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The Galerkin approximation for quasilinear elliptic equations with rapidly -
(or slowly) increasing coefficients

R. SCHUMANN

In der vorliegenden Arbeit wird die Konvergenz des Galerkinverfahrens fir quasilineare
elliptische Differentialgleichungen mit stark (oder schwach) wachsenden Koeffizienten ge-
zeigt. Die Untersuchungen erfolgen auf der Grundlage der von Gossez entwickelten Theorie
pseudomonotoner Operatoren in komplementiren Systemen von Sobolev-Orliczriumen.

B pa6ore npoxkaswBaeTcs CXOMHMMOCTb MeTopa IajnepkmHa IR KBA3MAMHEHHHX IJIBITH-
yecknax auddepennmanbHEX ypaBHeAnmlt ¢ GHCTPO (MM MeAJeHHO) pacTymmmu koaddu-
uuenTamn. Banuc uccnegosanuit-reopun 'occery ICEBIOMOHOTOHHEIX OREPATOPOB B JOMOJ-
HUTEJIBHHX clcreMax npocrpancTB Co6osea-Opausa. *

In this paper the convergence of Galerkin’s method is proved for quasilinear elliptic partial
differential equations with rapidly (or slowly) increasing coefficients. The investigations arc
based on Gossez’s theory of pseudomonotone operators in complementary systems of Sobolev-
Orlicz spaces.

1. Introduction

We are going to consider the following boundary value problem (BVP):

G: X (—1) D=4, (z, Du(z)) = f(z),
lalsm ) . . (1)
9G: Diy(z) =0 for B:0Z1fjsm—1,

where the coefficients have rapid (or slow) growth (G — RN, G open and bounded,
Du = (D*u)g1gm m 2 1). B

Example 1 (“rapid gl‘owt;h”):
¢: 3 — D{Dauw) exp D@} = f(a),
o6 wm=0.
Example 2 (“slow growth”):
G: '_ é': — Dj[(sign u(2)) In (1 + |Dyu())] = {(z),

oG: - -u(x) = 0.

In the. last few years the existence theory of such equations and similiar ones was
investigated by a number of authors, e.g. BaLL [4, Ch. 6, 7: sequential weak con-
tinuity of mappings on Orlicz-Sobolev spaces, existence theorems], BROWDER [6:
quasilinear elliptic differential equations with strongly nonlinear lower order terins, -
existence theory for generalized pseudomonotone operators with domains dense in

r
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the underlying Banach space, weak coerciveness hypotheses], DoNaLDSON [8: use
of complementary systems of Sobolev-Orlicz spaces], DONALDSON [9: inhomogeneous
Sobolev-Orlicz spaces, complementary systems, investigation of parabolic differen-
tial equations], Gossez [11: monotone operators of dense type, connections with
convex analysis, applications to semilinear elliptic differential equations with strong
nonlinearities in Orlicz spaces], GossEz {12, 14: general existence theory for quasi-
linear elliptic equations in Sobolev-Orlicz spaces, very weak coerciveness hypo-
theses], Gosskz [13: proofs for the existence of solutions of quasilinear elliptic
differential equations using the principle of topological degree], HEess [15, 16:
elliptic differential equations with strongly nonlinear lower order terms, use of two
Sobolev spaces], Lacroix [20, 21: traces of functions from Sobolev-Orlicz spaces,
inhomogeneous boundary value problems], LANDES [22: investigation of quasilinear
elliptic differential equations involving strongly nonlinear terms in Sobolev spaces,
Euler equations of convex variational problems], LANGENBACH [23, Ch. 3, §4:
variational problems in Sobolev-Orlicz spaces], StMaDER [30: strongly nonlinear
elliptic differential equations in Sobolev spaces, also for unbounded domains],
VISIK {32, 33: a-priori estimates for the derivatives of order (m 4 1), compactness
arguments]. :

It seems that there is only one paper concerning the approximate solution: of
problems in Orlicz- and Sobolev-Orlicz spaces: ROBERT [26]. In that paper approxi-
mation schemes in the sense of AUBIN [2, 3] are established and applied to the
approximate solution of Hammerstein integral equations.

It is our aim to prove the convergence of the Galerkin approximation to equation
(1). In abstract form our result reads as follows:

(1) the operator equation Au = b is uniquely solvable,
(ii) the approximate equations 4,u, = b, are uniquely solvable,
(iii) we have convergence u, — u in an appropriate sense.

The invesi:igations in this paper use some considerations of SCHUMANN and ZEIDLER .
[29] where the convergence of the finite difference method for equation. (1) was
proved under the hypothesis that the coefficients 4, have polynomial growth.
Allowing rapidly (or slowly) increasing coefficients, however, we have to replace
the Sobolev spaces used in {29] by Sololev-Orlicz spaces. This gives rise to some
serious complications since, in general, Sobolev-Orlicz spaces are neither separable
nor reflexive. In general, both the C{-functions and the bounded functions fail
to form a dense subset in Sobolev-Orlicz spaces. In this case one cannot expect the
approximate solutions to converge to the exact solution of the boundary value
problem in the norm of the underlying Sobolev-Orlicz space, yet we succeed in
proving the convergence in'a ‘“weaker” norm. For the simpler case where the Young
function H* characterizing the target space satisfies the additional growth restriction
H* € A; (cf. Sect. 2) an analogous result was presented by the author at a summer
school held in Berlin 1979 (cf. ScEUMANN [28]) using an approximation result of
ROCKAFELLAR [27].

2. Orlicz spaces and Sobolev-Orlicz spaces

In this section we collect the definitions and the main properties of Orlicz- and Sobo-
lev-Orlicz ‘spaces which are needed to restate the BVP (1) as an operator equation
and to prove the convergence result. As for the proofs we refer to the literature,
e.g. Apams [1], Gossgz [12, 14], KUFNER, JoHN and Fu¢ik [19], KRASNOSELSKIJ
and RuTIckiy [18]. :
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2.1. Young functions and Orlicz spaces

Let G be an open and bounded subset of RN (N = 1), G & @. A Young fwwtzon H
is a function of the form
1t .
‘H(ty = f(p(s) ds forall te¢ R, (2)

where ¢: [0, +oo[ — [0, +oo[ is a continuous and strlctly increasing function with
@(0) =0, Iim ¢(s) = +o.

8—+ 00

Since any Young function is convex Jensen’s inequality holds:
: !
(Za%)SZaH (w;) - : S )
1=1 .
n
for all u,,...,u, € R; &y, ..., %, € R with &; 20, 3 «; = 1 (cf. KUFNER, JORN
and Fuéix [19, p. 133)). s ’ ' o

A Young function H is said to satisfy condition 4, if there exist numbers £, ¢ > 0
such that H(2t) < cH(t) for all t = ¢,. If H is a Young function we define the con-
jugate Young function H* of H by

1
H*(t) = [pYs)dsforallt € R.
0 . .

This definition implies AYozlmg"s tnequality

’ * < H(t) + H*¢*)  forallt, t* ¢ R. (4)
The Orlicz class L ,(G) is defined to be the set of all mea.surable functions u:

G — R with ggy(u) = fH(u(x ) dz.

The Orlicz space is defmed as the set of all u: @ — R such that a(u)u € Ly(G) for
some real number «(u) depending on u. Lastly, E,,(G’) denotes the set of all w € Ly(Q)
with au € L4(G) for any real number & > 0. As in the definition of the Lebesgue
spaces L,(G) functions having equal values almost everywhere on G are not distin-
guished. The Orlicz space Ly(@) is a Banach space with respect to the Orlicznorm

lldllr = sup [ Ju(z) v(z)] dz (8)
2 G .
where the supremum is taken over all » € L4(GQ) such that gye(v) < 1. An equi-
valent norm on Ly(G) is the Luxemburg norm

lullry = inf {k > 0: [ H(k 'u(z)) de < 1}. (6)
G

The relation between both norms is giveﬁ by
lellsry < Ml = 2l - for all w € Ly(G). : (7

The set Ey(G) is a closed and separable subspace of ‘Ly(@); furthermore E,(Q)
=cl Ly(G) = ch°°(G) (closure in || ||,,) Note that E,,(G) L,,(G) if and only
if H € A2 .

The following generalized Holder mequalzty pla.ys an 1mporta,nt, role in our estl-
mates:

[ luz) o(@)| dz <l olle < (8)
G .

for all u € Ly(Q), v € Lys(G).
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We will also need some comparison results for Orlicz spaces. Let H,, H, be Young
functions. Then we write .
(i) H, < H, if there are numbers ¢, ¢ > 0 such that H,(t) < Hy(ct) for all £ = to;
(il) H, < H, if lim H,(t)/Hy(2t) = O for any 1 > 0. o
. t—o0

With these preliminaries we may formulate a lemma.

Lemma 1: (i) Ly (G) C Ly(G) if Hy, < H,. (C denotes continuous imbedding ;
thus in our case L”‘(G) (e L”’(G) and ”u””' é c ”u”l{l /07' all u € L[[I(G), ¢ >0 con-
stant.) . -
(i) Ly(G) C By (@)  if H, < H,.-

(iii) Let H, < H,. Suppose a sequence (u,),2, = Ly (@) satisfies lim gy, (u,) = 0.
Then lim |ju,||y, = 0. . noeo

Proof: Cf. Apawms [1, p. 234—237], KrasNosELSK1s and RuTickiy [18, p. 130],
KurNER, JorN and Fudik [19, p. 185—-192]

2.2. Sobolev-Orlicz spaces

Let us now turn to Sobolev-Orlicz spaces. For a Young function H and an integer
m = 1 we denote by W™Ly(G) the set of those functions u € L;(G) whose generalized
derivatives D*u belong to Ly(Q) up to order m. Analogously, W™E, (@) is the sct

of all functions u € Ey(G) with D*u € Ey(Q) if |«] < m.
The spaces W™Ly(G) and W™E,(G) are Banach spaces with respect to the norm
lm, e = ( 2 HDWHH”)“”- 9)

lalsm

We identify W™L4(G) with a subspace of the product space L = I1 Ly(@) via
: lals

u € WPLy(G) > (D*w)y<m € L. Furthermore we define Sobolev-Orlicz s;aces with

““zero boundary values” by '

WoLy(G) = o(lILy(R), HEus(6)) — el Co*(@)  in WLy (®)

~ (i.e. closure of C,® in W™L,(Q)— L with respect to the topology on WnLy(G)
induced by the weak *-topology on L), .

WnBy(@) = cl Co°(G) in WmEL(G) (norm closure).

The spaces WmL,(G) and WmEL(G) arc Bansch spaces, ‘too. On these spaces the
norm |u|, y and |[u), g = ( P |ID"uI|,,2)1,/2 are equivalent. (Cf. Apams [1, p. 246],

la|=m
GossEz [12, 14], KuFnER, JoBN and Fudik [19, Ch. 7).) Let us now give the defi-
nitions of two distribution spaces: o
W-mLyue(G) = {f €D'(G):f =) Df. with f.¢ L,,.(G)}, .

lalsm

W-mE,.(G) = {/ € D'(@): f= Y Df, with f, ¢ E,,.(G)}.

lalgm
We define a pairing between u ¢ WmL,(G)and fe W- mLus(G) by
= [ X fx) Dwz)dz. (10)
G lalgm

In the next section we shall need an imbedding theorem. We write X CC Y if
X C Y and the imbedding operator X — Y is compact. :
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Lemma 2 (Sobolev-Orlicz-imbedding theorem):

(1) Suppose G has Lipshitz boundary: G € €°! (cf. Apams [1, p. 66], KUFrNER, JOHN
and FUCIK [19, p. 204]). Then WoLy(G) C C W2 E(Q).

(ity If G= RN is an arbitrary open and bounded set then W™Ly(G) G C W LEL(G).

Proof: Cf. Apawms [1, p. 247—258], DoNaLpsoN and TRUDINGER [10], GossEz
(12, Prop. 4.13, Lemma 4.14], Kur~ER, JoEN and Fudixk {19, p. 352—369].

2.3. Complementary systems

'I"he'BVP (1) will be formulated as an operator equation in a complementary system
of Sobolev-Orlicz spaces. Therefore we give the following definition (cf. Gossez
[12, 14]): ‘. o - : ‘
Let Y and Z be (real) Banach spaces; (-,-): ¥ X Z — R denotes a continuous

" bilinear form-such that the following conditions are satisfied: ’ ’

(i) (¥, 2) = O for all z € Z implies y = 0,

(1) (y,2) = O for all y € Y implies z = 0. . . o

Suppose Y, Y and Z,= Z are linear subspaces of ¥ and Z, respectively. Then
the quadruple (Y, Y,; Z, Z,) is said to be a complementary system if, by means of
(-5 ) Yo* can be identified with Z and Z,* with Y ; i.e. there exist linear homeo-

onto onto

morphisms y,: Yo* —> Z, y,: Zy* —* Y such that

@) =) forallye ¥, fe¥*
and
g(z) = (y29, 2) forallz€ Z,, ge€ Zy*.

For this situation we write shortly: Y * =2, Z*=~ Y.
‘ Examples: (i) (Ly(@), Ey(G); Lys(@), Eys(G)) is a complementary system with
respect to the pairing: u € Ly(G), v € Lys(G) — [ uv dz. R

6

(i1) (W"'L,,(G), WmE(G); W-mLye(G), W""E’H.(G)) is a complementary system with
respect to the pairing (10) (cf. Gossez [12, 14]) provided that G has the segment
property (cf. Apaws (1, p. 66]). .

3. Generalized solutions of the BVP and convergence theorem

Now we are looking for genera.lized solutions of our BVP (1).

Problem (#): Let H be a Young function; suppose f € E;+(G) is a given function.’
A function u € D(d)= ¥ = W™Ly(G) is said to be a generalized solution of (1) if

a(u,v) = b(v) forany ve ¥, = WrEyG) (11)
where a(u,v) = f 2 Aa(z, Du(x)) Dry(x) dx, .
G lalsm

D(A) = {u€ Y: A(-, Du) € Lya(@) forall |a| <m},
b(v) = ff(x) v(z) dx.
G .
To solve Problem (&) approximatively by Galerkin’s method we replace the

space Y, in equation (11) by spaces Y, (n = 1,2, ...) from an increasing sequence
Y,= Y, ... of finite-dimensional subspaces of Y, = W,Ey(G) whose union
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" ¥V=U Y, isdense in ¥,. Under the norm ||-||, 5 the spaces Y, are (finite dimen-
n=1

sional) Banach spaces. Thus weare led to consider the following sequence of problems:
Problem (£,): Find a function u,, € Y, such that
a(u,, v;,) = 5(v,,) forany v,€ Y,. - )
Now we can state the convergence theorem..

Theorem 1: Let G be an open bounded subset of the Euclidean space RN (N = 1),
G = O, with Lipshitz boundary: G € €°). Let H and ¥ be Young functions such that
. ¥ < H. Furthermore, assume that the following conditions are satisfied:

a) Carathéodory condition: For all «: |x] < m let
A,: G X R* — R be a function such that
z > A.(2, D) s measurable on G for all D = (D?) € R* and (12)
D > A.(z, D) 18 continuous on R* for almost all z € Q.

(p ts the cardinal number of the set {x: |x] < m}.)
b) Growth condition: '

4.t DI S 9(2) + ey T (H*)* H(@,D) )

for dll X € G, D = (DPf)pgm € R* where g € Eye(G), ¢,, & > 0 constant, |x| < m..
¢) Monotonicity:

X (Au(2, D) — Au(z, D)) (D* — D) > 0 (14a)
lalsm .

forall z € G, D = (Df)jpigm» D' = (D')p1<m € R* with D = D,

S Adz, D) D2 2 ¢, 3 H(aD?) — K(2) (14b)
lal=m 1Bl=m .

forall x € G, D € R* where K € Ly(Q), ¢y, @ > 0 constant.
Then:
(1) Problem () has exactly one solution u € D(A).
(i) Problem (2,) has exactly one solution u, € Y, foralln = 1,2, ...
(iii) D°u, — D*u tn Ey(G) asn — oo for all a: |a| < m — 1.
(iv) D*up, — D*u in Ey(G) as n — oo for all a: |x] < m.
(V) There exists a real number y > 0 such that

: Qn(y(D“u,, — D“u)) =0 forall «: la| =m, as n— oo.
Corollary: If H € A, then |fu, — wllm,y — 0 as n — oco.

Proof: If H € 4, then Ly = E;; and gu(v, — v) — 0 if and only if [v, = ovljy — 0
(cf. KUFNER, JonN and Fudik [19, p. 159]). Therefore the corollary follows from

-

Theorem 1 (iii), (v).

Exé.mples: Let us consider a simple but typical application. Suppose ¢: R — R
is a continuous, odd and strictly increasing function such that lim ¢(t) = co. We

t—o0
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assume that G satisfies the hypotheses of Theorem 1. Consider the BVP

N
— & Difp(Daz) = f(z) in @
u(z) =0 on 2G.

Tﬁen all assertions of Theorem 1 hold..

Now we return to the examples mentioned in the introduction. '

For Example 1 'we use g(t) = texp |¢|; the associated Young function H(ty
= (|t — 1) exp [t| + 1 has exponential growth and does not satisfy condition A4,
(cf. KrasNoseLsk1y and Rutickis [18, p. 38]; KuFNEr, JoEN and Fudix (19,
- p- 138]). If we set ¥(¢).= |¢|* then ¥ < H for all p > 1. ) o o

As for Example 2 we choose g(t) = signtln (1 4 |f|); the associated Young
function H(t) = (1 + |t|) (In (1 4 |¢]) — [¢] satisfies H € A, (cf. KRASNOSELSKI and
RUTICKIJ [18, p. 41]). Therefore the corollary is applicable, too. S -

Proof of Theorem 1: The proof is based on Gossez’s theory of pseudomonotone
operators in complementary systems of Sobolev-Orlicz spaces (cf. Gossez [12, 14]).
We shall work in the complementary system (Y, Y,; Z, Z,) where ¥ = B Lu(GY,
Yo = WPE(G), Z = W-mLye(G), Zy = W-Eys(G).

. (I) Operator A: We define an operator 4: D(4) < Y —> Z assigning to any u € D(A4)
. the element du'c ¥, * =~ Z with

(v, Au) = a(u, v) for all v € Y,. ‘ (15)
Thus (11) is equivalent to the operator equation .
Au = b. (16)-

Note that Y, = D(4) by virtue of (13). We intend to show that (16) has a solution
u € D(A) for any b € Z,. The method is to prove the existence and uniform bounded-
ness of the solutions of Galerkin’s equation (11') and then to go to the limit using
pseudomonotonicity of 4.

(1I) Operator A,: For any u, € Y, we define 4,u, € Y, * by
(V,, AU,y = alu,, v,) for all v, €Y,

(here (-, ) denotes the duality pairing between Y, and Y,*). The operators 4, are
continuous by virtue of Gossez [12, Lemma 4.3). Thus by condition (14a) 4, : ¥,
— Y,* is a one-to-one continuous mapping from Y, onto the range R(4,). From.
the Brouwer theorem on invariance of domain we conclude that R(4,) is an open
. set of ¥Y,*. We prove that R(4,) is closed in ¥,*. Then R(4,) = Y,* and assertion
* (ii) is verified (cf. PETRYSHYN [25]). A

In fact, let (y;*) be a sequence from R(4,), i.e. y* = A,u;(u; € ¥,) such that

¥* —y*in Y,*. We intend to show that . -

. 8up Jluylly, < oo. , (17)
i ’ i : T

In view of dim Y, < co (17) implies the existence of a subsequence (8§ — (u;) such
that u; —u in Y,. Since 4, is continuous we get yp = Azuy - Au = y*, ie..
y* € R(4,). Now we turn to the proof of (17). We have

(uy, Agup) = a(u;, u;) = y*(uy). - (18)
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Let us investigate the linear functionals y;* € Y, *. Remember that (Y, Y,; Z, Z,)
is a complementary system; ¥, — Y is a finite dimensional (and therefore closed)
subspace of ¥,. We use Chapter 1 of Gossgz [12, p. 166] to generate a new comple-
mentary system (XY, -;-, -). In the terminology of Gossez we have £ = Y,, E, = Y,,
F=2Z[Y,',Fy={z+ Y, :2€ Zy) where Y,,* = {z € Z:(y, zy=O0forally € Y,}.
Lemma 1.2 of Gossez [12] proves that (¥,, ¥,; F, F,) is a complementary system.
Furthermore F = F,. The norm on F, is the quotient norm: .

Ilzlle, = inf {llz + yatllz 1 yat € Yot}

There exists & linear homeomorphism y: ¥,* — F, (cf. Sect. 2.3) and we may assume
that the norm on Y,* is given by y,* € Y, * > |yy,*|lr. Let us write y;*(u;)
= (y* — ¥*) (u;) + y*(u;). Choose z; € Z, such that [2;} = y(y;* — y*) and
wj € [z;], wj € Z, such that

ol < lly* — y*llv, + 277 | () -
Furthermore we supposé that yy* = [2] (z € Z,). In view of (14b) and (18) we have
’ ¢ [ X H@Dw)dz — [ K(z)dz < [ 5 A,(z, Du;) D*u, dx
G [Bl=m G G la]=m
= yi*(w)) = (uj, w;) + (u;, 2)
= [ X wpDujds + [ ¥ 2*Deou;dx
G lalsm ’ G lalsm
where (w;%), (2°) € [] Ey+(G) represent the elements w; € Z, and z € Z,, respectively
and the represenlzlaét’inons of the elements w; are choosen such that sl = llwjllz

+ 27 forall || <m,j=1,2,... Since K € L(Q) we may use Young’s inequality
(4) to conclude : .

f 2. H(aDbu;)dx — const.

G Bi=m
Set [ X (H*ywe) + Hiy ') de + 2,7 [ X H(yD*w)dz  (20)
G [a|=m G jalgm .
for any y > 0. )

The generalization of Friedrich’s inequality to Sobolev-Orlicz spaces (cf. GOssEz
[12, Lemma 5.7]) gives

[ X H(yDw)dz < ¢, [ X H(csyDbu;) dz
G lalsm G lBl=m )

where c,, ¢; > 0 are constants.
* Without loss of generality we may assume that 4c,"'c, > 1. Thus the last term on
the right-hand side of (20) is not greater than 1/2 f 2 H(4cy™cociyDPuy) dx (cf.
G [Bl=m

KvuFNER and JoBN, Fudix [19, p. 128]). Now we choose y = y, with y, = 1/4¢,c, 'c3~t a
toget * : )

f 2 H(aD%u;)

G IBl=m .

S const. + 2671 [ X H*y,"\wy®) dz + 27 [ X H¥ypy'2%)dz. (21)

b G Jalsm G latsm

The last term on the right-hand side of (21) does not depend on j. In view of (19)
we have

fofllee = fwillz + 277 < lly* — y*lly, + 217 >0 as j— oco.
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Therefore there exists an integer j, = 1 such that |ly, wy|lye < 1 for all § = Jor
j«f = m. From a well known inequality (cf. KuFNER, JoHN and Fuék (19, p. 154])
we conclude that oge(y, lw;®). < lyo~'ws%llye -0 as § — oo (Ja| < m). Thus
supf 2 H(aDPu;) < oo. This implies sup [ejllmser < 00 and (17) is proved.

} G 1Bl=m i .

(III) Uniform boundedness: We intend to show that the solutions u, of the Galerkin
equations (11’) are uniformly bounded: sup |[iy||,y; < oo. Since :

n

[ X Au=, Du,) Dou, dz = [fuadz  forallm =1,2,...
¢ _ .

G lalsm ' ’
hypothesis (14b) implies

K cof 2 H(aDbu,)dx < f/u,.'dz'-i- de:z:.
G [Blsm G G

"By virtue of Young’s inequality we get T T
¢ [ X H(aDPu,) < const. + [ H(y ') dz + fH(yu,.)‘dx
G ¢

G Bl=m

for any y > 0. Because of f¢ Eys(G) we may proceed as in (II) to conclude
supf 2. H(aDfu,) dx < oo. This, of course, implies sup |[u,|lm.x < co.
8 G |fl=m n )
(IV) We prove assertion (i): Problem (%) has exactly one solution. By condition
(14a) the solution is unique if it exists. Since sup |luy|lm.y < co where the elements
U, are the solutions of the Galerkin equation (11') and Z, is separable we may select
a subsequence from (u,) denoted by (u,) again such that

uy—>ueY in of¥,Z) asn—»oo0 A (22)

(cf. DIEUDONNE [7, Theorem 12.15.9]). Since ¥ = U ¥, it follows from
) n

(v, Au,) = a(u,, v) > b(v) as m—>oco ‘foranyve V

that

Au, —>b in o(Z, V) a8 n —> oo, v (23)
Moreover - ‘ S

(g, AUp) = a(u,, u,) = b(u,) — (u, b) as n — oo - (24)

because of (22) and b € Z,. . .
The reasoning of Gossez [12, proof of Theorem 4.1, p. 188—189) shows that we
can assume again passing to a subsequence that

Au(s Duy) > Au(-, Du) in o(Lye By) 887 — 0o (el <m)  (25)
and E .
u € D(A), Au = b. ‘ (26)

Thus' assertion (i) is proved. Since the solution of du = b is unique an argument
concerning subsequences (cf. ZEIDLER [34, Band I, P- 117] shows that (22), (23),
(24), (25) hold for the entire sequence (u,). _ L

From (22) and the Sobolev-Orlicz imbedding theorem (cf. Sect. 2.2, Lemma 2)
one obtains assertion (iii). Assertion (iv) for x| < m — 1 immediately follows from
asgertion (iii) and Lemma 1.

6 Analysis Bd. 1, Heft 4 (1982)
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(V) We prove a.seertum (V) Suppose u € D(A) is the solution of (16). We mtroduce
the sets .

G, =lx e G |Duz) £k for all |x] < m}, k=1,2,.

Let y, denote the characteristic functlon of G,. Thus the truncated functions ka‘u
belong to E,(G) for all |« < m, k= 1,2,... Moreover y,D*w — D*u in o(Ly, L,,o)
as k — oo (cf. KUFNER, JOHN and Fudlik [19 p- 1811).
(V,): Consider

n.k = f Z (Aa(x’ kau) - Aa(x: Dun)) (Xk_l)“u - Daun) dl‘. . (27)
G |alsm . .
Now by virtue of (22) to (26) we obtain
Au = | X (Aulz, 1uDu) — Au(z, Du)) (Du — D) dz = d; (28)
G falsm _

ag n — oo for k fixed. But |
dk = f Z (A°(x’ 0) - Aa(z: Du)) D"ll/ d:c.

G—Gy laj=m
Since meas (G.— G,) >0 as k — o0 and 4.(-, 0), A.(-, Du) € Ly« we get
d—0 .ask—o0. - (29)

(Vz): From (28) and (29) we derive the existence of a sequence (n;), n; —> 0O a8
k. — oo such that

Ao =0 ask — o00." . < ‘ . (30)

Now we use an argument that is often employed in the theory of monotone operators
(cf BrowDER [5, p. 29], TJONS [24, p. 184]). Define

Fuz) = X (Aol 1Du(@)) — Aule, Dup(2)) (uD*u(z)) — D" (@) (2 €0).
- By monotomclty (14&) it follows that Fk(ar:) =0 (x€0) and (30) implies F, — 0
in L,(G). Therefore we may assume passing to a subsequence that
Fy(z) >0 a.e. on G ask — oco. (31)
From assertion (iii) we know that '
Deu, (z) — Deu(z) a.e.on G for ol =m — 1. ) (32)

(agam after passing to a subsequence). -
Let M — G be a set of measure zero such that (31), (32) hold for all z € G — M.
From (13) and (14b) we derive

Fi(®) 2 6 ¥ H{aD%u, (@) — K@)
1Bl=m -
+ Z Aa(xv ZkDu(x)) (kaau(x) - Daung(x))
- Z Az, Du,,,(:c)) e D*u(x)

lalsm

=c ¥ H(aDﬁu,,'(x)) —
1Bl=m

— ¢(x) {1 + X |Duy(x)| + X (H*)*‘H(élDf'uM(x))} = Ry(x)
laj=m lalsm .
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where ¢(z) > 0 is a number depending only on 2. Fix z € @ — M and suppose that
7%(«) is any limit of the sequence D=u, (z) (Jx| = m). It is easy to see that In°(z)] < oo.
Indeed, if we had |i, (z)| — co for some subsequence (t,,) = (u,,) then a 'short con-
sideration of the growth behavior of the functions H and (H*)™! yields Ry(z) — oo,
Le. Fi(x) — oo, too, contrary to (31). Therefore |5*(z)] < oo for all z € G — M.
Combining this and (31) we see that

3 (Au(z, Du(z)) — Az, 7(2)) (D*ul(z) — @) = O (2 € G — M).

lelSm
In view of (14a) we get D*u(z) = #°(z) for all €@ — M, ie.
Deug (x) — D*u(x)  a.e. on G for |a| < m. . ) | (33)
(V3): Define . '
wie) = K(2) + T Au(z, Duny(2)) Duny(2),

w(z) = K(z) +| é’mA,(x, Du(z)) Du(z) = (k= 1,2, oes T€G).
By (14b) w,,(x) = 0, w(z) g 0 for all € G. From (é3) it follows thatv o
w(z) > w(x) a.e.on G ask— oco. . S (34)
Observe that A R
:fwk dr = [ K dz + [ X A‘,(x; Du,,) D“u,,; dx
G G G |a|lsm :

—>‘dex+f Z'A,(x,Du)D“udx:fwdz, ,
G G lolsm ¢ o

i.e. [lwellz) — llwllzy)- This fact and (34) imply w, — w in L,(G) (cf. DIEUDONNE
[7, Ch. 13.11}, HEwrrT and STROMBERG [17, p. 208]). Passing to a subsequence we
may assume that w(z) < k(z) a.e. on G (k = 1, 2, ...) where k € L,(G) (cf. KUFNER,
JoHN and FudIk [19, p. 74]). Then by (14b) . : : .

c 5 H(aDi’u,,t(x)) Sw(z) S hz) ae.onG (k= 1,2, ).
1fl=m .

Therefore Jensen’s ineqhdlity (3) gives for |f| = m
H(2 'a(DPu(z) — Dbuy,(2)) < 27 H(aDu(z)) + 2-*H(aDPu,(z))
< 27'H(aDfu(z)) + 27'c,'h(z) a.e. on G (k=12,..). - (35)!

Furthermore it follows from (14b) that H(aDPfu) ¢ L,(@. Thus: the right-hand side
of (35) belongs to Ly(G). Therefore by Lebesgue’s theorem on dominated convergence

J H(2'a(D%u() — Dbu,(2))dz =0 forall |fl=m. .~  (36)°
G . . HEA

Applying the already mentioned argument concerning subsequences (36) immediately .
proves assertion (v). . ‘ :

(VI) The end of the proof: Lemma 1, (iii) and our hypothesis ¥ <€ H prove assertion -
(iv) for || = m e

6*
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