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On a Class of Generalized K-Entropies and Bernoulli Shifts 

T. DE PALY 

Die Arbeit bringt die Konstruktion cines für die Diskussion urn die Verailgemeinerung der 
K-Entropie wichtigen Beispicis. Fur den Fall, daI3 der ProzeB dürch einen Bernoulli-shift und 
cine nur aus Zylindermengen bestehende Verteilung beschrieben werden kann, wird eine 
Formel zur Berechnung der verallgemeinerten Entropie angegeben. In Vorbindung damit 
wird auf ncuurtige Weise ein Optimierungsproblem fiber der Menge aller Wahrscheinliehkeits-
vektoren gleicher Entropie behandelt. 
B pa60re CTOHTCR upuMep, BaRnhIii jnn o6cyeHsn HOROTOp1IX o6o6lueHstt K-uITpouitH, 
flCJIO}KHHb!X n 6oiee paHHeü pa6ore. BaiucJIeHu o6o6iueusaie 3HT0flhIfl jinss Toro 
cnyas, icorja npoiwcc aagaeTCYI CBI1rOM BepHyn.'m Ii pacnpeeJ1euseM, COCTOHIL1IM TOJIbICO 
ua iAHjmYuxpH qecHHx MHoaecTB. }{poMe TOrO, HOBbM MeTooM peiiiesa uecoopan ORTI1-
Mit8aiH01:111as aajaq a na MHoaecTBe Bcex BePORTHOCTHLIX BHTOOB 8aanH0f auTpornm. 
The paper presents the construction of an example important for the discussion of some 
generalizations of the K-entropy. These generalizations have been introduced in a previous 
paper. A formula for the generalized entropies of a process is calculated for - the case where 
the process is given by a Bernoulli shift and a partition consisting only of cylinder sets. Further-
more, a special optimization problem on the set of all probability vectors of a given entropy 
is solved using a new method. The results of these computations are combined to the cited 
example. 

1. Introduction 

In [1] we introduced a new class of i8omorphy invariants for dynamical systems. 
This class is a generalization of the dynamical entropy (K-entropy). Besides the 
construction of the generalized entropies, the paper [2] contains the derivation of 
some general properties of them. The present paper is devoted to a particular topic 
connected with the investigation of the new invariants, namely the construction of 
an example sharply illustrating the complicated character of the generalized entro-
pies. 

To this end we derive a formula for the generalized relative entropies of a trans-
formation T with respect to a partition Q in the case where T is a Bernoulli shift 
and C consists only of cylinder sets. As a second step we solve an optimization pro-
blem of a somewhat special kind. The concave functionals to be maximalized are 
not Gateaux-differentiable at the maximum points, and the region the supremum is 
taken over is not convex. But these apparently unpleasant properties assure us that 
the problem can be solved in an explicit form. The proofs of the solution of the opti-
mization problem are worked out by using simple arguments from the order-structure 
of states [4]. If we combine the results we get the desired example.
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2. Notations and definitions 

A dynamical system is an aggregate (X, 18,u, T) where (X, Q, u) is a Lebesgue space 
and T is an automorphism of (X, 58,u). 

If c is a partition of X into measurable sets we call the pair (C/T) a process in 
(X,8,1a). 

Definition 1: Let (X, 58, u, T) be a dynamical system, and let g: [0, 1] -> R be 
a real, bounded, concave function of the closed unit interval with g(0) = 0. ç, P 
are finite partitions of (X, 8). We define: 

i) G(Q/) = Xu(D)	g(u(C1 1Dj ))	 (2.1) 

where

	

(A/B) = '(A (n
B)B) VA € 8, VB € 0 s.t. 1z(B) > 0	 (2.2) 

and
1u(B)g(1u(A/B))= 0 VA € Z, V  E 58 s.t. u(B) = 0.	 (2.3) 

Ci and D1 denote the elements of the partitions c and D, respectively. 

ii) G(C/T) = lirn G(c/VT IC)	 (2.4) 

where V T'C denotes the common refinement of the partitions {T-'Q}. 

iii) G(T) = sup G(C/T)	 (2.5) 
C 

where the supremum is taken over all finite partitions. 

Remarks: i) All the functionals G(T) defined above are isomorphy invariants of 
dynamical systems (i.e. dynamical invariants).	 - 

ii) If we insert the special strongly concave function 

h(x)-10,°gx for x> 0 - 	for x=0 

into theDefinitions 1(i, ii, iii), then we get the definitions of the relative entropy of C 
with respect to D, the entropy of the process (C/T), and the dynamical entropy of T, 
respectively. 

For the solution of the optimization problem in Sect. 5 will use some simple 
arguments from the theory of the order-structure of states [4]. The definitions and 
results needed for our special problem are listed below. 

Let x = (x1 ), y = (yj) (i = '1, 2, ...) be two probability vectors. We say that x 
is more mixed than y (x >.- y) ill for all j = 1, 2, ... the sum of the j greatest compo-
nents of x is not greater than the corresponding sum for y. In other words, let I = 

= () be reorderings of the components of x and y, respectively, such that 

X1X2^"•^fl^••;	 9192 Yn . 

Then we write 

x - y iff  	 (j= 1, 2, ...).	 (2.6) 
1=1	i=1 

We write x y (x is mixing equivalent to y) iff x - y and y >- x.
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The following assertion is a well-known result: Let x = (x1 ) 1 , y = (yi )90, be two 
probability vectors. Then 

i) x- y iff Z g(z1 ) ^ E g(y,)	 (2.7) 

for all concave functions g: [0, 1] —> R. 
ii) Let.g be strongly concave, and let x .- y but x 4 y. Then 

g(z) > Z g(y1 ).	 (2.8) 

Throughout this paper we are concerned with the following special class of 
dynamical systems (Bernoulli systems): 

Let Y = {0, 1, ..., n - 1} be equipped with the a-algebra of all subsets and with 
the measure u° given by p0(i) = p 0 (i E Y), J' p = 1. We define X = Yz (Z being 
the set of all integers) as the direct product space with the measure u on the a-algebra 

	

generated by the cylinder sets. A cylinder set is defined as follows: 

fx I —	— i .	C Y.	 k 

	

-	- X 1 j__00	. X,1 - Y,	,) - , . 
and

(A."k) = JJ p 5 .	 (2.10)

The automorphism of (X, 58, 4u) is given by the shift 

T:X-*X,	Tx=x' and xi ' =x1_1	(i=0,+1,+2,...). (2.11)

The system (X, 93, IL, T) is called the (Po, ..., p_ 1 )-Bernoulli system. 

To deal with the class of Bernoulli systems we need the following well known 
definitions of independence o/ partitions: 

Let (X, 58 , ,u, T) be a dynamical system, and let Q, D, E be finite partitions. C is 
said to be 

i) independent of D (written Q j. ) iff V i, j 
n D5 ) = 4u(C 1 ) u(D1); 

ii) an independent partition for T iff for all n = 1, 2, 

CI V TC; 

iii) independent of D related to E (written Q	iff on any atom Bk of the par-
tition , the partitions of Bk induced by Q and D, respectively, are independent, i.e. 
Vi, j,k

n D,/E,) = (C 1 1Ek) u(D/Ek). 

Ci and Di deQote the atoms of the partitions c and D, respectively. 

Remark: Bernoulli systems are exactly those dynamical systems which have an 
independent generator for T. (A generator for  is a partition Q such that the a-algebra 
generated by {TC} (1 = 0, +1, +2, ...) is (up to measure zero).)
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3. The problem 

The entropy of a Bernoulli system is known to be 11(T) = Z h(p 1 ) = -' pi log p1. 
In [2] we showed that for all ergodic systems with the dynamical entropy 11(T) = 8 
and for all generalized dynamical entropies 

Xg (s)	sup .^: g(q)	0(T)	 (3.1) 
E$P i 

where /' denotes the set. of all finite probability vectors q = (q8 ) s.t. Z h(q1 ) = S. 
X9(8) is the supremum of 0(C/T) over all processes (ç/T) constructed with a finite 
independent partition. 

From now on we will suppose that T is a Bernoulli shift with the entropy 11(T) =. s. 
Bernoulli systems of finite entropy are characterized by the statement that they 
have an independent finite generator for T. According to Ornstein's theorem, for 
any finite probability vector q E L/' there is an independent generator C = (C1 , ..., Cm) 
s.t. a(C 1 ) = qj (i = 1, 2, ..., m). But even in the case of Bernoulli systems, equality 
does not hold in (3.1) in general. This will be shown by the example to be constructed 
with the help of the results of the following sections. 

The example is the (p, 1 - p)-Bernoulli system, and the dynamical invariants 
which give X(s = h(p) + h(1 - p)) < 0(T) are formed with the special concave 
functions

x for 0 !s,- x	r 
g7(x) = jr for	r	(0 < r < 1)	 (3.2) 

and are denoted by Or. 
In Section 4 (Equ. 4.5) we see that for the partition C = (A00,A?, A) (which is 

not independent, but is generating), the generalized entropies of the process (ç/T) 
are

GLC/T) = Fg(p) := 
p[g(p) ± g(p(l - p)) + g((1 - p)2)] 

+p(l—p)g(l)+(l—p)2[g(p)+g(1—p)].	 (3.3) 

If p = -} then

(r + 3)14 for 1/2 !E^ r	1, 
G,(!2/T) = (5r + 1)/4 for 1/4	r	1/2,	 (3.4) 

9r/4	for	r ^ 1/4. 

Now we use the solution of the problem X(s) = sup E g,(m) and refer to the nota-
tion introduced at the beginniitg of Section 5 (Equ. 5.2, 5.3). 

Ifs = 2k(4j) = log2, then a 1 = -I and a2 <-k, soforr = -  -we find n .= 2. 

Therefore we have X114(log 2) = 2 . + b, where b is the solution of the equation 

h(b) + h (-- - b) = log 2. The calculation gives b 0.04 and therefore 

X114(log 2)	0.54.	 (3.5) 
Equ. (3.3) provides us with 0114 (91T) = 0.5625 > X114 (log 2). A sharper analysis 
shows that such an inequality holds for any r s.t. a2 <r < k, where k is the solution 
of h(k) + h((1 - 3k)/4) + h((3 - k)/4) = log 2.
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If r 4 (a2 , k), then we find other Bernoulli systems and other partitions of type 
(4.1) to construct analogous examples (see Theorem 1). So the constructed example 
shows that we cannot restrict ourselves to the independent generators if we want 
to compute the 0,,-invariants for Bernoulli systems. This is a little surprising, because 
the independent processes are the characteristic ones in the Bernoullian case. There-
fore, serious difficulties arise in connection with the calculation of the generalized 
dynamical entropies for other dynamical systems [1-2]. 

4. Generalized process-entropies for a particular type of process 
in Bernoulli systems 

In this section we compute an explicit formula for the generalized process-entropies 
G(Q/T) (see Def. 1(u)) in the case where T is a Bernoulli shift and the partition C 
consists only of cylinder sets (c.f. Equ. 2.9). We consider the (Po, ..., p,.1)-Bernoulli 
system and the partition 

c = ( 1 A!'u ... 'k , ..., ,A!';i , "i, ...,	 (4.1) 

the elements of which are numbered by the left lower index. A collection of pairwise 
disjoint sets of the form (4.1) is a partition if and only if for any right lower index 
occuring on the cylinder sets of Q, all elements of the set Y = (0, 1, ..., n - 1) 
appear at least once as the corresponding upper index on some cylinder set of C. 
For instance, in the case of the (po, p 1 )-Bernoulli system C = ( 1A00, 2A?, 12, 

4AJ) is a partition of this form. 
After these preliminaries, we are going to prove the following theorem. 

Theorem 1: Let (X, 8, z, T) be the (Po, ..., p_ 1 )-Bernoulli system. Assume that C 
is a partition consisting only of cylinder sets, i.e. C is of the for-in (4.1), such that. 

max I ii, - jr' :—̂. d,	d an integer.	 (4.2) 
j.1 

This means that the maximal difference between right lower indices occuring on all 
cylinder sets in C] is not greater than d. Then 

Id 
G(C/T) = C] (c/v TC

	
(4.3) 

for all functionals of Def. 1(u). 

Example: For T the (Po' p 1 )-Bernoulli shift and C = ( 1A00, 2Af, 3A) we find 

max h i , - 1',-h = 1. 
j.j'E(O.I) 
1.i'E{1.2,3} 

- Sowehave 

G(c/T) = G(Q/T-'C) = Fg(Po).	 (4.5) 

The explicit value of F9(p0) can be calculated to be equal to the right hand side of 
Equ. 3.3 without difficulty. 

For the proof of the theorem we need the following lemma.

(4.4)
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Lemma 2: Let c, D, E be finite partition8 such that c j IL). Then for all generalized 
relative entropies G(./.) 

G(C/E V P) = G(C/E).	 (4.6)
Proof:

o -LE D iff u(C, n	n E1 ) = u(C. n E1)	
(47) -	-	(D3 n E 1 )	4u(Ej) 

for all i, j, I s.t. 1u(D n E1 ) > 0. The lemma follows directly from the definition of 
G( . / . ) if we use (4.7) I 

Proof of the theorem: The only thing to show is 
d	 n 

QJ_Th(n^d), where D'=VTC and D"= V T- iC.	(4.8) 
1=1	 i=d+1 

With Lemma 2. then follows G(C/T) = lim G(C/Dd V D') = C( CIDd ), but this is 
the assertion of the theorem. 

To show (4.8) we introduce the following notation. Let C 1 , Did, Dk be elements 
of the partitions C, Qd, DO, respectively, such that du(C$ n Did n Dk') > 0. Of course, 
the intersection of cylinder sets is a cylinder set too. We denote p( y1) := 
y, E Y. The right lower indices of C, (indicating the place where the cylinder Ci is 
fixed) not occuring on Did are denoted by 1 1 , l, ..., and analogously, the right lower 
indices of Dk" nor occuring on Did are denoted by m 1 , m2 , ... The corresponding upper 
indices (which are elements of 1') are denoted by the symbols y, Yg 1, ..., Ym, Ym, 

Now because of the cylindrical structure of the sets Ci o D id n DL.", C1 n Did, 
Did n Dk' and because of the product measure on the cylinder sets, we get 

n Di d) = ,z(D,d) . H p(yi,),	 (4.9) 
I, 

11 (D,d nDk') = 1u(Djd) H(m	 (4.10) 

i(C1 nD,d nDk ) = 4u(D/) HP(Ylr) HP(Ym,)	 (4.11) 
tnt 

Equ. 4.11 expresses the fact that c and j ' are independent partitions. This is a 
consequence of the construction of d. The partition C cannot have right lower in-
dices which coincide with right lower indices of some set in DO = V T'Q, because 

i=d+1 
the maximal difference of indices of any set Ci is d, and D' contains only sets of C 
shifted at least d + I times. The Equations (4.9, 4.10, 4.11) can be combined to 

n Did n Dk ) - /1(C, 0 D,") 1u(D" r Dkd)	
(4.12) p(D/)	-	(D5) 

In the case that one of the sets involved has zero measure, there is nothing to be 
shown. Therefore (4.12) proves the theorem I 

5. A special optimization problem 

The example of a process in a Bernoulli system which gives Xe(s) <G(Q/T) (c.f. 
Equ. 3.1) can be constructed if we are able to calculate X e(s) for some concave 
function g. This is done in this section'for the special functions g(x) (Equ. 3.2). We
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consider the problem 

X,.(8) = sup G,()	C7• + d ' 3 = (p1) -> E gy(pj), 
PEY 

.9'= JP E d': H() = s},	H: d' 3 = (pt) 	 (5.1) 

d+'={Ed:p,O (i= 1,2,...),	pi	1). 

Here d denotes the set of all finite sequences. Therefore, d' is the set of all probability 
vectors with at most finitely many nonzero components. $" is the set of all finite 
probability vectors of the given entropy a. 

The functional G: d' -> It is concave. It is not Gateaux-differentiable 1ff p1 = r 
for some i. The region 9' is not convex. But the special structure of the functionals 07 
and H, both being defined as a sum with an underlying concave function, gives the 
possibility of solving the problem in a somewhat unusual way by using arguments 
from the order-structure of states. -	-	 - -	- 

Solution of (5.1): The solution is performed in three steps.	- 
i) Choose n E N s.t. a <r a_ or a <r a,'. an is a solution of the equation 

nh(a,,) + h(1 - na,,) =a.	 (5.2) 

Equ. (5.2) has one (real) solution if 8 < log n, two solutions if log n a < log (n + 1), 
and no solution if a> log (n + 1). If (5.2) has two solutions then we denote. the 
lesser one with a,, and the larger one with a,,'. If r > a,' for some n then X7(8) = 1. 
ii)Calculate b as the lesser solution of theequation 

(n - 1) h(r) + h(b) + h(1 - (n- 1) r - b) = 8.	 (5.3) 
If 8 == log (n + 1) we always find two distinct solutions.	-	 - 

min {nr + b, 11 if (5.3) has two solutions (a)  
1	 if r> an' for some n	(b) 

iii)	X7(s) 
=	 1	 - --	 1	 if 8= log (fl+l),r=	

1 

Remarks: 
i) At least one of the cases (a, b, c) is fulfilled. In case (b) we cannot perform step (ii) 
because a,,_ 1 cannot be calculated. 

ii) If r <' 1 then (a) holds and nr + b < 1. n + 1 
iii) We always 'mean a real solution when we speak of a solution of an equation. 

We show firstly, using the Lemmas 3 and 4, that 0 7 has a local maximum on 5' 
at the point

= (r,...,r, b, 1 - (n - 1) r - b, 0, 0, . .•.)	-	- .	(5.4) 

provided the suppositions of case (a) hold. The lemmas 5, 6 prove that in this case ?,, 
is the global maximum point. Because of X7(s) 1, the other cases are clear. There-
fore, we have demonstrated that the construction above leads to the solution of (5.1).
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Lemma 3: Let n, a,,, b be as in the solution, i.e. a,, <r and a,, and b are the 
smallest solutions of Equ. (5.2), (5.3), resp. Then 
i) 0 :5: b <r and 
ii) b = 0 iff r = a,,_1. 

Proof: We see that 1 - na,, a,,. Indeed, a,,	 for the function 

nh(z)+h(1—nx) has its only maximum atx=1 
• 

Therefore 1 
a,,. Suppose now that 1 - (n. - 1) r - b b r. Then 

d n = (1 - na,,, a,,, . ., a,,, 0, 0, ...) -< F,, 

according to (2.6). But this leads to H(a,,) :5.' H(F,,), and equality holds if and only 
if,, F,,. However, mixing equivalence can hold only in the case, b = r = an. 
This in turn proves both the assertions, because 1 - (n - 1) r - b b is supposed 
in the construction of b I 

The following definition is needed to make the proofs of the Lemmas 4, 5 and 6 
a little more transparent. 

Definition 2: Let r: 0 <r < 1 and n be a real number and an integer, respec-
tively. 

i) We say that a probability vector P € d,' is an r — n-typical vector iff n of its 
components are 6qual to r, one component is greater than r, and one of the nonzero 
components is smaller than r. 

ii) A probability vector is said to be r-typith2ly iff it is r — n-typically for some n. 

Lemma 4: Let P € b° be a given probability vector with entropy s. For y > 0, 
r> 0 we define some neighbourhoods of p by 

U(p) = {T € d':	- pj < y},	 (5.5) 

= (q € Up): G,(q)	G()}.	 (5.6) 

If p is an r-typical vector then there is a y > 0 such that	n .9' = p. 

Remark: The lemma says that p is a lpcal maximum point of G, under the con-
straints of the problem (5.1). 

Proof of the lemma: We assume To to be r - n-typically and the components 
of	to be rearranged in such a way that = (c, r, ..., r, b, 0, 0, ...), c > r> b. 

This can be done without loss of generality. Then q € U,) is equivalent to the fol-
lowing assertion: q = + t; E = (e 5 ) € d, d the space of all real vectors with at 
most finitely many nonzero components; e, = 0, e, a^ 0 V i> n + 2,	€,J <y. 
We can rearrange ë so that E2 E3	 Ek>OEk+1^ ... ^e,,+l for some 
k 2. Now suppose that q € Ur(p) and  < min 1b r - b c — r 

We get 

= g (q ) = (n + 1)r+ b + E e1 (n ± 1)r.± b = 
i=k+I
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Therefore E	0, but this leads to 
k+1

0	(m= 1,2,...).	 S	 (5.7) 

This is so because	 E'.> 0. The choice of y and (5.7) guarantee that 
= P + ë .- and q	iff E = 0. The same argument as in the proof of the pre-



vious lemma completes the proof I 

Lemma 5: We assume that there is a r-typical vector p € .9' with r> 0. Then 
we have following properties: 

i) Any r-typical vector q € .9' is equal. to p up to a rearrangement, of the compo-
nents.

ii) There is no vector q € .5" such that qi r v i = 1, 2, 
iii) There is no vector ' E .5" such that V i either qj ^ r or qj = 0 and L'g(qi) 
L'g,-(Pi). 
Proof: Let p=(c,r,...,r,b,Q,0,...),c>r>b>ij. 

i) We consider = (c', r,	r, b', 0, 0, ...), c' > r> b' > 0. Therefore we get 

-< pin the casek < nbecauseofc' = 1 - icr - b' 1 - (k+ 1)r ^?1 - nr>c. 
Analogously, k > n >- p. So k = n has to hold. But for a given n the equation 
h(x) + k(i - nr — t) = s has at most one solution x such that x < r. 

ii) 
iii)qj	r(i= 1,2,...,k);q=0(i>k)>g,(q1)=kr. If kr'g(p1 ) then 

icr (n + 1)r + b 	n + 2 has to be fulfilled. We can rearrange q so that 

Lemma 6: Assume that there is an r-typically vector p €'. Then the func-
tional Or has no local maximum in .9° at points q = (qj) such that 

i) for more than one index i 0 <qj <r, 
ii) and for more than one index i q, > r. 
Proof: i) Suppose that 0 <q1 <r, 0 < q2 <r. Because of Lemma 5 (ii) we can 

assume that q3 > r. Now the problem 
3	 3	3	 3	 3 

E gr(pi) = Extr.!,	'p1 = Jq, = const., Eh(p1 ) =	h(q,) 
1'	 1	1	 1	 1 

can be solved by application of the Lagrange multiplier rule. Because of the given 
constraints we get q 1 = q2 as a necessary condition for q to be extremally. This how-

3 
ever is a local minimum point of the functional	g(q). Therefore q cannot be a 
local maximum of O.	 1 

ii) Analogously. One has to remember that Lemma 5 (iii) allows us to restrict the 
considerations to the case 0.< q 1 < r, q2 > r, q3 > r I 

With the lemmas proved above we can see that the solution of (5.1) holds. Of 
course, either we can find n as in step (i) or r> a' for some n. In the latter case 
there is a q 9" such that q, r for all i, therefore ' g(q1 ) = 1. The former case 
leads to case (a) of the solution iff s + log (n + 1). The calculated b is smaller, 
than r. Therefore either O(F) = 1 or ,, is r - (n - 1)-typically. From Lemma 4
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we know that any r-typically vector P E " is a local maximum of G. Lemmas 5 
and 6 say that there is no further local maximum of G,. in Y greater than O(r). 
This means that F. is the global maximum point. 
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