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On some parabolic boundary control problems with constraints on the control 
and functional-constraints on the, state 

F. TROLTZSCH 

In dieser Arbeit worden parabolische Randsteuerprobleme in cinem n-diniensionalen beschränk-
ten Gebiet untersucht, bei denen zusatzlich zu einor punktweisen Steuerbeschrankung noch 
endlich viele lineare Funktionalbeschrinkungen an den Zustand gegeben sind. Als Zielfunktio- 
flul wird die L- oder L2-Norm der Diffcrenz zwischen dem Eñdzistand und einenigegebenen 
(erwünschten) Zustand verwendet. 

Es wird ein verallgemeinertes Bang- Bang-Prinzip bewiesen, weiches besagt, daB unter 
natürlichen Voraussetzungen fast uberall (bezuglich der Zeitvariablen) entweder die optimale 
Steuerung oder der zugehorige Zustand Werte am Rand des entsprechenden zulassigen Berei-
ches annimnit. Die Vora ussetzungen werden anhand von Beispielen diskutiert. 
B DTOR pa60Te paccMaTpuBaioTcn npo6JleMII ouTnMaJlbHoro ynpaasemin, onhlcMnaeMble 
napa6oJlsl4ecxnMIl ypaBHeunHMIl C TTb11M HpaeBhlM yCJIoBHeM B n-MepHofl orpaHu'oHHot 
o611acTIl. rip,, DTONt rpoie ToqeIHoro orpa ie'eiinn iia ynpan1emie 3a)aHo }coHe'Iuoe 'incjio 
31I1neHb1x (yHHInoHaJ1bHb1x orpalIM qe}JH1 Ha (a3013b1e HOOpHHaTbr. Ue21eBof 4)yHH1Hefi 
CJ1HT HOpMa pa3H0CTH xoHe4noro COCTOHHHH H aaaiIHoro (novpe6yeioro) COCTOHHHR n 
cMhicne npocTpaHcTu 4,0 lijiEl L2. 

JioFca3MBaeTcR O6o6EUeHHe npHHuHna peJIeHocTH. flpiii.ii COCTOHT B TOM, 'ITO npn 
ecvecTseHHalx npenoJIo+ceuuHx no'iTH ncioy (oTHodHTe.r!bHo nepeMeHHofl speMeHil) 31M60 
onTMMaJlhHoe ynpasseulle JIM60 cooTseTcTnylolqee COCTORHIIe flIIH11MT cBoe 3Ha qenne iia 
rpaussie A0nYCTlI5I0fk o6JlacTH. fl penoJIoReHHR o6cyaI0Tcn iia npMMepax. 
In this paper parabolic boundary control problems in a n-dimensional bounded domain are 
investigated, where in addition to a pointvise constraint on the control finitely many linear 
functional constraints on the state are given. As performance functional the L- or L2-norm 
of the difference between the final state and a given (desired) state is used. 

A generalized bang-bang-principle is proved which expresses that under natural assumptions 
almost everywhere (with respect to the time) either the optimal control or the corresponding 
state is acting on the boundary of its constraints. The assumptions are discussed by examples. 

1. Introduction 

The problem to heat a given body on its surface from certain initial temperature 
to a desired temperature distribution may be regarded as the motivation for an 
enormous list of papers on "minimum-norm boundary control for parabolic diffe-
rential equations". 
- Beginning with the basic work of Yu. EOOROv [14] in the majority of papers 
constraints on the (boundary-) control were imposed. To get some information-on 
this topic the reader is referred for instance to LIONS [6] (where the solution of the 
parabolic initial-boundary 'value problem is defined in Sobolev spaces), GLASHOFF 
and WECK [4] or ScIrlmT and WECK [9] (who use the definition of generalized 
solutions by means of a Green's function). Some new aspects of time-optimal control 
were presented by SCHMIDT [10] and [11]. 
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A basic result obtained in these and other papers is the so-called "bang-bang-
principle" asserting that under natural assumptions the optimal control admits 
almost everywhere values at its lower or upper bound. 

The main topic of this paper is to investigate a class of parabolic boundary control 
problems in a N-dimensional domain, defined in [4], with additional general state-
constraints. The result is the "generalized bang-bang-principle" which expresses the 
fact that almost everywhere (with respect to the time) either the optimal control 
admits its lower (upper) bound or the corresponding state is acting on its boundary. 

In this paper a large amount of results and notation will be adopted from the 
basic work [4]. The corresponding statements are listed in section 3. 

As the presentation of the results requires a large amount of pages other aspects 
of state-constrained problems are not investigated. The reader is referred for instance 
to recent papers of ±.ASIECKA [5], MACKENROTR [8] or SoKoLowsEl and SosNowsEl 
[12]. 

2. Notation 

Sets: Q g R(N E N, N 2) is a bounded domain with C00-boundary aQ; T: = fixed 
positive final time; I':= [0, T] x 092.. 
Spaces and pairings: If X is a Banach space its adjoint space is denoted by X'. 
The adjoint operator to a linear operator A is written A'. For it suitable compact 
set a the pairing between C(a) and C(a) is denoted with (., .) (a), the corresponding 
one between L(a) and L(a) with [.' .](a) (1	p < co, 11q + i/p = 1). 

(a, y) (0, T) := (a, y) (CO, T}), 

(a , Y)	Y) W) 

Norms: 1IN := Euclidean norm of RN, N € N,	:= ., 1•11 (a) := norm of

1 <p 00. 

Lagrange-/unction: In this paper the Lagrange-function 

k 
.2'(u, y) := [S'a, u] (a) -	(A 1u - ci', yj) (0, T) 

i=I 

k 

	

+	(A ,u - cj2, y 2) (0, T)	 (2.1) 
i =1 

is used, where 5, a, u, k, A,, yi f , cif become clear from the context and a	I' in 
section 4, a	[0, T] in section 5. 

3. The parabolic initial-boundary value problem 

3.1. Formulation 

Let L denote the symmetric and uniformly elliptic operator 

N a	a	\ 
Lw(x) := E --- (a,j(x) - w(x) ) + a(x) w(x), 

i.j=1 rjX1 i \	(/.4,;	/
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where a( .), a( . ) E C(), a,,( . ) = a,( . ), and 
N 

E a5(x) PIPj ^; CO I pI.V2,	Co > 0. 

Boundary conditions are defined as follows: There are introduced 9> 0, n() := 
outer unit normal in E Q, 

N	 a := Xn1() a11() —w(),	E Q 

(the conormal derivative), and 

Bw() := (11/9) 8w() + w(). 

The basic initial-boundary value problem is 

at 
w(t, x) - Lw(t, x) = 0,	(t, x) E (0, T] x Q,	 (3.1) 

w(0, x) = 0,	x€ Q,	 (3.2) 
Bw(t, ) = u(t, ),	(t, ) E (0, T] x aQ.	 (3.3) 

(The subscripts in L and B indicate that L and B are acting with respect to the 
space coordinates x and respectively.) The function u will be given in a certain 
function space. 

3.2. The Greens function and its series-representation 

For u( . ,.) E C(I) there exists a solution of (3.1-3) in classical sense. This solution 
can be explicitely represented by 

w(u; t, x) = /9 f  G(x, , t, s) u(s, ) dS ds	 (3.4) 
0 a 

(dSE := surface element on aQ), where 0 is the Green's function which is defined, 
continuous and non-negative on	 - 

{(x,, t,$) I (x, ) E D x	, 0 :!-, s ^ t :!!^ T} \ {(x, ,t,$) Ix = ,t = s}. 

There holds the estimation 

IG(x, , t, s)	c(t - )I2 exp (—C Ix - IN 2/(t - s))	 (3.5) 

(c, C> 0). Using a generalization of Lemma 1, chpt. 1.3, in A. FRIEDMAN's book [2] 
to La-spaces one shows similarly to the proof of Lemma 1 in [3] that w(u;.,.) 
defined by (3.4) is in C([0, T] x Q), if u( . ,.) E L(r) and p> N + 1. Now once 
and for all p> N + 1 is kept fixed, and for u E L(r) the corresponding function 
w(u; t, x) is called generalized solution of (3.1-3). 

Denote with 'k and Vk the non-negative eigenvalues and corresponding normalized 
eigenfunctions of the eigenvalue problem 

Lv(x) + v(x) = 0,	x E Q;	 (3.6) 
Bv( = 0.	€ aQ.	 (3.7) 

1*
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It is known that yk} is a complete orthonormal system in &(Q), Ak ck2/ N if k - oo, 

and that Ik'kI(Q) = &(km) with certain m E N. The Green's function G can be 
expressed in terms of the eigenfunctions Vk by 

G(x, , t, s) = Z v(x) v() exp (-2(t - s)).	 (3.8) 

(A nice discussion of that relation is contained in [4],Appendix A.) In [4] it was also 
shown that the linear hull of the system {v} is dense in C(Q). 

3.3. Some linear operatorsand their adjoints 
Here some important properties of certain linear operators are presented, which will 
be frequently used in the following sections. Throughout this paper the operator S 
is defined by 

(Su) (x) := w(u; T, x),	x E Q,	 •.	 (3.9) 

where w(u; t, x) is now defined by (3.4). As already mentioned, the representation 
(3.4) can be continuously extended to La-spaces with p> N + 1, and hence S is a 
linear continuous mapping from L(r) into C(Q). For the adjoint operator 
8' : U(Q) -> L(F) (q = p/(p - 1)) there holds 

Lemma 3.1: De/ine for fixed a € C'(Q) and (t, x) E [0, T) 

At, X) := p'(a,v)exp(—A(T - t))v(x).	 (3.10) 

Then

(i) p E C([0, T) x Q);

(ii)

 

-T p(t, x) = Lp(t, x) on [0, T) x Q, 

BEp(t, ) = 0 on [0, T) x ØQ; 

(iii) pi  E Lq(P); 
(iv) S'a = pir. 

Proof: Relations (i) to (iv) were proved for the case p = cc, q = 1 by GLASHOFF 

and WECK [4], Lemma 3. The only difference is given here by q> 1. Since 
S: L(f') -> C(Q) it must hold S'a € L(fl. Hence (iii) is implied by (iv) of Lemma 3, 
[4]I 

It was proved by SCRMIDT and WEeK [9] that for non-zero p(t, x) the set 

= {(t, x) € r I p(t, x) = ep(t, x)/an(x) = 0) 

has measure zero. This is an important tool to show bang-bang-theorems. 
Now another linear operator will be investigated. Let q' be a continuous linear 

functional on C(Q) and define A by 

(Au) (t) := (, w(u; t, .)).	 (3.11) 

A is a continuous linear mapping from L(F) into C[0, T], since w(u; . ,.) € C([O, T] 

X Q), if u € L(P). Thus there is a continuous adjoint operator A' G'[0, T] 
= NBV[0, TI Lq(I'). The representation of A' is needed only on certain subinter-
vals of [0, T]. There holds
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Lemma 3.2: For y( . ) E NBV[O, T] assume y(t) = y(a) on [a, b) 9 [0, T]. Then 

(A'y) (t, x) = fl(ç, v)v(x)fexp (_)(s - t))dy(s)	 (3.12)


on [a, b) x Q. 

Proo/: Take e> 0 sufficiently small, define z(t, x) to be the right side of (3.12) 
and put

H := {u E L(r)IsPpu [a,b - 2e] x Q). 

II is a linear subspace of L(J.'). For u € H 

(y, Au) (0, T) = f(Au) (1) dy(t) ±f(Au) (t) dy(t), 

and, because u(t, x) = 0 on [0, a] X aQ 

y , Au) (0, T) =f (Au) (t) dy(t) 

T	00	

=
bJ2	

ex  (—(t - s)) v8() u(s, ) dS4 ds) dy(t). 
b—e	n=1 a SQ 

Since t - s	the series in the brackets is uniformly convergent, thus after changing

the order of integration and summation there is obtained 

(y, Au) (0, T)	 (9" v) v() f exp ( 8(s - t)) dy(s) u(t, ) dS5 dt 
a SQ nI 

= [z, u] (F),	 - 

since u € H. This, however, implies (A'y) (t, x) = z(t, x) on (a, b - 2e), and e —> 0 
proves the statement I 
4. The boundary control problem 

4.1. Existence of optimal controls and opthnality conditions 

Let there be given z( . ) € C(D), c'(•) and c 1 2(•) € C[0, TJ (i = 1, 2, ..., k) with 
c12(t) - c,'(t) > 0 on [0, T], and linear functionals 92i € .C'(Q). Then the control 
problem is 

ISu — zIJ (0) = mm!	subject to u E L(F),	 (4.1) 

IIu i[ (F) _< 1,	 (4.2) 

j, w(u; t, .)) ^ c1 2 (1,)	(t € [0, T]; i = 1, 2 ..., k).	(4.3) 

The presence of the state-constraints (4.3) is the main point of this paper and 
makes the problem different to that investigated in [4]. The reason to impose this 
general type of constraints is the fact that several kinds of state constraints for 
heating problems (especially certain stress-constraints) can be expressed in the form 
(4.3).
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Remark: All the theory is written down for the L,,-norm in (4.1). The same 

results hold for the L2-norm, which is even easier to handle. Then only (.,.) is to 
be replaced by [., .](Q) and U(D) by L2(Q). 

Theorem 4.1: If there is at least One U € L(F) such that (4.2) and (4.3) are ful-
filled, then there exists an optimal control. 

Proof: The set u I ijuji,,.(F) 1} is weakly compact in L(F). The set of all 
U € L(F) which fulfil (4.3) is weakly closed in L(r) and the functional (4.1) convex 
and continuous, hence weakly l.s.c. Thus existence is assured by the theorem of 
Weierstrass U 

Define now linear operators A 1 by 

(Au)(t) : = '(9,j, w(u; I, .)) (1 = 1, 2, ..., k). 

All A i are linear and continuous mappings from L(P) into C[O, T]. An optimal 
control of problem (4.1-3) is now supposed to exist and denoted with u 0 . Then the 
following optimality conditions are obtained: 

Theorem 4.2: Suppose that there exists Tt with ![ZJ (F) < 1 and 

c'(t) < (A 1 i) (t) < c 2(t)	(t E [0, TI; i = 1, 2, ..., k)	 (4.4) 

("Slater-condition"). If no is an optimal control and IJSuo - z (Q) > 0, then there 
exist 2k-non-decreasing Lagrange multipliers yjI, y2 from NBV[0, T] and a non-zero 
a € U(Q) such that 

mm {(S'a) (t, x) +	(A'(y2 - Yi')) (t, x)} u	 (4.5) 
IuI1	 1=1 

is achieved by u0(t, x) a.e. on F and 

f(A 1u0 - c1 2) (t) dy12(t) = f (A 1u0 - ci ') (t) dy1 1(t) = 0	(i = 1, 2, ..., k)	(4.6) 

("complementary slackness conditions"). 

Proof: Define U = {u € L(F) I u fulfils (4.2-3)}. Thus RSu0 —z (Q) 
= inf IlSu - zJJ (i). Since JjSuO - zI! () > 0 there is a non-zero a € O'(Q) with 

UEU 
(a, Su0 - z) = inf (a, Su - z). (See [4], (4.3)). Thus u0 solves the linear continuous 

oW 
programming problem 

[5' a, u] (r) * = mm,	IIuI1 (F)	1, 

c1 1(t) ^ (Au) (t) ^S c 2(t)	(i = 1, 2, ..., k). 

The Slater-condition (4.4) assures that u0 solves this program if and only if there 
exist Lagrange multipliers mentioned in the theorem such that (u0 , Yo) with 
Yo = (y,', ..., ykI, y 2 , ...,	is a saddle point of 2'(u, y) defined in (2.1), i.e. 

..92(u0 , Yo) = mm 2'(u, Yo) = max 2(u0, y)	 (4.8)

Ijull(1)1 

(y 0 means that all y, 1 are non-decreasing), see LUENBERGER [7], Corollary 1, 
p. 219, and Theorem 2, p. 221. Writing down the expression for '(u, y) one finds 
that the first equation of (4.8) implies (4.5) and the second one (4.6) 1



Parabolic boundary control problems with constraints	7 

4.2. Generalized Bang-Bang-Principle 

For problems without the state-constraint (4.3) the so called bang-bang-principle 
can be shown to hold for the optimal control. The presence of state-constraints 
changes this behaviour. However, a natural generalization of the bang-bang-prin-
ciple can he obtained. To prove this generalization the following growth-condition 
is essential: 

'If r > 0 and {b'3} W is a sequence of unit vectors, whose components do not 
change their sign for all n ^ n0 , then 

co
 (
/k 
E b 1 '(q,4 , vs)) exp (hr) = +oo.	 (4.9) 

n=1 \i=1	/ 

If only one functional constraint is given (k = 1), then (4.9) is equivalent to the 
simpler condition 

v,,)2 exp (A,,T) = +00,	r> 0. 

Theorem 4.3: Suppose for an optimal control u0 that 
(i) I1&Lo - Z Ilco (_) > 0, 

(ii) the Slater-condition (4.4) is fulfilled, 
(iii) the growth-condition (4.9) is met, and 
(iv) a j span {q, ..., q}, where a E C'(Q) i8 defined in Theorem 4.2. 
Then

mes ((t, x) € r I u0(t, x)I < 1 and c,'(t) < (A 1u0 ) (t) < c,2(t) 

(i=1,2,...,k)}=O. 

The assumptions of this theorem will be discussed by means of examples -in 
Section 6. For the proof of Theorem 4.3. the following statement is used: 

Lemma 4.1: If f(t) is continuous non-increasing and E NBV[a, b] is non-
decreasing, then 

ff(t) dy(t)	f(b) (y(b) - y(a)). 

Proof: Take any partition a = t0 <t 1 < ... <t,, = b of [a, b]. Then 

f(t 1 ) (y(t 1) - y(t 1_ i )) 2^ f(b)' (y(t,) - y(t 1_1 )) = 1(b) (y(b) - y(a)). 

The proof is finished letting n --

Proof of Theorem 4.3: Define 

M:= It E (0, T) I c'(t) < (A 8u0 ) (t) ( c2(t)} 

iii is union of countably many open intervals (components), since all (A 1u0) (t) are 
continuous in t. Now suppose that the theorem is not true. Thus there is a component 
(a, b) M and e> 0 sufficiently small such that a = {(t, x) € (a, b - 2e] 
x Q j Ju0(t, x)J < 1} has positive measure. Hence (4.5) gives 

/	 k 
(S'a + ' A'(y1 2 - yi')) (t, x) = 0	 (4.10) 

i=1	 1,
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almost everywhere on ci. Moreover (4.6) implies for t E (a, b) 

0(t) = y(a)	(i = 1, 2, ..., k; j = 1, 2).	 (4.11) 
Now put y	y2 - y1 1 , r	b - 3e/2 and define ocr, a2 E C'(L2) by 

(a1, v) := (a, v) exp (_)(T - 

(a2, v) :=	v)fexp (—).(s - T)) dy(s). 

a 1 and a 2 are uniquely determined linear continuous functionals on L2(Q) 
since the-system {v} is a base for L2(Q) and IjVkjI (Q) = t?(km). Furthermore on 
[0, r) x (2 there is introduced 

p,(t, x) := (a1 + a 2 , v) exp (—)(r - 1)) v(x). (4.12) 

Because of (4.11) the representation of the A' is given on (a, r] by Lemma 3.2., 
(3.12), and after extracting the terms exp ( — ( T - t)) in the series for S' and A1' 
it is found out that (4.10) implies 

p,(t, x) = 0 (4.13) 

a.e. on a (remark that according to (4.11) the integration in A,' is only to stretch 
over [b - , T]). Applying Lemma 3.1. with T := r shows that p,(t, x) solves the 
equation -

	

	p =Lp on (0, r) x £2 together with BEP( t, ) I = 0. Thus (4.13) gives 
at 
bp,(t, )/3n() = 0 on a, and hence p(t, x) = 0 on [0, r) x £2 is obtained using the 
result of SCHMIDT and WECK [9], Corollary 2.3., which has already been mentioned 
in Section 3.3. After integration of v(x) p,(t, x) one finds (a 1 + a 2 , v,,) = 0 
(ii = 1, 2, ...) and therefore 

(a, v) =	(, vn)fexp (),(T - s)) dy(8)	 (4.14) 

is obtained for n = 1, 2, ... Define t	b to be the first point, where at least one 
y1 2(y ') is increasing, i.e. 2(t) > y .2(b - e) (y1 '(t) > y'(b - e)) for t > to. Assume 
at first t0 < 

Because of (4.6) there must hold (A 1 u0) () = c,2(t0) (= c'(to)), and the continuity 
of (4u0 ) (1) assures (A 1u0) (t) > c'(t) (< c1 2(t)) on [to, t0 + 261 with 6 > 0, to ± 26 < T. 
Applying oncemore (4.6) it is found that y'(t) (y2(t)) is still identically constant on 
[t0 , 10 + 261. Define h, := y(t0 + 6) - y1 (b - e) (i = 1, 2, ..., k). Now, suppose that 
y1 2 is increasing in t0 . Applying Lemma 4.1. 

di" :=fexp ().(T - s)) dy1(s) 

tQ +o	 1' 

f exp ()(T - s)) dy12(s) ± 0 - f exp ().(T - s)) dy1(s) 
b-e	 t.+26 

> exp ().(T - t0 - 6)) h1 - exp ()(T - t0 - 26)) var y(•) 
t,+25 

exp (1(T - t0 - 6)) h1/2	 (4.15)



Parabolic boundary control problems with constraints 

is obtained for n no sufficiently large. If yi l increases the same holds for —d1" 
and —hi . Thus for n no the di" do not change their sign. Applying the same method 
to the remaining Lagrange multipliers, which increase at first in t > t 0 , it is found 
that all the di" do not change their sign from a certain no on. Define b' := 
Then by (4.14), (4.15), and assumption (iii) for t > 2(t + (5) - T, r := T - 2(t0 + (5) 
+ t> 0, and p(t, x) defined by (3.10) 

-'(x, At ,	'(x, v,,)2 exp (_),,(T - t)) 

(=1
	?)) b t ) dIk2 exp (-4(T

n=fl 
00 / fl 

^ h 	( E(q ,, v,,) b") exp(),,r) = +oo 
n=n. \i=i  

is obtained with certain h > 0, contradicting p( . ,.) € C([0, T) x Q). Hence the 
assumption t0 <T was false. it remains to discuss to = T. Now only jumps are 

/	k 
possible in t0 . Put d1 := y(T) - y1 (b - ). Then (4.14) gives (o +	d9,, v,, = 0, 

-	 k 
n € N, and cI span {v,,} = C(Q) implies a = -' dt-p, in contrary to assumption (iv). 
Thus the theorem must be true I 

After this paper was accepted for publication in this journal some new results on 
generalized bang-bang-principles were found by MACKENROTR [15]. He extended 
the author's method to time-optimal control of parabolic equations in Sobolev 
spaces as well as to convex constraints. 

Assumption (iv) is in general difficult to verify, since a is only known, if uo is 
determined. However, in the case of the L 2-norm as performance functional con-
dition (iv) is automatically fulfilled, if (i) holds and the qj cannot be extended from 
C(Q) to the space L2(Q). This follows from x = const (Su0 - z) € L2(Q) after iden-
tifying L2'(Q) with L2(Q). 

There can be constructed counter-examples, which already for Ic = 1 show that 
an assumption of the type (4.9) on the growth of the ç, cannot be omitted. 

5. Control only time-dependent 

An important class of parabolic boundary control problems is obtained, if the 
control u(t, x) has the form g(x) ü(t) with fixed function g. Here the theory will be 
extended to this class along the lines of [4]. The following problem is regarded: 
Define now w(u; t, x) to be the generalized solution of 

at 
w(t, x) = Lw(t, x),	(t, x) € (0, T] x Q,	 (5.1) 

w(0,x)=O,	x€Q,	 (5.2) 

Bw(t, ) = g(E) u(t),	(t, ) E (0, T] > eQ,	 (5.3)


where g( . ) € L00(W) is given fixed. According to (3.4) this means 

w(u; t, x) = f Z v,,(x) g,, exp (_).,,(t - s)) u(s) ds	 (5.4) 
0 n=L
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with g :=f v() g() dS. Analogously to Section 3 the operator S is defined by 

(Su) (x) := w(u; T, x), which is now a continuous mapping from L[O, T] into C(D), 
if p> N + I. The control problem is 

I!Su - Z11 (Q) = mm!	 (5.5) 

subject to J JuJJ,, ([0, T]) :!9 1 and (4.3). 
The existence of an optimal control is proved analogously to Theorem 4.1. Define 

now the set K(g) := {j E N I gj =1= 0} and the subspace L(g) := span {v1 I j E K(g)). 
For p € C'(Q) define PL to be the restriction of q to cI L(g). 

There holds 

Theorem 5.1: Let u0 be an optimal control /or problem (5.5). Suppose that 
(i) 11 SUO - z IJ(Q) > 0, 
(ii) the ,Slater-condition (4.4) is fulfilled, 

(iii) condition (4.9) is met with f instead of Z, 
flEK(g)	 n=1 

(iv) OIL span 10114,.. . , (k)L}' 
(v) A, + A (i, j € K(g)). 
Then the set 

{t € [0, T] I u0(t)I < 1, c .1(t) < (Au0) (t) < ; 2(t)	(i = 1, 2, ..., k)} 

has measure zero. 

Proof: The proof is only briefly scetched, as its main ideas are the same as those 
for validating Theorem 4.3. If Theorem 5.1. would not hold, then instantly 

x, vn> = • (9,i, v)feXP ().(T - s)) d(y 2 (8) - 

is obtained for n € K(g), which corresponds to (4.14). Using the expression (S') (t) 
= E (x, v,,) g exp (_2(T - t)) there is obtained analogously to the further proof 

,iEK(g) 
of Theorem 4.3 

F	k 
(c+'d 1 q 1,v=0,	n€K(g).	 0 

i=1 

Since cl L(g) = {v € C(A) I (v, v,,) = 0, n € K(g)} (cf. [4], (3.2)-Lemma 7) this implies 
OI L € span {(9'l)L, ..., (9'k)L}, contradicting (iv) I 

Using analyticity arguments as in TRöLTZSCU [13] the stronger result can be 
proved that u0(t) has at most countably many switching points on 

M = {t € [0, T] I c11(t) < ( A 1u) (1) < c12(t)	(i = 1, 2, ..., k)} 

and accumulation points of switches can be only located at the right ends of com-
ponents of M. 

6. Examples 

In this section some types of state-constraints are discussed, which may be expressed 
in terms of a linear functional. It will be shown that in these cases the growth-
condition (4.9) is met.



Parabolic boundary control problems with constraints	11 

Throughout this section take N 2, Q := unit ball of .R', and L := AN, the 
Laplace operator. It is convenient to introduce spherical coordinates (, r) 
= ..., 19N_1, r) and to put w(u; t, x) = y(u; t, I, r), where y is solution of the 
corresponding initial-boundary value problem in spherical coordinates. The nor-
malized eigenfunctions of problem (3.6-7) are given by 

Vjjm(X) = 8m(0() c1( 1 + N/2_1)r_N/2+lJ+N/2_l(x,(I+ N12 

i = 1, 2, ...; 1 = 0, 1,...; m = 1, 2, .., VN(l); with the number .VN(l) of linearly 
independent spherical harmonics S,,," of order 1, the Bessel-function J, of order v 
and normalizing constants 

:= (J rJ,2(x,'r) dr) 

The eigenvalues	are given by A1 , = (x(1+NI2_1))2, where x•' is the k-th solution 

of

xJ,'(x) + (fl + IV12 - 1) J,(x) = 0, 

and have multiplicity V(l) 
= (1 + N - 1\ Ii + N - 

3\) N - 1 ) - N - 1	According to [1], 

7.10.4, (49), and to the equation for the x 1 ' one finds 

= 2(x1())2/((x(.))2 -1-- fl(9 -4- 2v)) J,2(x,(')). 

Example 1: Regard the state-constraint f w(u; t, x)dx1 ^5 c, c> 0, where w is 

defined by (3.4). This constraint fits in the scheme of problem (4.1-3) introducing 
k = 1, c 1 ' = —c, c12 = c, and defining ip, by (q, v) :=f v(x) dx. Now (4.9) will be 

shown to hold. With v := N12 - 1, xi 	ci 	one obtains for i = 1, 2, 

1 41, v101)I =	r'J,(xr) 7N1 drc1 = f7' 9 J(x1r) drc1 

-	2( + 2v)	> 2( + 2v) 
+ 2v) + x 2) IJ,(x)I = 9(1 + 2v) + x2 

using [1], 7.2.8., (55), 7.7.1., (1), and the equation for x 1 . The remaining scalar 
products are vanishing, as Sj(o)(t9) 1 is orthogonal to all other spherical har-
monics. Taking into account the asymptotic behaviour of x• one sees that 

00	 00 
V.)2 exp (A,,r) =	(q'i, v101)2 exp (x1 2r) = +oe, 

if r> 0. Thus (4.9) holds. 

Example 2: Choose a fixed x0 E Q and g() = 1 on Q. Regard the constraint 
w(u; t, 0) - w(u; t, x c for the control problem with u only time-dependent, 
i.e. w is now defined by (5.4). Now the functional q, (, v) := v(0) - v(x0) is to be 
used. There holds K(g) = {(i, 1, m) I 1 = 0, m = 1, i E N}. Using the same notation 
as in Example 1 one has 

v 0 , 1(0) - v .0, ,(x0 ) = c(x'1(2'r( + 1)) — J,(x1)).
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Since Ici l	1 for sufficiently large i and J,(x) —> 0 for i -'- cc, there holds

v 01(0) — v,0.1(xo)I ^ 1 for i L> i0 . Therefore with r> 0 obviously 

! (, v,)2 exp (A,r)	1 exp (x 1 2r) = +00 nEK(g)	 i=.io 
is fulfilled. 

Example 3: Choose the notation as in Example 2, take N := 3 and impose the 
constraints 1w(u; t, 0)1 ^5 c, and 1w(u; t, x) I ^ c (control u only time-dependent). 
Now there is to define k := 2, (, v) := v(0),	v) := v(x0). Since now v = 1/2 
one has J,(x) = (2/(rx)) 1 I2 sin x and	'x. + tan x1 = 0 (i = 1, 2, ...). Thus 
x, E ((i — 1) I, in), x	42 + z(i — 1), and sgn J(x 1 ) = (_l)i1. 

Take now a sequence {b(")} = {(b 1 ', b2("))} with (b 1('))2 + (b2("))2 =,,I and 
assume without limitation of generality b 1 ")b2(")	0 for all n. Then 

K	' (b 1 (')(q 1 , v8) + b2( ' )( 2 , v,,)) 2 exp (A,,r) 
n€K(g) 

= (b1°x'/(2'P(v + 1)) + b2 ( i)J'(x1 ))2 c 2 exp (x12v) 

00 

' (b 1 i-'	(x1_1/(2'.T'(v -f_ 1)))2 -I- (1 - (b1(2i-1))2) (2rx21_1)' 

X exp (X2 
2j 

for sufficiently large j0 (using sgn J(x21-1 ) = 1 and the estimations J,(x1)I (2x)- 1I2 and Ici l	1, which hold for sufficiently large i), and hence 

K = const ± E(2x21_ i y' exp (X2 IT) = +00 

is obtained for sufficiently large j and t> 0. Thus (4.9) holds, if	> 0. 
If b 1 (n)b2(')	0, then the proof is carried out setting i := 2j, j = 1, 2 1 ... I 

Acknowledgement: The author wants to express his gratefulness to Prof. L. v. Wol-
fersdorf for his support during the preparation of this paper. 
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