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On the optimal value function o'f optimal control problems 

B.Gou.- 

Diese Arbeit untersucht die Optirnalwertfunktion von parametrisierten deterministischen S 

Optimal Control Problemen mit versehiedenen Zustandsboschränkungen. Die Hauptergebniss 
enthaltenAbschätzungen über den EinfluB von kleinen Variationen des Parameters p auf den 
Optimalwert V = V(p). ,Im einzelnen werden obere Schranken fur versehiedene Richtungs-
ableitungen v6n V und Abschätzungen für einen verallgemeinerten Subgradienten 3V( . ) ge- 
geben. Dieso Abschatzuigen sind definiertdurch Multip!ikatoren, welehe notwendige Opti- . 
rnalit5ätsbedingungcn erster oder hdherer Ordnung entlang elner Optimallösung des ungestorten 
Ausgangsproblems erfullen. Alle Ausfuhrungcn basieron auf ,der Trennbarkeit oder Nicht-
Trennbarkeit von geeigneten a'pproximierenden Kegeln und setzen keino -oder nur sehr 
schwache Regularitatsbedingungen voraus.	 S 

• B pa60Te MCCJ1CCTCH 4yllIUHH OnTHMaJlbHoro 3Ha'leHllH flapaMeTpuaoBanhiblx JeTep-
MmmcTn qecxHx aaja onTFlMaJIbHoro yripaBjieHKJ9 C pa3HbIM11 orpaHHeHItHMu iia COCTOHHIIH. 
Laaniiaië PC3yjlbTaTbl cogcpaKaT oqeHi 0 BJIIIRHHII MaJIeIIbrn4x napuainfk napaMe'rpa pHa 
011THMaIhu1oe- aHaqeliMe V = V(p). B qacnocn, AWOTCH •BepxHue r.paHHLh1 1J1H pa3115lx 
fl P0 II3 B0JI I J bI X no HarlpaBJIeuwo 4y1IRUHH V 14 oLeHx14 IHR HeKOTOPoro 660ueHHo1'o cy6-
1'paJ MeHTa aV( . ). BTM oieiun oiipeeieiiu MHOH11TeJIHMM, 13hlfl0JIF1flIOIIl4MM 1leoxoul1ahJe 
ycioasia 0UTHMaJthH0cTH nepeoro H Bhlcnlero nopnia BOju, onTllManbHoro pe[ueHHiT. 
1IeB03MY1UeH110f 1-1CX0JH0i aaa qM. Bee paccyeii1in ocHoBallal Ha oTe31HMocT11 SIJIJI 
ileoTüesJHMocTn, fl0XO1HUMX annpolc11M11pylolxux xonycou H npe1no1araI0Tcc1 11116o 
HMHaHIIe 113111 JflhI1b O9eIlb cia6He YUMBIM peryilflpHocrH.  

The optimal value of parameterized deterministic optimal control problems with state and mixed 
state-control' constraints, is studied. The main results are estimates for the effect of small 
variations of the parameter p on the optimal value V = V(p). In particular, upper'bounds' 
for several directional derivatives of V as well as estimates for a generalized subgradient	' S 

V( . ). are given. These estimates are given in terms of multipliers which satisfy first or higher 
order nece'ssar optimality conditions along an optimal solution of the unperturbed problem. 
The theory is based on the separability or nonseparability of suitable approximating cones and 
requires no or only very weak regularity, assumptions.  

1. Introduction  
This paper is concerned with a particular topic in the field called sensitivity of 
optimal control problems. We consider several classes of deterministic optimal control 
problems which contain a (vector-valued) parameter p. This parameter describes 
'perturbations of a reference problem which is given by. p = 0. We give criteria 
which ensure that perturbed problems have admissible solutions, together with an 
estimateof the respective value ofthe objective function. Thus we obtain estimates 
for the local behaviour of the optimal value function V(p) which is' defined as the 
optimal value of the problem with-parameter p. Note that the results of this paper 
do not concern the form of optimal solutions' of perturbed problems. This topic and - 
the related question of.continuity of V form a quite different subject. It requires 
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much stronger assumptions and also different arguments. Such results can be found 
-,,in 'the work of DONTCIIEV [4, 5, 6] and others. Preliminary results concerning our, 

topic have been obtained in [7, 211 for'staTndard optimal control problems and in [I] 
for more general problems with constraints O(t, u, x) :^-. 0. However, there the 
assumptions involve a more or less detailed a-priori' knowledge about perturbed 
problems, such as the following: For any small perturbation the problem has a 

• (unique) optimal solution which is close to the (unique) solution of the unperturbed 
-• problem.  

More advanced are the results obtained by MAURER in [18-20]. He applies per7 
turbation results from nonlinear programming to optimal control problems. His 
results require only information about some optimal reference solution ((t), (t)) of 

•/ the unperturbed problem, yet no assumptions about neighbo'urhoods of p	0. 
Furthernioe, the case of sthte constraints	x)	0 is carefully treated. However, 
MAURER needs some other regularity conditions, such as the complete controllability
of the linearized dynamical equation t = /x + t,u along ((t), (t)). 

Our results in-Chapter 3 are closely related to those in [18-20], but the y are ob-
tained without any of the regularity assumptions mentioned above. This is possible 
by using general results from [12, 131, which are based on the separability onon-
separability of suitable convex sets. Via the notion of a derived set or cone, which was 

• - introduced by Hestenes and is closely related to Pontryagin's cone of attainibility, 
, these results apply directly to different types of optimal control problems. 'There-
fore, 'whenever necessary optimality conditions (expressed in, terms of adjoint 
variables and other multipliers) are proved via derived sets, ihey can be/ used to 
obtain sensitivity results similar to that of Theorem 3.1. This holds in particular 
for the necessary conditions in [3, 14-17, 25-291, i.e., also for particular classes 
of control problems involving time delays:  

In addition to Maurer's results we consider also problems with mixed constraints 
O(t,'x i u, p)0. In Chapter 4 we show that 'sometimes sharper results than--in 
Chapter 3 can be' obtained by using multipliers which satisfy higher order necessary 
conditions as in [17, 281. In Chapter 5 we extend the results of Chapter 3 and give 

• estimates for a generalized gradient , 017(0). The notion of'aV( . ) used there requires 
only lower semicontinuity of V at p = 0 and thus covers a large class of applications. 
We conclude ,with an economic model which' involves several control variables as 
well as several mixed contraints.  

The general problem we deal with is the following : - 
Find an'arc a0 = (x( . ), u(), b), ü( . ) piecewise continuous, such that 

I°(a) = (b) ± fL°(e, x(t), u(t)) dt  

is minimized on the set W of'dmissible arcs a on ['s, tJ given by the following' con-
straint.s:  

-	= /(t, x, U),	1	I :E^ n,	u(t) E U, 
(t, x) :!E^ 0,	1	:E^: A', ,	(t, x) = 0,	A' <c :E^A, 

O(t, x, u) ^5 0,	,.I < fi	B' • ,O(t r, u) = 0,	B' <fi <B, (1.2) 
- Jv(a)	0, • 1 ^ ' ^ 0',.	P(a) = 0,	0' <	0,-

•	x'(t,)	,X 7 t(b) ,	1, = T'(b) ,	j = 0, 1, -	 - 

where P(a)	gY(b) ±fL(t, x(t), (t)) (It. '.
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U is an open subset of R, and b ranges in some open sibsct of R". The functions 
/, UP, L, gr, Xj i, Tj are once and tp" twice continuously differentiable with respect to 
their arguments on suitable domains of definition.	-. 

From now on we always use the following conventions 
If no other specification is made, then the index i runs froni 1 to n, a from 1 to A, 

flfrom 1-to B, y from 1 to G. If in a product of one or more terms some index appears 
at least twice, then one has to sum up with respect to this index. For partial den-

vatives'of a function, say, of /. with respect to x, we use both the notation	and 

f . if a function of the form /(t, x, u) is evaluated at (t, x(t), u(t)), we sometimes write 
shortly, f(t) : = /(t, x(t), u(t)).	 .	. 

Perturbations of a general form of such problems are considered in Chapter 3. 
To do this, we need a characterization of an optimal arc a 0 of (1.1), (1.2) by means 
of necessary conditions. Such conditions have been developed in [25, 261, e.g., and 
the subsequent Theorem 1.1 is a special form of [26, Theorem 9.11. 

We assume that the (A + B) x (A + B ± m)-matrix	 . 

I—, óRO 0 
Iou'

has rank A ± B	 -.	(1.3) 
alp 

aul
•	. •\-..0_cLlP-.........-..	 ......... 

along an optimal arc a0 ==(z(t), u(t), b) on a set Re, where j runs from 1 to m, o from 1 
to B, a from 1 to A, and where we denote: 

(t, x, u) =	x) +	fi ( t ' x, u), 

R, = {z =.(t, x(t), u) I	(z) ^ 0 for all a with . (t, x(t))	0, 

or-p(z) ^ 0 ' for all a with ip, (t, x(t)) = 0, O(z)	0, 1	:!z^ B' 

•O(z) = 0,' B' < fl i5 B, lu - u(t)j	e, to	 't < 

In the sequel we use the Hamiltonian 

11(1., x, u, y, u, v) = y°L° + ytft - 2?Lr -	- 

Theorem. 1.1: 'Let a0 = (x(t), u(t), b) be an optimal solution of problem (1.1), (1.2) 
and assumption (1.3) hold on a set R. Then there are multipliers y°,-x, 2", /La(t), vP(t), 
y' . (t), defined on [t0 , t 1 ], with the following properties:	•	 , 'S 

	

(i y° :^,- 0, 2" ^, 0, 1 ^ y ;5 G', x L> 0, 1	A', (y0,y(t), 2, x)	0 for any t, 
and 2" = 0, if J"((i0 ) < 0. 

(ii). I1(t, x(t), i(t), y(t), u(t), 0)	I1(t, x(t), ii, y(t), 1u(t), 0) for all u € U with '(t, x(t), u) 
ER.	 . 

(iii) The functions y(.) are continuous on [t0 , t 1 ],. and continuously differentiable 
where u( . ) is continuous. Together with 1u( . ), v( . ) they satisfy y = 

= 0, along a 0 on those intervals where u( . ) is continuous. 
(iv) 11(t) := IJ(t, x(t), u'(t), y(t), u(t), v(t)) is continuous on [t0 , t 1 ], and continuously 

dH 
differentiable where u( . ) is continuous. There	= JJ.' 

2*
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(v) The transversality conditions hold at a0, (with 1	s 

go	•
(t - - y	

axe'	ax,'
abs0 = —y°	+ '.	± ( t(t))	+ yt(t1) 

ab8

T0' 

	

•	 _ji	+ H(t0)) -.-.-'H(11) --. 

	

0V	ab-

(vi) vfl(.) are continuous on intervals of continuity of u( . ), sand u() is further	- 
continuous at those t, where (t) is discontinuous. 

(vii) For I f,- a :5: A', u( . ) is a no iiióreast'nj /wiwtiom which , is constant on intervals 
upon-which ip'(t) <0. 
For	B', vfl(•) is nonnegative..Moreover, v(t) O fl(t) = 0 ( j9 not summed) , on 
[t0 , t 1 ]..	 S 

(viii) If p(t i) < 0,, then i(t 1 )' = 0, 1	a	A'. If also V (t0) < 0, then y ) =' x. 

-' Except for the second part of statement (viii), , this result has been proved in 
[25, 26]. The last statement can be proved as in [11] (where it is proved for a somewhat 
simpler problem) by investigating the, problem (1.1), (.2) reversed in time. 

2. Some standard jerturbations  

Starting with (1:1), (1.2) as unperturbed problem, we consider standard pertur- 
bations of the terminal and the isoperimétric constraints. That means that for some 
p = (p', ..., p°, . . .,p") we replace the respective constraints in (1.2) by 

•	'	' 'I(a)	pY, 1 	< G'ç Jv(a) = p7 , G' <	 : 
x(t)	X 1 (b)+ p	1	i	n'.

 

• Problem (1.1), (1.2),' with the respective constraints in (1.2) modified according to 
(2.1), will be denoted by (P1). Our 'aim is to characterize V = V(p), the optimal. 
value of problem ,(P l) depending on p. To be more precise, we agree about the 
following throughout this paper: If a problem with a perturbation p has no admissible, 
solution, we 'set V(p) = + 00. If admissible solutions exist,' we set V(p) 
= inf {I°(a) I a E 91(p)}, where (p) denotes the set of all admissible solutions of the. 
respective perturbed problen'. Of course-, ti'i is .infi'mum may be -00. ,	 0 

We as 	that' an optimal 'arc a0 of . the unperturbed problem (P 1) is 'given

which satisfies (1.3). Then ,by Theorem,1.1 it makes sense to define 

Q = (y', (0) = (yo, x, 2., u( . ), (.), y(•)) I (y°, (o) satisfies the • 

0 •	statements 'M Theorem 1.1 along'a0),  

	

•	'	'	-	"	 ' '	,	 .	 (2.2) 
V	

,	 Q0 = ( Co !(0,(0)EQ}u(0},	
0	 • 

Qi=(wI(-1,w)EQ}. • '	 0	 '	 '	 ' 

The crucial elements of our sensitivity analysis are the to terms 

	

- s,(p) = sup {y(t 1) p'' - )YpV 	: ' = 0; 1.	'	. •	 (2.3) 
-	V	 •	 .	 V	 V	 V 

By the definition of Q0 we have always So(p)	0. It i. s easily checked that Q forms 

	

• '	a convex cone, and that Qj + 0 0 Q, ifQ  
A first sensitivity result is the following.
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Theorem 2.-V' Let ao be an optimal arc of problem '(P1)0 alOng which assumption 
(1.3) holds.	-	- 
A) If Q1 + 0 and p E mt 17) I so(p) = 01, then s(p) <

0 
oo, then for any s s 1 (p) there 

is a function r(e): R — R'1 of o(e) and some o> 0 with the following property: 
For any s E (0, &] the perturbed problem (P1)ep+y( e) ha.san admissible solution and 

V(ep + r(j) - V(0)	es.  
B) If Q1 = 0 and 5o(P) = .0, then for any s € R there is a function r( . ) with all properties. 
asinA).;  

•	At the time being we regard this result as a technical tool for proving the similar,

• but more general Theorem 3.1. After that we will clarify 'its implications by some 

corollaries and remarks.'	 ,	 '	. •' 0 

: 

Proof 'of Theorem 2.1:  

Step 1: We proe. the first statement of'A). Define 
Z = (y0, y(t), —2) (yo, ,, 2,	().y()) € 

•	 .Zo = {(y(t1), —2)1(0, y(t 1 ), —2) € Z}u {0}, 

•	 .	 = {(yt1 ; —2)1 (-- I, y(t 1 ), —2) € Z}.  
Z resp. Z0 are convex cones in R"	resp. R"", Z1 is a convex set. By arguments 

made .below (preceding (2.6)), Z, Z0 , Z 1 are also closed. Furthermore, Q1 4 0 impIies 
ZI 4 0, and this implies Z 1 ± Z0 Z1-. Tlref5reZ0	 . --
the recession cone of Z1 (cf. [22]). Conversely let z € O 3 Z1 , i.e., there exist sequences 
,j, 1 0, z, € Z 1 with 77jzi -> z. Then	z) € Z for all .j and i,(—1, z,) -> (0,z). 

• , Since Z is closed, (0, z) € Z and hence z.€ Z0 . Therefore Z0 = 0Z1 and, since sj(p), 
j = 0, 1, is the support function of Z,, p € mt (p I So(p) = 01 implies s1(p) <oo (cf. [22, 
Theorem 14.2]).	•	 -	 .	 -	-	

'5-	 . 

Step 2: Following the approach taken in [25, 261, we first considei a special case - 
of thegiven problem, where the constraints (1.2), (2.1) are of a simpler form *

 •	as follows:  

	

= f(t, x, u), u(t) € U.,	(t, x)	0, 1 	:!-, A', 
J(a)p, 1^y:!^G', Ir(a) = pv , G'<y'^S.G,	,	 (2.4) 

•	x(t)	X''(b), x(t1 ) .= X(b) .f. pG+, t0 , t1 fixed.  

For the problem of minimizing (1.1) subject to constraints (2.4), necessary optimality 
conditions are given in [25]. For our. purposes we have to sketch the crucial ideas 
of the proof. On a set IZ of arcs a which satisfy (2.4) except for the terminal constraints 
at t0 and t 1 , real valued.funetionals J(a), 0	e. eo o > G + n, are defined with 
the following properties:	•	

0 

'1.-IfJe(a)= O'for all e> 0 + n, then  
Je(a) = 10(a) 3 0 ^ Lo ^S 0, J°(a) = xi(t i ) - X1 (b),, 1 !z^i :!i^ n, 

and, as a consequence thereof,  
2. a is an admissible solution-of (1.1), (2.4),.if and only if	•. • 

J(a) ^S p 0 ,	1	0',	•	 -. '	 .	•	. 

-	Jo() = pQ , G <. g-_ 0 + n,.	•	
0	 •	•. •	(2.5). 

•	J0(a)=0,'e>O+n.'	•.•	 .	• 

Further, a is an optimal solution if and only if it minimizes' °(a) subject to (2.5).	•
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Now let n o be an optimal are of the unperturbed problem (1.1), (2.4), and let (1.3) 
• hold. Then a derived cone K (this' nation is defined in [15]) . for the functionals J° 

at no on I a E	J(a) = 0 e > O'} is constructed. Then Hestenes' general multiplier.

• rule [15], is applieable and results in the existence of multipliers (2 0, ).) = (2°, ..., 
with' 2y	0,0 :E^ y	G', which 'are related to the multipliers of Theorem 1.1 as, 

follows:'

20	y0, 2 1 ,	, ,G coincide, and 2°" = —y'(t 1 ).	 (2.6) 

• For such problems of minimizing a furcction J°(a) subject to constraints of the form 
(2.5), where multipliers of the unperturbed problem are obtained via a derived cone, 
general perturbation results have been givenin [12] and been refined in [13]. In our 
case here they say the following:	- 

Let A be the set of multipliers (2 0, ).) satisfying the above multiplier rule, and let 
'A0, A 1 be defined via A similarly to (2.2). If Ap ^ 0 for all 2 € A 0 , then statements 
as in Theorem 2.1 hold with .s(p) = sup {—Ap I 2 E A 1 , j = 0, 1. 

By relations (2.6), these terms s(p) coincide with those defined'in (2.3). Therefore 
it follows from the relations between (2.4) and (2.5), that Theorem 2.1 holds it least 
in case of constraints of type (2.4).	 . 

• Step 3: In case of a problem with general constraints (1.2), iespectively (2.1), the 
proof of Theorem 1.1 is' carried out as follows (cf. [261): Additional variables are - 
iñtroducëd such that the modified problem is equivalent to the original one and has 
constraints of the form (2.4). This means, that again a derived cone is used to obtain 
the multipliers. It follows that'perturbations p in the general problem (Pt),, can be 
characterized exactly in the way shown above. This proves Theorem 2.1 I 

. :	General perturbations	•	 :	 ' 

In this chapter we consider the following optimal control problem	- 0 

(P2),,: V(p) = inflo(a;p)	subject to 
= /, x,u,p), u(t) € U,	•	 - 

(t,x, ) ;50, 1 !E^;x ;5A', ipa(t,x,p)= 0; A' <c ^A, • 

• •	
•O(t, X, U, p) ^5 0, 1 ^ fi ^ B', 6(t, X, U, p) = 0, B' <	B, 

•	

.	 I'(a,p)O;. 1	yG', IY(a,p)=O, • G'<y	•G, 

X i (t i) = X(b,p), 1, = 'J'(b,p), j = 0, 1,  
where	 .	

0, 

J(a; p)	g?(b, p), ±fL(t, x(t), u(t), 1)) dt, 0	0;	
0 to 

U is an open subset of R", b ranges in som open subset of 11/'; and p is some fixed 
parameter in Rs.' All functions which involve p. are assumed to be differentiable with 
respect to p. 

For fixed p, this problem is of the form (1.1), (1.2). Without loss of generality we 
'consider (P2)0 as unperturbed problem. We assume that we know an optimal solution 
ao = (x(t),u(t),.b) of (P2)0, along which assumption (1.3) holds, hence Q + 0. Let 
Q0, Q1 be defined as in (2.2). We consider problems perturbed by p and characterize
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the' local behaviour of the optimal value function 1'(p) of problem (P2). To this 
end we define for cv E Q, and 1 :5-, ci :!^ S.: 

.Fct) = F0 (a0 , w(t)) : = )' 
apo 

(t), ± a(t)	(1) + 0(t)	(t) 

- y(t)	(1);	 (3.1)

ali 

apa

go 

=	(aw( . )) := —y°	(b, 0) ,+ 2 0) + (10)
ap^ap^

	

ax.	ax 
+ (xv(to) - y(t))	. (b, 0) + y1(t)	L (b 0) 

apa 

+ (-(to) ± H(t0)) .	(b, 0) - H(1 1 )	(b, 0),	 (2)
apa 

	

Opa

sj(p) = sup	+'f F0(t) dt)	 j'= 0, 1.	 (3.3) 

Theorem 3.1: Let ao be an optimal solutioii o/ problem (P2)0 which satisfies assump-

tion-0.3).. Then concerning perturbed problems (P2) all the statements of Theorem 2.1 
hold analogously with s 1(p) and o(p) given by (3.3) Ii	tIüli thieinilT/oi:' 

•	V(ep + r(e)) _ 1(0) 
V± (O, p) := lim inf	 and any p: 

	

V	 V 

40 
A) 1/ Q 1 ==	, then V(0; p) ;5 i (p).	 V 

B)'I/Q 1 = 0 and s0(p) <co,then V(0; p) =-oe.	

'	 V 

Remark 3.2: Assuming sevral regularity properties of a (which imply Q0 = {O}), 
-MAIIRER, [18-20], obtains the estimate	

V	 - 

•	 •.	 V(ep) - V(0)	 V 

lim sup	 •
	 8 1 (p) . 

zlo 5	V 

Without those regularity assumptions this inequality does not hold any more and 
has to be replaced by the somewhat weaker one in the above theorem. 

V 

Remark 3.3: A novelty of the above result is the fact that sensitivity results 
are given- also in' the case of abnormality, i.e., when Q0 rir {0}. Below we indicate, 
what abnormality means with respect to sensitivity of the optimal value. 
A) If Q1 =	and Q0 + {0}, then typically Si(P) Will be finite forsomepand infinite 
for others.. The case s(p) = cc may be related to one of the following situations 

•	(thelist is not claimed tobe complete):  
a) Perturbed problems (P2)e,+T(e) have feasible solutions and V is 'nice' (say, V 

has a directional derivative in direction p), yet the first order necessary conditions 
of Theorem 1.1 give too little information, i.e., they allow for too many multipliers 
such that s 1 (p) = cc.  

b) The perturbed problems have feasible solutions, but V has a vertical tangent 
in direction p. For, example, such a situation may occur along switching curves of 
bang-bang solutions. In B0LTJANSKI, [2, pp. 31-39], a very simple example shows 

"this effect.	
V
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'c) Perturbed problems (P2) gp+O(C) have no feasible' solutions. Actually, Theorem 3.1 
implies'also results of the following type: If for some p statement b) or c) from 
above is true, then each optimal are no of (P2) 0 is abnormal. Precise formulations 
of this fact would-be rather lenghty and we omit them. For problems inmathematical 
programming they are given in * [12" Corollary .4]. 
B) If Q 1 =	(i.e., y° = 0 always) 'and so(p) < oo, then for suitable sequences Ej 0,


we have by Theorem 3.1 that Jim ('V(p ± r(-- j)) - J'(0))/e1 = —cc. This 
means, roughly speaking, that in such a' direction p the optimal value becomes 
drastically better. However, in detail the situation may be rather complicated 
Using a very simple example without state constraints, Example 6.2 shows the 
following. We have Q 1 0, for a certain direction p we have s0(p) =. 0, the direc-
tional derivative Jim ('V(p) - V(0))Ie exists and is finite, and only for suitable 
functions r(e) of type .-o(s) we have lim (V(ep + r(e)) - V(0))/e'= CO.— 

CIO 

Proof of Theorem 3.1 :'We take ± = (x1.....xs) := (x, p) as new state variable. 
Then problen (P2) becomes the 'following:	 S 

V(p) = infl°(â) subject to  

= /(t, ±, u), 4 ^i fl,'	=0, 1	a^ S 

•	(t, ) < 0: 1 < 	A')	(t, ) = 0, A' <	A, 
O(t, 1, u) ^5 0, 1 <	B', O fl(t,z, 'a) = 0, B' < .# :!E^:B,	(3.4) 
17(á)	0, 1 , y ;5 0', JY()s= 0, C' <	0, 
x(t) =X 1 (b, c), 1	j :!E^ n, j = 0, 1, x''?(t0 ) =c°,  

• X"+ 
I 
0 ( t i) = pa ,. 1 15^ a :5 S,. t = Ti(b, c), u(t) E. U,  

where a =2	u(.), b, c).	 . 

It is easy to seethat there is a one-to-one : corresporidence between admissible (rcsp. 
• optimal) arcs of (P2) and (3.4): The advantage of (3.4), however, is that•it contains 

the parameter ponly in form of a standard perturbation as treated in Chapter 2. 
Therefore p-perturbed problems are characterized through Theorem 2.1 by s,(p) 
= sup °(t) p I th(,.) E Oil , where .O' denotes the set of all multipliers related to 
an optimal solution 'â of (3.4) with p =, 0. Checking the respective necessary con-
di,tions point by point, one sees the following: 

(y0, , 2,u( . ), v( . ), y()) is a multiplier, for a 0 if and only if 
•	 (y0, ,c, 2,	(.), v( . ), y(), yfl+l(.) ..., 

y ( . ))	.	 .	
'. 

is a multiplier for a0 . ' •	 .•	 ,	 ' 

Let I	a ,S. Then the transversal ity, conditions for the are ô 0 yield 
•	. yfl+O() = P0 ,	F,,, as in (3.2). '	.	,'	'	 :(3.6,i) 

Part (iii) df Theorem 1.1 yields'  

= F,,(t),	. F. as in (3.1).'	 ' (3.6, ii) 
Tcgether with' (3.5) it follows that 'Sj() above coincides with (3.3) '(the additional,' 
multipliers. yfl+o are eliminated by (3.6), and because of (3.5) the multipliers on the 
right-hand sides 'of'(36) are actually elements of Q 1). This 'proves the, first part of
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Theorem 3.1. The results about V,(0; p) are immediate consequences thereof. Note 
that if so(p) = co in case A), then also s 1 (p) = 00, and hence the claim is trivial I 

Theorem 3.1 gives very general results, but usñally one is rather interested in 
particular perturbations, where a parameter p° enters only one type of the constraints 
or only a single constraint. Then the results become intuitively more appealing. Un 
the , following corollary' we carry this out for sonie cases of particular interest. 

Corollary 3;4: In the case 1.-4. listed below, let q be a (scalar) component of 'a' 
perturbation parameter p and let .q enter only constraints of form (i) described 
below. For convenience we assume that Q1+ 0 and that V has directional Hadamard. 

d)

	

V(ed')'— V(0)	-  derivatives V'(0,	= lim	 in all directions d. 
8 

I. Then in particular the right- respectively left hand partial derivatives of V 

	

--	
. with respect to q at p = 0 (denoted b T- (0+) respectively -h-- (0—)) exist and 

together with the terms s(w) 'given by (ii) below they satisfy	 . 

-0v	 av (0+)	sup {8(w) w E Q 1 },	(0)	inf {8(w) I w E Q1}. 

- IL If further the partial derivative	(0) exists and if Q1 contains only one 

	

•	
---'q--'- '

	 - .... 

eIementJi, then -- (0) = s(5).	 -	 .	
,	 •0


aq 

We consider the following perturbed constraints (i), whose effect on V is described 
-by, the respective term (ii):	-	.	.	 .•	 -	 '	 . . . 

1. Perturbation of the terminal constraint:  

(i) x(t1 ) = .1 1 (b,5q)	- . (ii) 8(a)) = y(t1 )	(b,' 0)	'.	•,	 .	 - . .. 

2. Perturbation of the initial constraint:  
ax (i) 'x(t) = .X'0(b, q)	(ii) 8(w) =' (x/1pi(to) - y(to))	(b, 9)•  

/ 3. Perturbation of the state constraints:  

(i)	(t, x, q) {
	

1^^A	
(ii) 8(a))= ,'"	 (to +fii (1)	(t) dt 

As 'a special case thereof, 'Jet ix, 1 :5, cc :!^ g A', be fixed and u(to) <0 and' (t) <0. 
Then:,  

(i)	x)	q.	' (ii) 8(w) = ua (t i )	u(10) =-1u(t0)'(^ 0). 
4: Perturbation of the mixed constraints:  

- I^0,1^	B'	'	•	 -	 -	 ' -	 '• 

(1) O(t X, u ) 
= 0, B-< 9	B	

(ii) s(w) =J v(t) --. (t) dt 

	

-'	As a special case thereof, let , 1	^S B', be fixed. Then:.	-	- 
tj 

(i) Ofl(t,.x, U)	q	(ii) 8(w) 
= -f vfl(g) dt	0).' -	, ,	. • 

0 • 

to	 -	 0 

S	 -	 S	 .	 •	/	 '	
--
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Of course, similar results can be stated also for perturbations of the dynamics 
of the end times t0 , £1, or of the isoperimétric constraints. 

Remark 3.5: In [18-20] MAURER considers also perturbations p in a Banach 
space, which is out of reach in this approach. However, the treatment of mixed 
constraints-and perturbations thereof seems to be difficult in the function space 
approach. Further, the preceding results are restricted to so-called 'firt order state 
constraints (t, x) ^ 0 (cf. [19]) which is implied by condition (1.3). For a scalar 
control u, [18-20] give similar results also in case of higher constraints (where 
c(t) = 0 along boundary arcs, but for a higher derivative of p' the partial derivative 

- with respect .to u is. nonzero). At least for state constraints of -order 2 such results 
can be obtained along the same lines as here. The suitable necessary conditions are 
provided by [29] and proved in the same way as sketched in Chapter 2; However, 
a detailed account would lead top far herç. 

Remark 3.6: If in a given problem U is not an open set (as required in (1.2)), 
the often this can be handled by adding suitable constraints. However, sometimes 
this procedure may he too complicated or violateondition (1.3). Then the following 
considerations may be uefuL In [16], KNOBLOCH develops necessary optimality 
conditions for an optimal control problem with arbitrary control set U and one 
state constraint (t, x)	0. Instead of introducing a multiplier z attached to V or 

he derives a maximum principle with the classical Hamiltonian. Then the adjoint 
•	variables y( . ) may be discontinuous at those times 1, where an optimal are	hits


the boundary (t, x) = 0. Roughly speaking, it is shown in [8] that the sensitivity 
with respect to perturbations (t, x)	p is described by the sum of all jumps occuring - 

in the adjoint variables. By suitable reformulations this result can be.shown to be 
equivalent to part 3 'of Corollary 3.4.	.	.	. 

Remark 3.7: If the optimal solution' of the unperturbed problem is not unique, 
then obviously all results in this chapter can be improved as follows. If M is a set 
of optimal solutions satisfying (1.3), then the results. of Theorem 3.1 hold with each 
a E ,M and hence yield upper bounds for V,(0, p)'of the type- inf s 1 (p a). -	 . OEM 

4. Higher order -conditions 

Theorem 31 gives upper bounds of the lower Hadamard derivative V(0;p) of the 
optimal value function V at 0. It may well occur that sometimes for some p one has 
only V.(0; p) <s(p), with a significant gap in between. One possible reason for such 
a gap may be the fact that first order necessary conditions as in Theorem 1.1 are 
not precise enough, i.e., they allow for too many multipliers. As a consequence, the, 
supremurn in (3.3) will be too large. In such cases, multiplier sets satisfying higher. 
order necessary conditions may. lead to upper bounds which -are lower than those of 

--
 

Theorem 3.1. 3.1.	 -	- 
- For standard optimal control problems without state constraints, KNOBLOCH [17] 
proved a set of higher order necessary conditions which have the following properties: 

1. In addition to the usual (first order) maximum principle, higher order conditions 
such as the generalized Legendre-Clebsch-conditions hold. Thus these conditions are 
satisfied by a multiplier set Q which is contained in,Q.	- 

2. This is achieved via the construction of a derived cone which contains the cone 
defined by first order approximations (the cone of attainibility of Pontryagin).
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Therefore, if ,(p) is defined similarly as s,(p) in (3.3), but with Q replaced by Q, 
then all the conclusions of Theorem 3.1 hold also with ã,(p) instead of s,(p), j = 0,, 1. 
Since Q Q implies j(P) ^5 s,(p), these higher order conditions may give better 

- sensitivity results than those of Theorem 3.1, if the inclusion Q 9 Q is proper. [10] 
contains such an example involving a simple system with three state andtwo control 
variables; There the generalized Legendre-Clebsch-condition results in a multiplier 
set Q such that V(0; p) '= V'(0 p) °= (p) <S i (p) for some directions p. 

In a similar way one can obtain strengthened sensitivity results by means of the 
second order conditions in J281. 

5. Generalized subgradients of the Optimal value function 

In Chapter 3 we proved that for any optimal solution a of (P2) 0 which satisfies 
(1.3), we have for all p that 

V(0; p) :E^ s(p, a),	if Q1 (a) =t=	'
( 5.1) 

V(0; p)= -,	if Q1(a)= 0 and s0(p,a)= 

In order to draw further conclusions thereof, we denote for 1	i S, j = 0, 1: - 

-	(w)=o(w)±fF0((t)) dt, 

•	17 =	..., S) I	7(cU) (yO, w( . ))€ Q},	 (5.2)


(9— IT) 

SinceQ is a convex cone and 17 is the image of Q under a linear transformation, 17 is 
a convex cone in JS. For similar reasons IYO is a convex cone and 17 is a convex set. 
We have 0 € H , since 0 € Q0 , and Hi + 17 H, if 17 j= 0. If we have a. set M 
of optimal solutions as in Remark 3.7, the sets in (5.2) depend on the respective 
solution a € M. We denote this by 17(a), 17,(a). 

Let b*(p I C) := sup {cp I c •E C) denote the support function of a convex set C. 
Then (5.1) implies that for any a € M and for all p 

V+ (0; p)	*( I 111 (a)),	if H1 (a)	0.	 (5.3)- 
Relation (5.3) seeths to be close to a statement about subgrdients of V. Howver, 
since even 'nice' data of the problem imply not even continuity of V, a first diffi-
culty arises in a suitable definition of a V. In order to cover a large class of cases we 
use a general notion introduced by Rockafellar, which assumes only (strict) lower 
semicontinuity of V at 0. There V is called strict lower semicontinuous at p = 0, if 
there exists some 6 > V(0) such that mm (& V(p)) is lower semicontinuous on a 
neighbourhood of p = 0 (for more details see [241). For such a function V the gene- 
ralized directional derivative at 0 in direction p is given by	-. - 

•	 •	 •	

V(tp' -+- ) - V 
•V0; 7)) = lim lim sup inf	 1),

	•	-	(5.4) 
C I O	 '0 lP'—pI 

where	0 if and only if i —>0 and V(7) .->V(0). Vt(0; p) isa function convex 
and positively homogeneous inp(cf. [23]). Hence it makes sense to define 

0V(0) = {y E JS 
j yp ;^ V(0; p) for all p}.

in
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This is . a convex and 'closed set, possibly empty. It is compact and nonempty if and 
only if V is locally Lipschitz around p = 0. In a special case, (5.3) leads directly 
to estimates of a V(0), namely'when V is subdifferentially regular at p 0 (cf. [23]), 
which implies that 

V,(0; p) = Vt(0; p) for all p.	.'	' .	 •, (5.5) 

Examples of subdifferéntially regular functions are convex or continuously differén-
tiable functions.  

Theorem 5:1: 'Let M be defined as in Remark 3.7and V he. subdif/erentiilly régukir 
atp=0.  
(i) I/ 171 (a) =1= 0/or all a.E M, then OV(0)	fl cllT1 (d).	 'S 

OEM  

ii) I//or some a E M, 171 (d) = 0 and 170(a) is not the whole space, then 3V(0) =0. 

- Remark: Concerning (ii) above, note that 170(a) = RS might be possible only in, 
very pathological cases which are practically out of interest. 

Proof: (i) From (5.3) and (5.5) it follows that for any 'a'E M, aV(0.)	c1171(a). 
(ii) By the assumption there is some p with So(p, a) = 0 (since 17 is a cone). Then 

by (5.1) Vt(0; p) = —co and this implies V(0) = 0 I 

	

•	Without assumption (5.5), results as inTheorem 5.1 are much harder to prove. 

For finite dimensional problems in nonlinear programming a weak regularity con-.' 
dition introd'uced. by Rockafellar and called tameness is needed (cf [24], also [131). 

	

•	In the follosing we 10 something similar. However, in order not to blow up the

technical parts of the proof too much, we limit ourselves to standard . control problems 

• without state constraints: That means that as in [15, chapter 6.21 we consider the 
following problem:	 '. 

minimize J°((i) subject to	 -	S 

= /(t,xu), 1	j	fl, 'u(t) 9 U,  

17 (a)	p7 , 1	G', I(a) = p7 , 0' <y'.;S Cr,	 ' (P3) 

Xi(to) = x0 t , XI(t i ) = X 1' + pG+i, 1 • i	o' t, fixed. 

There U is some fixed subset of Jim, and ly are defined as in(1.2), except that the 
g7 are now constants. Note that in this case 17 =Z, 17 = Z, j = 0, 1, with Z, Z0 , Z1 
as in Step 1'of the proof 'of Theorem 2.1, and hence 17, fl j are closed subsets of 
Rs = RG+n. Further, 8,(p, a) = ô*(p I 17,(a)), j =, 0, 1. As ,analogue to the tameness 
assumption in [24] we use the following regularitycondition:' 

There exists some ô'> V0), such that for any sequence . (77j ) in the 
p-space with ?71 —> 0 and V( 5) <ô there exist a subsequence (again 

	

•	 denoted by (m)) ' 'optimal solutions a, = (x1 , u,) of (P3),1, and an	(5.6) 
-	optimal solution a = (, Z) = (x, u) of (P 3), such that 

• '	urn f u(t) - li(t)I dt = 0. There 1.1 denotes some norm in Rm. 

	

•	
,',	 j—oot, 

Note that (5.6) requires neither uniqueness of the respective optimal solutions 
nor the existence of solutions for a whole neighbourhood' of p = 0. Inparticular, 
(5.6) does not require continuity of V.
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Theorem 5.2: Let M be the set of all optimal solutions of (P 3)o and let assumption 
(5.6) hold. Then	- 
'(i) V is strictly lower semicontinuous at p = 0. 
(ii) V'(0; r)	& In U 171 (a) -I- ,U fl'0 (a)\ for all p, if 171 (a) =1=	for some a € M. 

, QEM	 QEM,	1 
Moreover, if 171 (a) = o and	a) < oo for all a e M, then V+(O; ) = —c'o 
.andaV(0)=ø.	 -	 0, 

(iii) aV(0)	ci co [ 13 171 (a) + U 110(a) 
laeM	 aEM	 S 

•	Proof: Fix some p and some sequence () for Which (56) applies.: Let a, d be, as 
in (5.6).	 . 

•

	

	Step 1: To prove (i), let R() resp. 1?(a,) ne the derived sets related to a resp. a,

as defined in [15, P. 268]. K(a) has the form 

{k = (0,,...,ks) I ha = F,° (t x,(t), u) - F,-(t, x,, (t) u,(t)) 0	< S 
t E (t0 , t 1 ), u € U, u1 ( . ) continuous at t},  

with certain functions Fç defined via solutions of the adjoint equations related to 
a, (cf. [15: pp. 266-270]). K(ã) is-defined analogously. 

Clairn:'k € R(ã) = there exist k, € ,R(a,) 'with k,-:> k.	 (5.7),


Proof: The components of k are of the form 
•	 ha = F°(l,'(i), u)	F-(1, .T(1), 11(1)),	0	5, 

with some 1, u, (to< I < t 1 ). (5.6) implies that u,(t) —U(t)for almost all t. Therefore 
• one can find t —> 1 such that u( . ) is continuous at t and u1(t) --(l). Now define 
kby

	

= F"(t,, x,(t), u) - F a(i,x1 (t1), u,(t,)),	(0 '	a	S), 

with the same u as above ink. By [15, Appendix, Theorem 4.1], x(t) —s (t) foi every t. 
For the 'same reasons, the solutions of the adjoint equations related to j j converge 
with	cc to the solutions of the adjoint equation related to a. But these solutions 

• define Fç and Fa. Therefore k,	k, which proves the claim (5.7). 
Furthermore, these facts imply the following: If V() < 6 for some sequence 

•	— 0, then lim inf V() = lim inf 10(a, ) = IO() = V(0). This proves (i). 

Step 2: Proof of (ii). If D := 5*(p I J7(1i) + fl'0()) = cc, then (ii) is trivial. 
If D is finite, ehoos o' > D. In case that 171(ã) 0 and so(p, ) = 0, s € it can 
be chosen arbitrarily. Let K(1i) resp. K(a) be the convex cones generated by K() 

• resp. K(a,). Then (5.7) holds analogously also with K() and K(a). These cones 
are derived cones for functionals J' at (resp. for J at a,) as in (2.5). 

Claim: For any a> 0 there exists some j0 such that 

• dist ((s, 'p), K(a,) - ci L 8. )	a for all 1	1o '	 ( 5.8) 
•	where	 S 

	

L8. =1t=(t...,tS)!tO <x5,ta <xp0 ,1	a._<G',tc=.xpa,a>G'; 

-	x>O}.	•,	 ,	'	,	, 

Proof: By the proof of Theorern 2.1 and [13: Proposition 3.11 we have dst ((s,p), 
K()— cl L.,,) = 0, i.e., there exist k € K(), 1 € ci L8 , with (s, p) =,k— 1. Then 
(5.7), applied to X(), K(a5 ), yields (5.8).	 5	•
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Now, fix e> 0 and some sequence r j JO. By (5.8) there is-some j0 such that for 
any j ^!j0 there exist k1 € K(a), 1 j EL,,, zl j with jJ j j ;;^; e/2 such that (s, p) = k. 
- 1, + LI,. Since K(a,) and L	are cones, this implies that there are k1 E K(ct,),

4 j with j A j j :E^:- E12 such that  

k° <s -+1 A ;O ,	kç <pa + J, 1	r G,' k0 = pa :+ LIo,
(o.9) 

7>  

By the definition of a derived 'cone, this implies that for any j	Jo there exist

6,'> Oand a family of arcs a,, satisfying the initial conditions of problem (P3) at 

r E [0, 
6 ], 

such that 

J1o(0,) =	+ rk° + ra(T ) , with rc(r) = O(r).	(5.10) 

•	 ' By (5.6), [15, Appendix, -Theorem 4.1] and arguments as in [15: p. 269], made sepa-
rately, for every j, it is possible to choose b j	6' > 0, independent of j, and 6' small 
enough such that Irjc (r)/rI	e/2 for all -v E (0, 6') and j	j0 . For some	we 
have t :E^ 6' for all j	, and hence (5.9) and (5.10) imply: For any j' j1 there is 
some p1 wjth p pj ^ , and an admissible solution ä of problem	with 
Io(a)	r(s + e) -i-. 1°(a,). In particular, V( 1 + rjpj) - J7()	t(s ±. e). Since 
r,	r, are freely chosen and jp j - pj	

e, statement'(ii) follows from the choice 
of 8.	 - 

Step 3: Part (iii) follows from (ii), as it has been demonstrated in [13, Theo-
rem 3.6]. I 

Remark 5.3: In Chapter 4 we showed how one can sharpen the results of Chapter 3 
by using multiplier sets Q which satisfy higher order necessary conditions. In a 
similar way one can refine also the previous results in this chapter. To this end let 
11, II be defined by D. similarly as in (5.2). Then the results of Chapter 4 imply the 
analogue to (5.3), namely V,(0; p)	6*(p I 11 1 (a)), if 11(a)	. Hence it is clear 
that Theorem 5i holds also with the sets 110 (a), 11 1 (a). The proof of a refined version 
of Theorem 5.2, however, would , exceed reasonable length. 

6. Two examples 

In the literature one can find a number of papers which apply the necessaryopti; 
inality conditions of Theorem .1.1 or a similar form to optimal contr pl problems 
of practical interest. However, sometimes they lack mathematical rigour and lead 
to wrong results. In [30] for eampIea nuclear reactor model involving mixed con-
straints is treated. -The problem is stated over a time interval withire'e, but finite 
terminal time t 1 . The author presents an 'optimal" solution with t 1 = cc, without 
realizing that consequertly the problem (as it is stated) would not have an optimal 
solution at all. In [19, 201, on the contrary, two control problems in engineering with 
state inequality constraints are treated and a careful sensitivity analysis is given. 
With respect to mixed. constraints [31] presents a nice example. The authors deal 
with an economic problem which involves three state' ar'id three control variables and 
five mixed constraints, and they use the conditions of Theorem 1.1 to characterize 
an optimal solution. Since sensitivity analysis of such constraints is , a novelty of 
our approach, we state thisproblem in more detail.
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Example 6.1 ([31]): Find (b, u( . ), v(-), w(-)) such that 
tj 

beg? - f (gvx3 - du - rx2 - cv) q dt is minimized subject to 

= v - ax', ±2 = cv + rx2 + du - gux3, t3 W
"

. - 

X(to) = (x0 1 , x0 2, x03), x0 1 > 0; x'(t,) = —b; 

•	gua+x3_yw	0, 0!!g v:E^M, O:E^u(t)^x(t). 

a, c, d, r, g, a, fl, y, 99 are functions of the time t and continuously differentiable on 
[t0 ,'t,]. y is negative, all others are positive'on[( 0 , t,]. 

• In [31] the necessary conditions of Theorem 1.1 are applied-and result in explicit 
formulas for the multipliers. Furthermore, the adjoint variables y', y 2 , y3 are inter-, 
preted according to 1] as marginal values, however without checking the set of 
assumptions made in [1]. The similar statements of Theorem 3.1 hold in any case. 
Here we limit ourselves to a short discussion of a scalar perturbation p of one of the 
mixed constraints, namely 

•	O'(t) = NO u(t) - a(t) + NO x 3(t) - y(t) w(t)	p. / 

-Let–v1(.)-.be the related–multiplier.—Then,_by_[31], v(t) = -=y3(1)/y(t), which. is_	--

normegative and continuous on [t0 , 1,]. y3(•) is uniquely defined by the adjoint 
differential equation and y3(l,) = 0.-If we assume that V(p) is differentiable at 

• p = 0 (which is a reasonable assumption, since here V is a monotone decreasing 
function), then by Corollary 3.4. H we have 

tj 
av(0fY dt

	(<b)
YM 

The second example is to illustrate Remark 3.3.B and is of purely theoretical 
interest. Nevertheless in the following example one may think of a boat with maximal 
speed -1 moving on a river with a homogeneous current faster than 1. 

Example 6.2 ([9]): Minimize t i subject to 

-	:t'•=c+u 

U=l(u,v)pu 2 +v2 l 	c>.1.	 S 

X ( 0) = ( 0 , 0), x(1 1 ) = x, = (a,b), with a, b > 0, a2 = (c2 - 1 ) 2. 

This problem is not quite of form (P1), but rather than reformulating it we use 
the following supplement to Remark 3.6: Applying the-usual maximum principle 
(cf. [2, 15]) for a problem with free final time 1,, the adjoint variables y 1 ( . ), y2(.) 
describe perturbations of (a, b) in the same way as those in Theorem 3.1. Without 
proof we state the following properties of the above problem:	 - 

• 1. Since c '> 1 u2 + v2 , there isa set P Jt2 such that the problem has a(ad- 
mimissible or optimal) solution if and only if (a, b) € P. Actually P is a convex cone, 
and a2 = (62 - 1) b 2 , a > 0, describes the boundary points of P. Thus above we 
have , € aP. -	 -
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2. The (unique)- optimal control is (11(1), i(t)) = (-1/c, l/c2  -- I /c), with t 1 = zc/ •	(c2 —.1). The adjoints y', y2 are constant on [0, t 1 ] and have the values (y', y2) 
= al, P), with any a > 0. 

3. Since the. Hamiltonian H = y° ,+ y1 (c -i-- u) + y2v_vanishes identically along 
(u(t) v(t)), we get y° = 0. Thus fl = 0, 1T = {(_i, c2 - 1)1 9> 

4. Let p =' (p1 , p2) be a, perturbation of x1 = (a, b). If x1 + p F, then o(p) = 00, 
and Theorem 3.1 makes no statement. Otherwise o( p) '= 0, and according to Theo-
rem 3.1 we get V(0; ) = —co. Now choose in particular p = (}/c2 - 1, i). Then 

•	x - i € OP, and by note 2 we get V(e) = , (a + E /c2 - 1) c/(c2 - 1). Therefore 

	

,V(p)—V(0).	 - Jim	 = c4/c2 - 1, whereas V(O; p) = —oo. This means that only 
,elO	S 
for suitable functions r(e) of type, o() with x1 + s5 + r(e) € mt	we have


• Jim (V(e + r(s)).— V(0))/s =' —co.  
•	do	 '	 S 

5. 11 p(il, ii) :E^: 0, then Theorem'3.1 implies that V(0; p) = --oo. One sees directly 
'frm (5.4) that for all those p also Vt(0; p) = —00. If p(l, P) > 0, then for . s> 0, 
small enough, and any r> 0 and any p' with p' - p	e we 'have x1 -F rp' P, 
hence' V(rp') = +00. Therefore V(0; p) = Vt(0; p)	+00, and V is 'subdiffe-




rentially regular at p = 0. Thus Theorem 5.1, (ii) applies and yields V(0) = 0. 
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