 1[, p	and q=P. Let us define inductively to=y, 

	

l—y	p — I 
Un = pf,, and t 1 = u,/. Let us define r: R -- R by 

I

€ 11, t] 
u € ]—oo, 11 

r(u) =
qu + (1 - q) u, u € ]t, u] 
u, u € ]u,, t+]. 

If (u) = fr(s) ds, for any u E R, 

U2 
^ ,(u)	y - 

But, for any n € N, 4(u4 ) = u,, and u, -^ 00, n —> 00. Moreover, if L: R — fi is 
defined by Lit = —51t, assumptions A 1 and A2 are satisfied with a = 1, and, for 
any n E N, L'u,, + (u) = 0. Thus conditions A 1 and A 2 doesn't imply any a priori 
bound for the solutions of (1) (sec also [8] and [2]). 
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