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The Galerkin approximation for quasilinear elliptic equations with rapidly 
(or slowly) increasing coefficients 

R. Scnvrtw 

In der vorliegenden Arbeit wird die Konvergenz des Galerkinverfahrens für quasilinearo 
elliptische Differentialgleichungen mit stark (oder schwach) wachsenden Koeffizienten ge-
zeigt. Die Untersuchungen erfolgen auf der Grundlage der von Gossez entwickelten Theoric 
pseudomonotoner Operatoren in komplementären Systcmen von Sobolev-Orliczrhuinen. 
B paüoTe J0Ia8bzBae'rcn CX0I1M0CTb MeToa Pa.nepicima U1H HBaanjinHeMimx SJIJIRUTH-
qecRsx 1I!44epeIIIHa1hmgx ypaBBeunfi c 6aIcTpo (uau MeJIeIIHo) paCTyuHM11 K09cI4H-
1HeHTaMn. Bajic HccJIeoBaH lift -TeopxR Foccei nceBoMoHoToHH&x OflTOOB B JOflOJI-
IIMTeJIhHwx CIICTeMaX flPOCTHCTB Co6oiesa-0pxua. 

In this paper the convergence of Galerkin's method is proved for quasilinear elliptic partial 
differential equations with rapidly (or slowly) increasing coefficients. The investigations are 
based on Gossez's theory of pseudornonotone operators in complementary systems of Sobolev-
Orlicz spaces. 

1. Introduction 

We are going to consider the following boundary value problem (BVP): 
U:	f (-1) 1I D"A4x, Du(x)) = 1(x), 

laIm 

49G:	D¼(x)=O for 9:Of,-I m-1, 

where the coefficients have rapid (or slow) growth (U RN, U open and bounded, 
Du = (DU) i p j m, m	1). 

Example 1 ("rapid growth"): 
N 

U:	- D[Du(x) exp ID1u(x)I] = 1(x), 
i=1 

8G:	u(x)=O. 

Example 2 ("slow growth"): 

- D1 [(sign u(x)) In (i + Du(x)I)} = 1(x), 

aG: - u(x) = 0. 

In the. last few years the existence theory of such equations and similiar ones was 
investigated by a number of authors, e.g. BALL [4, Ch. 6, 7: sequential weak con-
tinuity of mappings on Orlicz-Sobolev spaces, existence theorems], BROWnER [6: 
quasilinear elliptic differential equations with strongly nonlinear lower order terms, 
existence theory for generalized pseudoinonotone operators with domains dense in 

(1)
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the underlying Banach space, weak coerciveness hypotheses], DONALDSON [8: use 
of complementary systems of Sobolev-Orlicz spaces], DONALDSON [9: inhomogeneous 
Sobolev-Orlicz spaces, complementary systems, investigation of parabolic differen-
tial equations], GOSSEZ [11: monotone operators of dense type, connections with 
convex analysis, applications to semilinear elliptic differential equations with Strong 
nonlinearities in Orlicz spaces], GOS'SEZ [12, 14: general existence theory for quasi-
linear elliptic equations in Sobolev-Orlicz spaces, very weak coerciveness hypo-
theses], GOSSEZ [13: proofs for the existence of solutions of quasilinear elliptic 
differential equations using the principle of topological degree], HESS [15, 16: 
elliptic differential equations with strongly nonlinear lower order terms, use of two 
Sobolev spaces], LAcRoix [20, 21: traces of functions from Sobolev-Orlicz spaces, 
inhomogeneous boundary value problems], LANDES [22: investigation of quasilinear 
elliptic differential equations involving strongly nonlinear terms in Sobolev spaces, 
Euler equations of convex variational problems], LANGENBACH [23, Ch. 3, § 4: 
variational problems in Sobolev-Orlicz spaces], SIMADER [30: strongly nonlinear 
elliptic differential equations in Sobolev spaces, also for unbounded domains], 
VIrK [32, 33: a-priori estimates for the derivatives of order (m + 1), compactness 
arguments]. 

It seems that there is only one paper concerning the approximate solution of 
problems in Orlicz- and Sobolev-Orlicz spaces: ROBERT [26]. In that paper approxi-
mation schemes in the sense of AUBrN [2, 3] are established and applied to the 
approximate solution of Hammerstein integral equations. 

It is our aim to prove the convergence of the Galerkin approximation to equation 
(1). In abstract form our result reads as follows: 

(i) the operator equation Au = b is uniquely solvable, 
(ii) the approximate equations Au= b are uniquely solvable, 

(iii) we have convergence u,, -> u in an appropriate sense. 
The investigations in this paper use some considerations of SCHUMANN and ZEIDLER 
[29] where the convergence of the finite difference method for equation (1) was 
proved under the hypothesis that the coefficients A. have polynomial growth. 
Allowing rapidly (or slowly) increasing coefficients, however, we have to replace 
the Sobolev spaces used in [29] by Sololev-Orlicz spaces. This gives rise to some 
serious complications since, in general, Sobolev-Orlicz spaces are neither separable 
nor reflexive. In general, both the C°-functions and the bounded functions fail 
to form a dense subset in Sobolev-Orlicz spaces. In this case one canfiot expect the 
approximate solutions to converge to the exact solution of the boundary value 
problem in the norm of the underlying Sobolev-Orlicz space, yet we succeed in 
proving the convergence in* a "weaker" norm. For the simpler case where the Young 
function H* characterizing the target space satisfies the additional growth restriction 
H* E t1 2 (of. Sect. 2) an analogous result was presented by the author at a summer 
school held in Berlin 1979 (cf. SCHUMANN [281) using an approximation result of 
ROCK&FELLAR [27]. 

2. Orlicz spaces and Sobolev-Orlicz spaces 

In this section we collect the definitions and the main properties of Orlicz- and Sobo-
lev-Orlicz'spaces which are needed to restate the BVP (1) as an operator equation 
and to prove the convergence result. As for the proofs we refer to the literature, 
e.g. ADAMS [1], GOSSEZ [12, 141, KUFNER, JOHN and Furi [19], KRASNOSELSKJJ 
and RUTXCKIJ [18].
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2.1. Young functions and Orlicz spaces 

Let G be an open and boundd subset of RN (N 1), G 4 0. A Young /unction H 
is a function of the form 

It' 
H(t) =f p(s) ds for all t E R, (2) 

where ç: [0, +oo[ -- [0, +o°[ is a continuous and strictly increasing function with 
p(0) = 0, lini t(s) = +00. 

'"+00 
Since any Young function is convex Jensen's inequality holds: 

In	\ 
H( Eajuj	 jH(u)	 (3) 

for al1 u 1 , ..., u, E R;	,..., an E R with a i	0, '	= 1 (cf. KUFNER, JOHN

and FuáIK [19, p. 133]). 

A Young function H is said to satisfy condition IJ 2 if there exist numbers t 0 , c> 0 
such that 11(21) cH(t) for all t	10. If H is a Young function we define the con-




jugate Young function H* of H by 
It' 

H*(t)
=1

 ç,'(s) ds for all I E R. 
0  

This definition implies Young's inequality 
tt :5-, H(t) + H*(t*)	for all t, t € R.	 (4) 

The Orlicz class L H(G) is defined to be the set of all measurable functions U: 
C—> R with eH(U) 

= f H(u(x)) dx. 

The Orlicz space is defined as the set of all u: 0 -^ R such that a(u)u € L 11(0) for 
some real number o(u) depending on u. Lastly, E11 (G) denotes the set of all u € Lff(G) 
with au € L H(0) for any real number a > 0. As in the definition of the Lebesgue 
spaces L(G) functions having equal values almost everywhere on 0 are not distin-
guished. The Orlicz space L11 (G) is a Banach space with respect to the Orlicznorm 

IIuIIn = SUP  Ju(x) v(x)I dx	 (5) 

where the suprernum is taken over all v € LH.(0) such that 11 .(v)	1. An equi-




valent norm on Lff(G) is the Luxemburg norm 

Itu II(I!) = inf{k> 0:fH(k_ 1u(x))dx ^-, i}.	 (6) 

The relation between both norms is given by 
11U 11(H) -̂ 5 Ilu l l i, ^5 2 JUl(H)	for all u € LH(G).	 (7) 

The set EH(G) is a closed and separable subspace of LH(0); furthermore EH(G) 
= ci L00(0) = ci C000(0) (closure in j•IIH). Note that EH(G) = 4(G) if and only 
ifHEtJ 2 .	 - 

The following generalized Holder inequality plays an important role in our esti-
mates:

f u(x) v(x)l dx g-_ 11U11H IIv II	 (8)


for all u € 4(0), v € LH.(G).
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We will also need some comparison results for Orlicz spaces. Let H1 , H2 be Young 
functions. Then we write 
(i) H1 <H2 if there are numbers t0 , c> 0 such that H(t)	H2(ct) for all t	t0; 

(ii) H	H2 if urn H1 (t)/112 01t) = 0 for any A> 0. 

With these preliminaries we may formulate a lemma. 
Lemma 1: (i) IIH,(G) C L11 (G) if H2 <Hi. (C denotes continuous imbedding; 

thus in our case L111 (G)	L1 (G) and J jujj jj,	c h u ll,,, for all u E L,,,(G), c > 0 con-
stant.) 

(ii) LH ,(G) C EH,(G)	if 112 <ll. 
(iii) Let H2 <Hi . Suppose a sequence (u)^ 1	L,,(0) satisfies limeH1(ufl ) = 0. 
Then urn I!UflJIH. = 0. 

fl-,03 

Proof: Cf. ADAMS [1, P . 234-237], KBASNOSELSKIJ and Ruricijj [18, p. 1301, 
KUFNER, JOHN and FUIK [19, p. 185-192] 0 

2.2. Sobolev-Orlicz spaces 

Let us now turn to Sobolev-Orlicz spaces. For a Young function H and an integer 
m 1 we denote by WmLH (G) the set of those functions u E 4,(G) whose generalized 
derivatives Du belong to L,,(G) up to order m. Analogously, WmE,,(G) is the set 
of all functions u E EH(G) with Du E F,,(G) if hal	m. 

The spaces WmL,,(G) and WmEH(G) are Banach spaces with respect to the norm 

l u Im.,, = ( ZJDuhhiia) i 'a .	 (9)

Im 

We identify WmLff(G) with a subspace of the product space L = [JL11(U) via 
Iilm 

U E WmLff (G)	(DU)ii . E L. Furthermore we define Sobolev-Orlicz spaces with 

"zero bouridary values" by 

J4TmL11(Q) = a(HL,j(G), J1EH.(G)) - ci C000(G)	in WmL11(G) 
(i.e. closure of Co' in WmL11(G)c L with respect to the topology on WmLH(G) 
induced by the weak *-topology on 

IV EH(G) = ci C0 (G) in WmEH (G)	(norm closure). 
The spaces *mLH(G) and 14"EH(G) are Banch spaces, too. On these spaces the 
norm I UIm.H and lluhh,.11 = ( X llDull,,9!2 are equivalent. (Cf. ADAMS [1, p. 2461, 

/ 
GOSSEZ [12, 141, KtTFNER, Jom and Fuórx [19, Ch. 7].) Let us now give the defi-
nitions of two distribution spaces: 

W- mL,,.(G) = !f E '(G): / = E	with f € LHe(Gt), 
(	 I'Im	 J 

W-mE11.(G) = ,/ € '(G): / =	Df with f E,,.(G) 
( 

We define a pairing between u € IPmL,,(G) and / € W- mL,,.(G) by 
(u, /) = f f f(x) Du(x) dx.	 (10)


C IIm 
In the next section we shall riced an imbedding theorem. We write I CC Y if 
I C Y and the imbedding operator X -* Y is compact.



	

Galerkin approximation for elliptic equations	77 

Lemma 2 (Sobolev-Orlicz-imbedding theorem): 
(i) Suppose G has Lip.shitz boundary: G E	(cf. ADAMS [1, p. 661, KUFNER, JOHN 
and Fuin [19, p. 204]). Then WmL11(G) C C Wm-1E11(G). 
(ii) If G RN is an arbitrary open and bounded set then 4TmLH(G) C C *m-1E11(G). 

Proof: Cf. Ansj.is [1, p. 247-258], DONALDSON and TRUDINGER [10], GOSSEZ 
[12, Prop. 4.13, Lemma 4.141, KUFNER, JOHN and FuIK [19, p. 352-369]. 

2.3. Complementary systems 

The.BVP (1) will be formulated as an operator equation in a complementary system 
of Sobolev-Orlicz spaces. Therefore we give the following definition (cf. GOSSEZ 
[12, 14]):	 6	 1 - 

Let Y and Z be (real) Banach spaces; (., .): Y x Z -^ R denotes a continuous 
bilinear form such that the following conditions are satisfied:	 V	 - 

(i) (' z) = 0 for all z E Z implies y = 0, 
(ii) (y, z) = 0 for all y E Y implies z = 0.	 V	 V 

Suppose Y, F and Z0 c Z are linear subspaces of F and Z, respectively. Then 
the quadruple (F, F0 ; Z, Z0) is said to be a complementary system if, by means of 
(.,.)	can be identified with Z and Z0* with F; i.e. there exist linear homeo- 

morphisms y: Y0	Z, V2: 
Z0* onto —+ F. such that 

1(Y) = (y' vu)	for all y E F0 , / € Y0* 
and

g(z) = (y291 z)	for all z € Z0 , g € Z0* - 

For this situation we write shortly:	Z, Z0" _ 

Examples: (i) (4,(G), E,1(0); L11-(G), Ell-(G)) is a complementary system with 
respect to the pairing: u E LH(G), v € LHS(G) i-+f uv dx. 

(ii) (47mL,1(G), 41mE11(G); W-mL11.(0), W°'EH* (G)) is a complementary system with 
respect to the pairing (10) (cf. GossEz [12, 14]) provided that 0 has the segment 
property (of. ADAMS [1, p. 66]). 

3. Generalized solutions of the BYP and convergence theorem 

Now we are looking for generalized solutions of our BVP (1). 
Problem (9): Let H be a Young function; suppose/ E Ell-(G) is a given function. 

A function u € D(A)c F = *mL(G) is said to be a generalized solution of (1) if 
a(u, v) = b(v) for any v E F0 = T mE,1(G)	 (11)


where a(u, v) = f Z A,(x, Du(x)) Dv(x) dx, 
C IIm 

V 
D(A) = {u € F:A( . ,Du) € L,,.(G) for all jal ;5 m}, 
b(v) =11(x) v(x) dx.	

V 

To solve Problem (9) approximatively by Galerkin's method we replace the 
space F0 in equation (11) by spaces Y. (n = 1, 2, ...) from an increasing sequence 
F1	... of finite-dimensional subspaces of F 0 = WmEH(G) whose union
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• V =U Y. is dense in Y0. Under the norm 11 Ilm.H the spices Y. are (finite dimen-
sional) Banach spaces. Thus we are led to consider the following sequence of problems: 

Problem (9): Find a function u,, € Y, such that 
a(u, v) = b(v) for any v € Y,.	 (11')


Now we can state the convergence theorem. 

Theorem 1: Let G be an open bounded subset of the Euclidean space RN (N 1), 
0 + 0, with Lipshitz boundary: C € °•'. Let H and !P be Young /unctions such that 

<H. Furthermore, assume that the following conditions are satisfied: 
a) Caraiheodory condition: For all a:	m let 

A,: G x Rfr' —> R be a function such that 
x -+ A,(x, D) is measurable on 0/or all D = (DP) E R' and	 (12)

DA,(x,D)is continuous onB)for almost all xE G. 

(i is the cardinal number of the set a: lal :5,- m}.) 
b) Growth condition: 

IA.(, D)p	g(x) + c1 L'. (H)-' H(c1D)	 (13) 
-	IPIm 

for all X € 0, D = (DP) ipim € It where g € Efi.(G), e, Z, > 0 constant, jai	rn. 
C) Monotonicity: 

(Aa(x, D) — Aa(X, D')) (D — D's) > 0	 (14a) 
IaI m 

for all x € 0, D = (D) ipim , D'	(D') ipim €	with D 4 D'. 

E A(x, D) D	c ' H(aDfl) — K(x)	 (14b) 
frIm	 IPI=m 

for all x € G, D € R/' where K € L 1 (0), c0, a> 0 constant. 
Then: 

(i) Problem () has exactly one solution u € D(A). 
(ii) Problem (p,,) has exactly one 8oltLtiOfl u,, € Y. for all n = 1, 2, 

(iii) D"u -^ D"u in E11(G) asn-^ cc for all a: lal ^ rn—i. 
(iv) D'u 	D"u in E(G) as —> cc for all a: Jai ^m. 
(v) There exists a real number y> 0 such that 

— Du)) —> 0 for all a: Jai = m, as n -> co. 

Corollary: I/H € A 2 then llu — U IImH	0 as n -+00. 

Proof: If H € A 2 then LH = E1, and fl(v — v) -^0 if and only if llv. - v -^-0 
(cf. KUFNER, Join and FUóIK [19, p. 159]). Therefore the corollary follows from 
Theorem 1 (iii), (v).

Examples: Let us consider a simple but typical application. Suppose q: It -'- R 
is a continuous, odd and strictly increasing function such that lim q(t) = CO. We
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assume that G satisfies the hypotheses of Theorem 1. Consider the BVP 

= /(x) in 0 

u(x) = 0 on 3G. 

Then all assertions of Theorem 1 hold.. 

Now we return to the examples mentioned in the introduction. 
For Example I we use (t) = t exp I; the associated Young function H(t) 

= ( I tt - 1) exp Jt + 1 has exponential growth and does not satisfy condition 4 
(cf. KRASNOSELSIUJ and RUTICKIJ [18, p. 38], KUFNER, JoHN and Fu&i [19, 

- p. 138]). If we set W(t)= ItIP then Y'<<H for all p> 1. 
As for Example 2 we choose (t) = sign t In (1 + t i); the associated Young 

function H(t) = (1 + i I I) (In (1 + I ii) - iti satisfies H € tl (cf. KEASNOSELSKIJ and 
RUricij [18p.41]) Therefore the corollary is applicable, too. 

Proof of Theorem 1: The proof is based on Gossez's theory of pseudomonotone 
operators in complementary systems of Sobolev-Orlicz spaces (cf. GossEz 112, 14]). 
We shall work in the complementary system (Y, Y 0 ; Z, Z0) where Y = WmL,1(G), 
Yo = TmE11(G) , Z = W-mLfl.(G), Z0 = WmEH.(G). 

(I) Operator A: We define an operator A: D(A) c: Y - Z assigning to any u € D(A) 
the element Au € Y0	Z with 

(v, Au) = a(u, v)	for all	v E Y0 .	 (15)


Thus (11) is equivalent to the operator equation 

Au=b.	 (16)' 
Note that Y0 c= D(A) by virtue of (13). We intend to show that (16) has a solution 
u € D(A) for any b € Z0 . The method is to prove the existence and uniform bounded-
new of the solutions of Galerkin's equation (11') and then to go to the limit using 
pseudomonotonicity of A. 

(II) Operator A: For any U. € Y we define Au € Y,," by 

(vs , Au) = a(u, v)	for all	Vn € Y 

(here (.,.) denotes the duality pairing between Y. and Y*). The operators A are 
continuous by virtue of Gossez [12, Lemma 4.3]. Thus by condition (14a) A: 
-> Y,,* is a one-to-one continuous mapping from Y. onto the range R(A). From 
the Brouwer theorem on invariance of domain we conclude that R(A 8) is an open 
set of jr.*. We prove that .R(A) is closed in Y,,'. Then R(A) = Y, and assertion 
(ii) is verified (cf. PETRYSRYN [25]). 

In fact, let (y*) be a sequence from R(A), i.e. y = A 8u,(u € 1',,) such that y * -> y* in Y,,'. We intend to show that 

sup IJUjII y < OO.	 (17) 

In view of dim Y. <co (17) implies the existence of a subsequence (u5 c (u1 ) such 
that uy --> u in Y,,. Since A is continuous we get y, t = Au5 -->A,,u = y, i.e. 
Y* E R(A). Now we turn to the proof of (17). We have 

(u,, Au1) = a(u,, u,) = y,*(u,)	 (18)
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Let us investigate the linear functionals	€ Y, *. Remember that (Y, Y0 ; Z, Z0) 
is a complementary system; Y	Y is a finite dimensional (and therefore closed) 

subspace of 1'. We use Chapter 1 of GOSSEZ [12, p. 166] to generate a new comple-
mentary system (Ye, . ; ., .). In the terminology of Gossez we have E = Yn, E0 = 
F = Z/Y,-,F0 = {z+ Y, :z € Z0 1 where 1I2 = (z E Z:(y,z)= O for all y € 1',,). 
Lemma 1.2 of GOSSEZ [12] proves that (Ye, Y; F, F0) is a complementary system. 
Furthermore F = F0. The norm on F0 is the quotient norm: 

11[Z111 F. = inf f 11 + Y,. -'11z : y, 1 E 
There exists a linear homeomorphism y: Y -> F0 (cf. Sect. 2.3) and we may assume 
that the norm on Y is given by y.* € Y i IIYY *II F Let us write yj*(Uj) 

(y,* - y*) (ui) + y*(u,). Choose z1 € Z0 such that [z,} = y(y1* - y*) and 
wj € [z1], w € Z0 such that 

IIwjJiz	IIyj	y*!Y + 2-1 .	 (19) 
Furthermore we suppose that yy* = [z] (z € Z0 ). In view of (14b) and (18) we have 

C0 f f H(aDflu) dx - f K(x) dx f ' A. (x, Dug) Du dx 
G I=m	 G	 G J^m 

= yj*(Uj) = (u1 , w1) + (ui , z) 

= f f wçD'u1 dx + f f z'D"u1 dx 
G frI5m	 C 'Fm 

where (w,), (zn) € /7 E11.(G) represent the elements w, € Z0 and z € Z0 , respectively 
I"Im 

and the representations of the elements w are choosen such that IiWE!IH 
+ 2- for all	m, j = 1, 2,... Since K € L1 (G) we may use Young's inequality

(4) to conclude 

f f H(aWu5) dx - 
C $l=m 

15 co' f Z (H*(y lwç) + H( ) -'z)) dx + 2c' f Z H(yD"u) dx	(20) 
C kI m	 C IIn 

for any y> 0. 
The generalization of Friedrich's inequality to Sobolev-Orlicz spaces (cf. GOSSEZ 
[12, Lemma 5.7]) gives 

f	B(yDu,) dx c2 ff ll(c3yDflu1) dx 
C IIm	 GJIm 

where c21 c3 > 0 are constants. 
Without loss of generality we may assume that 4c0 'c2 > 1. Thus the last term on 

the right-hand side of (20) is not greater than 1/2 f Z B(4c0 1c2c3yDflu1) dx (cf. 
C PI=m 

KUFNER and Jom, FuCix [19,p. 128]). Now we choose y = yo with Yo = 1/4c0c2 1c3 ' a 
to get

f f H(aD¼,) 
C IPI=m 

^ const. + 2c0' f f H*(y0 wç) dx + 2c0' f f H*(yo 1z) dx. (21) 
C 1.1!!z: m	 C klm 

The last term on the right-hand side of (21) does not depend on j. In view of (19) 
we have

Jw,"j.	+ 2	- y*I1y. + 21_i -- 0 as j -'- cx.
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Therefore there exists an integer j0	1 such that ItyO wEIJHs < 1 for all j
jai ^5 

 m. From a well known inequality (cf. KUFNEB, JoHN and FtJöIK [19, p. 154]) 
we conclude that 0H. (y0 1wç). IIy-'wçfl,. —> 0 as j -- 00 ( l oci ;5 m). Thus sup f ' H(aDPu,) < oc. This implies sup IJUJI!m,ff < oo and (17) is proved. 
j G . IPI=m 

(III) Uni/orin boundedness: We intend to show that the solutions u,, of the Galerkin 
equations (11') are uiiiformjy bounded: sup IIUnhIm,H < co. Since 

fJA(x,Du,,)Du,,dx. ffu,,dx	for 
all 

n=1,2,... 
C IIm	 C 

hypothesis (14b) implies	
0 

c0 f	ll(aDPu,,) dx f /u,,dx+ f K dx. 
GIm	 C	 C 

By virtue of Young's inequality we get 

co f	H(aDflu,,) ^ const. + f H(y 11) dx + f H(yu,,) dx 
G IflI = m	 G	 C 

for any y> 0. Because of / E EHS(G) we may proceed as in (II) to conclude 
sup f IF H(aD¼,,) dx <co. This, of course, implies sup IJ U,,IJ,,,.11 < 00. 
u C IflI=m	 n 

(IV) We prove assertion (i): Problem () has exactly one solution. By condition 
(14a) the solution is unique if it exists. Since sup I Unhlm,lI < co where the elements u,, are the solutions of the Galerkin equation (11') and Z0 is separable we may select 
a subsequence from (u,,) denoted by (u,,) again such that 

u,,->u( Y in i(Y,Z0 )	asn ->oo	 (22)

(cf. DIEUDONNE [7, Theorem 12.15.9]). Since V = U Y. it follows from 

(v,Au,,)=a(u,,,v)->b(v) as n - oo	for any vE V 
that

Au,,-ib in a(Z, V)	asn ->oo.	 (23)

Moreover . 

(it,,, Au,,) = a(u,,, u,) = b(u,,) — (u, b)	as n —> 00	 (24) 
because of (22) and b € Z0. 

The reasoning of GOSSEZ [12, proof of Theorem 4.1, p. 188-189] shows that we 
can assume again passing to a subsequence that 

A,,(.,Du,,)->AA(.,Du) in a(Lfl.,EJf )	asn ->oo (l x i ^5 m)	(25)

and

U E D(A), Au = b.	 (26) 
Thus assertion (i) is proved. Since the solution of Au = b is unique (an argument 
concerning subsequences (cf. ZEIDLER [34, Band I, p. 117] shows that (22), (23), 
(24), (25) hold for the entire sequence (u,,). 

From (22) and the Sobolev-Orlicz imbedding theorem (cf. Sect. 2.2, Lemma 2) 
one obtains assertion (iii). Assertion (iv) for m — 1 immediately follows from 
assertion (iii) and Lemma 1. 

6 Analysis Bd. 1, Heft 4 (1982)
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(V) We prove a8sertzon (V): Suppose u E D(A) is the solution of (16). We introduce 
the sets

Gk = {x EU: jThu(x)I ^S k	for all 1x1 ^Sm},	k= 1, 2, 

Let 7k denote the characteristic function of Uk. Thus the truncated functions 7,,Du 
belong to E,1(G) for all jal ^S 7n, k = 1, 2, ... Moreover ykDu —> Thu in a(L,j , LH.) 
as k — oc (cf. Kuixa, JOHN and Fuix [19, p. 181]). 

(V1): Consider	V 

	

n.k = 
f T (A 0 (X, xkDu) — A(x, Dun )) (xkDu — D"u) dx.	 (27) 

G IIm 

Now by virtue of (22) to (26) we obtain 

f E (A a (X, Xk') — A(x, Du)) (xkDu — Du) dx dk	(28) 
G 

as 	oo for k fixed. But	
V 


= 
f Z (A(x, 0) — Aa(x, Du)) Thu dx. 

G-G,, Im 

Since meas (G.— Gk) —>0 as k -> co and Aa(, 0), A( . , Du) E LH. we get 

dk —>O	ask —>oo.	 (29) 

(V2): From (28) and (29) we derive the existence of a sequence (flk), nk —> oo as 
k —> 00 such that 

4,,,k°	ask —>oo.	
V	

(30) 

Now we use an argument that is often employed in the theory of monotone operators 
(cf. BROWnER [5, p. 291, LIONS [24, p. 184]). Define 

Fk(x) = ' (A(X, XkDu(x)) - A(x, Dufl k(x)) (zkDu(x)) — D"ufl k( x))	(x € U). 
.IIm 

By monotonicity 
.

(14a) it follows that Fk(x)	
ØV (x E 0) and (30) implies F,,, —> 0


in L1 (G). Therefore we may assume passing to a subsequence that 

Fk(x)-±O	a.e.onGask-00.	 (31)


From assertion (iii) we know that 

Duflk(x) —> Thu(x)	a.e. on U for ja l m — 1.	 (32) 

(again after passing to a subsequence).	
V V 

Let M c 0 be a set of measure zero such that (31), (32) hold for all x E U — M. 
From (13) and (14b) we derive 

Fk(x) ^ c0 Z H(aDPuflk(x)) — K(x) 
IflI=m 

t
' A#, XkDu(x)) (xkThu(x) — D'uflk(x)) 

Im 

A,(x, Duflk(x)) ZkThu(x) 
kIm 

V	 > CO Z H(aDuflk(x)) — K(x) 
IflIm	 V 

— c(x) 1 + E ID"ufl k (x) + E (JJ*)1 R( lDufl k(x))
J	

l%(x) 

	

f	 IaI5m 
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where c(x) > 0 is a number depending only on x. Fix x € G - M and suppose that 
1(x) is any limit of the sequence Dufl k(x) ( I cxj = m). It is easy to see that Ir(x)l < oo. 
Indeed, if we had JÜfl k(x)I —> oo for some subsequence ( Üfl k) (u flk) then ashort con-
sideration of the growth behavior of the functions H and (H*) yields Rk(x) --> co, 
i.e. Fk(x) —> cc, too, contrary to (31). Therefore i(z)I < co for all x € 0 — M. 
Combining this and (31) we see that 

(A(x, Du(x)) — A(x, (x))) (D au(x) — (x)) = 0 (x € 0 — M). 
IIm 

In view of (14a) we get Du(x) = (x) for all x € G — M, i.e. 

D u(x) —Du(x)	a.e. on 0 for	m.	 (33)


(V3): Define 

Wk(X) = K(x) + Z A4x, Duflk (x)) Duflk(x), 

w(x) = K(x) + ' A(x, Du(x)) D"u(x)	(Ic = 1, 2, ...; x € G). 
Im 

By (14b) Wk(X)	0, w(x) ^ 0 for all x E 0. From (33) it follows that 

Wk(X) —> w(x) a.e. on 0 as k —> cc.	 (34) 
Observe that 

fwk dx = fKdx + f EA(x,Duflk)Duflkdx 
G	 G	 GII!9m 

—> .fKdx+f EA(x, Du) D"udx=fwdx, 
G	 G 

i.e. IIWkIIL,(c) —> IIWIL, ( G ) . This fact and (34) imply wk -- w in L1 (G) (cf. DIEt nONN1 
17, Ch. 13.111, HEwrrr and STROMBERG [17, p. 208]). Passing to a subsequence we 
may assume that Wk(X) h(x) a.e. on 0 (Ic = 1, 2, ...) where h € L1 (G) (cf. KUFNER, 
JoHN and FurK [19, p. 74]). Then by (14b) 

CO Z H(aDPu,(x)) ^5 u(x) ^S h(x) a.e. on 0	(k = 1, 2, ...). IflI=m 

Therefore Jensen's inequality (3) gives for flu	m 

• If(2_1a(DPu(x) — Dflunk(x))) ^5 2 1H(aD¼(x)) + 21H(aD¼,,(x)) 
;5 2 1H(aDPu(x)) + 2 1c0 'h(x) a.e. on 0	(Ic	1, 2, ...).	(35) 

Furthermore it follows from (14b) that H(aDPu) € L1 (G). Thus tHe right-hand side 
of (35) belongs to L1 (G). Therefore by Lebesgue's theorem on dominated convergence 

H(2 1a(DPu(x) — Dfiuflk(x))) dx —>0 for all fl! = M. 

Applying the already mentioned argument concerning subsequences (36) immediately. 
proves assertion (v). 

(VI) The end o/ the proo/: Lemma 1, (iii) and our hypothesis /' c H prove assertion: 
(iv) for JI=nz 

6*
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