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On a Class of Generalized K-Entropies and Bernoulli Shifts

T. pE PaLy

Die Arbeit bringt die Konstruktion cines firr die Diskussion um die Verallgemeinerung der
K-Entropie wichtigen Beispiels. Fiir den Fall, daB der Proze8 dirch einen Bernoulli-shift und
cine nur aus Zylindermengen bestehende Verteilung beschrieben werden kann, wird eine
Formel zur Berechnung der verallgemeinerten Entropie angegeben. In Verbindung damit
wird auf ncuartige Weise ein Optlmlerungsproblem uber der Menge aller Wahrscheinlichkeits-
vektoren glelcher Entropie behandelt.

B pabore crpoutcsa opyMmep, BaXKHBIIT AiA 00Cy#IeHAA HEKOTOPHX 0606wenuit K-aHTponuy,
npefyoeHHX B Gojlee panHeil paGore. BuuncieRn o6o6uwieHHsle 3HTPONMUY JJIA TOrO
ciy4as, KOrjga npouecc sagaerca casurom Bepuyaan u pacopenesnesneM, COCTOALIMM TONbKO
M3 UMIMHIPUYECKUX MHOxecTB. Hpome TOro, HOBHIM METOAOM DelleHA HEKOTOpas OHTH-
MHSANUOHHAA 371a4a HA MHOMECTBe BCeX BEPOATHOCTHHIX BEKTOPOB 8aJaHHOMN SHTPOMMAN.

The paper presents the construction of an example important for the discussion of some
generalizations of the K-entropy. These generalizations have been introduced in a previous
paper. A formula for the generalized entropies of a process is calculated for the case where
the process is given by a Bernoulli shift and a partition consisting only of cylinder sets. Further-

' more, a special optimization problem on the set of all probability vectors of a given entropy
is solved using a new method. The results of these computations are combined to the cited
example.

1. Infroduction

In [1] we introduced a new class of isomorphy invariants for dynamical systems.
This class is a generalization of the dynamical entropy (K-entropy). Besides the
construction of the generalized entropies, the paper [2] contains the derivation of
some general properties of them. The present paper is devoted to a particular topic
connected with the investigation of the new invariants, namely the construction of
an example sharply illustrating the complicated character of the generalized entro-
pies;

To this end we derive a formula for the generalized relative entropies of a trans-
formation 7 with respect to a partition € in the case where 7' is a Bernoulli shift -
and C consists only of cylinder sets. As a second step we solve an optimization pro-
blem of a somewhat special kind. The concave functionals to be maximalized are
not Gateaux-differentiable at the maximum points, and the region the supremum is
taken over is not convex. But these apparently unpleasant properties assure us that
the problem can be solved in an explicit, form. The proofs of the solution of the opti-
mization problem are worked out by using simple arguments from the order-structure
of states (4]. If we combine the results we get the desired example.
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2. Notations and definitions

A dynamwal system is an aggregate (X, B, g, T') where (X, B, u) is a Lebesgue space
and T is an automorphism of (X, B, u).

If C is a partition of X into measurable sets we call the pair (C/T) a process in
(X, B, u).

Definition 1: Let (X, B, 4, T) be a dynamlcal system, and let g: {0, 1] — R be
a real, bounded, concave function of the closed unit interval with ¢(0) = 0. C, D
are finite partitions of (X, 8). We define:

i) G(C/D) = X w(Dy) X 9(u(Ci/Dy)) (2.1)
where , ! .

m(A/B) = % VA€B, VBe B st. u(B)>0 (2.2)
and : '

WB) g(w(A/B) =0 VA€ B, VBB st pB)=0. (2.3)

C; and Dy denote the elements of the partitions C and D, fespect-ively.

i) G(C/T) = lim G(C/V T- 1ic) ' (2.4)

§=1

where V T-‘C denotes the common refinement of the partitions {T-*C}. -
i=1

iil) G(T) = sup G(C/T) " (2.5)
c

where the supremum is taken over all finite partitions.

Remarks: i) All the functionals G(7T) defined above are isomorphy invariants of
dynamical systems (i.e. dynamical invariants).
ii) If we insert the special strongly concave function

zlogz for z >0
M=) = {0 for =0

into the Definitions 1(i, ii ‘iii) then we get the definitions of the relative ent}'opy of C
with respect to D, the entropy of the process (C/T), and the dynamical entropy of T,
respectively.

For the solution of the optimization problem in Sect~. 5 'we will use some simple
arguments from the theory of the order-structure of states [4]. The definitions and
results needed for our special problem are listed below. - R

Let z = (x;), ¥y = (%) (i ='1,2,...) be two probability vectors. We say that x
is more mized than y (x > y) iff for all j = 1, 2, ... the sum of the j greatest compo-
_nents of z is not greater than the corresponding sum for y. In other words, let Z = (%;),
7 = (¥;) be reorderings of the components of z and y, respectively, such that

T, 2T =2 2T 2 ?712?72%%?71;2
Then we write .
j i :
-y iff FERSYT (=12 (2.6)
i=1 i=1

We write z ~ y (z i8 mizing equivalent to y) iff z > y and y > =.
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The following assertion is a well-known result: Let z = (2;,)2,, ¥ = (¥;), be two
probability vectors. Then

) z>y iff 3 g(z:) =2 3 9(y:) . ‘ (2.7

for all concave functions g: [0, 1] — R.
n) Let g be strongly concave, and let z > y but z :1-: y. Then

2 9(x) > X aly). (2.8)

Throughout this paper we are concerned with the following special class of
dynamical systems (Bernoulli systems):

Let ¥ = {0, 1,...,n — 1} be equipped with the o-algebra of all subsets and with
the measure u%given by u%i) = p; 2 0 (i€ Y), 3 p; = 1. We define X = YZ (Z being
the set of all integers) as the direct product space with the measure 4 on the a-algebra
B generated by the cylinder sets. A cyllnder seb is defmed as follows

47" wr=le= @) € X, =y, (G=1,..,k) . (2.9)
and ‘
pApein =] .7 Pu,,- _ (2.10)
. The automorphism of (X, B, u) is given by the shift ‘ ‘

T:- X > X, Tz =2' and 2z = z;_, (=0, 41, £2,..)). (2.11)
The system (X, B, g, T) is called the (py, - .., Pa_,)-Bernoulls .system:

. To deal with the class of Bernoulli systems we need the followmg well known
definitions of independence of partitions:

Let (X, B, u, T') be a dynamical system, and let C D, E be finite partitions. C is-
said to be

i} tndependent of D (written C | D) iff \/ 3,

#(C; 0 Dj) = u(Ci) p(Dy);
i) an independent partition for T iff foralln = 1,2, ...

c1VT-C;
i=1 ,

iii) endependent of D related to E kwritben C B D) iff on any atom E, of the par-
tition E the partitions of B, induced by C and D, respectively, are independent, i.e.
Vi, g,k

u(Cin Di/Ek) = p(Ci/Ey) W(D;/Ey).
C; and D; denote the atoms of the partitions C c a.nd D, respectlvely

Remark: Bernoulli systems are exactly those dynamical systems whlch have an
independent generator for 7. (A generator for T is a partition C such that the o-algebra
generated by {T-'C} ( = 0, +1, £+2, ...) is B (up to measure zero).)
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3. The problem

The entropy of a Bernoulli system is known to be H(T) = X h(p;) = — 2. pilog pi.
In [2] we showed that for all ergodic systems with the dynamical entropy H(T') = s
and for all generalized dynamical entropies

X,(s) := sup Y g(¢:) < Q(T) (3.1)
§eF ¢

where & denotes the set. of all finite probability vectors § = (g;) s.t. 3 h(g;) = s.
X,(8) is the supremum of G(C/T) over all processes (C/T) constructed with a finite
independent partition.

From now on we will suppose that 7" is a Bernoulli shift with the entropy H(T) =.s.
Bernoulli systems of finite entropy are characterized by the statement that they
have an independent finite generator for 7. According to Ornstein’s theorem, for
any finite probability vector § € & there is an independent generator C = (C,, ..., Cp)
8.t p(C;) = ¢i (¢ = 1,2, ..., m). But even in the case of Bernoulli systems, equality
does not hold in (3.1) in general. This will be shown by the éxample to be constructed
with the help of the results of the following sections.

The example is the (p, 1 — p)-Bernoulli system, and the dynamical invariants
which give Xo(s = h(p) + A(1 — p)) < G(T) are formed with the special concave
functions

z for 02y
g:(z) = {

| 3.2
r for z>7r (0<r<1). ' (3-2)

and are denoted by G,.

In Section 4 (Equ. 4.5) we see that for the partition C = (4,%, 4}, A}}) (which is
not independent, but is generating), the generalized .entropies of the process (C/T)
are

G(C/T) = Fy(p) := plg(p) + g(p(1 — p)) + g{(1 — p)?)]

+ p(1 — p)g(1) + (1 — P2 [g(p) + 9(1 — p)]. (3.3)
Ifp= —;- then
h (r +3)/4 for 12<r=1, _
G(CIT) = { (57 + 1)/4 for 1/4 <r <1/2, (3.4)

9r/4 for r < 1/4.
Now we use the solution of the problem X,(s) = sup }’ ¢,(p;) and refer to the nota-
134 .
tion introduced at the beginning of Section 5 (Equ. 5.2, 5.3).

1 1 1
If s =2k (—%—) = log 2, then a, =5 and a, <—8—, 80 forr=‘—1-we find n = 2.

Therefore we have X, (log2) = 2. % -+ b, where b is the solution of the equation

h(®Y 4+ R (é:— - b) = —;— log 2. The calculation gives b < 0.04 and therefore
Xyj4(log 2) < 0.54. ' (3.5)

A Equ. (3.3) provides us with G,;(C/T) = 0.5625 > X, 4(log 2). A sharper analysis
shows that such an inequality holds for any 7 s.t. @, < r < k, where k is the solution
of h(k) + R((1 — 3k)/4) + h((3 — k)/4) = log 2.
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If 7 4 (a, k), then we find other Bernoulli systems and other partitions of type
(4.1) to construct analogous examples (see Theorem 1). So the constructed example
shows that we cannot restrict ourselves to the independent generators if we want
to compute the G,-invariants for Bernoulli systems. This is a little surprising, because
the independent processes are the characteristic ones in the Bernoullian case. There-
fore, serious difficulties arise in connection with the calculation of the generalized -
dynamical entropies for other dynamical systems [1—2].

4. Generalized process-entropies for a particular type of process
in Bernoulli systems .

In this section we compute an explicit formula for the generalized process-entropies
G(CITy (see Def. 1(ii)) in the case where T' is a Bernoulli shift and the partition C
consists only of cylinder sets (c.f. Equ. 2.9). We consider the (pq, ..., pp-1)-Bernoulli
system and the partition : '

LAYy .”‘x; .. ‘4”‘1;;.'~ tm)
’ $15..-8xg $imee-d2m

C = A"‘u .”‘n .

- $11--801

(4.1)

the elements of which are numbered by the left lower index. A collection of pairwise
disjoint, sets of the form (4.1) is a partition if and only if for any right lower index
occuring on the cylinder sets of C, all elements of the set ¥ = {0,1,...,» — 1)
appear at least once as the corresponding upper index on some cylinder set of C.
For instance, in the case of the (p,, p;)-Bernoulli system C = (,4,° ,A4, 34313,
44 is a partition of this form.
After these preliminaries, we are going to prove the following theorem.
Theorem 1: Let (X, B, u, T) be the (py, ..., Pu-1)-Bernoulli system. Assume that C
18 a purtition consz'sting only of cylinder sets, i.e. C ts of the form (4.1), such that .
max [¢; — ¢yp] =S d, d an integer. T (4.2)
it
yu

This means that the maximal difference between right Wer indices occuring on all
cylinder sets in C is not greater than d. Then

G(CIT) = (O/V T- ‘C) . | (4.3)

i=1
Jor all functionals of Def. 1(ii).
Example: For T' the (p,, p,)-Bernoulli shift and € = (,4,°, 24, 348} we find

max [¢;, — 17, = 1. _ . (4.4) -
§.’€{0.1} .
, Trenza
So we have ,
G(C/T) = G(C/T-C) = F (py). | o - (45)
The explicit value of F {p,) can be calculated to be equal to the right hand side of
Equ. 3.3 without difficulty.

For the proof of the theorem we need the following lemma.
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Lemma 2: Let C, D, E be finite partitions such that C 1 2 D. Then for all generalized
relative entropies G(-/) ‘ : '
G(CIEV D) = G(C/E). (4.6)
Proof: '

. (C' n D n E’I) /I(C‘ n E,)
C 12D iff £ i =
Dy n BY) u(Ey)
for all ¢, 7,1 s.t. w(D; n E;) > 0. The lemma follows directly. from the definition of
G(-/-y if we use (4.7) @ .

(4.7

Proof of the theorem: The only thing to show is

d . n
C12D"(n=d), where D¢ =VT and D"= V T-°C. (4.8)

s i=1 i=d+1
With Lemma 2.then follows G(C/T) = lim G(C/D¢V D% = G(C/D9%, but this is
the assertion of the theorem. n

To show (4.8) we introduce the following notation. Let C;, D%, D" be elements
of the partitions C, D94, D", respectively, such that #(Ci n D8 n D™ > 0. Of course,
the intersection of cylinder sets is a cylinder set too. We denote p(y:) = p¥(ys),
¥i € Y. The right lower indices of C; (indicating the place where the cylinder C; is
fixed) not occuring on D are denoted by 1, 1, ..., and analdgous]y, the right lower
indices of D" nor occuring on D are denoted by m,, m,, ... The corresponding upper
indices (which are elements of ¥) are denoted by the symbols Yo Yty s Yy Ymgr - -+

Now because of the cylindrical structure of the sets C; n D# n Dy, C; 0 DB,
Dj¢ n D;* and because of the product measure on the cylinder sets, we get

#(Ci n D%) = p(Dy2) ‘1177’(?/1,), (4.9)
#(D 0 D)y = (D) - [T plyn,), (4.10)
#(C; 0 D n D"y = w(Dy) 117 p(ys,) - [T P(Ym,)- (4.11)

Equ. 4.11 expressés the fact that C and D" are independent partitions. This is a

- consequence of the construction of d. The partition C cannot have right lower in-

- n

dices which coincide with right lower indices of some set in D" = V T-C, because
' i=d+1 -

the maximal difference of indices of any set C; is d, and D" contains only sets of C

shifted at least d + 1 times. The Equations (4.9, 4.10, 4.11) can be combined to

#Ci n DA n D™y _ #lin D) u(D" nDf)
(D) (D) wDy)

In the case that one of the sets involved has zero measure, there is nothing to be
shown. Therefore (4.12) proves the theorem i

(4.12)

5. A special optimization problem

The example of a process in a Bernoulli system which gives X (s) < G(C/T) (c .
Equ. 3.1) can be constructed if we are able to calculate X, (s) for some concave
function g. This is done in this section for the special functions g,(z) (Equ. 3.2). We
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consider the problem »
X,(s) = sup G/(P), G,:d,' 37 = (pi) = X (D),
Pes

={ped,: Hp)=s}, H:d}!>3p=(p))—> 2 kpi), (5.1)
dl={ped:p;=20(:=1,2,..), }p=1}.

Here d denotes the set of all finite sequences. Therefore, d,! is the set of all probability
vectors with at most finitely many nonzero components. & is the set of all finite
probability vectors of the given entropy s.

The functional G,:d,! — R is concave. It is not Gateaux-differentiable iff p; = r
for some 1. The region . is not convex. But the special structure of the functionals G,
- and H, both being defined as a sum with an underlying concave function, gives the
possibility of solving the problem in a somewhat unusual . way by usmg arguments
“from the order-structure of states..— - - :

. Solution of (5.1): The solution is performed in three steps.
1) Choose n € N s.t.a, <r <@, ,ora, <r<a,’. a, is a solution of the equatlon

mh(an) + M1 — nay) =.s. ' (5.2)
Equ (5.2) has one (real) solution if 8 < log », two solutions 1f logn <s < log(n + 1),
and no solution if s > log (n 4 1). If (5.2) has two solutions then we denote. the
lesser one with a, and the larger one with a,’. If 7 > a,’ for some n then X,(s) = 1.
. ii) Calculate b as the lesser solution of the equation
“(n— 1) k() +h(b) +h(1 —(n—1)7r —b)=s. (5.3)
If 8 & log (n + 1) we always fmd two distinet solutions. ' - '

min {nr 4- b, 1} if (5.3) has two solutions (a)

i) X,(5) = ‘if r> a,’ for some n (lb)
: 1 if 8v= lOg(?L-*—l),T:n__*_l. (C)

Remarks:

i) At least one of the cases (a, b, ¢) is fulfilled. In case (b) we cannot perform step (ii)
because a,., cannot be calculated.

sy Ifr <z ! 0 then (a) holds and nr + b < 1.

iii) We always mean a real solution when we speak of a solution of an equation.

We show firstly, using the Lemmas 3 and 4, that G, has a local maximum on %
at the point
T, = (r, e, b1 —(n — 1) r — b, 0,0, ) = - e .(5.4)
e s’ .
n—1
provided the suppositions of case (a) hold. The lemmas 5, 6 prove that in this case 7,

is the global maximum point. Because of X,(s) < 1, the other cases are clear. There-
fore, we have demonstrated that the construction above leads to the solution of (5.1).
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Lemma 3: Let n,a,,b be as in the solution, i.e. @, < r and a, and b are the
smallest solutions of Equ. (5.2), (5.3), resp. Then

1) 0=b<r and
i) b =0iff » = a,_,.

Proof: We see that 1 — na, = a,. Indeed, a, g;%, for the function

nh(z) + k(1 — nz) has its only maximum at z = n;-l-l Therefore 1 — na, = n—ll- 1
= a,. Suppose now that 1 — (. — 1)r — b = b = 7. Then

Gy = (1 = nay, @y, .5 @4, 0,0,...) < 7,
— —

n

according to (2.6). But this leads to H(@,) < H(,), and equality holds if and only
if @, ~ 7,. However, mixing equivalence can hold only in the case, b = r = a,.
This in turn proves both the assertions, because 1 — (n — 1)7» — b = b is supposed
in the construction of b & :

The following definition is needed to make the proofs of the Lemmas 4, 5 and 6
a little more transparent.

Definition 2: Let »: 0 <7 < 1 and = be a real number and an integer, respec-
tively. . :

i) We say 'thatl & probability vector P € d,! is an r — n-typical vector iff n of its
components are equal to 7, one component is greater than », and one of the nonzero
components is smaller than 7. :

ii) A probability vector is said to be r-typically iff it is » — n-typically for some n.

Lemma 4: Let 7 € .5” be a given probability vector with entropy s. For y > 0,
r > 0 we define some neighbourhoods of 7 by

Uyp) =1{g € d.': Y lgi — pil <), , (5.5)
U,"(P) = (7 € Uy(P): Gq) = G(P)}- (5.6)
If 7 is an r-typical vector then there is a y > 0 such that U, () n ¥ = 3.

Remark: The lemma says that 7 is a lpcal maximum point of G, under the con-
straints of the problem (5.1).

Proof of the lemma: We assume 7 to be r — n-typically and the components
of p to be rearranged in such a way that p = (c,7,...,7,6,0,0,...), ¢ > r > b.
- : —— '

n
This can be done without loss of generality. Then g € U,(p) is equivalent to the fol-
lowing assertion: § = P + &; & = (&) € d, d the space of all real vectors with at
most finitely many nonzero components; 3 & =0,6; =0V ¢ > n + 2, 2le] < y.
We can rearrange & 80 that ¢ = g5 = -+ 26, > 0 = 644 = -+ = €54, fOr some

—b ¢c—
k = 2. Now suppose that § € U,”(7) and y < min {b, TT, ¢ 5 r}. We get

G =Z0@) =+ Dr+b+ 5 &= (n+ )7+ b= Gyp).

s=k+1
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Therefore 3 &; = 0, but this leads to

k+1
gms.-go (m=12..). , | . (.7

This is so because & = --- = ¢ > 0. The choice of y and (5.7) guarantee that
=P+ & > Pand g ~ P iff Z= 0. Thesame argument as in the proof of the pre-
vious lemma completes the proof B

Lemma 5: We assume that there is a r-t,ypxcal vector p € & Wlth r > 0. Then
we have following properties:

i) Any r- bypxcal vector § € & is equal to P up to a rearrangement of the compo-
. nents.

ii) There is no vector § € & such that ¢; <7V i =1, 2,.
. iii) There is no vector g € & such that \/ ¢ either ¢; =7 or ¢; =0 and Zg,(q.
-2 X gdpi)-

Proof: Let 3 = (¢,7,...,7,5,0,0,...),c > 7> b > 0.
[

n
i) We consider § = (¢, 7, ...,7,8°,0,0,...), ¢’ > r > b’ > 0. Therefore we get
D

k
g < Ppin the case k < nbecauseofc’ =1 —kr — b =1 — (Ic+ r=1—nr>c.
Analogously, k£ > n:> § > P. So k = n has to hold. But for a given n the equation
h(z) + k(1 — nr — t) = s has at most one solution z such that z < r.

i) ; <7 Vi g > P :

ii)gs=2r(t=12,..,k);¢=0 (1. > k)= X giq) = kr. X kr = Z'g,(p,) then
kr=n+4+ 1)r+b=> k 2 n+ 2 has to be fulfilled. We can rearrange g so that;

Q2GS q1=l——Zq,Sl—(n—f—1)7‘<c,a.ndtheref0req>—pI

Lemma 6: Assume that there is an r-typically vector P € £. Then the func-
tional G, has no local maximum in & at points § = (g;) such that

i) for more than one index ¢ 0 < ¢; < 7,
ii) G(g) = G(p), and for more than one index ¢ ¢; > r.

Proof: i) Suppose that 0 < ¢, < 7, 0 < ¢, < r. Because of Lemma 5 (ii) we can
assume that g, > 7. Now the problem

3 3 3 3 3
29'(Pi) = Extr.!, Z pi = Z g; = const., Z k(p;) = Zh(%’)

can be solved by application of the Lagrange multiplier rule. Because of the given
constraints we get ¢, = ¢, as a necessary condition forq to be extremally. This how-

ever is a local minimum point of the functional 2 9:(q:). Therefore § cannot be a
local maximum of G,.

il) Analogously. One has to remember that Lemma 5 (iii) allows us to restrict the
. considerations'to the case 0 < ¢, <7, ¢, > 7,93 >7

With the lemmas proved above we can see that the solution of (5.1) holds. Of
course, either we can find n as in step (i) or 7 > a,’ for some n. In the latter case
there is a g € & such that ¢; = r for all ¢, therefore J g,(¢;) = 1. The former case
leads to case (a) of the solution iff s & log (n + 1). The calculated b is smaller
than r. Therefore either G(7,) = 1 or 7, is r — (»n — 1)-typically. From Lemma 4
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we know that any r-typically vector 7 € % is a local maximum of G,. Lemmas 5
and 6 say that there is no further local maximum of G, in & greater than G,(,).
This means that 7, is the global maximum point.
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