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Nonlinear noncoercive equations and applications

P. DRABEK

/
Es werden periodische Losungen der nichtlinearen Balkeﬂglcichung
Bug + uy + Urrzr — A0 + ?’(u) =f

in Abhéngigkeit von einer nichtlinearen Funktion ¢: R — R betrachtet. Die Untersuchungen
schlieen sich an eine Arbeit von Fuéfr [6] an und enthalten gegeniiber dieser einigé neue
Ergebmsse

Paccma'rpuaaw'rcn neprojIYecKHe Pelenns HEJIMHENHOro ypaBHeHus 6amm

Buy + wyy + Ugprr — AU + <P(u) = / ) i
B 3aBucHMOCTH OT Heauneiinoff dynxkuun ¢: R — R. Uccaenosanus l’lpPlMHKalOT K paGote

S. Fudtx [6] u BKIoYaoT B ce6ﬂ HEKOTOPHC HOBBIE PE3yNbTATH, HE COREpHKAIUECA B 3TOMH
'pa6owc .

[ ) - . AR . . -

This paper deals with the periodic solvability of the nonlincar beam eqﬁa.tion
ﬁut"f" Uy + Uzrer — ;u' + plu) = /’

Whlch depends’ on non-linear @ R — R. This paper continues the subject of- the paper by
S. Futix [6]}. Wé present some new methods and results which are not included’in [6].

\

1. Introduetion
This 'paper continues the subject of the paper by S. Fudix [6]. We shall study, as
in [6], problems whic‘h'ha\'re their abstract forinulation as an equation:

Tu=f{,, . ' | SN o ()ll)‘

where T is operator actmg from'a Banach space X into a Banach space z, T bemg
of the’ form

Tu—Lu-i—Su , S . . . - (12)

where, L is linear and S is nonlinear. We are interested in the case when T does not -
satisfy the coerclwty condltlon :

lim [[Tuly = +oo. o o - o (13)

Il“ﬂx—>+ o -

Typlcal e;\a.mples of the. operator equation (1.1) with condition (1.2) are ‘~t,he
following problems. Let 4 be a real number, w > 0, > 0, and let ¢ be a real valued
contmuous function.
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Botindary value problems for ordina,ry differential equations:

(@) — Julz) + plulo) = f@),  ze0m], (1.4)

u(0) =u(n) = 0. o o
Periodic problems for ordinary differential equations: .

. @) — Ju(@) + g(u(@) = flz), . z€(0,n) (15)

w0) = ufz), w'(0) = w'(). C
Boundary. value problems for partial differential e:quatiox)s of elliptic type:

—Au(x) — ‘u(z) + q‘a(u_(x)) = f(z), z € _ (1.6)

i(z) = 0, x€aR, . ST

: whcre Q,is a sufficiently smooth bounded domain in N-dimensional space.
. One can consider higher order equations of the type (1.4)—(1.6) and also another
type of boundary conditions than Dirichlet ones in (1. 6). '
Periodic solutions of the boundary value problem for the nonlinear heat equation:

X uy(t, x) — u;,(t x) — Jult, 2) + gli(t, )

' -—/l:L (t, ) € @ 1= (—o0, +00) x (0, 7) |: o (1.7)
(tO—u(t'z—O t € (—oo0, +00), . s :
u(t |- w, x) = u(t, z), (¢ )€ Q N /

“Periodic solutions of the nonlinear telegraph equation: : v

Budt, ) + unll, #) = wealt, 2) — 20t, 7) + plut, )’ |
= f(t, ),  t,x € (—o0, +00), | . A ‘ (1.8)
u(t, ®) = u(t + 27, 2) = u(t, z + 27), ¢ @€ (—o00, +-00). ‘ '

Periodic solutions of the nonlinear beam equation: ‘

Built, @) + wll; @) + Ueznelt, @) — 2, 2) + plult, 2)) = £, 2),
u(t - 2n,x—+—2~z) _u(t+2n, z) —_u(t x+2rz) (1.9).
= ult, @) ( (t, z € (—oo, +oo)) :
In the previous examples, the nonlinear operator § is. given by the nonlinear ,

part g(u) of the problem consndered and the operator L s defmcd by the linear
-part, i.e. it is- glven by , (N

u> —u” — Juin (1.4) and (1.5),
wr> —Au — juin (1.6), Y
- U i ° -
U > Uy — gy — Auin (1.7),
u > Buy + Uy — gy — Au in (1.8),
u > ﬁu't + Uy + Uzzzr — A in (19)
We present some methods and results (which are not included in [6]) about the
solvability of the previous types-of nonlinear equations. As in [6] we choose (1.9)
*as the. model for the explanation of these methods. The methods used -here for
solving (1.9) can be: apphed also for (1.4)—(1.8). The reason for choosmg (1.9) is the .

same as in [6]

-
N

i
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2. Preliminaries ' . ) ( R

In the. seqﬁel we shall denote by I the open interval (0, 27). Further N, Zand R
. will denote the set of posmve mtegers, integers and real numbers, respectlvely "Put

L B=TTxT . S

\

and analogously for other sets. ~

Before starting a precise definition of a periodic solution of the nonlinear beam
equation

ﬂut + U + Urzzz + ?7(“) = h(t) x): X . (21)

we introduce, in the same way as in [6], the suitable function spaces. A
Denote. by H the space of all measurable real valued functions u(t, ) defined
almost cverywhere on R? which are 2z-periodic in the variables ¢ and =, i.e.
u(t + 27, x + 2n) = u(t + 2r, x) = u(t, ¢ + 27) = u(t )
for almost all (¢, ) € R? and which are square mtegmble over 1 8 Introducmg the
inner product

gmkp=fmg@uummdx'(mkeﬂy
, J .

H ‘becomes a Hilbert space. it-s norm we denote"by |l:|lu, ie..
Il =k, B2, ke H. -
Let A = W' + ¢H be the complexification . of the space H. It 1s ez;sv to see that.
< {eitmztnty: (g, 7y € 22

forms a complete orthogonal system in H Thus arbltrary he H can be cxpressed
b
Y }&(g x Z‘ h el(mz+nl)

{m,n)eZ?

’

(the convhcrgence is in the space H), where

Z lhillnlz<°° ) kmn‘zh—m—rr‘ 4 \b-‘.

(m n)€Z?

Tet p, r be nonnegative integers. By Cf,,’ we mean the set of all continuous functiéns
u(t, ) defined on-R? which are 27- -periodic in both variables, and sich that the
- partial derivatives by ¢ up to the order p.and the partial dcrlvatlves by z up to the
order r are contmnous on R2 With the norm

l[lige:e = max lu(t, )|
e T reR®

+ €29 becomes a Banach space. .
Definition 2.1: Let p, » € N u {0}. Define
HP = {h eH: N (m¥ + nzp) [l < oo}

. (m, n)el'
H7-" with the norm
[ (470 )
(m,n)€Z?

is a Banach- space which is nothing other than a Sobolev space of periodic functions
(see [10]). :
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Def 1mt10n 2.2 (Generalized periodic solutzons) Let @ be a contmuous functlon
defmed on R Suppose that there exist &, x, = 0 such that

190 S o1+ oelel,  z€R. o )

Let ﬂ > Oand b e H. A generalzzed perlodzc solution (GPS) of (2. 1) is a real fun(.txon :
, % € H such that for all v € C%:? one has

< _ﬂvl + Vu + vz.zzz> = (h - W(u)’ ‘U} ' V a (2 3)

i
"Remark2.1: (1) The growth condmon (2.2)is necessary for a Némytskij’s operator
" U (p(u) o 4 S , )
. acting from H into H (see e.g. [6, T]). : c .

. (ii) Using integration.by ‘parts in (2.3) we ‘can prove that if u € C3} is a GPS of
(2:1), then. the equation (2. 1) is fulfllled on R2? (ie. u is “‘a classmal solutmn of
. (2.1)):: On the other hand, an arbitrary GPS « 6 H has betber propertles (see [6:
Th. 2.4, 2. 5]). ‘ :

Let us denote. :
o-—{qﬁ"lu{O}'q‘/4 G'N} ; ‘ o
The followmg two theorems are proved in [6] .
" Theorem 2 1: Let 2 € R. Then the eqwuwn ‘
Bue + s + ez — = b | e
has /or arbztrary k€ H a unique GPS v € H if and only y if 2§ o.

Theorem 2.2: Let 2.'= q € o. Denote by and.)f L two closed orlhogonal subspaces
of H wzth the following properties:

-7

fq—-{hﬁn hoq—ho QZO} g i
%” L = linear hull o/ sin g4z, cos ¢4z} provzded q #0; K -

‘Xol = lmear hull of constant /unctwns

Then for an arbzlmr Y b € Hy there exists a umque GPS u € .%” of (2. 4

'

Put C, = Cg,o n .# and define the mapping -

'qu .?f—>9f T thr—>u,

.

where » is the umque GPS of (2.4). Then \ -
(i) - T, is linear, ImT, = C,; o S
(ii) The mappings T Py = .}fq, T 1 #, = C,, T glcgt Cg = €y, are completely

" continuous (where the norm |[ fles.o is lntrodu(,ed in the space C, and the norm
Il flue in 5#%). ;

(iii) If p, 7 € N u {0} then ‘ ‘ .
Tq(HP-' nNH) = (Hp+1r+1 0 2y, A . | . L

a '
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~ 3. Bounded nonlinearities
Assumpti'ons‘ We prove the existence and multiplicity of GPSs of \

Bu +- Uge + uz:zz Fopu)="h,. o o (31)

where > 0, & € H and ¢: R—>Risa continuous function with finite hmlts

At =lmg@.

2> 400
Moreover let us suppose

92)z2 =20,  g(—o0) = 0= ¢(+00)

. (the case (2) z S 0, p(+o00) = 0 S @(—o0) can be treated similarly). Suppose there
exists’ 6 > 0 such that . ,
olz) Z p(+0), 224, : ,
;p(z) < p(—o), 25 —6. S : v
A typlcal example of such a function (p is ' o
@(z) = ze7*", z€R.

Tn contrast to [6]; we make no assumptions about the limits
1

~

lim (p(2) = @(4-00)) 2. /
2—>4 00 . . ) .
Remark 3.1: Denote by P, the orthogonal projection from H onto #’*. Put

X tur>uw—Pu, weH. ‘ - L |

The mapping P,¢ is the orthogonal pro_]ectlon from H onto fo Then for each J h €eH
there ¢xists an s € R and an &, € 5, such that

'

h=s+hl:
s-Poh hl_PCh

Theorem 3.1: For each k€ 9?0 there exist real numbers T, < 0 < T, such that

(1) the equation (3.1) has at least one GPS for b = s -+ h, with s € (T, Ty) in the
case T, < Ty, moreover (3.1) has at least one GPS for b = hy; = -

(ii) the equation (3.1) -has at least two dwmwt GPSs for h=s + hy. with
SE€ (T,, q;(—oo)) (qz(—i—oo T,) in the case Tl < T, .

Proof Put '
G:urs q)(u u € H. ' : . )

Then it is easy to see that the equation (3.1) is solvable (in the sense of Defmmon 2.2)
_if and only if the followmg bifurcation system is solvable .

v+ T oPo°G(w + v) = TP,k }

S PG(w + v) = P, (3-2), ‘

where_‘u} ="Pou, v = Py’u, u € H (see e.g. [6]). IR o
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Let us denote w,(t, z) =

1
— _ 2
e for-(¢, ‘x) € I Then

.fwl(t,:'t)dtdx=1. . S ;
P . A |

and for each w € 5,1 there exists a real number 7 such that
w = Tw,. . '

Let k, € 5, be arbitrary but fiked ‘Because the function @ is continuous and bounded
on R then for a pos51ble solution v of tho first, equation in (3.2),

Ivlleze < ¢ - ‘ " (33)

(see Theorem 2.2 (i1)),.where the constant ¢ > 0 is independent of w. Let.us consider
a ball Bx(0) with its centre at the origin and with sufficiently large radius B > 0.
Then for each w € o, and v € 6BR(O) .

vTTPm w+ v) — T&%#O _
e
. By a standard application of the Leray-Schauder degree theorv we can prove (sce -

[5]) that for each w.€. #,° there is at least one v € satxsfvmg the first equation
" in (3. 2) Let us define

S = {(r,v) € R xfo w = rul :md v samsfnes the flrst cquatlon in (‘3 2)}
Then the solutlons of (3.1) are such u = rw, + v that (z;v) € § and
.wnw (hy wy), |

where’

W(w o) = [ plrw, + o),
I .

" is a real continuous vfunctionvdefined on 8. For fixed v € R put

z(r) = inf y(z, v and T(t) = sup y(z, v);
(r, v)eS . (7,0)€8 .

(3.4)
‘ 7 , = inf T(T) and T; = sup (7). :
' teR TeR .

Let us remark that if for some v € H#, there exists 7 € R such that (T, v ) € S't,hé_n

Tellegs < o

(see (3-3)). So the assumptlons at the begmnmg of this _section guarantee the in-
equality 7, <0 < T,:

Suppose, now, that T, < T, and s ¢ (T}, T5). '[‘hen accordmg to (3. 4) there emst,
1, 12 € R such that "

w(ty, v) > s and "(12,1)')<s I o . . o

for all (z,,v) € S, (1'2, v) € 8. To prove that the equatlon (3.1) has at least one GPS
for A = s + h,, we need the fol]owmg lemma. '

Lemma 3.1: For each real number B> 0 there exists a connected subset S; = §
such that projrS; >[—B, B] (where projrSj denotes the proyectzon of the set, S; onto R)
For the proof of Lemma ‘3 1 see (1, 4] :
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Having the assertion of Lemma, 3.1, we can choose B > 0 such that

B> maxfinl nl. .
" The fact that y is continuous on the connected subset S; lmphes the existence of at
least one pair (z, ¢) € $; such that \

YT, ) =s.

"Then = tw, + v_is the desired solution of (3.1). According to the assumptions
on ¢ there exists 7, € R such that - ’

(7o, V) 'g 0 and yz(—ro', v) =0,
for all (z,, ¥) € 8, (—7,, v) € S. Using Lemma 3.1 we prove the existence of at least
one GPS of (3.1) with s = 0 and the assertion (i) is proved. '
We shall prove, now, the assertion (ii). Let T,<T,and s € (Tl, q;(—oo)) Thcn
according to (3.4) there exists 7;'€ R such that g(z;, v) < s for all- (z5, v) € S. It is

sufficient to prove the existence of 7, 75 € R such that y(z;, v) > s for all (z;, v) € 8,
. i =4, 5. Then.using Lemma 3.1 we obtain at least two distinct solutions of (3.1). Put

= {(¢, :1:) € 12: T, (¢, 2) + o(t, ) S n forall (z,v)¢€ S},

12 = {(t, z) € I2: (¢, 2) + v(t, ) = —n forall (r,v)€8). , - -

—n.t
It is easy to see that

lim meas I? sat=0 foreach neN"

t— 400 ’ -

(see (3.3)). According to the assumptions on q) we can choosc for arblt,rary e>0

such 7y € R and » € N that forr, = —1, ‘ : ot
&
f @(raw; + ”) w, — @(—o0)| < DR
S} LI ‘ o
: . (3.5)
€
; f Praw, + v)wy| <

o ?
n 2 .

—n,Ty

and for 7, = 7, .

[ wlesw, + v)w, — qo(+oo)\ <%
NG ., (36)

&
f P51 + v) | < 5 -

ll

for all (z;,v) € 8, 7 = 4, 5. From (3.5), (3.6) we obtain
. f‘P T + V) Wy — @ _N)l < e and | f‘P(fswl + v) W, — ‘P(+°°) < 5\
r .

—_— — ° . . /
<p(+){ Then the last two inequalities
lmply that the function y has desired property, i.e. (7, vj > s for all (7;,v) €8,
1=4,5.If s € (tp(—}—oo), ’1’2) the proof of the assertlon (n is analogous This com-

pletes the proof of Theorem 3.1 1

for all (z, )ES i =4, 5. Put ¢ =
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Remark 3.2: Let us consxder the equation

B + Uit + Upgen + ue ' =h (k= 5.+ hy). | (3.1)

Then from Theorem 3.1'it follows (by an easy. calculation) that for each k€
there exist T',(k,) < 0 < T'(h,) such that (3.1/)-has at least one GPS if s ¢ (T, 1)
and (3.1') has at least two distinct GPSs if s € (T'), 0) u (0,.T,). '

Remark 3.3: The existence of the solution of the boundary value problem for -
second order elliptic partial differential equations with analogous nonllnearxty p(u)
1s proved in [5]. Existenice and multlpllclty results of such problems are proved in [2].

. 4. Superlinear nonlinearities

In this section' we shall consider the generalized perlodxc solvablllty of the equatlon

ﬁut + uu A+ Uzzzr — A+ p(u) =.h, ,  (4.1)
where > 0, @ is a continuous real valued function whlch is bounded on the interval
(—oo 0] and y

.llm (—p(—)_—{- ' " R o , (4.2);

t>too 2

Addmg suitable constants on both sides of the equation (4. 1), we may assume
w1thoub loss of gencrallty that

(2)20 forall z€R

As an exa.mp]e we can present the functlon <p(z) = e‘, z€ R Since there are no

restrictions on the growth of ¢ in —l—oo we must slightly modlfy the definition of a - -

GPS (sec Definition 2.2).

Definition 4.1: Let B>0and he H. A generalzzed ‘pertodic solution (GPS) of
(4.1) is a real function » € H, such that for all v € €3;! we have,

(U, —Bve + Vi + Vezzz) = f’w - f‘P v+ f).uv o T (43)
. I ' | L | & : ‘ .

where -
HoH, ::»{u e H: [g(u) < +oo}.
: ) & R

The main assertion of this section is the following theorem.

. Theorem4.1: Leth € H,h = s + h,. Then there exist real numbers I’l(k )= Tz(hl)
and a bounded set. M(h,) = [T'y(k,), T2(k1)), To(hy) € M(h}) such that '
(i) the equation (4.1) has at least two duistinct GPSs if s > Ty(h,);
(ii) the equation (4.1) has at least one GPS if s € M(k)); /-
(iii) the equation (4.1) has no GPS if s < Ty(ky).

Proof: Let ky € #, be arbitrary but. fixed. We shall prove,. first, that for fixed
7 € R there exists at least one () € 5 such that , .

('U(t), ﬁvl + v + vz’z::z) = f hyw — f(P(T'wl + 'U(T)) v+ A f’b‘('l) v (44)

 holds for each v € €& n J#,. - T
We insert now two ]emmata i s . ,
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Lemma 4.1: Let .f C R be a bounded interval. Tken there exists a consta'nt r>0
such that foru € o nCE,lully > 7 and v € S

u:*onO(hl_POCG(ml_{_u)_i_)u): . . ’
/orallae (o, 1] ‘

~ Proof: We argue by contradiction. Suppose for all n € N t,here exists i, € H#,
0 €32, ltallsi = n, v, € F and o, € [0, 1].such that - :

fiy = 0, To(hy — PoGr,0, + W) + M) » - T (44B)
,Applymg ’f' ! to both sides of (4. 5) and taking the inner product Wlth iy We obtain ‘ ‘
< (T, T} = (b, B — (Glwat0s F ), ) - K, ). |
Il"nllu
(®ny —B(wa)e + (2a)it + Un)z2zz) + On Ilunllu ! (G(anl + un), Up) — Gk
= 0 lall? (B, ) - (46)

Lettmg Uy = and leldmg by ||&,|ln® we get

This means that (u,, —B(u,): (%,)ie + (u")uuf is a real ‘number and so (u,,, —B(ua)

+ (u,, u + (u,,)z,m) = const. > O for each » € N. From (4.6) we obtam

<um —B(un)e + “n)u + (%n)zzzz) ) '
+ On Hun”ll ! (G anl + y,), un) - 6,./ S ”hl”H ”un“}{ . ) ¢

Since (G (thw0y + u,, ), %) is bounded bclow (we assume ¢ = 0 and qz is. bounded on
'(—00 0)), .

7

. . / . '> ’ .
(Un, —ﬂ(un)t + (%n)ee + (%n)zzez) = (2 + ) ’ N (47)‘

forsufficiently lafge n € N. We prove that there éxists an « € (0, 1)such that |lu,*|lu = « -
for suff1c1ently large n. Suppose on the contrary that there is ‘a subsequence .of '
{u,},, which we shall also denote by {u,}3.,, such that lleg |l — 0. From (4.7) we-
- obtain that {u,}5%, isbounded in the space H2!, Since H2! () () H (compact 1mbeddmg)

we can suppose, after possxbly passing to ‘a suitable subsequence, that wu, Hyouy,

lugllr = 1 and u, £ 0 a.e. in I2. But this is a contradiction to the fa.ct Uy € Ho.
Nobe that there éxists such a constant y > 0 that '

-¢(z)-ziz—y, fora.lleR.‘ ' . - (48)

Further note that |
<G(T,,'w1 + 'u,,,), un) 2 (G(tnwl + un): Uy > - 01,

bcca.use @ is bounded on. (—oo, O], w, € L°°(12) a.nd {r,,} ls bounded From (4.6) and
'4.8) we obtain . \

”h ”H 2 CO[lSt ”un”ﬂ + Un<G(tnwl + un): Uy > — OpCy — Un; ”un”l{
. g const. ”"Zr)”l{ -+ O [; f‘(rrxwl + ”un”l{un) dn+'— 7[ U :| ) .
It ' . ’ R U

4 e — Oy — an): “ﬂ'n”H
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s

- = const. |[@nflu + o, e o flallg — c2 — oah |l
. 1
. = const. |[@ylly — cp. ‘ :

The final inequality 1mphes the boundedness of |[i,||u, which is a (,ontradlction This
.proves the Lemma 1§ '

Lemma 4.2: Lct SR be a bounded wnterval. Then there exists a constant 7 >0

that for each T € # there exists v() € Hy such that (4.4) holds.for each v € CZ2 0 #,
and moreover ||u(z)||lg < r. '

- Proof: Let 7 € # be fn:ed We use the Galerkm method to prove the existence of

»(t). Choose V, = Hy n €2 such that dim V =mn, Voo Vo and U V. is dense
in 5. A functlon U, €V, is called the Galerkm solution of (4. 4) if n=1

Uy = To(hy — PoG(rwy + w,) + iu,). ' (4.9)

I‘rom Lemma 4.1-and from the homotopy invariance property of the Brouwer degree,

‘we obtain for each n € N the existence of the Galerkin solution u, of (4.4) such that

llu,,lln =< r..Then |lh, — Py*G(zw, + u,) + 2u,|lg < const. (we use the contmulty of
T,71)." After possibly’ passmg to subsequences, we can suppose that ’

h‘z —PCG(Twl—*—u)—f—)u '—\uoefo

According to the complete contmulty of T (Th. 2. 2(11)) and (4. 9) we can suppose

that {u,}3., is convergent in the norm |- ”H So there exnsts v(t) € S, such that -
, lim Jlu, — o(7)|lg = 0 and

L ol =

- It remams to prove that tp(zwl + v(z ) € L‘(I2 ‘and

St

CLMEY

p(rw, + u,) —> 77('”01 + v(r))

* Since'u, € V, is the Galerkin solution of (4.4) for each n € N, we obtain from (4.9')
- [ lunp(ry + w)) < K gl + 2 allix + ool ealls < const. . (4.10)
r o / C i '
(where K is a constant independeént of %). : e ' : .
We have proved that », £+ »(r) and so
Uy = 'v(r) and  u,@(rw, + u,) = v(z) g(rw, + (1)) ae. in 12
. Havmg (4.10) Fatou’s lemma unplles that »
' () g(Tw, + v(r)) € L. -
.Then for each k€ N and ¢ > 0 there exists such a 6 > 0 that for each Qc I2,
meas 2 < 6 we obtam

€ 1 .
‘ lp(Tw, + uy)| < 7 ’ I f luu‘P(wa -+ un)' < E g /
20 {jupl <k} 9“(|“n|>k)

The final two inequalities imply -

f ey + ) = f |<p(rw1+u>|+—' f htag3101 -+-un)] < .
QN {lugl <k} . . 'gﬂ““u|>k)
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Using Vitali’s theorem we have

(p(rw, + ‘U(‘t)) € LY(I3) and ¢(rw, + u,) o, qz(rwl + v t)) .

This means that (r, v(r)) fulfill (4.4) and the proof of Lemma 4.2 is completed (essen-
tially the same procedure can be found in STrRaUSS [9]) §

We go on proving Theorem 4.1. Put
S = {(z, %)) € R X #y: (1, v(2)) fulfill (4.4)},
S» = {(v, un) € R X V,:u, is the Galerkin solution of (4.4)}.

It is easy to see that t,he GPSs of (4.1) are such % = tw, -+ v(r) that (‘L', v(r)) €S
and :

,—/r—{—fcpw,l—}—v(r) =s.

!

Let us define a continuous function (see [3, 4, 8))

E:y=Su(USn)—,\R T |
n=1 ’ * ~

[Pg

by the relation. . )
F(z,0) = —ir + f Plzw; + v) w, -

Since ¢(z) = 0 (z € R) and u,l > 0 on 12, we obtain ) .
. F(z, v) = —Ar, _ (4.11)
for all (z,v) € .5’. Usmg ('4.'8) we Obtain R

o _ . ‘ (4.12)
for all (7, v) € &. Since 0 < o, < 1, (4.11) and (4.12) imply N o -
lim F(t v) = +oo, - : . T (4.13)
T—>» 4 00 . ’
uniformly with respect to such v € 5%, that (z, v) € ./
Put . .
Ty(hy) = sup F(r v). . . : (4.14)

(r,0)EUS,
T€[—1.1]

From Lemma 4. 1 we obtain To(hy) < +o0. Suppos\e 8§ > To(k,). By (4.1‘3) there
exists 7, € R such that .

/ . <

 1inf F(t, v) > s.
{r,0)€US,
T€(—00,—To] U[To,+0)
Using the assertion of Leimma 3.1 (see also {3, 4]), we obtain for each n € N the exi-
stence of a connected subset S, < 8, such that [—zq, 7,] = projr S,. Then according
to the definition of T,(h by (4.14), for each n € N there exists z,! € (—oo —1),
7,2 € (1, 4-00) and »,, v,° E 3, such that :

(a5 v2) €S, (1 =1,2) and F(1,} v,f) = s.
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By (4.13), {z;}}2, & (—o0, —1), {,2%., = (1, +co0) are bounded sequences and
Lemma 4.1 implies that {v,}}3%, < 5, (i = 1, 2) are also bounded. After p0581bly
passing-to & suitable subsequence, we may suppose (by the same argument as in- the
proof of Lemma. 4.2) that ’
Tni — 'E'i, v"t,___) ?)‘. [ L : I
and by the same procedure as in the proof of Lemma 4.2 we prove that (7%, v%) € §
(r =1, 2). ‘Since ! = 2 and F(7%, v¥) = s (2 =1, 2), the functlons u; = thw, + vt
- are two distinct GPSs of (4.1). This fact proves theassertion (i) of "Theorem 4.1.

Put e A
Tl(h,) = mf F(z,v) h

. (r,0)€S

From (4. 11), (4. 12 we obtain Tyhy) > —o0. If s < T,(h;) then (4.1) has lnz) GPS,
which proves the assertion (iii). : . : C

By ‘the assert,lon (1) there is a sequence {s,}5., = (T._,(hl), +oo), Sm = T'3(hy) sgch
that there exist bounded sequences {7,}%., = R, {v,l5., = # such that (1, v,) €V, |
F(tp, vy) = 8. After possibly passing to a subsequence, we can suppose that -

’

e

Tm —>Tos U 2y vy € K.
By the saiﬁebro‘cedure as in the proof of Lemma 4.2 we prove that (705 v0) € S, F(to,v,)
= T2(h ). Then T5(hy) € M(kl), which proves the assertlon (i1). The proof of Theorem
4.1is completed | :

v

Remark 4.1: There are no restmctxons to the growth.of ¢ in +o0 and SO the
. Nemytskl] soperator

)

’ , u»—np(u)

is not always acting from H into H. Thls is the reason why we use the Galerkm met,hod
and the properties of Brouwer degree (instead of the Leray Schauder degree) to’
"prove the existence and multnp]mlty of solutlons

~
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