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Nonlinear noncoercive equations and applications 

P.DRABEK  

Es werden periodisehe Losungen der niehtlinearen Balkengleichung 

put + 1L + lLxz2r	+ 9(2L)  

in Abhangigkeit von einer nichtlinea 'ren Funktion q: R --^. R betrachtet. Die Untersuchungen 
schliel3en sich an eine Arbeit von Fufx [6] an und enthalten gegenuberdieser einigé neue 
Ergebnisse..	 S 

PàCCMaTpHBaOTCH nepnoweci-me peuieHsH iieiueflnoro ypaBlieHun 6a3IKM 

B BaBHCHMOCTM OT iieinnclliio6	HR1H11 q: R	R. FIceJeJoBaHMfl flHMUHIOT H paGoTe

S. Fuáfx [6] ii siuio'iaio'r ii ce6s HCKOTOHO HoBble pe3yJlbTam!, He coepaiwecn B aTolt 
pa6oe.	 - 

- This paper deals with the periodic solvability of the nonlinear beam equation 

•

which depends on non-linear q:R	R. This paper continues the subject of-the paper by 

S. FufK [61. We present some new methods and results which are not includedin [6]. 

•	1. Introduction 

This paper continues the subject of the paper by S. FuóIx [6]. We shall study, as 
in [61, problems whichhave their abstract formulation as anequation: 

Tu = I, ,	,	 I	 -	-	(1.1)


where T is operator acting from 'a Banach space X into a Banach space Z, T being 
• of theform	 •-	 -	 -	 S 

Tu=Lu+Su,	 S	 -	 - (1.2) 

where L is IineaI and S is nonlinear. We are interested in the case when Tdoes not' 
satisfy the coercivity condition  

lirn [Tul[z 
0 +00.	 -	0	

-	 (1.3) 

II u tJx+	-	
0	 -	 - 

Typical examples of • the operator equation (1.1) with condition (1.2) are the 
•	following problems. Let A be a real number, co > 0, fi> 0 and let 9, -be a realvalued 

•	continuous function. '	 -	
0
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Boundary value problems for ordinary differential equations: 

_U" (X) - u(x) + (u(x)) = 1(x),	x E (0, i)	 14 
u(0)='u(ir)=O.	 J	 .' 

Periodic problems for ordinary differential equations: 

—"(x) - ;.() + (u(x)) = /(x),	x € (0, )	 15) U(0) = u(), u'(0) = u'().	 j 
Boundary value problems for partial differential equations of elliptic type: 

—/iu(x)—;.u(x)+(u(x))=/(x),	xEQ	
'16 (x) = 0,	x € OQ,	

5	 1. 
where Q, is a sufficiently smooth bounded donain in N-dimensional space. 

One can consider higher order equations of the type (1.4)—(1.6) and also another 
type of boundary conditions than Dirichlèt ones in (1.6). 

Periodic solutions of the boundary value problem for for the nonlinear heat equation: 

u(1, x) - u(t, x) - 2u(t, x) + fiL(t, x)) 

= 1(1; x), (t, x) € Q : = ( - 00, + ) x (0, )	 -	-	 (1.7)
z(t, 0) = u(t, v) = 0, t € (—oc, +oo), 
u(t -f- co, x) = u(t, x), (t, x) € Q.	..	 / 

Periodic solutions of the nonlinear telegraph equation: 

fiu1(1, x) + U10, x) - u(t, x) - 2u(t, x) ± 9 (u(1, x))' 
= /(t, x), t, x € ( - 00, ± oc),	 (1.8) 

•	u(t, x) = u(t + 2, x) = u(t, x ± 2t), t, x € (—co, +00). 

	

Periodic solutions of the nonlinear beam equation:	S 

u(t,x) + u(t x) +	x) - 2u(t, x) + (u(t, x)) = /(t, x), 
u(t -- 2, x + 2) = u(t + 27t, x) = u(t, x + 2t)  
= u(t, x)(t, x E (_oo, +oo)).	S	 . 

In the previous examples, the nonlinear operator S is given by the nonlinear 
part q(u) of the problem considered and the operator L is defined by the linear 
part, i.e. it is-given by	 . 

U F_* —u" - . 0 in (1.4) and (1.5),	 - 

ui-*—zlu—i.umn(1.6), 

uF_>u—u-2uin(1.7),	 . 

u i	+ u + uxzxx - 2.0 in (1.9).	 S 

We present some methods and results (which are not included in [6]) about the 
solvability of the previous types of nonlinear equations. As in [6] we choose (1.9) 
as the. model for the explanation of these methods. The methods used -herd for 
solving (1.9) can be applied also for (1.4)—(1.8). The reason for choosing (1.9) is the 
same as in [6].	-
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2. Preliminaries  

In the. sequel we shall denote by , ! the open interval (0, 2r). Further, N, Zand R 
will denote the set of positive integers, integers and real numbers, respectively. Put 

-	!2=IxI 

and analogously for other sets. 
Before starting a precise definition of a periodic solution of the nonlinear beam 

eq(4ation
jU + u + uxxxx ± p(u) = h(t,x),	 (2.1) 

we introduce, in the sathe way as in [6], the suitable function spaces; 
Denote by 11 the space of all measurable real valued functions u(1, x) defined 

almost everywhere on fl2 which are 2r-periodic in the variables t and x, i.e. 
u(t + 2'i, x + 2r) = u(t + 2, x) = u(t, + 2r) = u(t, x) 

for almost all (t, x) € 112, and which are square integrable over 12. Introducing the 
inner product  

	

•	.	(h, k) = f h(t, x) k(t, x)dt dx	(h, k ( fl) 

II becomes a Hilbert space. Its norm we denote by 11 11H, i.e. 

	

= (h, h)1/2 ,	h E R. 
Let ii = H'+ ill be the cornplexification .of the space R. It is easy to see that 

- {ei(mx+ ni): (in, n) E 'Z21  

forms a complete orthogonal system in H. Thus arbitrary ii € U can he expressed 
by	.	 S 

h(t, x) =	' h,,, gi(mx+7It)	 .	. 

	

(,nn)€Z'	 .. 

(the convergence is in the space ii), where	..	.	' 

	

< 00,	hmn = 
(m,n)CZ'  

• Let p, r be nonnegative integers. By € we mean the set of all continuous functions 
u(t, x) defined on- 112 which are 2i-periodic in both variables, and such that the 


	

•	partial derivatives by t up to the order p and the partial derivatives by x up to the 
order r are continuous on R2. With the norm	 •- S 

= max Iu(t, x)J	 S 

-	 (&x)€R'	 - 
CO becomes a Banach space. 

Definition 2.1: -Let p, r € N u {0}. Define 
HPT= i € 11: E (rn2T + 2P) IhmnI 2 < 00  

(mn)EZ' 
lIP.r with the norm 

LhIlHP. = I E (m2.+ 2P) IhmnI2W2


	

(mn)EZ	 / 
is a Banach space which is nothing other than a SobOlev space of periodic functions 
(see [101).
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Definition 2.2 (Generalized periodic solutions): Let q7 be a continuous function 
defined on R. Suppose that there exist all a 2	0 such that 

q(z)J ^ c + a2I Z I,	z € R.	 (12) 

Let fi> 0 and h € H. A generalized periodic solution (CPS) of (2.1) is a real function 
u €11 such that for all y € C one has 

(u, —fly1 ± V11 + v) = Kh - (u), v.	 (?) 

Remark 2.1: (i) The growth -condition (2.2) is necessary for a NëInytskij'operdtoL 

u-p(u)	.. 

•	acting from H into H (see e.g. [6, 7]).	 - 

• . 
(ii) Using . integration  by parts in (2.3) we can prove that if u € C22 4 is a CPS of 

(2:1), then the equation (2.1) is fulfilled on 112 (i.e. u is "a classical solution" of 
(2.1)).. On the other harid, an arbitrary CPS u € H has better properties (see [6: 
Th. 2.4, 2.5]).	. 

Let us denote. 

a = {q € Nu'{0}:q 1/4 € 

The following two theorems are proved in [6]: 

Theorem 2.1: Let 2. € B.. Then the equation 

flug +.0 +	- 2u = h	 -	 (2.4)


has/or arbitrary h €,H a unique CPS u € H if and only if 2. a. 

Theorem 2.2: Let 2= q € a. Denote by .$°q andY('g 1 two closed orthogonal subspaces 
of H with the following properties: •	.	. 

{h € H: ho •q = ho, _ q = 0};	 .	,. 

Aeq/

	

	= linear hull of (sin q'/4x, cos q 1 c} provided q	0;	 -

1 = linear hull of constant fnctions.  

Then for an arbitrary h € Y(q there exists a uniqzeOPS u € .V Q o/ (2.4 	• •	 • 

Put. 4J =n YI and define the mapping •	 .
q	

C1-0 

shre u is the unique CPS of (2.4). rFhen	•	 -	 •	. 

(I). i' is linear, ImTcC;	.	. •	 •	 - 

• (ii) The mappings	: .Yt° 
->	

Tq: Yt°q -> Cq, rqlcq: Cq -> Cq, are completely 
continuous (where the norm 	is introduced in the space Cq and the norm 
IHIH rn Ae q)-	- 

(iii) If p, r € N u {0} then	•	 • 0	 •	 . 

q(H T	 c (1IP+.' - n
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3. Bounded nonlinearities 

Assumptions: We prove the existence and multiplicity of GPSs of	 — 

(3.1) 

where > 0, h € H and : R —> It is a continuous function with finite limits 

q (+ oo) = urn p(z). 
Z—.±oO 

Moreover let us supose	 - 

(z)z^0,	q–oo)O(+co)	 - 

(the case p(z) z :E^ 0, (+°°)	^5 (—oo) can be treated similarly). Suppose there 
exists5 > 0 such that	

0 

99(z )	ç(± oo),	z 

92(z)	97(—co),	z^—ô 

A typical example 6f such a function q is 
" 99 (z) = ze n ,	z € R.	 ,	S 

In contrast to [6], we make no assumptions about the limits 

urn ((z) — c(+ oo)) Z. 
-	 I 

Remark 3.1: Denote by P0 the orthogonal projectin from H onto	Put 

Poo : u i-+ u - 1?0u,	u € H. 

The mapping P0c is the orthogonal projection from H onto Aeo. rrhefl for each h € H 
there exists an s € R and an h 1 € Aeo such that 

h=s+hl, 

= P0h, h 1 '= p ch	 S	

0 

Theorem .1: For each h 1 €	there exist real numbers T 1 0 T2 such that 

(i) the equation (3.1) has at least one GPS for h = s + h1 with s € (Ti, T2) . in the 
case T1 <T2 , moreover (3.1) has at least one GPS for h = 

(ii) the equation (3.1) has at least two distinct GPSs for h = s + h1 with 
•	5 ,€ (T1 , p(— go)) u (q(+oo), T2) in the case T1 < T2. 

Proof: Put	- 
O	

G:u-* (u),	 u€IL  

Then it is easy to see that the equation (3.1) is solvable (in the sense of Definition 2.2) 
if and only if the following bifurcation system is solab1e:	• 

v ± oPocG(w + v= i Pch;	 ,	
•  

P0O(v + v) = P0h,	,	 0

	 (3.2) 

where  =P0u, v = Pocu, u € H (see e.g. [6]).	-
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Let us denote w1 (t, x) 1 2 x) € 12 . Then 

fw i ( t,x)dtdx= 1. 

and for each w €	there exists a real number r such that 
W-TW 1 .	 .	 I 

Let h 1 E . -ye be arbitrary but fixed. Because the function is continuous and bounded 
on R then for,a possible solution v of the first equation in (3.2), 

Jv I[c	< C	 '	 ( 3.3) 

(see Theorem 2.2 (ii)), where the constant c> 0 is independent of w. Let us consider 
a ball BR(0) with its centre at the origin and with sufficiently large radius R > 0. 
Then for each w E . XO and v € aBR(0) 

V	P0G(w ± v) — 0p0cJ	0. 	- 

By a standard application of the Leray-Sehauder degree theory we can prove (see 
(51). that. for each w €	there is at least one v € A90 gatisfying the first equation 
in (3.2). Let us define	 - 

S = ((r, v) € It X °: w = tw 1 and v satisfies the first equation in (3.2)). 

Then the solutions of (3.1) are sucli u = -rw1 ± v that (r; v) € S and 
(t, v) = (h, wi),	 S 

where 
/	(r, v)= f (Tw 1 + v) W 

is a real continuous function defined on S. For fixed r € It put 

= inf (r, v)	and	(r) = sup (T, v);	 - - 
(v)€S	'	 (r,v)ES	

(3.4). 
= inf (r)	and	T2 = sup r(r). 

'ER	 TER 

Let us reiiark . that if for some v € A O there exists t E It such that (r, v) E S then 

14c0.0 < C	 S	
S 2. 

(see (3.3)). So the assumptions at the beginning of this section guarantee the in-
equality T 1 0T2 :	 S	

-	

S 

Suppose, now, that T1 <T2 and s E (T1 , T2). Then according to (3.4) there exist 
T 11 -r2 € R such that	 - 

•	v(r1, v) > s	and	p(T21 v) <s	 S	 - 

for all (Ti, v) € S, ( r21 v) E S. To prove that the equation (3.1) has at least one GPS 
for h = s + h1 , we need the following lemma.  

Lemma 3.1: For each real number > 0 there eists a Connected subset S	S 
such that projRS	[-a, ] (where proj RS denotes the projection of the set S onto It). 

•	For the proof of Lemma 31 see [1, 4. 	S 

/
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Having the assertion of Lemma 3.1, we can choose > 0 such that 

fi > Max {ItiI, 1T21}. 
The fact that tp is continuous on the connected subset S implies the existence of at 
least one pair (r, v) € S such that 

Then u = -rw1 ± v is the desired solution of (3.1). According to the assumptions 
On q there exists r0 € R such that 

(r0, v) ^5O	and JP( — r0 , v) ;_> 0, 

for all (r0 , v) € S, ( — r0, v) € S. Using Lemma 3.1 we prove the existence of at least 
one CPS of (3.1) with s = 0 and the assertion (i) is proved. 

We shall prove, now, the assertion (ii). Let T 1 < T2 and s € (T1, (—oo)).'Then 
according to (3.4) there exists T3 ' E R such that 903, v) < s for all- (-r 31 v) 'E S. It is 
sufficient to prove the existence of -r4 , t5 ER- such that v) > s for all (rj, v) E S, 
= 4, 5. Then.iising Lemma 3.1 we obtain at least 5 two distinct solutions of (3.1). Put 

{(t, x) € 1 2 : tw1(t,x) + v(t, x) ^ n for all (r, v) E S}, 
•	•.	1 2 n , = {(, x) E 12 : z-w1 (t, x) + v(t, x)	—n for all (r, v) € S}.	- 
It is easy to see that	 - 

lim meas	= 0 for each n € N t-±oo 
(see (3.3)). According to the assumptions on	e can choose for arbitrary s> 0 
such r0 E It and it E iN that forr4 = —r0	-	 - 

f(t4w1 ± v) Wi — q(—oo) <

-	 (35) 
/(r4wi + v) w1 <	 - 

and for T5 = 

f91
( 
r5w + V) ?V 1 — c(+co) 

<,

(3.6) 

f?(TW ± v) W1 < --,	- 

for all (r i , v) € S, i = 4, 5. From (3.5), (3.6) we obtain 

f(r4w1 + v) w1 — (—) <e and f (T521 ± v) w1 — (+ oo ) < 
S	 I,	 •	 p 

for all (Ti , v) € S, z = 4, 5. Put e =	2	. Then the last two inequalities 

imply that the function	has desired property, i.e. (xi, v) > s for all (T i , v) € S,

i = 4, 5. ifs € ((+00)1-T2), the proof of the assertion (ii) is analogous. This com-
pletes the proof of Theorem 3.1 1	-	•	 S •
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Remark 3.2: Let us consider the equation 

U j Ug ±u+ue_ u'=h	( h =s.+h1).	 (3.1') 

Then from Theorem 3.1' It follows (by an easy calculation) that for bach h(E 
there exist T1 (h 1 ) < 0 < T2 (h 1 ) such that (3.11) has at least one GPS ifs € (T,,- T2)' 
and (3.1') has at least two distinct GPSs if s € (T1 , 0) u (0, T2). 

Remark 33: The existence of the solution of the boundary value problem for 
second order elliptic partial differential equations with analogous nonlinearity q(u) 
is proved in [5.]. Existeñcê and multiplicity results of such problems are proved in [2]. 

4. Superlinear nonlinearities 

• In this setipn we shall consider the generalized periodic solvability of the equation 

i9u +	+ uxxxx - Au + q(u) =.h,	 (4.1) 

where?. > 0, q is a continuos real valued function which is bounded on the interval 
(—oo,Oland  

Jim	=+oo.	 (4.2) 
Z 

Adding suitable constants on both sides of the equation (4.1), we may assume 
without loss of generality that	- 

q(z)	0 for all ZER. 

As an example we can present the function (z) = ez, z E R. Since there are no 
restrictions on the growth of 92 in ± oo, we must slightly modify the definition of .a 
GPS (see Definition 2.2). 

Definition 4.1: Let >0 arid h.E H. A generalized periodic solution (GPS) of 
(4.1) is a real function u € H such that for all v € C we have 

(u; —#v + V ±	 = f'hv—fq.(u)v ±f).uv	..	 (4.3) 

where	 . 
HH1:=Ju€H:fq(u)<+oo. 

J	
.	 . 

The min assertion of this section is the following theorem. 

Theorem 4. 1: Let h € 11, h = s . + h1 . Then there exist real ,iunibers T 1 (h 1 ) 5 T2(h1) 
and a bounded set. M(h 1 )	[T 1 (h1 ), T2 (h 1 )], T2 (h1 ) € M(h 1 ) such that 

(i) the equation (4.1) has at least two distinct GPSs i/s > T2(h1); 
(ii) the equation (4.1) has at least one GPS i f s € M(h);  

(iii) the equation (4.1) has no CPS if s '< T1(h1). 

Proof: Let h1 E .$° be arbitrary but fixed. We shall prove,, first, that for fixed 
r E R there exists at leastone v(r) E	such that 

(v(r), —v1 + v11 +	= f hv — f (rw l + v(-r)) v + 2 f v(t) v	(4.4) 
p	 p_	

S 

holds for each v € C n	/	 0	 • 

	

We insert now .two lemmata.	 •0	 - S 

-'	
5	 -	

•	 S
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Lemma 4.1: Let f it be 'a bounded interval. Then there exi8t8 a constant r> 0 
suchthat'/oru€on€,'uI[n>randEJ 

u a 0(h 1 — P cG(rwi + u) + )u),' 

br all or € [0,1].	 - 

Proof: We argue by contradiction. Supose for all n € N there exists ii,, € dFO 
n C,11ftn6i	n, Tn € fi and a,, € [0, 1].such that  

fin = a,, 0 (h— PocG(r,,wi + u,,) + )ü,,).	 (4.5)


Applying -' to both sides of (4.5) and taking the inner product with ü,, we obtain 

('i_4,,, i,,) = a,,[(h i , ii,,,) — (G(t,,wj ± ii,,), ü,,) + 2(,,,, ü,,. 

Letting u,, =	and dividing by IIÜn11H2 we get	 -. 
IIu,,I[H	 '	 S 

•	(u,,, —fl(u,,), + (U,,)jg + (u,,)) + an II1 nI1H' (G(r,,u)i + u,,), U,,) 

= an ILu,,I111_' (h1 , u,).	 '	 (4.6) 

This means that (u,,, — iI(U,,) t (U,,) ± (u,,) , ) is a real number , and so (u,,, —fi(u)j 
+ (u,,) j , + (u,,)) > cdnst. > 0 for each n E N.-From (4.6) we obtain 

-	
(u,,,	fl(u,,)g + (U,,)jg + 

+ a,, I[Ü,,11H' (U(r,,wi -+ ü,,), u,,) - c,,	IIh lIH IIUn!IH'. 

Since (C(T,,w 1 ± ü,,), u,,) is bounded below (we assume	0 and q' is bounded on 

(u,,, — fi(u,,)t + (U,j)j + (u,,)) ;5 (A +'l) 	-	 (4.7)- 

forsufficieñtlylaigen € N. We prove that there exists an x € (0, 1) such that ILu,,Ln 
for sufficiently large n. Suppose on the contrary that there is 'a subsequence of 
{u,,} 	which we shall also denote by {u,,}_ 1 , such that IU,,IIH —> 0. From (4.7) we 

• obtain that {u,,}_ 1 is bounded in the space 112,1. Since 112.1 C) C) H (compact imbedding) 
• we can Suppose, after possibly 'passing to * a + suitable subsequence, that u,, -.-+ u, 

,11u01111 = 1 and u0 :5, 0 a.e. in 12. But this is a contradiction to the fact u0E 
Note that there exists such a constant y > 0 that' 

(z) ^ 4 z — y, for all z € R.	'	 -	(4.8)


'Further note' that  

(G(r,,w 1 + ü,,), u,,) , (G(r,,w i + u,,), u,,) -.- c1,  

because 99 is bounded on. (—oo, 01, WI € L(I2) and {r,,} is bounded. From (4.6) and 
(4.8) we obtain	-	 S 

fh i IIu	const, 11 u,,I[11 + c,,(G(r,,W1 ± ui,,), u,,) — a,,c 1 — a,,2 J[ui,,I!H 

^ const. 11ft.1111 ± a,,	 f (T'WI ± 01n1111 un)'_vf u^] 

/	'	— a,,c1 — a,,). I1u,,Iu	•	 '	 S
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• ^ COflSt. IinlIH + an j 012 I!u !u - C2 - 7 

^const, 11ft.11 H	c2. 

The final inequality implies the bóundedness of 1 1 ftn11H, which is a contradiction. This 
proves the Lemma I 

Lemma 4:2: Let ./ Rbe a bounded interval. Then there exists a constant r> 0 
that for each € 5 there exists v(v) € eWO such that (4.4) holds for each V E C n 
and rnoreover IIv(T)IIH ^ r. 

Proof: Let x € S be fixed. We use the Galerkin method to prove the existence of 
v(r) Choose V , such that dim V = n, Y	V+1 and U V is dense 
in	A function u, € V, is called the Galerkin solution of (4.4) if " 

-, PcG(tw + u) + Au).	 (4.9) 

From Lemma 4.1-and from the homotopy invariance property of the Brouwer degree, 
we obtain for each 'a € N the existence of the Galerkin solution u,, of (4.4) such that 
LUnIH r. Then 11h, - PCG(rW +u) + 2UnIIH const. (we use the continuity of 
T0-'). After possibly'passing to subsequences, we can suppose that 

hi - PCG(tw + u) + 2u	u0 €	 - 
According to the complete continuity of To . (Th. 12(u)) nd (4.9) we can suppose 
that {u}_ 1 is convergent in the norm Ij•IJR. So there exists v(r) €	such that 
litnu - v(r)J H = 0 and	 -, 

n—,.-l-oo 

• It remains	that (xw 1 +. (r)) € L'(1 2 ) and 

99 ( Tw, + u)?!- 99 (TWI + V(T)). 
Since u, € Vn is the Galerkin solution of (4.4) for each n  N, we obtain from (4.9) 

f u,,q,(-rw + un)J g;K JUnIIH2 + ), ft L fH + 11h,11 1 , 1 1Un11H ^5 const.	(4.10) 
p	

( 

(where K is a constant independent of n).  
We have proved that u8 -L+ .v(T) and so 

u, —> V(T) and up(tw1 -f- u,) —>v(t) 99 Tw, + v(r)) a.e. in 12. 

Having (4.10) Fatou's lemma implies that 

V( T ) q(-rw1 + v(t)) E L'(12). 

Then for each k € N and e> 0 there exists such a ô > 0 that for each Qc 12, 
meâsQ<öweobtain 

-• .

	 f (rw + u)I <,	f u(tw +u) <j. 
n(I u I k}	 QnfluI>k)	 • 

The final two inequalities imply • 

•J(rw1 ± Un)l	f (rw 1 ± u) +	f - juw1 ±Un)J 
•	 Q	-	 Qfl{JzI<k1	•	• Qn{liI>k
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•	Using Vitali's theoreni we have	 - 

97(TWI + V(T)) € L 1 (12) and 9(rw1 + u,,) £!!.	(Twi + V(T)). 

This means that (, v(-r)) fulfill (4.4) and the proof of Lemma 4.2 is cbmpleted (essen-
tially the same procedure can be found in STRAUSS [9]) I 

We go on proving Theorem 4.1. Put; 

S	{(, i(r)) € it x	°: (, (T)) fulfill (4.4)}, 

S,, = {(r, u,,) . E R. x V: u,, is the Galerkin solution of (4.4)). 

It is easy to see tht the GPSs of (4.1) are such u = rw 1 + v(r) that (, v(r)) E S 
and	 I 

• -2 + f (rw i + V(T)) w 1 = s. 

Let u g define a continuous function (see [3, 4, 8]) 

by the relation.	 S 

F(r, v) = —Ar + f (rw 1 + v) w1 .-

Since p(z)	(z € It) and w 1 > 0 on 12, we obtain 

F(-r,v)  
for all (t, v) € Y. Using (48) we obtain 

F(r,v) ;j^ _kr .+f4 (rw 1 ± V) W1 -  f W, = 72 	— fwi 

/	 (4.12)

for all (r, v) € Y. Since 0 <c.,< 1, (4.11) and (4.12) imply 

urn .F(r, v) = +00, -	 (4.13) 

uniformly with respect to such v € .°o that (r, v) € Y. 
Put

T2 (h 1 ) = sup F(r, v).	 S	 (4.14)

(',v)E u S 
TE[ —1.11 

From Lemma 4.1 we obtain T2(h 1 ) < +oc. Suppose s> T2(h 1). By (4.13) there 
exists To € It such that  

inf F(r, v) > s. 
(r.v)EUS 5	 - •	 - 

Using the assertion of Lemma 3.1 (see also [3, 4]), we obtain for each n E N the exi-
stence of a connected subset Sn S. such that [ — To, To] projR Sn. Then according 
to the definition of T2 (h 1 ) by (4.14), for each n € N there exists rn' € Hoo, -7 1), 
Tn 2 € (1, +oo) and Vn 1 , V,,2 E .*'o such that 

(Tn', Vn') € S. (i = 1, 2) and F(Tn, v,,)	S.
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By (4.13), IT ,1 }.	(—oc, —1), {r 2}_ 1	(1, +co) are bounded sequences and 
Lemma 4.1 implies that {v}° c (i = 1 ) 2) are also bounded. After possibly 
passing . to a suitable subsequence, we may suppose (by the same argument as in the 
proof of Lemma 4.2) that 

rfli —> T i ,	Vfli._>vi	- 

and by th6 . same procedure as in the proof of Lemma 4.2 we prove that (i', v) E S 
(i = 1, 2). Since 'r' 2 and F('r, v) = s (i = 1, 2), the functions u = tw1 • + v' 
are two distinct GPSs of (4.1). This fact proves theassertion' .(i) of Theorem 4.1. 

Put

T1 (h1 ) = ml F('r, v). 
(r.V)ES	 - 

From (4.11), (4.12) we obtain T1 (h 1 ) > — oo. If s < T 1 (h) then (4.1) has no GPS, 
Which proves the assertion (iii). 

By the assertion (i) there is a sequence 1Sm1_ i	 (TO,), +°°), 8m -> T2 (h 1 ) such 
that there exist bounded sequences { tm}i	R, ( Vm}_i c	°o such that ( tm, v,,,) €Vm,

F(m, Vm) 'Sm After possibly passing to a subsequence, we can suppose that 

	

If .	- 
tm	To,	Vm 4' V0 € °o	 S 

By the sane procedure as in the proof of Lemma 4.2 we prove that (r 0 , v0) E S,F(r0,v0) 
= T2 (h1 ). Then T2 (h1 ) € M(h 1 ), which proves the' assertion (ii). The proof of Theorem 
4.1 is completed I	-. 

Remark 4.1: There are no restrictions to the growth. of 99 in .oc and so the 
Nemytskij's operator 

is not always acting from H into H. Tills is the reason why we use the Galerkin method 
and the properties of Brouwer degree (instead of the Leray-Schauder degree) to' 
prove the existence and multiplicity of solutions. 
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