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Extremal mequalmes in Sobolev spaces and quasiconformal mappmgs

T IWANIEC~ : : oy ' g

Tn-dieser Arbeit wnrd die L, -Norm eines zweidimensionalen Hilbert-Operators abgescha.t,zt
Diese Abschitzungen fuhren zu einer Reihe von Ungleichungen aus der Theorie der Sobolev-
schen Rdume. In einigen Fillen werden mit Hilfe quasnkon!ormer Abblldungen bestmogllche
Abschatzungen erzielt. . B

B paGote ouennpaerca L,-Hopma ABYMepHOro. oneparopa 'min6epra. Dra sajaua ceAsana
C HEKOTOPRIMM HEPABEHCTBAMM M3 Teopuu mpocrpanctd CoboneBa. B HeKOTOpHX ciydasx,
HCOOJB3YA METONKI 'reopvm KBa3HKOHPOPMHHX OTOGpaMeHUH, nONYHAKTCA  HaHNyymHe
OLLEHKH.

We estimate the norm of a two-dimensional Hllbert operator m L p-Spaces. This problem -
leads to inequalities of the theory of Sobolev spaces. In certain cases, by using methods of the
theory of quasiconformal mappings, we get best possxb]e estimates.

The L, estimations for functions of Sobolev spaces are central both to the theory of
'partlal differential equations with discontinuous coefficients and to the theory of
nonlinear differential equations. While the singular integral operators play a funda-
mental part in these, in practice we very often need to know the best estimations.
Quasiconformal maps, especially in the two dimensional cases, may be used as a -
tool for attacking the problem of extremal inequalities and they suggest a way of
formu]abmg these inequalities properly. However, some problems of quasiconformal
" mapping- theory lead todifficult questions in the theory of Sobolev spaces and
partial differential equations. In this paper we discuss a few special cases of this.
Let us illustrate the general idea on an example of a non-linear system of partial
differential -equations in two variables which are strongly elliptic in thé sense of
Lavrent’ev. For future use it is convenient to introduce the complex variable
2=z + 1y and the complex differential operators

’ 1 1
D£=—(D:—iDu): . DE:T_

5 3 (D, + i.Dy)".

Then the system of Lavrent’ev reduces to one complex non-linear Beltrami equation
! Y ‘ p q .

(1)

‘ ‘ A

w; = q(z,‘w, wi) Wy,
where the e]]lptlcwy condmons reads
R lq(z, w 5)51_Q(z W,étz)§2|sﬂ|§1—§2l <1

for 51, &L eC wel, ze QC, (see [2]). We call B the ellipticity constant of(l ). By a
solution of (1) we mean a function w from'the Sobolev space W} () for which
equation (1) holds almost everywhere in Q.

1. Anulysis Bd. 1, Heft 6 (1982)
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It has been proved by BOJARSKI [1] t,hat every solutlon of (N a.ctually belongs‘to-

W} 10(82) for some p > 2. The exponent p depends on § only.

" Generalizing, we may say that when the coefficients of differential equations are
‘discontinuous, it is correct to ask about the mtegrablllty exponent of derivatives of.
solutions. . Bojarski’s result is one of the fu‘st In this dlrectlon For further results
see [3]. - . : !

Definition 1: A mappmg w: 2 — C is said to be B-quasiregular, 0 < g < 1 iff
w € W} ,0(£2) and

I
v

|w;(z | = ﬂ [w;(z)[ almost everywhere in .. ' (2)

'When w is homeomorphlc on 2, then we-call it g- -quasiconformal. The- number
=1+81=ptis called the mazimal dilatation of w. We.also call w K-quasi-
conformal when no confusion occurs. '
-Any solution of (1) is f-quasiregular with § being the elllptlc)ty constant of (1)

We shall consider the function -

p(f) = sup {p: any B- quasxconformal mappmg belongs to Wp ,M(Q)} (3)

On takmg the mapping w(z) = z Iz['”/("”’) we 1mmed1ately deduce that p(ﬂ) ‘does
not exceed 1.4 1/f. In other words
. N ’ AL
1 - - : S
pAH-1S5 . L S C
In the recent work of W. GOLDSTEIN [6] he announced a proof of equahty P(B)
.= 1 + 1/, which was con]ectured by GEHRING in [4]. )
- The problem mentioned above is one of many which are related to the two dimen-
sional Hilbert operator S. This operator is defmed by a singular 1ntegral of the
"Calderon and Zygmund type . : .

d
0= =3 ff(zm—:‘z% eb(©

' Our main interest is m its L norm
/ : e
(IS}, = sup ISl 1<p<oo. '
sz Wy

and its relations to the special kinds of boundary value problems for elliptic systems
of partial ‘differential equations.in 2-dimensional domains. Let us remark that one
can formulate an opposite inequality for p(B) in terms of the norm [[Sl[p see [1])

. 1 : ,
p(ﬂ)'z‘sup {p:, IISIIP<§}-‘ o , : (5)

v / . ° ' ’ ’ " -
‘1. Two dlmenswnal Hllbert transform

‘Let us reca]l that S changes D; into D,, i.e. S(D w) = D.w, for w € W,;‘(C). We then
have ‘ . . B
wEW Q) ”w ”p ) o . 0
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-

For L s
[zl i <1 .
(”_{uz if 21, - O<w<l

one obtains ' ‘
- ' (p — 1) (p — w)? up -
18l = [(P 1) + (1 —w) P”] U
The right hand side tends to p—1asu approaches 1. Therefore ||S||,, =p—1

Similarly, by considering the function w we deduce ||S|[, I/(p - 1) Thls proves
the followmg

‘ p;ldfpg2 . _
1SHly- = p11if1<”§2‘4 A \ L (r

Y

Both (4) and (5) suggest, the followmg statement.

ConJecture 1: For p > 14 holds that [IS]l, = max (p 1, ; 1. 1).
A]though we cannot evaluate ||S][,. exa.ctly, we have succeded in provmg someA

inequalities related to the problem.
Observe that Conjecture 1 implies
: . L

i

plhed, = ' for p=2 = RN
= e 8) .
T |22 body for 1<ps2 . ®
< p—1 : i S
for w € Co (C). S : ‘ a
If (8) were true then in partlcu]ar we Wou]d get the followmg statement,

i “w:. — —w:
. . z

Con]ecture 2 llm (p —1) 1Slly = lim 1S ”p =Y.
p—m

Theorem 1: The znequalzty (8) ‘holds for every function of the form w(z) = /(zu(lzl)) '
where u € CoY(R) and f(£) is an analytic function of C! class on {§ |§| S sup |zu(|z|)|}.
and: (f')P1? is szngle-valued‘) Moreover, the constants p and p/(p — 1) are the best
posszble There 18 10 /uncuon w such that equality y occurs in (8). ‘

 Proof: Given the assumptlon about f, we can write the following Taylor expan-
sion - : . A

(/’(es))"'2 = Z ans".

Aft,er a sxmple calculamon (8) becomes equlvalent to v

o lzl)f(zu(IZI))Ilp <? ||zuuz|)f(zu<!zl)||p i pz2
/ar'rd ) ~ ' '

=20tz /'(z-léuzl))llp <5 ||zj1_v'<|z|) FlEaieh)l, i 1<ps2

1) This assuinption always holds if p = 2, 4; ... or f(&) =+ 0.

1* -
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where v(r) denotes r2u(r). We notice next that the above are equivalent to
S 1izD P | 2 anzrun(ieh]? do

g(p/2 P [ [l (2)|P | X anewn(j2))Pdo. if p =2,
and ' :

1 |zl | Zani-ror(aDf do .
‘é( )fflz lv(lzI)IrIZan “nvﬂ |z[)|2do'z if 1<p£2

. In polar coordmates these mequahtles take the form

o !

5 la"lzf,rznu |u(:’-)lzﬂ+p dr < (12)-)1’ Z“v]anr{[ F2R+p1 I“ )Izu Iu (7_)|p dr,
g ) . ' . ) - . .

~and _ _
el [ o e dr .
3 Rl N
< (21, ) i f PR ()| [o'()]P dr.
To shbw that 'we appeal to two complex versions of the Hardy inequality, namely
- 2n+1 2n+ n+p 20+p 1 2n |y | 9
fr n |u(r)] Pdr < ( ) fr PHL u(7)|2 |u'(7)|P dr . (9
~ 2n + 2 , o .
0 - 0
and ' )
VL S v |
1-20—2p1 |, 2n+p P S S, 1-2n-p 12n 4 P .
[ ar < (G2 [ o po o a
. o . e L0 \
Notice that ' : '
2 +p 2m+p P — . '
. = = =, f = 2
o2 Bt 2l 2 TS
and ' L : o T ‘ !
L o P 2n + p P e :
= =—, f 1 < 2.
b2 T2 =2 2t 2p—2|emy  2Zp—2 or h<P=

Of the two inequalities stated in (9), we verlfy only. the flrst one, the second can be'
shown in a similar manner. Integrating by parts and a,pplymg the Holder. mequahty
we obtain .

o . " o

. : —1 o R

f rentl |u(r)]2'f+v dr =Tz f 72"+2(]u(r)|2"+1’) dr”

0 . ’ ' ~
o o Tl PSS [u(7)|27+P=2 Re ulr) w'(r) dr
- ‘ o 2n + 2 o ; . :

i 0
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(=) .. .
2n + f (r‘+(2"+”/” Iulzn/p‘lufl) (rzn+1-—(2n+l)/p‘|ul2n +p—-(2n+p_)/ﬂ) dr
5 .o . .

. = 2n 4+ 2 L
2 . * 1/p 0o (p—1)/p
<ot [rmer e rar) ([ e
4 ' - 0 - . 0 . . . )
Hence ‘ |
o . |/p‘ ' 9 ® . e |
f\ ot fu(r)rdr | < QZ_}? v—‘/‘r2n+vp+‘-1 fultn [P dr-
o J |
as claimed. - B ‘ j

From the proof presented it follows bhat if the extremal function which equahzes
(8) exists, then it must be of the form w(z) = zu([2|), because it should be such that

: (/ (E))”“ = a, = const. Thus, we are led to the following equalities
: . \

o \p s 1p o .
f|u(r)1vrdr ' =§ f|ru'(r)'|vrdr , if p=2, (10)
\0 0 . - ' - :
and ' ) | N :
© 1p - ' oo’ . 1/p Co '
f]r‘-_lu(r)w dr| = 27)—”_2 ‘/‘Ir“lv'.(r)P" rdr) , if 1<p<2.
s . ' ; . ‘

For simplicity we only explore the first one. Investigating again the proof of in-
equality (9), in the case n = 0, we easily find some necessary conditions for a function -
u which would satisfy (10). Such a. function must equalize all inequalities whlch
appeared in the proof of (9). So, the first condition in question is

Re w/(r) a(r) = —2 [u(r)] /(7).
The second one is a result of an application of the Holder mequallty, giving
|2 (7)|P rP*! = const. r [u(r)|P."

Both of these conditions imply a differential.equ‘a.tion
u'(r) = —c@, - ¢>0

' Wthh is nelther solvable in the space C’ol(R), nor in the space W, (R). All the solu: -

tions of thls equation have the form _ ' ‘

u(r )— const: r-¢, - . , E . : (11-)‘

Thus the equality in (9) does not ho]d for any function u, whlch lmphes the same is
. true for (8).

The case ¢ = 2/p is of an extremal character. \Ta.mely, for u(r) = r~2/, both inte-
‘grals in (10) are not convergent either at 0 or at ooc. By refining the function
u(r) = r~%P near the points 0 and oo, one can construct examples which show that"
the inequality (8) cannot be improved. This completes the proof of the theorem B
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Proposition 1:Let B > 1. Then we have
B S 1p
(f [u(r)|? 7 d") "
v .\
-sup . lj,p=f13‘,< , p=2.
uEW:a (L RN (f |ru (7)Ip 7'd7‘> . ‘ ' ‘ P R

Proof: The mequahby A, < p/2 follows 1mmed1ately from (10) On the other-

(YRS

"hand there exists an extremal function, say u; € W,Y([1, R)), which realizes ‘the

supremum. ThJs statement is a consequence of the compactnees of the mappmg
ri*ipy! ('r) = rlPy(r)

actmg from W,X([1, R)) into Ly([1, RJ). So, if the equality 4, = p/2 were true, then
the functlon uo wou]d be extremal for (10). ThlS contradlcts the original a.ssump-
tion 11

' For our further, investiga.tidns it is important to extend. the class W A1, R]) in

order to get the equality 4, = p/2 for the extended class. For this purpose let us

observe that inequality (9), with » = 0, and its proof remain true for functions -

u € W,\([1, R)) which satisfy the boundary condition [u(R)| = R~/ [u(1)].
~Pfoposition 2: Let u € W1, R]) ]u(R | = R‘?“’ ]‘u(l)'l. Then it follows that

R 4 ip -
f|’u(r)|”rdr : fl'ru (P rdr S
17 \

The functions which give Qquality have the form u(r) = const. r-2/». '

NN

In- thns sectlon we define a boundary value problem for elhptlc systems ‘which arose
in the study of the estimation of the operator S in L, spaces We begin with the
simplest.case.

Let Dp = {z:1 < 2l < Ryand fe€ L,,(Dn) Con51der the problem

w; = f - ) L : S
{w(Re“’) = R1 2yp(es’), -0 € [0, 27) : ’ . (11

. where p € (1, oo) and w is an unknown function. from W o (Dg).

Proposntlon 3: For every f € Ly(Dg), p + 2, there exists exactly one solutzon
of (11).1 fp= 2, the solution is unique up to a constant. . :

Proof: For the proof we shall show that an analytic function with boundary con-
dition (11) must be a constant, zero ‘when p == 2. Let 3 a,2" be its Laurént’s expan-

" sion. The' boundary conthlon becomes

Z‘ a, Rnema —_ Z a, Rl 2/pging -

‘ Hence, by comparing the coefﬁclents we get . -’ L

4, =0 for n=0,41,+2 ... if p+2, __
o -"‘a,,‘=0, for n= +1, j:2,:t3‘,... if p=2. C
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.The existence follows ffom the explicit formula

)

w(z) = (T ) = f f =+ Ee| 0 ay

where the kernel K(z, t) is given by

. Pl A L : z"t;"’ .

N K(z t)—‘ ZRn+2/pl +t Z Rlnz/p" . '
. : . ,
Both series converge umformly on compact subsets of Dﬂ X Dg, therefore K(z, t) -
-is analytic.in Dy X Ds. We shall show that w(z), as defined by (12), is in W; l(DR)
and that it satisfies the boundary condition (11). First we assume that supp(f) = Drg.
Hence we obviously have w € W (D), and w; = f, because the kernel K(z, ) is;
-ahalytic and —1 [n(t — 2} is a fundamental solution of the Ca.uchy Rlemann equa-

tion. Moreover '
Y

' w(Re"’) = ——ff [t — Re"’)‘ + K(Re'o t)] /(t) do;

1
N

. — R 2/p
e f f [t = &)t + K(e®, 110 doy = Ri-2Iru(e®).

[

The last .e'qua.li't,y is a consequence of the following property of the kern_el Kz, t):

RU-29K(ei0, 1) — K(Re®, )

1-2/p [ oo ~ngin0 -1 —nging
o= z ¢ ["§O‘Rn:2/pe—l —1 '+_Z°;‘ 1 :Rel—n~2/p:|
A 1 o Rnt—neineA -1 Rnpnging
-7 [_RT_—l 2 W/—]
. -1 o (R®" — Rl-2/p){-n gind - ~1 (R® L R1-2Ip) p—n gind
= '_t_'"é‘o & Rn-iflp—ll )__t_ 16\ - %_‘g & 1 _RRl—v?—tzm —
—_R1-2/p 1 ‘ .

t — e _:t—Re‘o'

Therefore w(z) is the solution of the problem if. supp (fy = Dg. Now-we define the
followmg modified Hilbert transform -

5

(S () = @l = == [ [ 1t = 2+ Kote, 01 ) do

L - o . . ‘
" It remains to prove that Sp is a bounded ooemtor in L,(Dg).
Theorem 2: We have

Safly o . o
=18 , .
ey, o o ay
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. and

v

”Sﬂf“p
715

- J€Ly(Dp)

_l)rqof: Letting Mpl(DR)v"% fw; we Wpl(DR),

v

L
IS, "

/

w(Rei®) = R1-2UPy(e)} gives

lodly _ ey Ikl
‘g = = S =
, N I “,; wsswr')(C) (lwsllp wev'sp'(on) lwilly ~wem oy Willy  ser, oy Nl
and . R ‘ .
1 [Jo0:ii [l Mol in
ISI[,, weW, wor s [ w€W S il ™ a,100 Hw'”p " reLow Hf”p

(14

1=/l

ISkflly

Now we shall prove the oppos1te inequalities. For every positive integer n we con-
struct an extension of any w € M,Y(Dp) as follows:.

(2)

(R — J2]) wy(R3712) - || 2 2RV Mp( R 1z)

(R — 1) _R(l+2lp)(n+l)

0

for R#+l < |z| = R”*Z

for R%2 < |2.

'0 o for' |2] <1,
ol =1 |
; 1<

Y u(.z) for . 1 < 'fl é,R’

RiO—2pny(zR-1) for . Ri < 2| < R*, =12 ..n,
Rt |z e pui L

,W%.wgzli_"_‘_l) for R'H{l g 'ZI é er+2,

o - . for Rm? < g,

. From the definition of M,,‘(DR'),\ it follows that w € W, X (C). Moreoveﬁ‘ L,
’ 0 for 2| 1,

2| — zw(z) . :

—_— —_— f Y s
R‘—Iw'(z)+z|z|(R—1) or 1<Iz|§R’,

'R-2%Py,(R™1z) for Ri < |z] < R, i=12..

LN

We have to estlmate the integral [ [ |iy(z)|? do,. Therefore we first transform it into
an integral over the ring Dy, and then we decompose this integral into a finite sum.
of integrals over the rings in which #(z) is defined. By using a natural substitution
we reduce each of these integrals to an integral over Dy. Accordingly we write

[ f i(2)P do,

Zw

= ff |wz(z 4 do, + 0(15.
Dg : .

- nff |wz(z>|vd.a:+ff B, T
— lzl , Zw L
+ff| TR do;

\

p o
do,
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Similarly we can prove that -

JJ &)l do, = n f J lwi(2)I? do, + 0(1).
Lettmg n approach infinity we get’

ff [wy(z)|P do + - f [,(2)|” do, + 0( )
L —lim
ff |w:(2){? daz n—»oof 'wz(z)lp do, + (9( )

oyl
< su = ||S]|,?,
ool Ty Ol

fodp? 1
. —wew,,'(C) ll’ws”p” ”‘S”pp

Since:w was chosen arbitrarily, we can write

(1Srfllp inf 1Srfllp - _1
€L (Dr) Il reiony WMp- = IISI,"

< |iSl, and

The proof of the theorem is complete

~

Our theorem implies that ”S,;l[,, IISll,. There are many reasons' why it has a
practlcal value. It is much easier to study the modified Hilbert transform than the

ongmal onc. For example, z S,fhas a very simple spectral decomposition.’

Theorem 3: The operator é Sy has a point spectrum only. The numbers
. . : .

2
=2 1:;: ’ ' :
Bon = P (m,n=0,41,42,..,)
: 1 2 m 4 2nin
P lnR

are its eigenvalues and the correspondzng ezgen/unctzons

-2 2xin

fon = #932)? "TRE T (= 0, 41, 42, ).
form a complete system in Ly,(Dg), p = 2.

Proof: We have to find the solutions of the boundary value problem -

2w,(z) = Brwy(2), L <I’<R; |
w(Re¥) = R'-Ury(e), , 0 <0< 2n. '

It is convenient to work with polar coordinates (r, 8):

boteesfortn]

w(R, 8) = R'-2ry(1, 0).

(15)

(16)

e

\

- (18)

The boundary condition implies that the function 7~ +2/pyy(r, 0) is 2n-periodic in 6
and (B — 1)-periodic in 7. Therefore we can expand w(r, 6) into the Fourier series

- . w(r, 0) = Z Z amnwnm(r: 0 )
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where -+ y . .
' ‘ _2 42 C g2 2nin )
A Wep(r,0) =7 P InR gimd — am g P TR - )
Inserting this into (18) we get b y
, . - ‘9 ¢ 2xin 2nin 2 “
2L a 1 - — } - InR T poim
_ mz': mn ( z) + m + n R)T e.
. . . . 2 ' 2nin 2 :
- = ,3~Z' Apn (1 — ; —~m + ?n;),-lnu Dein

By comparing ‘the coefflclents of these series we 1mmed1ately obtain (15) and (16)

with f,,.n = (Wpy); 'const. I ) N .

The' eigenvalue of —SR with the greatest modul is ﬁl o = 1—p, which corresponds

to wyo(2) = z |2|72/P, a quasdormal solution of (1'7) That w1th the, smallest modul is

f_1.0 = (1 — p)"! which corresponds to w_,, 0(z) = w,4(2) = % [2|7%7. We do not
know whether |8,0| = p — 1 is the norm of Sg in Ly(Dg), but there is strong evi-
dence for éxpecting lt, Namely, lf one writes the Fuler equations

(Jw,|P-2 wz)z ﬂp(Iw P2 w')z’ : ’ ., ’ it

(Rem) - R1- 2/pw(e|0) L, .. - . N

,for the variational problem’ \ B
b sup

0EM 5} (D) ”wz”p

¢

. then it turns out that the w,,, n are the solutlons “corresponding to ﬂ 1B u|- This
again suggests Con]ecture 1 and provides another reason to study the followmg
problem.

~ Generalized. ezgenvalues problem Let p> 2 Fmd we W l(D,;) such that

{wz(z) Blz) wi(z),. 1<lzi<R

w(Re®) = R~ 2/l’w(e"’) (19)

~ where f(2) 1s a measura.ble functlon which sa.tlsfles the ellipticity condltlon

1 .
Iﬂ(Z)I>F>1 OF'Iﬂ(Z)I<ﬁ<1 __’. |

It is clear that this problem adrmbs only the trivial solution 1f BISl, = B ||SR|[,, < 1.
. On the other hand we shall prove the following statement.

Theorem 4: A necessary condmon for the exzsterwe of @ non- -trivial solutwn of (19)
isp=(p— 1L ‘

In the proof we use the following:

Definition 2: By a ring D we mean a domain the bounda.ry -of which conmst,s‘ ’
of .two Jordan cu<ves %5 %2 The moduius M(D) of the ring D is

M(D) = inf [ [ ¢*z) do, |
. . ' q [}
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- ‘

V where the inﬁl‘n,um'is taken over all Borel measurable functions g(z) = O‘Asuch that

) e oo . 1/2 2% 0o
. . ~ ;460
L 2 gffq(re‘a) drdf < f‘/‘qa(re“’.)rdrd{) ffg@_drdﬂ
L S0 0, . \0 o ‘ . \o. o "

o Ja@ld z1

f‘dfiévéry locally rectifiable’ curve.lc D .w'h'ic.h joins the bbundary components €,
and %,. . . S C . ;
27

- For the spherical ring D = (z: 1 < ]zi' < R} we have M(bn) =k

Lemmas 1: Let G be a ring whose boundary components ?l‘and-“gz satisfy
%2‘={az:z€%,}, a>1. " '
Thén M(Q) = 2= . - S
: Ina ' . .
Proof: Let q be an arbitrary admissible function. For every angle 0 € [0, 2] we
denote by [y = {z:2 = re®, r; < r < 7} the radial segment contained in G which
joins the boundary components €, and %,. '

Abb. 1.

So, for every 0 € [0, 27] we have
|1.§ [ 9(2) 12| < [ g(re®®) dr.
| ig o .

Integrating over all 6 and 8;pplying' the Holder inequality one can obtain .

27 0. 1/2

v

. © T .~
. . : o w .
where y¢ is the characteristic function.of G. The integral f Zelrel) dr does not
. K r -

. ‘ , 8 _
- depend on the angle 8 and is equal to In a (we omit the proof of this). Hence we get,

2% < (ff qz(z)lda,)l/z (2x In @)!/2,

and finally '
‘o 2n
=1 2 —_— . A
M(G)—";fff_q(z)dazz_ g ! S

N
’
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Proof of Theorem 4: For simplicity we eikamine the case [f(z)| = % > 1 only.

Every non-trivial solution of (19) is a §- quasn’egular map. Suppose that w is f-quasi-
conformal. It transforms the spherical ring Dy onto a domain G which satisfies the
agsumptions of Lemma 1 with @ = R'-%7. 1t is a fundamental result of the theory
of quaswonformal mappmgs that :

+/3

M) < KM(DH) =5

M(Dy. o (20)

Hence, we have

27 . _ 148 2=z
InR1-2» =1 _BInR’ T

S0 that

: 1
>

Bz
The mequahty (20) remains true, in its proper formulation, for any qua,su'egular
-mapping (see [7]). This permits us to prove the theorem completely 1

" As a result of this theorem we obtain, in particular a solution of the following
extremal problem: - N |

Problem: In the class of functions we M, »(Dr) find a quaswonforma.l mapping
with minimal dilatation,

Actual]y, the minimal dilatation g is at least

i (bécause of Theorem 4).
+ Onthe other hand, the map w(z) = z(]z[)"%? has the minimal dilatation § = 1/(p—1),
| w, =102 -
2) = —
== |
. Thus w(z) is extremal; it is Teichmiiller’s qué,siconformal map.

3. Asymptotic hehdviour of ||S],

The operator S is of the type (1,1), i.e.

.meas {z: ](S/) (2)] > «) _S_‘% Ifln, for every « > 0, ‘ A (21)

) whei'e A is a'constant which does not depend on f € L;(C) The smallest of such con-
stants defines a norm of the operator S. We will denote this also by 4. Usmg the
" method presented in the book of E. STEN [8]; it can be proved that

© (In2)7'< 4 <30,
, ~ Wé shall use the fbllowingi general!lemma.

Lemma 2: Assume that S is an arbit}ary linear operator which satis/ies (21) and
is bounded in some L, p 0 > 1. Then for every p € (1, po) the operator S is bounded
“in L, and

lim sup (p — 1) IS], < 4.
. pl ’
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This supplements the well known lemma of 1nterpolat10n theory for operatorsin L,
:spaces. The proof on]y requires a slight modification. A careful examination of 1t
yields that . .

pA - pliSk.
Ap =1t (po—p) (1 — )

whence the lemma.. The adjc')inb Hilbert operator S* has the conjugate kernel - .

”‘Sllp? = , foreveryt€(0,1),

\ 1(¢) doy
\ S* —
(%)) (2) = (D) () = ff(z —
from which it follows that
ISl = 11S*l, = usu_p N )
Therefore, ' A
lim sup (p — 1y S|, = lim sup ||S|| p = limsup — s ”"
Y op Pt -1 g0 7 -
Let the -
lim inf X202

' . - !

1Sl
P

p—oo

be denoted by a. We have proved that 1 S a = A < 30. There has been con]ectured
. thatae ='1. -,

\

Theo rem 5: The"extremal'exponent function p = p(B) satisfies?)

1+8 21 + p)° V+B i or -

5 EMOEaagr—a=pr 2 E T A
Proof: The proof is based on the following inequality - _

’ (1ﬁ++}3f3ﬂ”) = p(i)py()/(;’;v for 05, pr<t OB

'lherefore we first prove this mequahty

Let w = w(z) be a lﬂ—:—ﬂ%" quasxconformal map in the domain QC C and p
~be an arbitrary exponent strictly, less than T Q)D(ﬁ) p;ﬂ)) 3 . Our aim is to prove

that w € W3, 10(82)- By applying the existence theorems for the Beltrami system,
the followmg decomposmon property can be proved:

. w=goh

where % is a g8'’-quasiconformal map in £ and ¢ is a f’-quasiconformal map in the
domain A(£). According to the definition of the extremal exponents, we have
he Wi (82)andg € W, ,oc(h(!? )for every.p’ < p(f') and p”’ < p(f’"), respectively.
Wlthout loss of generality we may omit the symbol “loc”” by eventually considering
a compact subset of £ instead of L2 1tself ' .

%) A similar result has also been proved in [5].

.
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Let E be an arbitrary measura,ble subget of Q. We estimate. the measure of the set
(E’)asfollows . . i

meas h(E) = [ [ (_Ihz(Z)iz — [h(2)[?) do
~ E .

a S meas BP ([ I o S const. (mess B\
E- o - : :

. As above we also deduce tha.t

meas w(E) = meas g(h(E)) < x,onsl, (meus M(E))- o,

Takes f,ogethgr these yield the inequality '

"meas w(E) < Const. (meés’E)tl-z/""(",2/”"’. S . ~

The left-hand side of this inequality is nothing other than the integral‘o,ver E.of the.
Jacobian J(z) ="|wz,(z)[2 — |w;(2)|? of the map w. Thus it reads |

[ [ J(2)do, < const. (meas Eyi=2/mu=2ip), ... -
B ' ‘ T \
We utilize this inequality for estimating the measure of the set

J ET=[z€Q:J(z)§T}, . L

" where T is an arbitrary. posmve parameter.

_ meas (Ep) = ffda, £ - ff (2) do, g—(meas E’r)(l 2py1- 2/7"

'Hence
L . .
‘'meas’'Er S const T2 +9"-2) ’ . : . -

- On the other hand it is well known t,hat,

f f J(2)? do, = 2 f T?2-1 meas Er dT

gM[ﬂp 2>/2dT o
N ,

oo .
. - —p'p” 2
+ cohst. fT(P 2)/2 T2(p +p’ “2) dT < 0.
- . l '
This last follows from the assumption p < —Tp;'_— So, we have that

, J(z) € L,5(2). By the quaswonformahty of w we fmally get w € W,Y(Q). Thls com- -
pletes the proof of (23). - ,

Remark: We have shown that it, always holds that p /3) = — 1+ ﬂ Notice thg,t .

B
equa.hty occurs in (23) when p(8) = l—z-é o
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. Now,_we shall prové»(22 ). We begin by: defining the preparat,ory function -

\ }m@=—m0' w) for s=1In. igzo - ;3:1
From p(0) = oo it follows that F(O) = O Now, 1nequa11ty (23) becomes S
o Fs o+ " S F(s)) + F(Sz) . o | (24
Indeed, oo ' , .
. ’ .- : . . - . . . i 1 + ﬂl + ﬂll
. ’ 1 __ o 1 + ﬂl L 1 +ﬂ” ._ ; 1‘+ ﬂ,ﬂ“
N « . 1 ._*_ ﬂlﬂl!
F =—lnfl] ———F0©0©F
N (s(1+ﬂﬂ" R p(ﬂ +ﬂ")
o . - 1+ 46"
iy 2p(p') + 2p(8”) — )
<—In(l1-+
=" ( P(B) P(F")
— I (1 -1 ) (1 ~ 2 ) — Fls(8") + F(s(8").
T T e IR
Inequahty (24) implies that the function —~= ( ) is decreasing in s € (0, oo). Iﬁ parti-
‘cular we get . . :
‘ F(r) LB el 1 : o
TR T T T “?im‘“f ﬂp(ﬂ)
B_Ut froﬁq (5) it follows that ﬂpl( i) VS i’(";; Hence, L | E .‘
‘Mglimimkh’l:limlimu’;—a. | T
4 s—~o_ P(P) proo '

By the definition of F we immediately get

1+58 1+8
2 — e—i‘(lnm) 2e7 ml 5 _. 1~—ﬂ a.
= ¢ = _1 +ﬁ

From this we obtain  (22). We remark that the equa.ht;y hm 1nf 1Sl . =1 con]ectured .

S

P
prev1ously, taken together with (22), implies p(8) = 1+ l/ﬂ |
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