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Factorization of operators mapping (F)-spaces into (DF)-spaces 

H. JtTNEK 

Die Arbeit behandelt die Faktorisieiung linearer Operatoren von (F)-Räumen in (DF)-Räume 
durch Banachrkume und durch OperatorengegebenerOperatorenidealo. Grob gesprochen wird 
die Frage untersucht, in welchem AusmaB globale Eigenschaften soleher Operatoren durch ihr 
Verhalten auf den beschrknkten Teilmengen bestimmt verden. Die Resultate werden zur 
Charakterisierung der geometrischen Struktur der Nullumgebungen in (F)-Rkumen durch die 
Geometrie ihrer beschrknkten Meiigen verwendet. Ferner gestatten ale eine none Einsicht in 
die Theorie nuklearer (F).Riiume. 

HccneJ&oBaHa 4axTopnaaLHn JlHHeftHblX onepaToporl, oT06pa}ia!oEqux flOCTHCTB THfl (F) 
B 110CTHCTB rjiia (DF), qepe3 l3aHaxonue npcicTpaHcTBa it tiepea onepaopai )HHUX 
ujeanoa onepaTopoB. 3T0 paBHOCHJIbIIO Bonpocy, B HaHoft riepe r1o6aJ1bHMe cnoflcTBa 
TaKux onepaTOPOB onpee.rieHai lix noBeeHHeM Ha orpallu'!eHIlwx noMHoecTBax. Pe3yrn-
TaTU Hcnoju,3oBaHb1 gma xapaepuaauuu reoMerpi14ecoh CTKTM olipeCTI(OCTeft iiy.'ii 
B HOCTHCTBX Tria (F) rOOMeTp11c4 lix OrpaHH4ellllI.IX MIlO)ieCTB H flO8B0J1HI0T H0BH 
B3rjiHA Ha TOH1O nepuix I10CTHCTB THI1 (F). 

This paper deals with the factorization of linear operators mapping (F)-spaces into (DF)-spaces 
through Banach spaces and through operators of given operator ideals. Roughly speaking, we 
answer the question of, to what extend global properties of such operators are determined by 
their behaviour on the hounded subsets. The results are used to characterize the geometric 
structure of the neighbourhoods of zero in (F)-spaces by the geometry of their bounded sub-
sets. Moreover, they allow further insights into the theory of nuclear (F)-spaces. 

Introduction 

A specific situation appearing in the study of locally convex spaces in opposite to 
Banach spaces is given by the interplay between the neighbourhoods and the bounded 
subsets of these spaces. It turns out that a lot of different hard problems in the 
theory of locally convex spaces can be solved by answering the crucial question of, 
roughly speaking, to what extend global properties of linear operators acting in 
these spaces are determined by the behaviour of these operators on the bounded 
subsets of the spaces. This question was treated in the papers t, 7] for linear opera-
tors mapping (DF)-spaces into (F)-spaces. Here we are dealing with the Case of 
operators mapping (F)- into (DF)-spaces. Although in both cases the main tool is 
the well developed theory of operator ideals in Banach spaces, the results and the 
methods which are used in obtaining them are very different. 

In Section 1, after some basic notations, we will give the strong formulation of 
our basic problem. in Section 2 we present the main results (Theorem 2.5). Section .' 
is devoted to some applications of the factorization theorems.
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1. The weak and the strong d-property 

Let us recall some definitions concerning the theory of operator ideals. For more 
details we refer to [6. Only for the sake of simplicity, we assume in all the following 
the completeness of the locally convex spaces considered. If B, F are locally convex 
spaces, then by Ie'(E, F) we denote the set of all linear continuous operators from B, 
into F, and by .(E, F) the set of all finite dimensional operators. 

1.1. Definition ([6]): An operator ideal .91 (BAN-ideal) is a class of linear continuous 
operators such that the following holds: 

(i) The components d(X, Y) = d n "(X, 1') are linear subspaces of 2'(X, 1?) 
containing .(X, Y) for all Banach spaces X, Y. 

(ii) If R E 2(X, X0), T E d(X0 ,	Q € 2'( '0, Y) then QTR € d(X, Y) for all 
Banach spaces X, X0, Y, Y0. 

To formulate more exactly what properties of operators we want to consider in 
this paper and what factorizations of operators we have in mind, we give the follow-
ing definition: 

Let d be a BAN-ideal and let B and F be any two locally convex spaces. An 
operator T € 2'(E, F) is said to have 

(i) the weak d-property, if for all Banach spaces B 1 , B2 and all operators 
B € .2'(B 1 , B), Q € 9'(F, B2) the product 

QTR :B 1 —>E—>F—>B2 

belongs to d(B1 , B2). 
(ii) the strong al-property, if there are Banach spaces B1 , B2 and a factorization 

B

1 T. B1

_______

B2

of T with operators R € 2'(E, B1), Q € (B2 , F) and T0 € d(B1 , B2). 
By dID and d8 we denote the classes of all operators having the weak or the 

strong Q/-property, respectively. Of course, the strong d-property implies the 
weak d-property, i.e. d8 9 d°. However, it was shown in [3] that there is a space 
B such that for any ideal d we have the inequality d8(E, B) == dto(E, B). Therefore, 
the main problem has to be stated as follows: 

Problem: Find sufficiently large classes .)t" 1 and .2 of. locally convex spaces and 
general assumptions on, the ideal d, such that d'1'(F, B) = d8(F, E) holds for all 
F € .t and B € " 2 

Theorems of this type are called factorization theorems. We will prove such 
theorems in Section 2. Here we give a simple but more interior criterion for the 
weak and the strong d-property. Simultaneously, this criterion shows explicitly, 
that the weak d-property of an operator T : B -> F only depends on its behaviour 
on the bounded subsets of B, while the strong d-property depends on the global 
structure of T. Let B be quasicomplete locally convex space. By .J(E) we denote 
the directed from below system of all bounded, closed and absolutely convex subsets 
of B. By OII(E) we denote the directed from above system of all absolutely convex 
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neighbourhoods of zero of E. Let A € .(E) und U E 0&(E) be given. By PA and pu 
we denote their gauge funetionals. Let us define the linear spaces 

E(A) = UnA and E/U = 

which can be formed by 11X11A = PA(x) and 1111ju = pu(x), respctively. Their com-
pletions we denote by EA and E0. There are canonical linear continuous mappings 

CA:EA -*E 'and	Cu:E—>Eu, 

which are defined by CAX = x and CUX = , respectively. 
The product of these operators we denote by CALl = CUCA : EA -> E. Furthermore, 

if A,BE (E) with A and U, V E 021(E) with V UUfor some e >O, then 
there exist canonical mappings CAB: E4 -> EB and C, : E -> E. These mappings 
are uniquely, defined by the equations CBCAB = CA an	= Qu. 

Proposition: Let d be a BAN-ideal. An operator T € 2'(E, F) belongs to dt0(E, F) 
if/ for all A E .(E) and all U € 'P1(F) the product CUTC A belongs to J1(EA, F,,). The 
operator T belongs to d8(E, F) iff there are U € 'PI(E), A € £°(F) and T0 € d(E, FA) 
such that T = CATOCU. 

We omit the simple proof. 

2. Factorization Theorems 

In this section we solve the main problem formulated in Section 1. As *s mentioned 
in the introduction, in [3] the case was investigated where X is 'the class of (DF)-
spaces and is the class of (F)-spaces. In this paper we are dealing with the con-
verse situation. Let us recall the definition of these spaces. 

2.1. Definition: A locally convex space is called an (F)-space if it is complete and 
metrizable. A locally convex space E is called a (DF)-space, if it has a countable 
increasing fundamental system of bounded convex sets {B} and if the' intersection 

0. 
V =flU, of any countable system of neighbourhoods U, € 'P1(E) is a neighbourhood 
of zero, assuming that V absorbs each bounded subset of E. 

We remember that the strong dual space of an (F)-space is a (DF)-space and that 
the strong dual space of a (DF)-space is an (F)-space. Before we present the results 
let us sho* by an example that a positive answer to our problem is far from being 
trivial. 

2.2. Let F be Köthe's example of a Frechet-Montel-space having the Banach space 1' 
as a quotient space ([1, 11.3], [4, 35.5]). Let T : F -> 1' be the quotient map. The 
Montel property of F implies T € jt"W(F, 11 ), where .1' denotes the ideal of the compact 
operators. But T cannot be compact because Tis an open mapping. Therefore, it 
does not admit any factorization through a compact operator, thus it fails to have 
the strong .(-property. A similar situation holds if one replaces .( by the ideal >Y 
of weakly compact operators. Let us mention a further counterexample, without 
going too much into the details. Let F be the nuclear space s of all rapidly decreasing 
sequences.' We consider the ideal 4, of all strongly nuclear operators.
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These are those operators T having a representation 

T = ,f).jajo yj with IJa1I, IIYII ^S 1 and (A1 ) E s. 

Because the dual space s' of s is strongly nuclear, all operators FA —> F --> Fu belong 
to X0, i.e. C,, E .4t0t0(F, F0) for all neighbourhoods U E "/1(F). On the other hand, 
not all mappings Cu are factorizable through an operator belonging to .A', because 
then F = s would be a strongly nuclear space, which is not true. Therefore, there is 
a neighbourhood U such that Cu .K0tD(F, Fu). 

2.3. In contrast to these counterexamples, there is the following first positive solution 
to our problem. It was mentioned in [1] without a complete proof. 

Proposition: Let F be an (F)-space and E a complete (DF)-space. If T is a linear 
operator from F into E which maps bounded sets into bounded sets then there is a neigh-
bourhood V in F which is mapped by T into a bounded set. In other words, T is con-
tinuous factorizable through a Banach space. 

Proof: Let {U} Qt(F) and (A) (.E) be a decreasing and an increasing 
countable fundamental system, respectively. Suppose that there is no natural 
number n such that P4, (TU) n. Then there are sequences (xe) and (as ') such that 
x € U,,, a,,' € A° and (Tx,,, a,,') > n. for all n € N. We define linear continuous 
functionals g,,(a') = (Tx,,, a') on K. For each fixed a' E E' there is a neighbourhood 
V € "/1(E) such that a' E V0. Because T maps the bounded sequence (x,,) into a 
bounded set, we obtain g,,(a')I pv(Tx,,) pve(a') :5 C for all n E N. Therefore, the 
family (g,,) is pointwise bounded on the (F)-space Eb'. By the Uniform Boundedness 
Principle it then follows that (g,,) is uniformly continuous on Eb'. This means that 
there is a bounded set A in E such that Ig,,(A°)l <-- C for all n  N. From A,,° A° 
for large n, this contradicts g,,(a,,')I = (Tx,,, a,,')j > n. Therefore, there is an n E N 
such that T(U,,)	(n + 1) A,,, thus T(U,,) is bounded. The continuous factorization 

ofTis given byT:F—> Fu. —>E. 

2.4. Definition ([6, 6.1.1]): A BAN-ideal d is called p-normed (0 <p 5 1), if 
there is a non negative functional a defined on d such that the following holds: 

(i) If 1R denotes the identity of the space of real numbers, then a(l R) = 1. 

(ii) If (T,,) is a sequence of operators T E d(X, Y) such that Ea(T,,) < oo, 

wM

	 n=1 

then T = ' T,, E d(X, Y) and cx(T) P < ' a(T. 
n=1 

(iii) For  € d(X, Y), RE 5i'(X0 , X), Q € £°( Y, Y0 ) it holds a(QRT)	QII 1JR11 a(T). 

As an easy consequence of the axioms of the ideal p-norm a and Auerbach's 
lemma [6, B4.81, we get the estimation 

a(T)	IT (dim T)11P for all T E .(X, Y). 

2.5. The following property is shown to be essential to obtain an affirmative answer 
to our main problem. 

Definition ([6, 8.7.41): Let (d, a) be any p-normed BAN-ideal. The maximal 
hull (drnax , a rnax ) of (d, a) is the BAN-ideal of all operators T € £°(X, Y) such that 
for all finite dimensional Banach spaces X0, 1'0 and all operators B E Sf(X0, I), 
S € 2'( Y, Y0) the estimation a(STR) e JIS11 IIR II holds, for some constant e only 
depending on T. Furthermore, am (T) is defined by the infimurn of all such con-
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stants e• The ideal (d, a) is said to be maximal, if d = dm . The p-norms a and 
amax are then automatically equivalent. 

The ideals .1' and V used in our counterexample are not maximal, the ideal 
is not p-normed. The largest maximal normed ideal is 2, of course. Further examples 
are given in section 3. Now we state the main results of this section. 

Theorem: Let F be an (F)-space and let E be a Banach space or a (complete) semi-




reflexive (DF)-space. If (d, a) i8 a maximal p-normed ideal, then d(F, E) = d D(F, E). 

The proof of this theorem is based on some lemmata. 

2.6. Lemma: 1/ F is a semireflexive locally convex space then for every closed, bounded 
set B E(E) there is a natural isometry EB	(E)'. 

P roof: Let B € .(E) be given. Then an isometric embedding EB —> (E.)' is 
given by x i-* X(CBox') = (x, x') (see [5, 0.11.4]). We will show that this map is 
onto. Each functiohal q € (E.)' defines a functional- =.q. C5 € F" = E and we 
have O(BO) = p(C B B°) 5 11p1j. Therefore, 0 € 11p1l B°°, and by the bipolar theorem 
it follows that b € E(B) I 

The next lemma is crucial for the proof of the theorem, because it states a connec-
tion between the finite dimensional structure of the bounded sets and the finite 
dimensional structure of the neighbourhoods for semireflexive spaces. The proof of 
this lemma is based on the following equivalent version of the principle of local 
reflexivity [6, E 3.1]. 
2.7. Version of the principle of local reflexivity: Given any linear bounded 
operator S from a dual Banach space X' into a finite dimensional space Y, for any 
finite dimensional subspace H X' and any e> 0 there is a w*continuous linear 
bounded operator B from X' into Y coinciding on H with S such that IIRII (1 + e) 11811. 

2.8. Leni ma: Let F be a semire/lexive locally convex space and let B € (E). Then 
given any linear bounded operator S from EB into a finite dimensional space Y, for 
every finite dimensional subspace H 9 E(B) and any e> 0 there is linear continuous 
operator Q € 2'(E, Y) such that IIQC8II 5 11811( 1 + E) and sup {l[Sx — QxII x € H n B} 
:!^-.e. 

Proof: We put X = E.. By Lemma 2.6 we have X' = EB. Now, we apply the 
principle of local reflexivity to S : X' -> Y. The w*continuous operator B : X' -> Y 

must be of the form B = a, ® y, for some elements ai € E. and yj € Y. This 

operator' can be approximated uniformly on B° by an operator R0 =	COX' ® y, 
n	 iI 

for some x1 ' € F'. Now it is obvious that the operator Q = 'xj ' ® yj has the desired 
properties I	 1=1 

2.9. Leni ma: Let F be any locally convex space, let U € "/1(F). Then for any linear 
bounded operator R from a finite dimensional space X into Fu and any e> 0 there is 
a linear continuous operator P: X -> F such that 

IJCuP II	IIR II (1+ e) and JJR — CuPII <. 

Proof:'Let B = Ex1' ® for some x . ' € X' and some E F. We approximate 

the elements by elements Cuxi with x1 € F in the space F0. It is simple to check 

that the operator P =E x' ® xi then has the desired properties U
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2.10. Proof of the theorem in 2.5: Let F bean (F)-space and let E be a (complete) 
semireflexive (DF)-space or a Banach space. Let T E dto(F, E) be given. We choose 
countable fundamental systems U)	?1(F) and {B} .(E) such that 2U,1 

U,, and 2B,, B,, for all n E N. In the case where E is a Banach space, we 
choose the B,, to be the multiples 2B0 of the unit ball B0 of E. From Proposition 2.3 
we conclude the existence of a factorization 

T 

CU.1	JCB..	 (1) 

FU.	
Tn 

II T ,,iJ	1, for some n. By shortening the system, if necessary, we may assume that 

(1) holds for all n —> 1. Now, we assume T j d8(F, E). Obviously, this implies 

d(F, ,,, EB) for all ii E N. Taking in account the maximality of d, there are 
for each n E N finite dimensional spaces X,, and Y,, and operators B,, E 2'(X,,, Fun), 
S. E '(E 8 , Y,,) such that IIR,,II = IIS,I = 1 and x(S,,T,,R,,) > 2n. Now, for given 
e > 0 we will construct linear continuous operators P. and Q,, in the non-commu-
tative diagrainm

D 

	

_
	 CB .1 

T.
 "	F,1	EBn 

such that

1 ± e,	IIQflCBII	1 + e and c(Q,,TP,,) > n	(2) 
holds for all n € N. To this end we fix n, put d,, = 2 dim X,, + 2 dim Y,, and choose 
0 < ô such that Mn 5P < (27' - 1) n7'. Now, we choose the operators F,, and 
Q,, according to the Lemmas 2.8 and 2.9 with respect to 6 and H = TP,,(X,,) 
= TnCU.P.Xn 9 E(B,). If E is a Banach space, we simple put Q,, = 5,,. From 

S,,T,,R,, - Q,,TP,, = S,,T,,(R,, - CO, P,,) + (S,, - QnCB) T,,CP,, 

and 2.4 it follows 

cx(S,,T,,R,, - Q,,TP,,)P ^ c(S,,Tn(R,, - C U P,,)) T' + x((S,, - QnCB) T,,CuP,,)" 
5 II S,II7' JIT,. I I P x(R,, - CuP,,)7' + o((S,, - Q,,CB) T,,C,,P,,)1' 

d,, IIR,, - Cu,,P I jP + d,, !J( S,, - Q,,CB) T,,CuP,,II 7' = 2d,, 6'. 
Therefore, we have 

oc(Q,,TP,,)7' ^ x(S,,T,,R,,)P - cc(S,,TR,, - Q,,TP,,)P	(2n.) 1' - 2d,, 67'> n. 
This proves the result (2). 

Now, we put e = 1 and define the sets. 

A = ci convUP,,Sx,, F and v= flQ,,'(S) 

where Sx. and Sy,, denote the unit balls of X,, and Y,,, respectively. To show the
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boundedness of A in F, let Uk be any element of our neighbourhood basis {U}. 
I	 k 

Because the P(S) are bounded subsets of F, the set U P(Sx) is absorbed by Uk. 
n=1 

For all n> k we have P(S1 ) 9 2U,, 9 U,,. This shows that the whole set A is 
absorbed by Uk. Therefore, A is bounded. Now, let us prove that V is a neighbourhood 
of zero. By the definition of a (DF)-space it is sufficient to show that V absorbs 
each bounded subset of E. Let Bk € {B} be given. Then it is absorbed by the finite 

k 
intersection fl Q0-'(Sy,j. For n> k we have Bk B. and Q,,(Bk) Qn(Bn) 9 28y,,. 

n=1 
This means Bk 9 2Q,, 1(Sy) for all n> Ic. Therefore, V absorbs Bk. Now we finish 
the proof of the theorem by defining mappings P,, and On in the commutative dia-
gram

	

P	 T	 - 

	

X "	___ ____Y. 

by CAP,, = F,, and OnCV = Q,,. From P,,(S1,,) 9 A and O n( V) 9 Sy,, it follows that 
the mappings F,, and Q,, are correctly defined and that iiP,,ii 1 and IVI 1. 
Finally, we have cd,, . CTC P,,) = a(QTP,,) > n for all n € N by (2). But this 
contradicts T € f"(F, F) 
2.11. Remark: a) As was shown by our counterexamples, the maximality of the 
ideal d seems to be necessary to prove the conclusion of the theorem. There is also 
another argument which confirms that the maximality, or a similar property, is 
needed. In fact, it is somewhat surprising, that no representation of the theory of 
nuclear spaces is known in the literature, which does not need the integral of the 
abso•lutely summing operators behind the nuclear ones to develop central parts of 
this theory. Actually, these operators are used to prove, among other things, that 
the strong dual of a nuclear (DF)-space is also nuclear (cf. Section 3). Taking in 
account the fact that the ideal of the integral operators is the maximal hull of the 
ideal of the nuclear operators ([6, 8.7.6]), this curiosity is explained in some sense 
by our theorem. 

b) In contrast to the maximality of the ideal, it is conjectured that the assumption 
of the semireflexivity is superfluous. Without proof we mention that the statement 
of the theorem is also true if F is an arbitrary (complete) (DF)-space and d is an 
injective maximal ideal (concerning the injectivity see [6, 8.4]). 

3. Applications 
3.1. We apply the theorem to the maximal norrned ideal (2,, )), (1 :!9 p cc). 
Recall that a Banach space operator T € 2'(X, Y) belongs to 2(X, Y) if there is a 
factorization

J 
X

L(u)

A. F(A) 

through some L(y)space (cf. [6, 19.3.1]). The norm (T) is given by A(T) 
= inf IIRII JIS11, where the infimum is taken over all possible factorizations. 

Proposition: If F is an (F)-space having a fundamental system {A a } 9 I(F) 
such that the spaces F A,, are L( 1u)-s paces for some measures 1u, than F is a subspace of 
a countable projective limit of L(1u)-s paces.
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Proof: Let U E %(F) be given. The assumption implies Cu € £w(F, Fe). Apply-
ing the theorem, there is a neighbourhood V € f(F) such that CvU € 2'(F, Fv). 
Then we get a factorization 

Fy" 

L(u) 

Now, F is a subspace of proj urn {Fu": U € I(F)}. Therefore, it can also he con-
sidered as a subspace of the projective limit of the L(u)-spaces I 

Corollary: An (F)-space F has a /undamental system {A a } (6(F) of the bounded 
subsets such that the spaces FA , are Hubert spaces if and only if the topology o/ F can 
be generated by semiscalar products. 

Proof: The sufficiency of the given condition follows from the proposition. The 
necessity could be derived from results of [2], but here we give another direct proof. 
Let {P,z} be a countable system of seminorms, defining the topology of F. Assuming, 
that the p,, are generated by semiscalar products. Let A be any bounded subset 
of F. We put c,, = sup Pn(X) and choose a sequence (a s) of positive real numbers 

xEA 
such that X a,, 2C.2 	1. We consider the functional 

n1

Um

112 
q(x) = 'a2p(x)2 ,	x € F, 

I I 

which can take the value oo. Then B = {x E F: q(x) :E^ 11 is a bounded set and its 
gauge functional q performs the parallelogram equality, because the p,'s do it. 
Therefore, q is generated by a scalarproduct defined on F(B). Finally, for x E A it 
follows q(x)	1. This shows A 9 B 

3.2. Recall, that a locally convex space F is called conuclear if for any A E (6(F) 
there is a B € (6(F) such that the mapping CAB is absolutely summing, and it is 
called nuclear if for any U E 'W(F) there is a V € QI(F) such that C 0 is absolutely 
summing (cf. [5, 4.1]). It was proved in [6, 8.7.81, that the ideal q of the absolutely 
summing operators is a normed maximal operators is a normed maximal operator 
ideal. Applying Theorem 2.5, we get a new proof of the fact that every conuclear 
(F)-space is nuclear. This shows that the whole theory of the nuclear (F)- and (DF)-
spaces can he founded on the theory of operator ideals. 
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