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On the optlmal value functmn of optlmal control problems
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’ Dlese Arbelt untcrsucht dle Optlmalwertfunktlon von parametnslcrten deterministischen

Optimal Control Problemen mit verschiedenen Zustandsbeschrankungen. Die Hauptergebmsse '

enthalten Abschiétzungen iber den EinfluB von kleinen Variationen des Parameters p auf den
Optimalwert V = V(p). Im einzelnen werden obere Schranken fiir verschiedene’ Richtungs-
ableitungen. von ¥V und Abschitzungen fiir einen verallgemeinerten Subgradienten 8V(-) ge- -
geben.: Diese Abscha,tzungen sind' definiert’durch Multiplikatoren, welche notwendige Opti-
-malitatsbedingungen erster oder hoherer Ordnung entltmg einer Optimallésung des ungestorten
Ausgangsproblems erfillen. ‘Alle Ausfiihrungen basieren auf der Trennbarkeit oder Nicht-
Trennbarkeit von gecigneten approx;mlercnden Kegeln und setzen keme ‘oder nur sehr
) schwache Regularititsbedingungen voraus.

Lo
s

B pabote nccaenyercd (pym«.uua ONTUMAIIbHOrO 3HAYeHUs IapaMeTpUsOBAHHKX JeTep-

MHHHCTH‘!OCRMX 3aj1a4 ONTAMAJBLHOr0 YOpaBJieHUA C paaubnm or‘paﬂnqemm\m Ha COCTOAHUA.

InasuEé pe3yabTaTh CONEP/KAT OLEHKH O BIMAHHU MAJICHbKUX napuauun napaMeTpa pHa
ONTHMAbLHOE  3HAYeHUe V = V(p). B 4acTHOCTH, NAIOTCA BepXHHe TPAHMIK AIA PABHHEIX

TPOH3BONHEIX' 110 HANpaBeHUID QYHKUMU V U OUEHKH KA HEKOTOporo oGobuieHHoro cy6- -

rpaguedTa av(.). OTH OUEHKH ‘onpepesiel MHOMUTEIAMA, BHIOIHAIIMMU HEOOXO/HMbIE
* YCJIOBHA OMTHMANLHOCTH NMEPBOTO M BRICIIErO NOPARKA BAOJL ONTHMANLHOTO ' PEIEHHU-
HEBO3MYIICHHON HCXOAHOM 3amauu. Bce paccymneHHA OCHOBaHW HA OTHEAHMMOCTH MJIM
HEOTUENUMOCTH - MOJIXONAWMX AaNNpPOKCHMUPYIOITHX Rouycou M NpeanoIaralTcH ml6o
um(ahue WM JIMULb OYeHB ciaabne ycaoBus peryasipHocTy. o

The optlmdl value of parameterized deterministic optimal control problems w1th stateand mlxed
state-control constraints. is studied. The main reésults are estimates for the effect of small -
_ variations of the parameter p on the optimal value V = V(p). In particular, upper bounds’
. for several directional derivatives of ¥ as well as estimatés for a generalized subgradient
aV(.). are ngcn These estimates are ngen in terms of multipliers which satisfy first or higher
_order necessary optimality conditions along an optlmal solution of the unperturbed problem.
The theory is based on the separability or nonseparability of suitable approximating cones and
requlrcs no or only very wenk regularity, assumptlons

v . . - ~

1. Introduction

Lo v
.

Thls paper is concerned with a partlcular toplc in the field called. sensmwty of
optimal control problems. We consider several classes of deterministic optimal control -
problems which contain a (vector-valued) parameter p. This parameter describes
- ‘perturbations of a reference problem which is given by.p =-0. We give criteria
which ensure that perturbed problems have admissible solutions, together with an
estimate of the respective value of the objective function. Thus we obtain estimates
for the local behaviour of the optimal value function V{p) which is defined as the
optimal value of the problem withparameter p. Note that the results of this paper
do not concern the form of optimal solutions' of perturbed problems. This topic and
the related question of. contmulty of V form a qulte dlfferent subject. It requires

.
’
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much stronger assumptlons and also different arguments. Such results can be found
. .in the work of DoNTCHEV [4, 5, 6] and others. Preliminary results concemmg our
. topic have been obtained in (7, 21] for standard optimal control problems and in (1
for more general ‘problems with constraints 0(t, u, z) < 0. However, there the
assumptions involve a more or less detailed a-priori knowledge about perturbed
problems, such as the following For any small perturbation the problem has a
(unique) optimal solution whlch is close to the (unique) solution of the unperturbed
- problem. ‘
More advanced are the rcsults obtamed by MAURER in [18—20]. He applies’ per-
turbation results from nonlinear programming to optimal -control problems. Hls
results require only information about some optimal reference solution (x u(t))
the unperturbed problem, yet no assumptions about nelghbourhoods of p=0."
Furthermore, the case of state constraints y(p, ) < 0 is carcfully treated. However,
MAURER needs some other regularity conditions, such as the completc: controllablllty
of the linearized dynamical equation & = f,x + f,u along, ( ty, ﬁ(l)). :
Our results in- Chapter 3 are closely related to those in [18—20], but they are ob-
tained without any of the'regularity assumptions mentioned above. This is possible
by using general results from [12, 13], which are based on the separability of non-
separability of suitable convex sets. Via the notion of a derived set or cone, which was
introduced by Hestenes and is closcly related to Pontryagin’s cone of attainibility,
‘these results apply directly to different types of optlmal control problems. There-
fore, ‘whenever necessary optimality conditions (expressed in. terms of adjoint
variables and other multipliers) are proved via derived sets, they can be,used to
obtain sensitivity results similar to that of Theorem 3.1. This holds in particular
for the necessary conditions in [3, 14—17, 25— 29] i.e., also for. partlcular (,lasses
of control problems involving time delays.’
In addition to Maurer’s results we consider also problems with mixed constramts
6(t, z, u, p) = 0. In Chapter 4 we show that -sometimes sharper results than-—in
Chapter 3 can be obtained by using multipliers which satisfy higher order necessary
“conditions as in [17, 28]. In Chapter 5 we extend the results of Chapter 3 and glve
" estimates for a generalized gradient .@V(0). The notion of 8¥(-) used there requires:
* only lower semicontinuity of ¥ at p = 0 and thus covers a large class of applications.
We conclude .with an economic model which involves several control variables as
well as several mixed contramts

The geneml problem we deal with is the /ollowmg
-Find an'arc @ = (#(2), (-), ), %(-) piecewise continuous, such that

L . . .
,m=¢m+[ﬂwmeﬂ' L Y

;o te

is minimized on the set 9 of admissible arcs a on [4, t,] given by the following con- -
straints: ) » _ .
T3t = f{t z,w),

1 u(t) € U,
yi,z) <0, 1<

n o
', ¢%@=0Q;A<a§A,
08t 7, w) < 0, 1 B, Wtzuy =0 B <p<B, (12
IMa)y<0, 1=y<0,. I(a) = 0, <y G, ‘
() = Xi(b), t—mm'j=ay

II/\

i=En
<4
B=

JIACIA

. t .
‘where I"(a) = g7(b) + [ L(t, =(), ’u(t)) dt.

b



.On the optimal value function of.control,problems 19

U is an open subseb of R™ 'and b ranges in some open subset of R¥. The functions
/5 08, Lr, gv, X, T are once and y* twice continuously dlfferentlable with respect to
their arguments on suitable domains of definition.

-

From now on we always use the following conventions:

- If no other specification is made, then the index ¢ runs from 1 to », « from 1 to 4,
B from 1-to B, y from 1 to G. If in a product of one or more terms some index appears
at least twice, then one has to sum up w1t,h respect to "this index. For partial deri-

vat,lves‘of a function, say, of f with respect to z, we use both the notation % and
f.-Ha functlon of the form f(¢, z, u) is evaluated at (t z(t), u(t)) we somet,imes writ,e
shortly. f(£) := f(t, 2(t), u(t))-

Perturbations of a general form of such problems are considered in Chapter 3.
To do this, we need a characterization of an optimal arc q, of (1 1), (1.2) by means
of necessary conditions. Such conditions have been developed in [2:) 26], e.g., and
" the subsequent Theorem 1.1 is a special form of [26, Theorem 9. 1}. :

We assume that the (4 4 B) (A + B 4+ m)-matrix .

© 208
W» 63909) 0 N, - . L . ’ , . .
. 5 has rank A 4+ B . (1.3)
\ o%9° ’ ' R S
. __L o _ﬁ,. ._._O’_éaaw. -

'along an optimal arc q, = (x(t) u(t), b) on a set Rz, wherey runs from 1 tom, o from 1
to B o from 1 to 4, and where we denote:

~

e, w) = wu, z) + yifit, @ u), _
R.= {z =(t, (1), ’u) l¢*(z) 2 0 forall & with (¢, z(t)) = 0, ~
- ~or ¢*z) =0 - for all x with .y)"‘(t z(t)) = 0%(z) § 0, 1E=8<PH |
H8(z) = 0,* B’<ﬂsi¥ Iu—u(t)] <, tosz<z}
In t,he sequel we use the Hamiltonian
H(t, xz, u, y, u, v) = y°L° + J‘/‘ — //LY — g — vAG,

Theorem. 1.1: Let ay = (2(¢), » ( ), b) be an optzmal solution of problem (1.1), (1.2)

" and assumption (1.3) hold on a set R,. Then there are multipliers y°, x“ )7, ne(t), vf’(t)

y¥(¢), defined on [4, t,], with the following properties: . . N

()9 <0, 720, 1Sy=6G, %20, 1=«< A4, (§yt), 2 %) %0 jor any ¢,
' and =0, tf I"(ay) < 0.

(ii). H(t, 2(t), w(t), y(¢), u(t), 0) = H(t, 2(t), w, y(t), u(t), 0) for all u € U with (¢, 2(t), u) -

€ R, ‘ ‘ , A _ ,
(iii) The " functions y(-) are continuous on [t,t,),. and continuously differentiable
where -u(-) ts continuous. Together with u(-), v(-)- they satisfy y'= —H,

H, = 0, along a, on those intervals where u(-) is continuous.
(iv) H(t) .= H(t, (8, ult), y(¢), u(t), v(t)). is continuous on [ty t,], and contz’nuously

differentiable where w(-) s continuous. There o= H.'

2%



20  B.GoLLaw . .

(v) The transversahty conditions kold at ag. (wzth lss= k)

9°
ab°

iy

- 0“ _yo +("°'/’z‘(to) to)) 8b’ +?/'(t1) 6b"

6b"

L aTo. -oT!
+ (xepe(to) + H(‘o)) —ag,i—'H(li) ok

(v1) Iz ( ) v5(-) are continuous on intervals of continuity of u( ),\and u s(-) 18 /urther '

continuous at zhose t, where @*(t) is discontinuous.

(vil) For 1 £ x £ A', u() s u nonincreasiny /unctwn which s wnstant on mtervals
wpon-which y*(t) < 0.
For 1< f < B, v( ) 18 nonnegatwe Moreover  VA(t) 6%(t) = O (B not summed), on

[tO’ l] .
(viii) If v*(t)) < O, then us(t 1) = O 1<a s 4. 1f also y*(t) < 0, then y“(to) ="%".

. Except for the second pert of statement (viii), this result ‘has been proved in

‘ [25 26]. The last statemeént can be proved as in [11] (where 1t is proved for a somewhat .

51mpler problem) by mvestigatmg the ‘problem (1.1), (1.2) reversed in tlme
’ N . . -,

2. Some standard f)erturbations

Starting w1th (121, (1.2) as unperturbed problem, we consider standard pertur-

bations of the terminal and the isoperimétric constraints. That means that for some
p=(p, .., 0% ... G“') we replace the respective constraints in (1.2) by *

DSy, 1Sy=@ Do =p, ¢<ys6

3 . . (2.1)
x(t 1) = Xlt(b).‘i' PG+|‘; 1= § n. ’
Problem (1.1), (1.2), with the respective constraints in (1.2) modified according to
(2.1), will be denoted by (P1),. Our aim is to characterize V = V(p), the optimal. .
value of problem (P1), dependmg on p. To be more precisé, we agree about the
_ following throughout this paper: If a problem with a perturbation p has no admissible
“solution, 'we set V(p) = +oco. If admissible solutions. exist,- we set V(p)
= inf [I"(a) | & € UA(p)}, where A(p) denotes  the set of all a.dm1551ble solutions of the.
respective perturbed problcm Of course; this. infimum may be —
We assume that'an optimal arc a, of the unperturbed problem (P1), is given
which satisfies (1 3). Then by Theorem 1. 1 it makes sense to define

= 1 @) = (8% % 2 6020, 90 | (8, @) sans/zes the -
statements of Theorem 1.1 along ag}, ‘
' = (0] (0, @) € 2} v (0},
Q= (w](—1,w) € Q).

(22

The crumal elements of our sens1t1v1ty analVSis are the two terms
4 87(7’) = sup (yi(es) p&+ — 2pry, - j="0;1. T (29

By the defimtion of 2, we have always s,(p) = 0 It is easﬂy checked that 2 forms
a convéx cone, and that 2, + 2, &£ 92,,if 2, += @. / . o
A first sensitivity result is the following. ' ’

N
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" Theorem 14 2)).

. Step 2: Fo]lowmg the approach taken in [23 26], we first con31der a spe01a1 case
. of the given problem, where the constraints (1. 2) (2: 1) are of a SImpler form namely
- as follows: :

On the .optilha] v'z).lue<,function of control hroblem‘s o2

o Theo rem 2.17 Let a, be an optzmal\arc of problem (P 1)0 aiong which assumptwn

(1 3) holds. |~ -
A) If 2, + @ and p€int {p | so(p) = O}, then s,(p) < oo, then for any s sl(p) there

2s a function r(e): R.— R" of type o(c) and some g, > 0 wzth the following property:
 For any ¢ € (0, &) the perturbed problem (P1),p.4rc) has-an admissible solution and =~

(ep+r(s)—VO)<ss S -

B) If 2, = and So(P) _-40 then for any s € R thereisa functum r( ) wzth all propertzes,
as in A)

At the time being we regard thls result as a techmca] tool for proving ‘the similar;

but more general Theorem 3.1. After that we will clarify its implications by some,

corollarlcs and remarks \

Proof ‘of Theorem 2.1: T T ,
Step 1: We prove the first stabement of A) Defme - :
o 2= ), =A% 0 A a0 90 € Q) <
= {lpt, ~2)| (0, 9}, —2) € Z}.u (0},
Z1 = {{y(t)y —2)| (=1, y(ts), —2) € Z}.

Z resp. Z, are convex concs in R1*#+G resp. R"6, Z, is a convex set. By a.rguments

\

. made below (preceding (2.6)), Z, Z,, Z, are also closed Furthermore, 2, 3= @ implies
Z, %+ @, and this implies Z, + Z, & Z,. Therefore Z, 0+Z,, where 0*Z-deriotes
. the recession cone of Z, (cf: [22]). Conversely let z € 0+Z,, i. €., there exist sequences

7i| 0, z; € Z, with %;2; — 2. Then n;(—1,2;) € Z for all .j and ni{—1, zj) —> (0,2).
,Since Z is closed (0,2) € Z and hence z.€ Z,. Therefore Z, = 0*Z, and, since s;(p),
§=0,1, is the support function of Z;, p € int {p | so(p) =0} lmphes sl( ) < oo (cf. [22

-

= [t z,u), ult) € U-, W“(L 70, 1sas4,

oS, 1sys6, INa=p, ¢ <ys6, (24

’(to)_'-xof(b), zi(t)) = X, YD) + pC*i, to, b, fixed. -

For the problem of mmlmlzmg (1.1) subject to constralnts (2 4), necessary optimality

. conditions are given in [25]. For our. purposes we have to sketch the crucial ideas
" of the proof. On a set € of arcs a which satisfy (2.4) except for the terminal constraints

at &, and ¢,, real valued. functionals Jg(a), 0=<0.<0p 00>G+ n, are defmed with
the followmg propertles R .

1. IfJP(a)—Ofora]lg>G+n,then . .
Je(a) = Ie(a), 0Z¢<¢, JG+i(q) = zi(t,) — X, ®), 1<i<mn,

-

and, as a consequence thereof,

© 2. a is an admissible solution of (1.1), (2.4), if and only if

Jea) S pe, 1Se=,

Ja)=pt, G'<o<G+m,. (28

Ja) =0, ¢>G+n. o
Further, q, is an optimal solution if and only' if it minimizes J%a) subject to (2.5).

v
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Now let ap be an optnnal arc of the unperturbed prob]em (1.1), (2.4), and let (1.3)

" hold. Then a derived cone K (thls notion is defined in [15]) for the functionals Je
at qg on {a §€ | J(a) = 0,0 > G'} is constructed. Then Hestenes’ general multiplier.
‘rule, [15], is applicable and results in the existence of multipliers (29, 2) = (49, ..., 2¢%),
"o with'27 20,0 = y =6 whlch are re]ated to the multipliers of Theorem 11 as,
“follows:'

o= g0, L6 coineide, and )G*‘ = -'J‘( 1) - (2.6) -

. For ‘such problems of mmmnung a furiction J°(a) subject to constramts of the form
(2.5), where multipliers of the unperturbed problem are obtained via a derived cone,
general perturbation results have been glven\m [12} and been refined in [13]. In our»‘

- . case here they say the following:
Let A be the set of multipliers ().0, A) sat,lsfymg bhe above multlpller rule, and ]eb
‘Ao, A, be defined via A similarly to (2.2). If 2p = 0 for all 2 ¢ Ag, then statements
as in Theorem 2.1 hold with s;(p) = sup{—2p |2 € 4;},j=0, 1.
, By relations (2.6), these terms s;(p) coincide with those defined'in (2. 3) Therefore
it follows from the relations between (2.4) and (2.5), that Theorem 2.1 holds at least
in case of constramts of type (2.4).

Step 3: In case of a problem with general constraints (1.2), respectlvely (2.1), the
proof of Theorem 1.1 is carried out as follows (cf. [26]): Additional variables are
introduced such that the modified problem is equivalent to the original one and has’
constraints of the form (2.4). This means, that again a derived cone is'used to obtain
the multipliers. It follows that’perturbations p in the general ‘problem (P1), can be
characterized exactly in the way shown above. This proves Theorem 2.1 -8

\

3. General perturbations

In this chapter weAconsider the following optimal control proble"m’ L
' (P2),: .V(p) = inf I%a, p) subject to o
& = fit, 30, p), ult) €U, ' o

~

vtzp) S0, 1Sas4, plop=0 4<asd,
Ozup) S0, 1SFSB, 0tzup =0, B <BSB,
PP S0 1SySE, Map =0, ¢ <yL6
‘ 2(l) = Xib, p), 4= i, p), 7=01, ‘ )
here . ' e

°

4L . : .
Ir(a; p) = g*(b, p). + [ Lr(t, z(t), u(t), p)dt, 0=y < @G.
. N [ . ’ ’ ) V
U is an open: subset of R™, b ranges in some open subset of R, and p is some fixed
parameter in RS All functions which involve p are assumed to be differentiable with
respect to p.
" For fixed p, this problem is of the form (1.1), (1.2). W_it,hout loss of generality we
' oonmder (P2 o as unperturbed problem. We assunte that we know an optimal solution.
(z(t) u(t b) of (P2)0, along which assumption (1.3) holds, hence 2 &= @. Let
£2y, 2, be defmed as in (" 2) We con51der ‘problems perturbed by p and characterlze

- T
- , ’



\

Onithe optimal value function of control'problems . 23

the local behaviour of the optimal value function V(p) of problem (P2)p To this
end we defme forwe Q;and1 <0 £ 8-

. - oLy S - .
ma(‘t) = 1?’,,((10, () := = (Q T a;’a &) + »
. an o . . 7 :
, — ¥ T (t)," o _ D (,3'1')

- _ 2
F, = F (0, (")) := —y° 69‘: (5, 0) + ;r (b 0) + to)

N . . /
. coo Xy ).
+ (epidto) — y'(t(,)),a—p‘; (b, 0) + yi(ta) ap}, 3.0
' or’ . oT' . : >
fr(zf'w(to) + H(to))‘ap, (b,0) — H“'), o (0 0), | (3.2)
. . ‘1 R i
s;j(p) = sup {(F +- j F (1) dt) p°|lwe€ .Q,}, j =0, 1. _ . (3.3)

Theorem3. 1: Let a, be an optimal solution of problem (P 2), whick satisfies assump-
—tion_(1.3). Then concerning perturbed 'problems (P2), all the statements of Theorem 2.1

led analogously with s,(p) and so(p) given by (3.3). “In" particular, these imply for — —

V — V(0
+(O, p) := lim inf (sp ald 8)) © and any p:

: rto=ot) - - S
A) If O + o, then V.(0; p) < sy(p)
B) If Q= 2 and so(p) < oo, then V (05 p) = —oo.

i

Remark ‘3 2: Assuming several regularity properties of a, (whlch 1mply Qo= (O],

-MAURER, [18—20], obtains the estimate

V(ep) — V(0)
&

lim sup

= si(p)-
210 :

Without those regularity assuﬁlptions this inequality does not hold any more and.. .

has to be replaced by'tht_z somewhat weaker one in the above l;heorem.

Remark 3.3: A novelty of the above result is the fact that sensitivity results
are given.also in the case of abnormality, i.¢., when @, == {0}. Below we indicate,
what abnormality means with respect to sensitivity of the optimal value. .

A)YIf 2, + @ and 2, = (0}, then typically s,(p) will be finite for some p and infinite
for others.. The case s,(p) = oo may be related to one of the followmg smua.t,lons
" (the list is not claimed to be complete):

a) Perturbed problems (P2),,,+,(,) have feasible solutions and ¥ is ‘nice’ (say, V
has a directional derivative in direction p), yet the first order necessary conditions
.of Theorem 1.1 give tog llttle information, i.e., t;hey allow for too many multlpllers
such that s,(p) = oo.

b) The perturbed problems have feasible solutions, but V has a vertical tangent
in direction p. For example, such a situation may occur along switching curves of

bang-bang solutions. In BOLTJANSKI, 2, pp. 31—39], a very simple example shows -

‘this effect.

\
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c) Pcrturbed problems (P2),,, o, have no feasxble solutions. Actually, Theorem 3.1
1mp]1es also results of the following type: If for some p statement b) or c) from
© above is true, then each optimal arc a, of (P2), is abnormal. Precise formulations.

of this fact would-be rather lenghty and we omit them. For problems in'mathematical

programming they are given in [12, Corollary 3.4].
B) If 2, = @ (i.e., ¥° = 0 always)-and s,(p) < oo, then for suitable sequences & |0,
(e,), we have by Theorem 3.1 ‘that ]ll]](V(F]p + 7()) — V(0))/e; = —oo. This

means, roughly speaking, that in such]a direction p the optimal value becomes
drastically better. However, in detail the situation may be rather complicated. -
Using a very simple example. without state constraints, Example 6.2 shows the
- following. We have 2, = o, for a certain direction p we have sy(p) = 0, the direc-
tional derlvatlve ]1m (V(sp) — V(O))/e exists and is finite, and only for suitable

functlons 7(€) of type o(e we . have lim (V(sp + 7(g)) — V(0 ))/ = ;oo.
i (21 - :
. : i 3
.Proof of Theorem 3.1:'We take £ = (2, ..., 2"*5) := (z, p) as new state variable.

" Then problen (P2), becomes the followmg : . o s
V(ip) = mfl"(a) sub;ect to _ . '
z«'_/(t,z,u),, 1Sisn, a =0, 1S0<8; |
w«(i,x_)go,'~ 1<a<A, wit,8)=0, A <ax<4, (

65, 5, u) <0, 1<B<B, 0Fttu) =0, B < <# < B, (3.4)

M@0, 1Sy<6, Day=0, ¢ <y<G, | |

2i(t) = X,"(b o), 1 Sisn, §=0,1, arte(ty) =7,
et =pf,. 1<0< 8, t;=Tibc), ult)ecU,

| 'wherea—(ft(),u() ) Y

" It is easy to see that there.is a one-to-one. correspondence between admissible (resp.
optimal) ares of (1’2 and (3.4): The advantage of (3.4), however, is that.it contains -
" the parameter p. only in form of a standard perturbation as treated in Chapter 2.
Therefore p-perturbed problems are characterized through Theorem -2.1 by si(p) .
= sup {y"*°(¢,) p° | a)( ) € @Q;}, where Q- denotes the set of all multipliers related to
an optimal solution ‘G, of (3.4) with p = 0. Checkmg the respectlve necessary con-
dltlons pomt by pomt one sees the followmg .

: (y #, A ‘u( ), v( ), )) isa multlpher for ao 1f and only xf

: : . (3.5)
B s, 20 ), 9(0Ys YN PP, ooy YT N SR
isa multlpller for d,. ‘
Let 1 < ¢ <.S. Then the transversallty condltlons for the arc dy yleld
y(te) = F,, - F,asin(3.2).- - 13.8,i)
_Pa,rt (111) of Theorem 1.1 yields - ,' ' . C l
"*"(t) =F (t), . F,asin (3 1). : (3 6 u)

Together with'(3.5) it follows that 8i(p) above coincides with (3.3) (the addmonal({
‘multipliers. y"*° are eliminated by (3.6), and because of (3.5) the multipliérs on the
* . right-hand sides of (3:6) are actually elements of ;). This proves the first part of
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Theorem 3.1. The results about V. (O p) are immediate consequences thereof. Not;e
that if so(p) = oo in case A), then also sl(p) = oo, and hence the clalm is trivial B

-+ Theorem 3.1 gives very general results, but usually one is rather interested .in .

particular perturbations, where a parameter p° enters only one type of the constraints

© or only a single constraint. Then the results become intuitively more appealing.!In

. derivatives |4 (O d) = lim

| o
() wit.59) {=0 PENYIRL (o) = = 2

. 4 Perturbatnon of the mixed constramts

the following corollary we carry this out for somie cases of particular interest.-

Corollary 3:4: In the case 1.—4. hsted below, let ¢ be a (scala:) component of a’

.perturbation parameter p and let ¢ enter only constraints of form (i) described

below For convemence we assume that .Q1 %+ ¢ and that V has duectlonal Hadamard.

V(ed').— V(0)
‘210, d"—d € .

I Then in partlcu]ar the right- respectlvely left hand partlal derivatives of ¥

in all dlrectlons d.

with respect to gatp =0 (denoted by ﬂ (0+) respectlvely 8__ (O )) ‘exist a,nd

. ‘t,ogether Wlth the terms s{w) glven by (u) below they satisfy

—a— 0+) < sup (sw) | 0 € 24, a—V (0~) = inf o) [0 € 2). |

' II Ii_’ furpher the partial derlva,tlve %;i (0) exists and 1f 91 contalns only one . '

element_@, then % (0) = s(w).

' We consider the followmg perturbed constramts (i), whose effect on Vis descrlbed

' by the respective term (ii):

1. Pert,urbatxon of the termmal constramt

SXf

(i) x(tx) = 1(5,4) (11) s(w) = yi(t)

i

2. Perturbation of the initial constraint:

(D) (o) = Xolb, @) (i) s(w) = (#/pilte) — e )
3. Pértlirba.tion of the state constraints:
(S0 1=as4”

aXo I '\ . \. b h .
@0

(to) + f/t (&) —— (t) dr.

.. As a speclal case thereof leto, 1 S <4, be flxed and ¥ (to) < 0 and ye(t l) < 0.

Then
(i) vt 2) S q. (i) () = p (tx) = p%(t) =,fﬂ“(to) (= 0)‘-

:

<0,1<p<B

4 .
: .. o 68 .
(l) oﬂ(t x’ u” Q) { 0’ Bl.—<ﬁ—§ .B - (“) s(w) = f‘vﬁ(t) a_q (8) d‘

P P ~ .

. Asa specia.] case thereof, let 8, 1 < B < B, be fixed. Th.en:.

C e

T . . 6
(i) Otz u) S g (i) s(w) = — [(t) dE (S 0).
. o b ’

x
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Of course, snmlar results can be stated also for perturbations of the dynamlcs 14
of the end times ¢, ¢,, or of the isoperlmetric consbramts '

Remark 3.5: In [18—20] MAURER (,ons1ders also perturbamons pin a Banach
space, which is out of reach in this approach, However, the treatment of mixed
constraints -and perturbations thereof seems to be difficult in the function space
approach. Further, the preceding results are restricted to so-called first order state
constraints (¢, ) < 0 (cf. (19]) which is 1mplied by condition (1.3). For a scalar
control u, [18-—20] give similar results also in case of higher constraints (where

. @ty = Oalong boundary arcs, but for a higher deriva.tive of y* the partial derivative .
- with respect to u is. nonzero). At least for state constraints of order 2 such results

can be obtained along the same lines as here. The suitable necessary conditions are -
provided by [29] and proved in the same way as sketched in Chapter 2. However,
a det,ailed account would lead too far here.

Remark 3.6 If in a given problem U is not an open set (as required in (1.2))
the often this can be handled by adding suitable constraints. However, somet,lmes

. this procedure may be too complicated or violate ¢ondition (1.3). Then the following

considerations may be useful: In [16], Kx~oBLocH develops necessary optimality
conditions for an optimal control problem with arbitrary control set U and one

_state constraint (¢, ) < 0. Instead of introducing a multiplier u -attached to  or

@, he derives a maximum principle with the classical Hamiltonian Then the adjoint
variables y%(-) may be discontinuous at those times ¢, where an optimal arc q, hits
the boundary y(t, ) = 0. Roughly speakmg, it is shown in [8] that the scnsxt,ivmy
with respect to perturbations y(t, ) < p is described by the sum of all jumps occuring .
in the adjoint variables. By suitable reformulations this result ¢ can be shown to be .

equivalent to part 3.of Corollary 3.4.

- Remark 3.7: If the opt,imal solution of the unperturbed problem is not unique

- then obviously all results in this chapter can be improved as follows. If M is a set ~

of optimal solutions satisfying (1.3), then the results.of Theorem 3.1 hold with each
ac€ M and hence yield upper bounds for V.(0, p) “of the bype mf sl(p, a).

4. H\igher order-conditions

Theorem 3.1 gives upper bounds of the lower Hadamard derivative V,(0;'p) of the
optimal value function V at 0. It may well occur that sometimes for some p one has
only V.(0; p) < s,(p), with a significant gap in bétween. One possnble reason for such
a gap may be the fact that first order necessary conditions as in Theorem 1.1 are
not precise enough i.e., they allow for too many multipliers. As a consequence, the.
supremum in (3.3) will be too large. In siich cases, multiplier sets satisfying higher.

_order necessary conditions may lead to upper bounds which -are lower than those of
*~ Theorem 3.1.

For standard optimal control problems without state (,onstramts, Kx~oBLOCH [17]'
proved a set of higher order necessary conditions which have the following properties:

1. In addition to the usual (first order) maximum principle, higher order conditions
such as the generalized Legendre-Clebsch-conditions hold. Thus these conditions are
satisfied by a multiplier set Q which is contained in Q. :

2. This is achieved via the construction of a derived cone which contains the cone
defined by first order approximations (the cone of attainibility of Pontryagin).
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Therefore, if §;(p) is defined similarly as s;(p) 'in (3.3), but with 2 replaced by 8,
.then all the conclusions of Theorem 3.1 hold also with §;(p) instead of s;(p), 7 = 0,.1.
Since 2 S Q implies §;(p) = s;(p), these higher order conditions may give better
_ sensitivity results than those of Theorem 3.1, if the inclusion @ € Q is proper. [10]
contains such an example involving a simple system with three state and two 'control
variables. There the generalized Legcndre -Clebsch-condition results in a multiplier -
set £ such that V.(0; p) = V{0, P) = &i(p) < si(p) for some directions p.

In a similar way one can obtain strengthened sensitivity rcsults b) means of the
second order condltlons in [28].
£

5. Generélized subgradients of the (')ptimal value funetion IS

In Chapter 3 we proved that for any opt,lmal solutlon a of (P2), whlch sa.tlsfles
(1.3), we: have for all p that

+(O) p) é 81(?’: )) lf Ql(a) :*: Q ’

. v . (5.1)
Vi{0; p) = —o0, if 2,(a) = @ and so(p, a) = 0.,
In order to draw further conclusions thereof, we denote for 1 g =8, '7' =0,1:.

’

2%(w) = +fF(mMm

= {(a‘,...,ns)ln" = a%(w); (1% w()) € 2}, . . e
IT, = {(n', ..., 7% | n° = 7°(w); w €25} (& ). :

Since 2 is a convex cone and IT is the image of 2 under a linear transformation, I7 is
a convex cone in RS For similar reasons IT; is a convex cone and I1;'is a convex set.
We have 0 ¢ IT,, since 0 € 2,, and IT, + [T, S IT,, if IT, == @. If we have a set M
of optimal solutions as in Remark 3.7, the sets in (5.2) depend on’ the respective
- solution a € M. We denote this by H(a), ITi(a).

<. Let 6*%(p | C):= sup.{cp|c€ C} denote the support function of a convex set C' ’
Then (5. 1) implies that for any a € M and for all p

Vi(0;p) < 0%(p | M(a), if M)+ &. - (5.3)-

- Relation (5 3) seems to be close to a statemént about subgradients of V. However,
. since-even ‘nice’ data of the problem imply not even continuity of V, a first diffi-.
culty arises in a suitable definition of 2¥. In order to cover a large class of cases we
use a general notion introduced by Rockafellar, which assumes only (strict) lower
semicontinuity of ¥ at 0. There V is-called strict lower semicontinuous at p = 0, if
there exists some 6 > V(0) such that min (5, V(p )% is lower semicontinuous on a
neighbourhood of p = 0 (for more details see [24]) or such a funct,lon V the gene-

. ralized directional derivative at 0 in direction p is given by :

' : Y V(e — V(s ' .
(O p) = lim lim sup inf (=p” + 77). ('7), . - (5.4)
€0 g0 rl0 1P -plSe T . i

.where -+ 0 if and only if # =0 and V(5) —-V(0). V}(0; p) isa function convex
-and posmvely homogeneous in'p (cf. [23]). Hence 1t makes sense to define

~

6V(0) L/ € RS | yp < VYO, 7)) for all p}
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This is a convex and 'close(l ser,,' possibly empty. It is compact and nonernpt,y if and
only if V is locally Lipschitz around: p= 0. In a special case, (5.3) leads directly

to,estimates of 9V (0), namely when Vis sudefferentlally regular at p = 0 (cf (230,
. whlch implies tha.t; )

V.(0; P) = V1(0; p) for allp. .. . oL : (5 5)
Examples of subdlfferentlally regular functlons are convex or contlnuously dlfferen-
tiable functions. - : .

Theorem 5:1: Let M be dejmed as in Remarlc 3.7 and V bP eubdszerontquly 7-egulafr
atp=0. ..
(i) Ij o) + @ for all a € u, then BV/(0) = el (e,

i) If /or some a € M, II(a) = & and II{a) zs 'not the whole space, then 8V(0)

~

" Remark: Concerning (ii) above, note that ITy(a) = ‘RS mlght be pOSSlblO only i,
very pathologlcal cases which are practically out of mterest '

- Proof: (i) From’ (o 3) and (5.5) it follows that for any 'a: E M, 8V(0) < cl ITl(a

(n) By the a.ssumptlon there is some p with s,(p, a) =0 (smce IIis a cone) Then
. by (5.1) V’(O p) = —oo and thls implies 9V (0) = | . :

- Without assumptlon (5.5), results as in. Theorem 5.1 are much harder t;o prove.
_ For finite dimensional problems in nonlinear programmmg a weak regula,rlty con-.
dition introduced,by Rockafellar and called tameness is needed (cf. [24), also [13]).
In the following we do something similar. However, in order not to blow up the
téchnical parts of the proof too much, we limit ourselves to standard control problems
- without state constraints. That means t,ha,t as in [15, chapter 6.2] we cons1der the:
following problem . . . .

minimize J%a) subject to

= fi(t,\x;'u),. '1' gz = 'n: ) s U, . _
=, 1SYS@, Pe=p, ¢<ys6, - (P3),

2to) = 2y’ () = X+ po, 1<i<n, bty fived

There U is some fixed subset of R™, and I’ are defined as 1n\(1 2), except that the
g” are now constants. Note that in this case IT =-Z, IT; = Z;, j = 0; 1, with Z, Z,, Z,
as in Stép 1of the proof of Theorem 2.1, and’ hence II, IT; are closed subsets of -
RS = R9*+n. Further, s;(p, a) = 6*(p | ITH( a)) j=0,1. As analogue to the ta.meness

assumption in [24] we use the followmg regularlty condition: . .

There exists some & > V(O), such that for any sequence, (17,) in the_
", p-space with 7, — 0 and V(5;) < 4 there exist a subsequence (again
. denoted by (%;)), optimal sOlutions a; = (2;, u;) of (P3),; and an (5.6)
‘optimal solution & = (%, %) = (z,%) of (P3), such that =~
P
m [ Ju(e) — u(t)| dt — 0. There |-| denotes some norm in R™.
oot

Note that (5 6) requlres neither unlqueness of the respective optimal solutions
nor the existence of solutions for a whole nelghbourhood‘ of p=0.1In partlcular
(5 6) does not require contlnulty of V.
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. Theorem 5. 2 Let M be the set o/ all optimal solutions of (P3)0 and let a,ssumptwn .
(5 6) hold. Then
@y Vs stnctiy lower semzcontmuous at p = 0. ' :
(n) V'(0; p) < .6* (p | U H,(a) + U 170 )/or all p, if IT\(a) =+ ;zf for some-a € M.

v+ Moreover, if Hl(a)  and So(p, a) < 0 /or all a € M, then V¥(0;p) = —co
' .and 3V(0) = . . , .
N (m) aV(0) = ¢l co [ U e + U Ho(a)]
aEM aeM

. Proof: Fix some P and some sequence (7;,) for which (5. 6) applles Let a;, @ be‘ as
in (5 6). . : .

Step 1: To prove (i), let K (a) resp K(a ) ne the derived sets re]ated toa resp a;
as defmed in [10 p- 268] K(a,) has the form A : , :

/i A A {k = (k% ..., k) | k* = Fplt, ac,(t),' ) F;"'(t,. ;s ('t), u,:'(t)), 0 <o< S,' .

te (2o, t1), u € U, uy(-) contmuous at t, R

with certaln functlons Fjo defined via solutions of the adjomt equatxons related to -

~.a; (cf. [15: pp. 266— 270]) K(a) isdefined analogously. ‘
Clalm ke K(a) =>there exist k; € K(aj) with kj —k. -~ - (5.7)

v

Proof The cc components s of k are of the form .
k = Fe(i,%(i), ) — Fe(i, (), u(t)) 0o s S,

‘ with some i, u, (¢, < i < t,). (5.6) 1mphes that u;(2) \u(t) for almost all . Therefore
. one can find t; — & such that u(-) is continuous at ¢; and u;(t;) — u(t) Now define -
’ ke ;_‘F (b, 24(t5), %) — Fyo(y (), ui{ty)), 0=o < S)

wnth thesame u as abovein k. By [15, Appendix, Theorem 4. 1] z;(t) — Z(¢) for everyt.
For the same reasons, the solutions of the adjoint equations related to a; converge
with § — co to the solutions of the adjoint equation related to @. But these solutlons
define Fj* and F°. Therefore k; — k, which proves the claim (5.7).
F urthermore, these facts unp]y ‘the following: If V(17,) < ¢ for some sequence' '
i = 0; then lim inf V(n,) = lim inf I%q;) = I°(@) = V(0). This proves (i). =«

;—»oo —PW .
. Step 2: Proof of (ii). ‘D —15*(7)]171(0 +Ho(a))— oo, then (ii) is tnvxal
If D is finite, choosé s > D. In case that IT)(d) = @ and so(p, @) = 0,s ¢ R can
be chosen arbitrarily. Let K(a) resp. K(q;) be the convex cones generated by K@)
© Tesp. K(a;). Then (5.7) holds analogously also with K(a) and K(a;). These cones
are denved cones for functlonals J° at @ (resp. for J;° at a,) asin (2.5).

"Claim: For any ¢ > 0 there exusts .some o such that

dist ((s, 2), K(a;)) — el L,,) < & for all i =J0, _, (5.8)
where : ) ' S
i L = [t = (8% ..., t5) | t® < xs, t° <xp’, 1 S o= Gt =xp°, 0 > G";'
x> 0}. ' . o - ' ’

Proof By the proof of Theorem 2.1 and [13 Proposition 3. 1] we have dist ((s,.p),
K(a)—cl L, ,,) = 0, i’e., there exist &k € K(qa), [ € cl Ly, w1th (s, p) = k - l Then .
(5 7, applled to K(a), ( 1), yields (5.8). - :
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Now fix ¢ > 0 and some sequence T; 1 0. By (5.8) there is-some j, such that for
.- any j = j, there exist kj € K(a;), 1; €L, ,, 4; with |4;| < ¢/2 such that (s, p) = k.
‘—1; + 4;. Since K(a a;) and L,, are cones, thls implies that there are k; € K(a,),
4; w1th [A,l = &/2 such that - i
EP<s+ 4D, kp<p 44, 1SISE, k=90 + 4y, 59)
> GI., ) . ‘ . . . . .

~ By the definition of a derived cone, this implies that for any j = j, there exist
6; > 0 and a family of arcs g;,, satisfying the initial conditions of problem (P3) at
: to, T€ [O d;), such that

Cde(a;,) = 9 —{—rk + 7 ( ), with r“’(t)=ol(r). ' : (5.10) :

By (5.6), [15, Appendlx ‘Theorem 4.1] and argumcnts as in [15: p. 269] made sepa-

rately. for every j, it is possible to choose §; = ¢’ > 0, lndependent, of 7, and 6’ small
enough such that |r; "(T)/Tl = ¢/2 forall E (0, 8’) and j = j,. For some 71 = jo we
have t; < ¢ for all j = 4, and hence (5.9) and (5.10) 1mply For any j = j, there is
some p;with |p — p;| < ¢ and an admissible solution d; of problem (P3),, ., With
Iy = T,(s + &) + 10(0,) ‘In particular, V(n; + ;p;) — V(n;) < ti(s + ¢). Since
& 7j, T; are freely chosen and |p; — p| < ¢, statement (ii) follows from the choice
of s. :

Step 3: Part (iii) follows from (ii), as it has been demonstrated in [13, Theo-
rem 3. 6] ] : . . I

Remark 5.3: In Chapter 4 we showed how one can sharpen the results of Chapter 3
by using multiplier sets £ which satlsfy higher order necessary conditions. In a
similar way -one can refine also the previous results in this chapter. To this end let
11, 71; be defined by Q. snmlar]y as in (5.2). Then the results of Chapter 4 1mply the
ana.log,ue to (5.3), namely V,(0;p) = < 6*(1) | lll(a)) if 17,( (a) + @. Hence it is clear
that Theorem 5:1 holds also with the sets I14(a), f1,(a). The proof of a refined version
of Theorem 5.2, however, would exceed reasonable length. :

6. Two examples

In the literature one can find a number of papers which apply the necessary-opti- -
mality conditions of Theorem 1.1 or a similar form to optimal control problems -
of practical intcrest. However, sometimes they lack mathematical rigour and lcad
to wrong results. In [30] for example,"a nuclear reactor model involving mixed con-
straints is treated.-The problem is stated over a time interval with free; but finite
terminal time ¢,. The author presents an optlma.l’ solution with ¢, = oo, without
realizing that consequently the problem (as it is stated) would not have an optimal
. solution at all. In [19, 20], on the contrary, two control problems in cngmeermg with
state inequality constraints are treated and a careful sensitivity analysis is given.
With respéct to mixed. constraints [31] presents a nice example. The authors deal
with an economic.problem which involves three state and three control variables and
five mixed constraints, and they use the conditions of Theorem 1.1 to characterize
an optimal solution. Since sensitivity analysis of. such constraints is, a novelty of
our approach, we state this problem in more detail.
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Example 6.1 ([31]): Find (b, u(-), v(-),iw(~)) §ucﬁ that
o 4 - . ' ‘ .
bop — [ (gua® — du — m‘2 cv) @ dt  is minimized subject to
t . ’ '
s x‘—v—ax‘ a2 = cv+rx2+du—gux3 B =w, Co R
* - x(ly) = (xo,xo:xo)y x! > 0; _x(l)z— . o A i

Gu—a Bt —w =0, 0<v<M, 0<ult) ) < a(t).

a, c, d 7, 9, &, B, y, @ are functions of the time ¢ and contmuous]y dlfferentlable on
(fo; ¢1]- v is negative, all others are positive on [4, ¢].

In [31] the necessary conditions of Theorem 1.1 are applied-and result in expllcm
formulas for the multipliers. Furthermore, the adjoint variables y!, 4%, y® are inter- -
preted according to [1] as marginal values, however without' checkmg the set of
assumptions made in [1]. The similar statements of Theorem 3.1 hold in any case.
Here we limit ourselves to a short discussion of a scalar perturbation p of one of the -
nm:ed constraints, namelv

01ty = g(t) w (>. a(t) +ﬂ( () — p)wt) S p. 1

— — Eet—v!(-)~be . the related—multiplier. —Then —by—[‘%l] v‘(t) = —=y3(¢) /y(t whlch is
nonnegative and continuous on [to> t1)- ¥*(-) is uniquely defined by the ad]omt,
differential cquatlon and %¥¢,) = 0.-If we assume that. V(p) is differentiable at

"p = 0 (which is a reasonable assumption, since here Visa monotone decreasing
‘functlon) then by Corollary 3.4. I we have :

av v0 - o - \
0 =0. .
op ) f y(t) (=9 ; ,_

N
ot t - ‘

The second e\rame.le‘is to illustrate Remark 3.3.B and is of purely theoretical

interest. Nevertheless in the following example one may think of a boat with maximal
speed ‘1 movmg on a river w1bh a homogeneous current faster than 1.

] Exa-mplo 8.2 ({9]): Minimize ¢, subject to ‘
& =c + u
iy |
U = {(u, v) | u? 4 2 £ 1, c.><1.
2(0) = (0,0), =) ==z, = (/'q,'b), with a, b > 0, a? = (c® — 1) b2,

This problem is not quite of form (P1), but rather than reformulating it we use
the following supplement to Remark 3.6: Applying the usual maximum principle
(cf. [2, 15)) for a problem with free final time ¢;, the adjoint variables y'(-), %*(-) -
descrlbe perturbations of (a, b) in the same way as those in Theorem 3.1. Without
proof we state the following properties of the above problem: . .-
1. Since ¢ > 1 = u? + 22, there is'a set > S R? such that the problem has a (ad-
missible or optimal) solution if and only if (a, b) € P. Actually P is a convex cone,
- and a® = (¢ — 1) b% a > 0, describes the boundary points of P. Thus above we
have z, € 61’ - _ . '

\
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2. The (unlque) optlmal control is (u(t), o(t)) = (— Ve, Y@ =1 l/c) with ¢, = ac/
(¢ —.1). The adjoints y!, y* are constant on [0,¢] and have the values (33, yz)
= cx(u, 7), with any « > 0.

. Sincé the Hamiltonian H = y° + yHe —4— u) + Yy vanishes 1dentlcally along |
(* (t) o(t)), we get y* = 0. Thus I, =@, IT, = {f(—1, Y — 1)| § > 0}..

4. Let p = (p, p?) be a perturbation of z, = (a;, b). If z; + p ¢ P, then so(p) = oo,
and Theorem 3.1 makes no statement. Otherwise s,(p) = 0, and according to Theo-

rem 3.1 we get V,(0; p) = —oo. Now choose in particular 7 = (}/c2 — 1, 1). Then
% 4 P € 0P, and by note 2 we get V(ep) = (a + & ch — 1) ¢/(¢?* — 1). Therefore

___._V(‘Sp) — ¥ c]/c2 1, Wherea,s V.(0; B) = —oo:. Thrs means that only

e o &
for suitable functlons r(e) of type o(s) with . xl -}—sp—}—r(e) eth we have
hm (V(sp +r (s)) — V(O))/e ='—oco.

5 If p(u, v) < 0, then Theorem'3.1 implies that V+(0 p) = 0. One sees directly
from (5.4) that for all those p also V!(0; p) = —oo.. If p(=, ¥) > 0, then for ¢ > 0,
small enough, and any r > 0 and any p’ with|p’ — p] = ¢ we have z, -+ p’ ¢ P,
hence V(tp') = +oo. Therefore "V, (0; p) = VY(0; p) = +o0, and V is subdlffe-
rentla.lly regular at p = 0. Thus Theorem 5.1, (ii) applles and yields 2V (0) =
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