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On some parabolic boundary control problems with constraints on the control
and functional-constraints on the state -

F. TrOLTZSCH

Indieser Arbeit werden parabolische Randsteuerprobleme in einem n-dimensionalen beschrink-
ten Gebiet untersucht, bei dencn zusitzlich zu einer punktweisen Steuerbeschrinkung noch
endlich viele lineare Eunktio_nalbeschriinkungt\en an den Zustand gegebensind. Als Zielfunktio-
nal wird die Leo- oder L,-Norm der Differenz zwischen dem Endzustand und einem gegebenen
(erwiinschten) Zustand verwendet.

Es wird ein verallgemeinertes Bang-Bang-Prinzip bewiesen, welches besagt, daB unter
natiirlichen Voraussetzungen fast iiberall (beziiglich der Zeitvariablen) entweder die optimale
Steuerung oder der zugehérige Zustand Werte am Rand des entsprechenden zulissigen Berei-
ches annimmt. Die Voraussetzungen werden anhand von Beispielen diskutiert.

B aroit paGote paccmaTpuBaOTCA NpOGIEMH ONTHMANBHONO YNPABIGHHA, ONHCHBAEMBIC
NapaGoaMueCKUMI YPABHCHHAMH ¢ TPEThUM KDPAEBHIM YCIOBHEM B n-MCPHOI OTPaHUYEHHOMN
obnactu. Ilpn oTOM KpoOME TOYEUHOTO OTPAHUUCHHMA HA YNpaBieHHe 3a1aHO KOHEUHOe YHCIO
BHASHHEIX QYHKIMORANLHLIX OrpaHM4YeHHH Ha (asoBue KoopauuaThi. Lledesoft dynruneti
CHYHUT HOPMA PAZHOCTH KOHEYHIOTO COCTOAHMA H 3aXAHHOrO (MOTpefyemoro) COCTOAHMA B
CMBICHIE NIPOCTPAHCTB Lo, naut L,.

HokaswiBaerca odobwenue npuuuuna peseitnoctd. [lpuHuun cocTout B ToM, 9TO npn
€CTECTBEHHLIX IPERNONOMENHIAX MOYTH BCIORY (OTHOCHTENLHO MCPEMEHHON BpeMcHH) MG
ONTHMAJLHOE YNPABJIEHHE JMG0 COOTBETCTBYIOWICE COCTOAHIE MPUHAMAET CBO® 3HAYEHMe Ha
rpannue aonycrumod obaactn. Ipexnononenus o6CyKIAI0OTCA HA NPUMEPAX.

In this paper parabolic boundary control problems in a n-dimensional bounded domain are
investigated, where in addition to a pointwise constraint on the control finitely many linear
functional constraints on the state are given. As performance functional the Ly or L,-norm
of the difference betwecn the final state and a given (desired) state is used.

A generalized bang-bang-principle is proved which expresses that under natural assumptions
almost everywhere (with respect to the time) either the optimal control or the corresponding
state is acting on the boundary of its constraints. The assumptions are discussed by examples.

1. Introduction
The problem to heat a given body on .its surface from certain initial temperature
to a desired temperature distribution may be regarded as the motivation for an
enormous list of papers on ‘“minimum-norm boundary control for parabolic diffe-
rential equations™.

. Beginning with the basic work of Yu. Ecorov [14] in the majority of papers
constraints on the (boundary-) control were imposed. To get some information on
this topic the reader is referred for .instance to Lions [6] (where the solution of the
parabolic initial-boundary value problem is defined in Sobolev spaces), GLASHOFF
and WECK. [4] or ScamMIDT and WECK [9] (who use the definition of generalized
solutions by means of a Green’s function). Some new aspects of time-optimal control
were presented by ScHMIDT [10] and [11].
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2 F. TrR6LTZSCH

A basic result obtained in these and other papers is the so-called ‘‘bang-bang-
principle” asserting that under natural assumptions the optimal control admits
almost everywhere values at its lower or upper bound.

The main topic of this paper is to investigate a class of parabolic boundary control
problems in a N-dimensional domain, defined in [4], with additional general state-
constraints. The result is the “‘generalized bang-bang-principle”” which expresses the
fact that almost everywhere (with respect to the time) either the optimal control
admits its lower (upper) bound or the corresponding state is acting on its boundary.

In this paper a large amount of results and notation will be adopted from the
basic work [4]. The corresponding statements are listed in section 3.

As the presentation of the results requires a large amount of pages other aspects
of state-constrained problems are not investigated. The reader is referred for instance
to recent papers of £asIECEA [5], MACKENROTH [8] or SOROLOWSKI and SOSNOWSKIY
[12].

2. Notation

Sets: 2 < R¥(N € N, N = 2) isa bounded domain with C-boundary 02; 7' := fixed
positive final time; I":= [0, T'] X 9%.

Spaces and pairings: If X is a Banach space its adjoint space is denoted by X'.
The adjoint operator to a linear operator A4 is written A’. For a suitable compact
set o the pairing between C’(s) and C(o) is denoted with ., -) (g), the corresponding
one between L(c) and L,(o) with [-,-](e) (1 £ p < o0, 1/g + 1/p = 1).

(0" ?]) (O: T) = <0" y) ([0: T]) »
(&, ) 1= (&, ¥) (D).

Norms: ||y := Euclidean norm of R¥, N €N, ||:= |}, [lp(0):= norm of
Lyo), 1 < p < oo. :
Lagrange-function: In this paper the Lagrange-function

e .
-g(u! y)i= [S,a’ u] (0’) - é; (Atu - cily yil> (0’ T)
+ é (Alu - 052) ?/i2> (0’ T) (2.1)

-
[
-

is used, where S, «, u, k, 4;, y;}, ¢;! become clear from the context and ¢:= I' in
section 4, ¢ := [0, T'] in section 5. . :

3. The parabolic initial-boundary value problem

3.1. Formulation -

Let L denote the symmetric and uniformly elliptic operator

N

0 0
L) = 3 —— (ai,(x) — w(x)) + a(z) w(z),

ij=1 0%;
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where a(), aij(-) € Coo(£), ai;(-) = a;i(-), and

N
2 (%) pip; Z ¢ |P|¥®, 6 > 0.

=1

Boundary conditions are defined as follows: There are introduced 8 > 0, n(¢) :=
outer unit normal in & € 99,

N
ow(E) = 3 ni(&) ad) 5§—w(s>, £ o0
1 b

b, =
(the conormal derivative), and
Buw(§) := (1/B) ow(&) + w(é).

The basic initial-boundary value problem is

%w(t, 2) — Law(t,z) =0, (,2)€(0,T)x 2, - (8.1)
w(0,2) =0, =z¢€, ‘ (3.2)
Baw(t, &) = w(t, &), (4, §) €(0,T] x 0%. _ (3.3)

(The subscripts in L and B indicate that L and B are acting with respect to the
space coordinates z and ¢ respectively.) The function » will be given in a certain
function space.

- 3.2. The Greens function and its series-representation

For u(-, -) € C(I') there exists a solution of (3.1—3) in classical sense. This solution
can be explicitely represented by

t
wu;t, z) =4 f f Gz, &, t, s) u(s, E)' dS; ds (3.4)
0 29 .

(dS¢ := surface element on 992), where @ is the Green’s function which is defined,
continuous and non-negative on :

{2, 66,8 [ (2,5 €2 X 2,05 s St ST\ {(z,§,8,8) |z =&t =s).
There holds the estimation A
1G(z, &, 8, )] < c(t — 8)~ ¥ exp (—C |z — &*/(t ~ s)) (3.5)

(¢, C > 0). Using a generalization of Lemma 1, chpt. 1.3, in A. FRIEDMAN’S book [2]
to L,-spaces one shows similarly to the proof of Lemma 1 in [3] that w(x; -, -)
defined by (3.4) is in C([0, T'] X &), if u(-,-) € Ly(I') and p > N 4 1. Now once
and for all p > N + 1 is kept fixed, and for u € L,(I") the corresponding function
w(u; t, x) is called generalized solution of (3.1—3). )

Denote with 4, and v, the non-negative eigenvalues and corresponding normalized
eigenfunctions of the eigenvalue problem

Lv(z) + Mv(z) =0, =z€Q, : - (3.6)
Busy=0. ¢¢aQ. ’ (3.7)

1%



4 F. TrOLTZSCH

It isknown that {z} is a complete orthonormal system in Ly(£2), 4, ~ ck¥¥ if k — oo,
and that |[dlee(2) = O(k™) with certain m € N. The Green’s function G can be
expressed in terms of the eigenfunctions v, by

Xz, &, t, 8) = z’lv,,(x) 0a(8) exp (—2alt — 9))- (3.8)

(A nice discussion of that relation is contained in [4],Appendix A.) In [4] it was also
shown that the linear hull of the system {v,} is dense in C(£2).

3.3. Some linear operatorsvand their adjoints

Here some important properties of certain linear operators are presented, which will
be frequently used in the following sections. Throughout this paper the operator §
is defined by

(Su) (z) := w(u; T,z), z€R2, . ' (3.9)

where w(u; t, z) is now defined by (3.4). As already mentioned, the representation
(3.4) can be continuously extended to L,-spaces with p > N 4 1, and hence S is a
linear continuous mapping from L,(I') into C(Q). For the adjoint operator

8" : C'(D) - Ly(I') (g = p/(p — 1)) there holds

Lemma 3.1: Define for fixed « € C'(£2) and (t, ) € [0, T)

pt, )= B 5 (3, 02) exp (=T — D) va@) | (3.10)
Then ’
(i) p € Cxl[0, T) X 2);
‘(ii) —'567 ¢, ) = L.p(t, a;)‘ on [0,T) x @,

Bp(t, &) =0 on [0,T) x 892;
(iil) pir € Ly(I');
(lV) S'o = plr.

Proof: Relations (i) to (iv) were proved for the case p = oo, ¢ == 1 by GLASHOFF
and WEck [4], Lemma 3. The only difference is given here by ¢ > 1. Since
S : L(I'") — C(£) it must hold '« € Ly(I'). Hence (iii) is implied by (iv) of Lemma 3,
(4] 8

It was proved by ScEmipT and WECK [9] that for non-zero p(¢, ) the set
N = {(t, x) € T'| p(t, z) = 0p(t, 2)/0n(2) = 0}

has measure zero. This is an important tool to show bang-bang-theorems.
Now another linear operator will be investigated. Let ¢ be a continuous linear
functional on C{Q) and define 4 by

(Aw) (1) := (@, w(u3 t, ). (3.11)

A is a continuous linear mapping from Ly(I') into C[0, T, since w(u; -, -) € C([0, T]
x 9), if uw€ LyI). Thus there is a continuous adjoint operator A’ : C'[0, TY
= NBV[0, T} = L(I"). The representation of 4" is needed only on certain subinter-
vals of [0, 7'). There holds
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Lemma 3.2: For y(-) € NBV[0, T'] assume y(t) = y(a) on [a, b) = [Q, T). Then

] T
(A'y) (6, 2) = B X (@, va) va(@) [ exp (—2n(s — ) dy(s) (3.12)
. n=1 t ’
_on[a, b) x oR.

Proof: Take ¢ > 0 sufficiently smnall, define z(¢, z) to be the right side of (3.12)
and put ' _

H:={ue LI |suppu < [a,b — 2¢] x 392}.
H is a linear subspace of L,(I'). For v € H

a T

(y, Auy (0, T) = [ (Au) (¢) dy(t) + [ (du) (©) dy(t),
: 0 b—e
" and, because u(t, ) = 0 on [0, a] x 92
) T
(y, Au) (0, T) = [ (Aw) (¢) dy(?)
. b—e

T oo b—2¢
= ﬂ f (‘P; 2 f af exp (—'An(t - 8)) ’U,,(f) u(s’ E) dSE d‘9> dy(t)
b—c¢e Q

n=1 a

Since? — s = ¢ the series in the brackets is uniformly convergent, thus after changing
the order of integration and summation there is obtained

b—2e 0o T
@ Aw) (0, T) =B [ [ X (9, va) val§) [ exp (—2u(s — 1)) dy(s) ult, &) dS; de
a 99 n=1 t o
= [z, u] (F)’

since » € H. This, however, implies (4'y) (¢, ) = z(¢, z) on {a, b — 2¢), and ¢ = 0 .
proves the statement, I

4. The boundary control problem

4.1. Existence of optimal controls and optimality conditions

Let there be given z(-) € C(2), ¢;’(-) and ¢;(-) € C[0,T) (: =1,2,...,k) with
ciX(t) — ¢i}(t) > 0 on [0, T], and linear functionals ¢; €.C'(2). Then the control
problem is

IS% — 2||o (2) = min’! subject to u € Lo(T), » (4.1)
lueoll (1) < 1, | L 42
() < (giwlust, )y Sed(t)  (CE[0,T); i =1,2 ..., k). (4.3)

The presence of the state-constraints (4.3) is the main point of this paper and
makes the problem different to that investigated in [4]. The reason to impose this
general type of constraints is the fact that several kinds of state constraints for
heating problems (especially certain stress-constraints) can be expressed in the form
(4.3). '
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Remark: All the theory is written down for the L,-norm in (4.1). The same
results hold for the L,-norm, which is even easier to handle. Then only (., -) is to
be replaced by [-, -] (2) and C’ (Q) by Ly(£2).

Theorem 4.1: If there is at least one u € Ly(I") such that (4.2) and (4.3) are ful-
filled, then there exists an optimal control. .

Proof: The set {u] ][u[lw (N=<=1is wealxly compact in L,(I'). The set of all
u € Ly(I') which fulfil (4.3) is weakly closed in L,(I") and the functional (4.1) convex
and continuous, hence weakly ls.c. Thus exnstence is assured by the theorem of
Weierstrass il

Define now linear operators 4; by
(Au)(t) =" (@i, w(u; ¢, )z = 1,2,..., k).

All A; are linear and continuous mappings from L,(I") into C[0, T]. An optimal
control of problem (4.1—3) is now supposed to exist and denoted with %,. Then the
following optimality conditions are obtained: :

Theorem 4.2: Suppose that there exists T with |Gl (I') =< 1 and
cil(t) < (4:m) (8) < ¢®(¢) (t€[0,T); 2 =1,2,...,k) (4.4)

(“Slater-condition”). If u, is an optimal control and ||Suy — 2llw (2) > 0, then there
exist 2k non-decreasmg Lagmnge multipliers y3, y, from NBV[O T] zmd a non-zero
x € C'(2) such that

. .
min {50 (6, 9) + 2 (st — ) (o} (45)
T i=1 .
18 achieved by uy(t, x) a.e. on I" and

T

T
J Ay —¢®) (1) dyd(t) = [ (Aiwg —e) () dydt) =0 (i =1,2,...,k) (4.6)
0 0 .

(‘““complementary slackness conditions”).

Proof: Define U = {u € LIy |w fulfils (42-3)}. Thus (IS — 2l|w (2)
= inf ||Su — 2|l (2). Since ||Su, — 2|l (2) > O there is a non-zero « € C'(2) with
v

(x, 'guo — z) = inf (x, Su — 2z). (See [4], (4.3)). Thus u, solves the linear continuous
programming pfo({)lem

8" &, u) (1) = min,  Jule (1) < 1,

i) = (duy(ty=cXt)  (=1,2,..,k).

- The Slater-condition (4.4) assures that u, solves this program if and only if there
exist Lagra,nge multipliers mentioned in the theorem such that (u,, y,) with
= (¥ -0 Yds 1% ..o, 42) is & saddle point of Z(u, y) defined in (2.1), i.e.

(4.7)

L(ug, Yp) = min .?(u, Yo) = max L(ug, y) - . (4.8)
llufloot M 51 v=0 .

(y = 0 means that all y;f are non-decreasing), see LUENBERGER (7], Corollary 1,
p- 219, and Theorem 2, p. 221. Writing down the expression for .#(u, ) one finds
that the first equation of (4.8) implies (4.5) and the second one (4.6) 8
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4.2. Generalized Bang-Bang-Principle

For problems without the state-constraint (4.3) the so called bang-bang-principle
can be shown to hold for the optimal control. The presence of state-constraints
changes this behaviour. However, a natural generalization of the bang-bang-prin-
ciple can be obtained. To prove this generalization the followmg growth-condition
is essential:

Tf r > 0 and (6"}  R* is a sequence of unit vectors, whose components do not
change their sign for all n = n,, then

d k
é; (é; bi"(?’i’ vn>)2 exp (;.,,1‘) = 4oo. . (49)

If only one functional constraint is given (k = 1), then (4.9) is equivalent to the
simpler condition

Z (‘pls vn>2 exp (A:7) = +o00, > 0.
n=1

Theorem 4.3: Suppose for an optimal condrol u, that

(1) Suy — 2llw (2) > 0,
(11) the Slater-condition (4.4) s fulfilled,
(iii) the growth-condition (4.9) is met, and
(iv) & ¢ span {gy, ..., g}, where o € C'(Q) is defined in Theorem 4.2.

Then

mes {(t, 2) € I'| |ug(t, 2)] < 1 and  c;}(¢) < (Aiup) (8) < c¥(¢)
G=12..,k}=0.

0

The assumptions of this theorem will be discussed by means of examples -in
Section 6. For the proof of Theorem 4 3. the following statement is used:

Lemma 4.1: If f(t) s contm'uous non-increasing and y € NBV[a, b] s non-
decreasing, then

b
10 dy(t) = fb) (y(b) — y(a)).
Proof: Take any partitioh a=t, <t '< e < t, =bof [a, b]. Then

.E:,/("" (y(ts) — plti)) = f(b)):w) u(ti-)) = (b) (9(d) — y(a)).

The proof is finished letting 7 — co 11
Proof of Th;aorem 4.3: Define
M= {t € (0, T) | cii(t) < (Asup) (¢) < c:¥2)).

M is union of countably many open intervals (components), since all (4;%,) (¢) are
continuous in ¢. Now suppose that the theorem is not true. Thus there is a component.
(g, ) = M and &> 0 sufficiently small such that o = {(,2) € (a,b — 2¢]
X 082 | lug(t, z)| < 1} has positive measure. Hence (4.5) gives

(S'tx + )f 4;'(y® — yil)) (¢2)=20 {4.10)
i=1 . . .
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almost everywhere on o. Moreover (4.6) implies for ¢ € (a, b)
y(t) = yil(a) t=1,2..,k; =1,2). (4.11)
Now put y; := 92 — y;!, v:= b — 3¢/2 and define «,, «, € C'(2) by

(&y, V) 1= (a, ¥y,) Xp (—).,,(T — r)),

<0‘2’ 'U,.> = Z (@is u) fexp( An(s — t)) dy,(s)
i=1
*y and «, are umquely determined linear continuous functionals on L,(2) D C(£),

since the _system {va} i8 & base for Ly(2) and |jvlle (2) = O(k™). Furthermore on
[0, 7) x £ there is introduced

Pt ) 1= Zw(ocl + &y, v,) €XP (—).,,(r — t)) Vu(Z). (4.12)

Because of (4.11) the representatlon of the 4, is glven on (a, 7] by Lemma 3.2,
(3. 12), and after extracting the terms exp (——l (r — t)) in the series for 8’ and 4;’
it is found out that (4 10) implies

p,(t, .'L' = O . (4.13)

a.e. on ¢ (remark that according to (4.11) the integration in A4;" is only to stretch
over [b — ¢, T)). Applying Lemma 3.1. with 7' := 7 shows that p,(¢, x) solves the

equation ——ait p ='Lp on [0, 7) X 2 together with B,p.(¢, )|, = 0. Thus (4.13) gives

op(¢, £)/on(§) = 0 on o, and hence p,(t, z) = 0 on [0, 7) X 2 is obtained using the
result of ScamipT and WECK [9], Corollary 2.3., which has already been mentioned
in Section 3.3. After integration of v,(z)p.(f, z) one finds (&, + &y, v,) = 0
(n =1, 2,...) and therefore

k T
N . .

(o, V) = — 3 {@is Vn) f exp (;‘n(T - S)) dyi(s) . . (4-14)

i=1 b—¢ ’ ’

is obtained for n = 1, 2, ... Define {, = b to be the first point, where at least one

¥:3(y:!) is increasing, i.e. y.2(t) > y.z(b — &) (y, > yl(b — &) ) for t > t,. Assume
at flrsb o < T

Because of (4.6) there must hold (4;u,) (to) = ¢;}(t,) (_ c,‘(to)) and the continuity
of (A uo) (t) assures (A;uo) () > c(t) (< ¢2(H) on (b, £y + 20] withd > 0,4 + 26 < 7.
Applymg oncemore (4.6) it is found that y;(¢) (y, (t)) is still identically constant on
[tos to + 20). Define k; := y;(t, + 6) — w(b — &) (2 = 1,2, ..., k). Now, suppose that
;% is increasing in ¢,. Applying Lemma 4.1. '

T
dn = [ exp (T ~ 9) dyio)

b—¢
to+ 9o T

= [ exp (2T — ) dy¥(s) + 0 — | [ exp (2T — s)) dyi(s)
b—e ty+28

T
= exp (2a(T — to — 8)) by — exp (AT — t, — 20)) var g ()
to+2
= exp (AT — to — 6)) hy/2 (4.15)
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i8 obtained for n = n, sufficiently large. If ;! increases the same holds for —d;*
and —A;. Thus for n = n, the d;* do not change their sign. Applying the same method
to the remaining Lagrange multlphers, which increase at first in £; > ¢, it is found
that all the d;» do not change their sign from a certain #n, on. Define b* := d"/|d";.
Then by (4.14), (4.15), and assumption (iii) for ¢ > 2(f, + ) — T, v := T — 2(¢, +90)
+ t > 0, and p(¢, ) defined by (3.10)

B plt, ) = X, 07 exp (—IulT — 1)

z 5 (2@., vn>b") jdol 3 exp (— 2T — 1)

=h ): (Z((p,, ?),,)b") exp (2,7) = +o0
=1y \t

is ‘obtained ‘with certain k > 0, contradicting p(-, -) € C([0, T') X ). Hence the

assumption ¢, < T was false. It remains to discuss 4, = 7. Now only jumps are

k
possible in . Put d; := y(T) — yi(b — ¢). Then (4.14) gives (a + Zd.wp,', v,,) =0,

n € N, and cl span {v,} = C(2) implies « = -—Z d;p; in contrary to assumptlon (iv).
Thus the theorem must be true 8 =

After this paper was accepted for publication in this journal some new results on
generalized bang-bang-principles were found by MackeExroTH [15]. He extended
the author’s method to time-optimal control of parabolic equatlonb in Sobolev
spaces as well as to convex constraints.

Assumption (iv) is in general difficult to verify, since « is only known, if u, is
determined. However, in the case of the L,-norm as performance functional con-
dition (iv) is automatically fulfilled, if (i) holds and the ¢; cannot be extended from
C(2) to the space Ly(2). This follows from « = const (Su, — 2) € Ly(£2) after iden-
tifying L,'(2) with Ly(£2).

There can be constructed counter-examples, which already for & = 1 show that
an assumption of the type (4.9) on the growth of the ¢; cannot be omitted.

5. Control only time-dependent

An important class of parabolic boundary control problems is obtained, if the
control u(¢, z) has the form g(z) @(t) with fixed function g. Here the theory will be
extended to this class along the lines of [4]. The following problem is regarded:
Define now w(u; ¢, ) to be the generalized solution of

% w(t, z) = Law(t,z), (L x)€(0,T] X 2, (5.1)
w(0,z) =0, =z¢€Q, (5.2)
Baw(t, &) = g u(t), (6§ € (0, T} x 92, (53

where g(-) € Leo(92) is given fixed. According to (3.4) this means

t o
w(u; t, z)=p f 2 va(x) g, €xp (—).,,(t — 8)) u(8) ds _ (5.4)
0 n=1
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with g, = f va(£) 9(§) dS;. Analogously to Section 3 the operator S is defined by

(Su) (z) := w(u T, z), which is now a continuous ma.ppmg from L,[0, T into C(2),
fp>N+1 The control problem is

1Su — z||°°(Q) = min! " : (5.5)

subject to [[ulle ([0, T']) = 1 and (4.3).

The existence of an optimal control is proved analogously to Theorem 4.1. Define
now the set K(g) := {j € N|g; & 0} and the subspace L(g) := span {v; | j € K(g)}.
For ¢ € C'(Q) define ¢, to be the restrlctlon of ¢ to cl L(g).

There holds

Theorem 5.1: Let uy be an optimal control for problem (5.5). Suppose that

(1) lSuy — 2llw(£2) > O,

(i1) the Slater-condition (4.4) s fulfilled, w
(iii) condition (4.9) is met with 3 instead of J,

neK(g) n=1

(iv) oy ¢ span {(@1), «-., (@)}
(v) X+ (i,5 € K(g))-
Then the set

CED0,T) )] < 1, ot < (Aa) () < c2t) (i =1,2..., )
has measure zero.

Proof: The pro;)f is only briefly scetched, as its main ideas are the same as those
for validating Theorem 4.3. If Theorem 5.1. would not hold, then instantly

k T
(&, o) = ~'—Z (9is vn> f exp (2T — s)) d{yi(s) — yil(s))

is obtained for » ¢ K(g), which corresponds to (4.14). Using the expression (S ) (t)

= (e, V) gn exp( AT — t)) there is obtained analogously to the further proof
neK(g)

of Theorem 4.3

(a + de,-q),-, v,,> =0, .ne€K(g). o

S
Since ¢l L(g) = {v € C(Q) | (v, v,) = 0, n € K(g)} (cf. [4], (3.2).Lemma 7) this implies
«y € span {(¢1)L, +-+ (¢x)1}, contradicting (iv) O

Using analyticity arguments as in TrOLTzScH [13] the stronger result can be
proved that u,(¢) has at most countably many switching points on

M= {te[0, T eMt) <(diwo) (&) <) "(1=1,2,...,k)}

and accumulation points of switches can be only located at the right ends of com-
ponents of M.

6. Examples
In this section some types of state-constraints are discussed, which may be expressed

in terms of a linear functional. It will be shown that in these cases the growth-
condition (4.9) is met.
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Throughout this section take N = 2, 2 := unit ball of R¥, and L := 4y, the
Laplace operator. It is convenient to introduce spherical coordinates (¥, )
= (&4, ..+, Oy, 7) and to put w(u;t, z) = y(u;t, 3, r), where y is solution of the
corresponding initial-boundary value problem in spherical coordinates. The nor-
malized eigenfunctions of problem (3.6—7) are given by

Vigm(®) = Sp(D) i+ NE=Vp=NRLT ) (2 HN2=0r),

1=12,...;1=01....,m=12,.. I;',v(l); with the number .Vy(l) of linearly
independent spherical harmonics S, of order I, the Bessel-function J, of order »
~and normalizing constants ‘

1 -1
;™ = (frJ.z(x.'"’r) dr) .
0

The eigenvalues 4;,; are given by 4 ; = (z;#+¥2=1)2, where z;*” is the k-th solution
of

" 2d,(2) + (B + N/2 — 1) J,(z) =0,

and have multiplicity Vy(l) = ! _;,N : N _ (l -*J—VAL_I 3

7.10.4, (49), and to the equation for the z;*’ one finds
T = 2@ Y@+ BB + ) T ).
Exa}nple 1: Regard the state-constraint f w(u; t, zydz| = ¢, ¢ > 0, where w is

). According to [1],

. Qo .
defined by (3.4). This constraint fits in the scheme of problem (4.1—3) introducing
k=1, c! = —c, ¢,2 = ¢, and defining ¢, by {(¢,, v) := fv(x) dz. Now (4.9) will be

.9
shown to hold. With » := N/2 — 1, z; := 2,0, ¢; := ¢;” one obtains forz = 1, 2, ...

1
[ e (zir) dre;
0 c

o 2(8 + 2) o 2B+ )
(B(B + 2v) + z2) (=)l — BB+ 2v) + =
using [1], 7.2.8., (55), 7.7.1,, (1), and the equation for z;. The remaining scalar

products are vanishing, as §,(8) = 1 is orthogonal to all other spherical har-
monics. Taking into account the asymptotic behaviour of z; one sees that

. 1
I(%: vi.O.l)I = f r"J,(:v,-'r) -1 drc,-
. ¢ ,

) . )
3 (@u 0 exp (A7) = 5 (pr, vi0.)? xp (itr) = oo,
n=1 4= .
if £ > 0. Thus (4.9) holds.

Example 2: Choose a fixed z, € 92 and g(¢) = 1 on 9%2. Regard the constraint
lw(u; t, 0) — w(u; ¢, 2)) < c¢ for the control problem with « .only time-dependent,
i.e. w is now defined by (5.4). Now the functional ¢,, {(@;, v) := v(0) — v(x,) is to be
used. There holds K(g) = {(¢,1, m) |l = 0, m = 1, ¢ € N}. Using the same notation
as in Example 1 one has

9;,0.1(0) — vi,0.1(%0) = c;(xi'/(2’r(v + 1)) — Jv(xi))'

!
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Since leil = 1 for vsufficiently large ¢ and J,(z;) =0 for ¢ — oo, there holds
19:,0.1(0) — ;,0.1(%)| = 1 for ¢ = 4. Therefore with ¢ > 0 obviously

2 (@1, vn)? exp (A,7) g.fl - exp (z;%) = +o0

neK(g) i=1,

is fulfilled.

Example 3: Choose the notation as in Ezample 2, take N := 3 and impose the
constraints |w(u;¢, 0)] =< ¢, and |w(u;¢, 2) | < ¢ (control u only time-dependent).
Now there is to define & := 2, (g,, v) := 9(0), (g, v) := v(x,). Since now » — 1/2"
one has J,(z)=(2/(nz))'?sinz and f'z; +tanz; =0 (i=1,2, ...). Thus
x; € ((i — 1) m, i:z), z; ~n/2 + a(i — 1), and sgn J,(z;) = (— 1)L -

Take now a sequence {b™} = {(b,™, by™)} with (b,™)2 4 (b™)2 =1 and
assume without limitation of generality b,b, = 0 for all n. Then

K:= Y (bl(ﬂ)@)l’ V) + bz(")<972’ V)2 exp (4,7)

neK(g)

= 3 (602N + 1) + bOT () o exp (a70)
i=1
= 5 (050 (T + D) + (1 — &0 2y )

1=1e
X exp (23;47)

for sufficiently large j, (using sgnJ,(z,.,) = 1 and the estimations BEEA]
= (2nz;)712 and |¢;| = 1, which hold for sufficiently large ), and hence

K = const + 3 (2uy_ym)~! exp (x3;47) = +o0
J=pn .
is obtained for sufficiently large j, and v > 0. Thus (4.9) holds, if b,™b,® > 0.
If b,("b,(™ < 0, then the proof is carried out setting 7 := 27,7 =1,2,... 1

Acknowledgement: The author wants to express his gratefulness to Prof. L. v. Wol-
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