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Factorization of operators mapping (F)-spaces into (DF)-spaces

H. JUNEK

Die Arbeit behandelt die Faktorisicrung linearer Operatoren von (F)-Rdumen in (DF)-Riume
durch Banachriume und durch Operatoren gegebener Operatorenideale. Grob gesprochen wird
die Frage untersucht, in welchem AusmaB globale Eigenschaften solcher Operatoren durch ihr

" Verhalten auf den beschrinkten Teilmengen bestimmt-werden. Die Resultate werden zur
Charakterisierung der geometrischen Struktur der Nullumgebungen in (F)-Réumen durch dic
Geometrie ihrer beschriankten Mengen verwendet. Ferner gestatten sie eine neue Einsicht in
die Theoric nuklearer (F)-Raume.

Hccneposana gaKropnaanya IMHEHHEX ONEPATOPOR, 0TOOpaKawIMUX EpocTpancTea Tuna (F)
B mpocrpancTBa tuna (DF), yepe3 BaHaxoBee NMpOCTPAHCTBA H 4epe3 ONEpPaTOPH AAHHHX
WjeajioB ONepaTopoB. OTO PABHOCUJIbHO BOOPOCY, B KaKoi Mepe riaofajibHHE CBOHCTBA
TAKHX ONEPATOPOB OMpefesIeHkl HX NMOBEJEHUEM HA OrpaHUUYCHHKIX NMOMHOMKecTBax. PesyL-
TATHl MCMOJIL30BAHBI JJIA XapaKTepH3aLHH reOMeTPUUYECKOl CTPYKTYpPH OKpecTHOCTelt Hy:ms
8 mpocrpancrsax Tina (F) reoMerpueil 11X OrpaHHYeHHBIX MHOMKECTB W 1103BOJIAIOT HOBHIA
B3TJIAM HA TEOPHIO AAepHHIX NPOCTpaHCcTB Thna (F). '

This paper deals with the factorization of linear operators mapping (F)-spaces into (DF)-spaces
through Banach spaces and through operatorsof given operator ideals. Roughly speaking, we
answer the question of, to what extend global properties of such operators are determined by
their behaviour on the hounded subsets. The results are used to characterize the geometric
structure of the ncighbourhoods of zero in (F)-spaces by the geometry of their bounded sub-
sets. Morcover, they allow further insights into the theory of nuclear (F)-spaces.

Introduction

A specific situation appearing in the study of locally convex spaces in opposite to
Banach spaces is given by the interplay between the neighbourhoods and the bounded
subsets of these spaces. It turns out that a lot of different hard problems in the
theory of locally convex spaces can be solved by answering the crucial question of,
roughly speaking, to what extend global properties of linear operators acting in
these spaces are determined by the behaviour of these operators on the bounded
subsets of the spaces. This question was treated in the papers {3, 7] for linear opera-
tors mapping (DF)-spaces into (F)-spaces. Here we are dealing with the case of
.operators mapping (F)- into (DF)-spaces. Although in both cases the main tool is
the well developed theory of operator ideals in Banach spaces, the results and t;he
methods which are used in obtaining them are very different.

In Section 1, after some basic notations, we will give the strong formulation of
our basic problem. In Section 2 we present the main results (Theorem 2.5). Section 3
is devoted to some applications of the factorization theorems.
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1. The weak and the strong =7-property

Let us recall some definitions concerning the theory of operator ideals. For more
details we refer to [6]. Only for the sake of simplicity, we assume in all the following
the completeness of the locally convex spaces considered. If E, F are locally convex
spaces, then by #(E, F) we denote the set of all linear continuous operators from E
into F, and by & (E, F) the set of all finite dimensional operators.

1.1. Definition ([6]): An operator ideal <7 (BAN-ideal) is a class of linear continuous
operators such that the following holds:

(¢) The componenté L(X,Y)= o nL(X, Y) are linear subspaces of (X, Y)
containing (X, Y) for all Banach spaces X, Y.

() If Re Z(X, Xo), T € (X, Yy), Q € (Y, Y) then QTR € «/(X, Y) for all
Banach spaces X, X,, Y, Y,.

To formulate more exactly what properties of operators we want to consider in
this paper and what factorizations of operators we have in mind, we give the follow- -
ing definition:

Let & be a BAN-ideal and let £ and F be any two locally convex spaces. An
operator T € #(E, F) is said to have

(¢) the weak of-property, if for all Banach spaces B, Bz and all operators
Re #B,, E),Q € ZL(F, B,) the product

QTR :B, - E —~F — B,

belongs to «/(B,, B,).
(22) the shong &7 -property, if there are Banach spaces B,, B, and a factorlzatlon

K > F
l | {o
Bxi—’Bz

of T with operators R € L(E, B,), Q € L(B,, F) and T, € s/(B,, B,).

By &% and &/* we denote the classes of all operators having the weak or the
strong &Z-property, respectively. Of course, the strong «7-property implies the
weak /-property, i.e. &% S «/%. However, it was shown in [3] that there is a space
E such that for any ideal &7 we have the inequality &Z*(E, E) &= &/“(E, E). Therefore,
the main problem has to be stated as follows:

Problem: Find sufficiently large classes o'y and X, of locally convex spaces and
general assumptions on the ideal o7, such that /¥(F, E) = /% F, E) holds for all
FedA,and B € X,

Theorems of this type are called factorization theorems. We will prove such
theorems in Section 2. Here we give a simple but more interior criterion for the
weak and the strong «7-property. Simultaneously, this criterion shows explicitly,
that the weak &/-property of an operator T : £ — F only depends on its behaviour
on the bounded subsets of E, while the strong 7-property depends on the global
structure of 7'. Let E be quaswomplete locally convex space. By #(E) we denote
the directed from below system of all bounded, closed and absolutely convex subsets
of E. By %(E) we denote the directed from above system of all absolutely convex -
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neighbourhoods of zero of E. Let 4 € #(E) und U € %(E) be given. By p, and py
we denote their gauge functionals. Let us define the linear spaces

E(4) = Und and E/U = E/py(0),

n=1

which can be normed by ||z||, = pa(z) and |||y = py(z), respéctively. Their com-
pletions we denote by E, and Ey. There are canonical linear continuous mappings

C,:E,—~E -and Cyp:E —Eyg,

which are defined by C 4 = z and Cyz = 2, respectively.

- The product of these operators we denote by C,y = CyC, : B, — Ey. Furthermore,
if 4, B¢ #(E) with A S oB and U, V € %(E) with V < pU for some p > 0, then
there exist canonical mappings C,5: E4 — Ep and Cyy : Ev — Ey. These mappings
are uniquely. defined by the equations C5Cyp = C, and CypCy = Cy.

Proposition: Let o7 be a BAN-ideal. An operator T € L(E, F) belongs to s/*(E, F)
iff for all A € Z(E) and all U € U(F) the product CgTC, belongs to o/(E 4, Fy;). The
operator T belongs to sZ%(E, F) iff there are U € U(E), A € L(F)and Ty € (Ey, Fy)
such that T = CT,Cy.

’

We omit the simple proof.

2. Factorization Theorems

In this section we solve the main problem formulated in Section 1. As was mentioned
in the introduction, in [3} the case was investigated where ¢, is the class of (DF)-
spaces and X', is the class of (F)-spaces. In this paper we are dealing with the con-
verse situation. Let us recall the definition of these spaces.

2.1. Definition: A locally convex space is called an (F)-space if it is complete and
metrizable. A locally convex space E is called a (DF)-space, if it has a countable
mcreasmg fundamental system of bounded convex sets {B,} and if the intersection

V= ﬂ U, of any countable system of neighbourhoods U, € %(E) is a neighbourhood

of Lero assummg that V absorbs each bounded subset of E.

We remember that the strong dual space of an (F)-space is a (DF)-space and that
the strong dual space of a (DF)-space is an (F)-space. Before we present the results
let us show by an example that a positive answer to our problem is far from being
trivial.

2.2. Let F be Kothe’s example of a Frechet-Montel-space having the Banach space I!
as a quotient space ([1, IL.3], [4, 35.5)). Let 7 : F — ! be the quotient map. The
Montel property of F implies T' € 2¢*(F, I'), where 2" denotes the ideal of the compact
operators. But 7' cannot be compact because 7'-is an open mapping. Therefore, it
does not admit any factorization through a compact operator, thus it fails to have
the strong >¢"-property. A similar situation holds if one replaces o by the ideal %~
of weakly compact operators. Let us mention a further counterexample, without
‘going too much into the details. Let F' be the nuclear space ¢ of all rapidly decreasing
sequences. We consider the ideal A7, of all strongly nuclear operators.
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~ These are those operators T’ having a representation

T=XYh @y with |al, |zl <1 and (4)€s
1=1
Because the dual space s’ of s is strongly nuclear, all operators F, — F — Fy belong
to Ay, le. Oy € A 4“(F, Fy) for all neighbourhoods U € #(F). On the other hand,
not all mappings Cy are factorizable through an operator belonging to 47, because
then F = s would be a strongly nuclear space, which is not true. Therefore, there is
a neighbourhood U such that Cy ¢ A 2(F, Fy).

2.3. Tn contrast to these counterexamples, there is the following first positive solution
to our problem. It was mentioned in [1] without a complete proof.

Proposition: Let F be an (F)-space and E a complete (DF)-space. If T is a linear
operator from F into E which maps bounded sets into bounded sets then there is a neigh-
bourhood V in F which ts mapped by T into a bounded set. In other words, T is con-
tinuous factorizable through a Banach space.

Proof: Let {U,} S #(F) and (4,} C #(F) be a decreasing and an increasing
countable fundamental system, respectively. Suppose that there is no natural
number = such that P, (TU,) = n. Then there are sequences (z,) and (a,’) such that
z, € Uy, a,’ € 4,° and [(Tx,, a,’)] > = for all n € N. We define linear continuous
functionals g,(a’) = (T'z,, a’) on E'. For each fixed a’ € E’ there is a neighbourhood
V € %(E) such that a’ € V° Because 7 maps the bounded sequence (z,) into a
bounded set, we obtain |g,(a")| < pp(T2,) pre(a’) = C for all n € N. Therefore, the
family (g,) is pointwise bounded on the (F)-space E,’. By the Uniform Boundedness
Principle it then follows that (g,) is uniformly continuous on E,’. This means that
there is a bounded set 4 in E such that |g,(4%)| < C for all n'¢ N. From 4,° & A°
for large », this contradicts |g,(a,")| = (T'%,, @,")| > n. Therefore, there isan n € N
such that 7'(U,) S (n + 1) 4, thus T'(U,) is bounded. The continuous factorization
of Tisgivenby T :F - Fy —~E B ,

24. Definition ([6, 6.1.1]): A BAN-ideal & is called p-normed (0 < p < 1), if
there is a non negative functional « defined on & such that the following holds:

(2) If 1 denotes the identity of the space of real numbers, then tx(lg) = 1.
(i) If (T,,) is a sequence of operators T, € (X, Y) such that Za(T Y < oo,

oo n=1

then T = Z T,¢€¢ AX,Y)and x(T)? < Z‘ x(T,)?.
(222) For T € (X, Y),Re (X, X),Q € 5!’( Y, Y,) it holds «(QRT) < {{Q|| | R|| x(T").

As an-easy consequence of the axioms of the ideal p-norm « and Auerbach’s
lemma [6, B4.8], we get the estimation

«(T) < [T (dim THV? for all T € F(X, Y).

2.6. The following property is shown to be essential to obtain an affirmative answer
to our main problem.

Definition ([6, 8.7.4]): Let (&, «) be any p-normed BAN-ideal. The mazimal
hull (sf/max xm8x) of (o, ) is the BAN-ideal of all operators T' € #(X, Y) such that
for all finite dimensional Banach spaces X,, Y, and all operators R € ¥(X,, X),
Se LY, Y, the estimation «(STR) < ¢ ||S|| ||R|| holds, for some constant ¢ only
depending on 7. Furthermore, a™**(T) is defined by the infimum of all such con-
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stants . The ideal (&, «) is said to be mazimal, if & = /™. The p-norms « and
a™3x gre then automatically equivalent. :

The ideals 2" and % used in our counterexample are not maximal, the ideal N o
is not p-normed. The largest maximal normed ideal is &, of course. Further examples
are given in section 3. Now we state the main results of this section.

Theorem: Let F be an (F)-space and let E be a Banach space or a (complete) semi-
reflexive (DF)-space. If (o7, x)is a mazimal p-normed ideal, then /% F, E) = s/*(F, E).

The proof of this theorem is based on some lemmata.

2.6. Lemma: If E is a semireflexive locally convex space then for every closed, bounded
set B € .@(E) there is a natural isometry Ep == (E})'. :

Proof: Let B¢ B(E) be given. Then an isometric embedding Ep — (Eg)’
given by x> @ (Cpz’) = (2, 2') (see [5, 0.11.4])). We will show that this map is
onto. Each functional ¢ € (Ep)’ defines a functional @ =-¢ - Cp € E"”" = E and we
have ®(B?) = @(CpB% < |ip|l. Theréfore, @ € [ip]| B®, and by the bipolar theorem
it follows that @ ¢ E(B)

The next lemma is crucial for the proof of the theorem, because it states a connec-
tion between the finite dimensional structure of the bounded sets and the finite
dimensional structure of the neighbourhoods for semireflexive spaces. The proof of
this lemma is based on the following equivalent version of the principle of local
reflexivity [6, E 3.1].

2.7. Version of the principle of local reflexivity: Given any linear bounded
operator S from a dual Banach space X' into a finite dimensional space Y, for any
finite dimensional subspace H & X' and any ¢ > O there is a w*-continuous linear
bounded operator R from X' into Y coinciding on H with S such that [|R|| < (1 + &) |IS|].

2.8. Lemma: Let E be a semireflexive locally convex space and let B € B(E). Then
given any linear bounded operator S from Eg into a finite dimensional space Y, for
every finite dimensional subspace H S E(B) and any ¢ > 0 there is linear continuous
operator Q € L(E, Y) suck that ||QCxl| < |ISI (1 + &) and sup {{|Sz — Q|| : v € H n B}
=e

Proof: We put X = Ej. By Lemma 2.6 we have X' = Ez. Now, we apply the
principle of local reflexivity to §: X' — Y. The w*-continuous operator R : X' — Y

must be of the form R = Za. ® y; for some élements a; € Eg and ?, € Y. This
i=1

operator can be approximated uniformly on B° by an operator Ry, = Z Cpoi’ @ yi

for some z;" € E'. Now it is obvious that the operator @ = 2 z; ® Ys has the desired
properties i i=1

2.9. Lemma: Let F be any locally convex space, let U € U(F). Then for any linear
bounded operator R from a finite dimensional space X into Fy and any ¢ > 0 there is
a linear continuous operator P : X — F such that

[CoPll < IR (1.+¢) and IR — CyP| <e.

" - .
Proof: Let R = Y z;/ ® %; for some z;" ¢ X’ and some %; € Fy. We approximate

, ' i=1
the elements Z; by elements Cypz; with z; € F in the space Fy. It is simple to check

n
that the operator P = 3 z;" ® z; then has the desired properties @

t=1
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2.10. Proofof the theorem in 2.5: Let F be an (F)-space and let E be a (complete)
semireflexive (DF)-space or a Banach space. Let 7' € Y F, E) be given. We choose
countable fundamental systems {U,} < %(F) and {B,} S Z(E) such that 2U,,,
S U, and 2B, € B,,, for all n ¢ N. In the case where E is a Banach space, we
choose the B, to be the multiples 2*B, of the unit ball B, of E. From Proposition 2.3
we conclude the existence of a factorization

F T LE

v, Ca,. » (1)

Fy _Tn ,Ep

I7]] < 1, for some n. By shortening the system, if necessary, we may assume that
(1) holds for all » = 1. Now, we assume T ¢ &/°(F, E). Obviously, this implies
T, 4 L(Fy, Eg) for all n ¢ N. Taking in account the maximality of o, there are
for each 7 € N finite dimensional spaces X, and ¥, and operators R, € (X, Fy ),
S, € L(Ep, Y,) such that ||RB,|| = ||S,|| = 1 and x(8,T,R,) > 2n. Now, for given
¢ > 0 we will construct linear continuous operators P, and Q, in the non-commu-
tative diagramm

j E_
Pl\ ’ ) oﬁ
JCU" Cn.l
Xn B > FU,, T -» EB,, S > )’,.
such that : _
Mo Pl S1+e, QO S1+¢ and «(QTP,) >n 2

- holds for all » € N. To this end we fix n, put d, = 2dim X, + 2dim Y, and choose
0 < 6 < ¢ such that 2d, 6» < (27 — 1) n?. Now, we choose the operators P, and
Q. according to the Lemmas 2.8 and 2.9 with respect to 6 and H = TP, (X,)
= T,Cy P, X, S E(B,). If E is a Banach space, we simple put @, = S,. From
SnTan - QnTPn = SnTn(Rn - CU,.Pn) + (Sn - QnCB,.) TnCU,.Pn
and 2.4 it follows
“(SnTan - QnTPn)p é “(SnTn(]zu - OU,.Pn))p + “((Sn - QnCB,.) TnCU.Pn)’
S 1SallP I73lP «(Ry — Oy, Pp)? + &((Sw — @uCB,) TuCuy,Pa)?
=du||Ry — Cy, Puli? + dy Sy — @uCs,) TnCy, PullP = 2d, 6°.
Therefore, we have

H{QuTP,)? = &(S,TuR,)? — (S, TRy — QuTP,)? = (20)P — 2d,, 8 > nP.

This proves the result (2).
Now, we put ¢ = 1 and define the sets.

A=clconvUP,Sx, & F and V=N, Sy,) S E’,
n=1

n=1

where S x,.‘ and Sy, denote the unit‘ balls of X, and Y, respectively. To show the
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boundedness of 4 in F, let U, be any element of our neighbourhood basis {U,}.
) : B
Because the P,(Sy,) are bounded subsets of F, the set U P,(S X.) is absorbed by U,.

n=1
For all n > k we have P,(Sx,) S 2U, S U,. This shows that the whole set 4 is
absorbed by U,. Therefore, 4 is bounded. Now, let us prove that V is a neighbourhood
of zero. By the definition of a (DF)-space it is sufficient to show that V absorbs
each bounded subset of E. Let B, € {B,} be given. Then it is absorbed by the finite

k
intersection N @, }(Sy,). For » > k we have B, S B, and Qu(By) S Qu(B,) S 28y,
-1 .

n=
This means B, & 2@, %(Sy,) for all n > k. Therefore, V absorbs B;. Now we finish
the proof of the theorem by defining mappings P, and Q. in the commutative dia-
gram . o

X,— a P B v,
PN e CV\‘E/én D
v
by C4P, = P, and Q,Cy = Q,. From P,(Sx,) S A and Q,(V) S Sy, it follows that
the mappings P, and Q, are correctly defined and that 1P, <1 and Q. < 1.

Finally, we have «(Q, - CyTCy - P,) = &(Q,TP,) > n for all n € N by (2). But this
contradicts T' € &/%(F, K) . :

2.11. Remark: a) As was shown by our counterexamples, the maximality of the
ideal &7 seems to be necessary to prove the conclusion of the theorem. There is also
another argument which confirms that the maximality, or a similar property, is

" needed. In fact, it is somewhat surprising, that no representation of the theory of
nuclear spaces is known in the literature, which does not need the integral of the
absolutely summing operators behind the nuclear ones to develop central parts of
this theory. Actually, these operators are used to prove, among other things, that
the strong dual of a nuclear (DF)-space is also nuclear (cf. Section 3). Taking in
account the fact that the ideal of the integral operators is the maximal hull of the
ideal of the nuclear operators ([6, 8.7.6]), this curiosity is explained in some sense
by our theorem. :

b) In contrast to the maximality of the ideal, it is conjectured that the assumption
of the semireflexivity is superfluous. Without proof we mention that the statement
of the theorem is also true if E is an arbitrary (complete) (DF)-space and & is an
injective maximal ideal (concerning the injectivity see [6, 8.4]).

3. Applications -

3.1. We apply the theorem to the maximal normed ideal (&Zp, 4,), (1 < p = o).
Recall that a Banach space operator 7' € £(X, Y) belongs to £,(X, Y) if there is a
factorization :

X T .y M

.R\AL_;:(/‘) /S'

A through some Ly(u)-space (cf. [6, 19.3.1]). The norm Z,(T) is given by Z,,(T):
= inf ||R|| ||S}], where the infimum is taken over all possible factorizations.

Proposition: If F is an (F)-space having a fundamental system {4.} S B(F)
such that the spaces F 4, are L,(u)-spaces for some measures p, than F is a subspace of
a countable projective limit of L,(u)-spaces.

Y




44 H. JunNek

Proof: Let U ¢ %(F) be given. The a.ssumptlon implies Cy € &£ ,“(F, Fy). Apply-
ing the theorem, there is a neighbourhood V € #(F) such that CVU € L (Fyg, Fy).
Then we get a factorization

FU” FV”

Ly(p)

Now, F is a subspace of projlim {Fy'’ : U € %(F)}. Therefore, it can also be con-
sidered as a subspace of the projective limit of the L,(x)-spaces I

Corollary: An (F)-space F has a fundamental system {A,} S B(F) of the bounded
subsets such that the spaces F ,, are Hilbert spaces if and only if the topology of F can
be generated by semiscalar products.

Proof: The sufficiency of the given condition follows from the proposition. The
necessity could be derived from results of {2}, but here we give another direct proof.
Let {p,} be a countable system of seminorms, defining the topology of F. Assuming,
that the p, are generated by semiscalar products. Let 4 be any bounded subset
of F. We put Ch = sup Pa(x) and choose a sequence («x,) of posmve real numbers

such that 2 an2c,? S 1 We conmder the functional

n=1

g(z) = ( 2 %Py x)”) reF,

which can take the value co. Then B = {z € F : ¢(z) < 1} is a bounded sct and its
gauge functional g performs the parallelogram equality, because the p,’s do it.
Therefore, ¢ is generated by a scalarproduct defined on F(B). Finally, for z € 4 it
follows ¢q(z) < 1. This shows 4 & B B

3.2. Recall, that a locally convex space F is called conuclear if for any A ¢ Z(F)
there is a B € #(F) such that the mapping Cp is absolutely summing, and it is
called nuclear if for any U € %(F) there is a V € %(F) such that Cyy is absolutely
summing (cf. [5, 4.1]). It was proved in [6, 8.7.8], that the ideal 2 of the absolutely
summing operators is a normed maximal operators is a normed maximal operator
ideal. Applying Theorem 2.5, we get a new proof of the fact that every conuclear
(F)-space is nuclear. This shows that the whole theory of the nuclear (F)- and (DF)-
spaces can be founded on the theory of operator ideals.
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