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On the numerical sqlution of pseu.dopa'rabolic'equations o - '

RoBERT P. GILBERT!) and LEROY R. LUNDIN . , . Lo

.’ .

In der Arbeit werden diskrete Analoga der Fundamentalsingularititen fiir die pseudopara- . -
bolische Differentialgleichung gefunden. Dabei dient eine' von CoLToN und GILBERT fiit' ana- -
lytische Koeffizienten entwickelte Methode zur Motivation der Annaherung In der Tat, die
Green’sche. Differenzenfunktion spielt hier die gleiche Rolle wie im analytischen Fall. Das
Linienverfahren dient zur Behandlung der- Differentiation nach dér Zéit. SchlieBlich werden
Fchlembscha.t/ungen erhalten, in dénen die stetigen Losungen mit den leferenzenapproxlr
“mationen vergllchen werden ' '

‘B paﬁoTe HalIEHH NMCKpeTHHE aHaJlor PyHIAMEHTANbHBIX cunrynﬂpuoc'ren AJNA NCEBRO-
napaboandeckux auddepenunansunk ypasuenuii. [Ipu atom meTon, paspaboranntii CoLTON
M GILBERT AJIA AHAJINTHYECKUX KORPPHIIMEHTOB, CIYKUT MJIA MOTHBMPOBKH ANNPOKCUMALMHU.
HeitcTBuTeNbHO, QYHKUNA pasHocTH I'puHA MrpaeT 3lech Ty /Ke CaMylo' POlib KAK B aHAJH- -
THYECKOM ciydae. MeTon cayuT AnA o6pabotku Ruddepenunporanna no spemenu. Ha-
KOHeI[ IOJy4YeHbl OlleHKU MOTPEIHOCTEN, B KOPOPHIX CpaBllHBalOTCﬂ HenpephHBHbIe pememm
C PA3HOCTHEIMM AMNPOKCHMANUAMH.

In this work the authors find discrete analogucs of the fundamentaPsnngu]arltles for pseudo-
- parabolic equations. The method developed by Corron-and GILBERT for analytic coefficients is
used to motivate the approach. Indeed, the finite difference Green’s function is seen to play the -
same role here as in the analytic case. The method of lines is employed to treat the time diffe-
‘rcntmtlon Furthermore, error estimates are obtamed whlch compure the’ continuous solutions
to the fmlte dlffcrcnce approximations. - :

: 1.- Introducﬁio’n

The mvestlgatlon of partial dlfferentlal ‘equations . of pseudo parabolic -ty pe have
received much interest recently. In particular, the methods of functional analysis .
have been effectively brought to bear on these problems by SHowaLTER and TiNG
"[9—11, 13, 14]. An alternate approach, which stresses the use of function theoretic
" methods has been’developed by CoLrox, GILBERT and Hs1Ao (4, 5, 7, 8]. Indeed, a
fairly general function theoretic method now exists for, investigating pseudo-para-
bolic equations in two space variables {7, 8]. These are equations of the form

O[u]"=M[u¢]--L[u]'='0 o Ty

" where ord M > ord ‘Land M is elllpt,lc

Pseudobarabolic equatlons arise in a variety of physxcal problems, such as the‘
velocnt:y of non-steady flows of viscous fluids (1}, and the hydrostatic excess pressure
occuring during the consolldatlon of clay [12] _ -
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The pa.pers cited above by GILBER’I‘ [7], and GILBERT Hsia0- (8] generahze the
approach-used by CoLtoN [4, 5] for the case where ord M = 2 to order 2n. In these .
works the approach depends on the analytical constructlon of fundamental singular,
solutions to the ad]omt equatlon : ‘

LH[v] = M*[v,] + L*[v] = 0, | B ) . (1’2)-

where M*, and-L* are the formal Lagrange adjoint operators for. M and L respective-
ly. It has been shown moreover, that it is possuble to develop the fnndamental sin-
gulant,y in the form . : :

~S(P, £5Q, 7) = A(P ¢ Q, ) ln— + B(P t; Q, r),

~ N

where v : . S~
= IP—QI’ P= (=, 9),. Q=(§,77): . . )
-I,and - ' o . | . -
. .A(P, l;._Q, t)’:= ;‘ AP, Q) (¢ \—.' r)z ’
A\ . ( A)’. ! )
(P t;Q, 1) = Z‘B )

The remarkable result of this approa(,h is that A(P Q) is the Riemann function
associated with the operator M, that is, if M. is written as a hyperbolic operator by

formally mapping (z, y) — (z, M, z==x + 1y, 2* = z — 1y. The other coefficients . -

4;(j = 2), and the B; (j = 1) may then be obtained by recursive schemes.
Two obvious dlsadvantages of the above method are that (1) the coefficients of M
* and L must be analytic in the space variables, and (2) it is very difficult, in general, to
‘do the necessary analytlcal computations for the A (7 = 2), B; (( =2 1) even when the
Riemann function for M is already known.

It is the purpose of the ‘present paper to circumvent these dlfflcultles by replacmg
the required analytical computations by numerical algorithms. Furthermore, we
modify the approach cited above to include the case of nonanalytic coefficients. This
permits circumvention of the necessary procedure of analytically continuing the
coefficients into the (z, z*) space For simplicity of exposition we discuss only the
case ‘where . '

M(v] := Av _—,q(P)v, qg(P)>0 for PeQ, . L (1.3)
and' . ' ' : '
L[v] = a(P)v, a(P) <0 for Pc¢ Q

and where for purposes of numerical estimation we assume that the coeffncnents are’
in C% °(Q 3], and in particular we consider the initial- boundary value problem’

)

s S[u]Pt)—F(Pt), (P, t) € 2 X [0, o), T
-~ u(P, t)=/(P,t) for Pe'Ci=9Q, .t>(.)A D § )
(P, 0) —0, Pcd . - ‘

Here 2 is taken -to be a simply-connected reglon such that the boundary .Q is
smooth enough for the various Green’s identities to hold. :

In the exposition which follows we shall treat first the problem of (1 4) with con-
tinuous coefficients, and devélop a representatlon formula for its solution. Ha.vmg
done this we shall turn our attention to various discretized forms of this problem and
obtain error estimates comparing the solution of (1.4) with the discretized solutions.

/



Nu\merical solution of pseudopafabolic equations 27

¢

: 2. The Continuous Case

FolloWiI}]g the idea of [4, 5] and [7, 8]' vlc?e attempt to construct a fundamental so-
-lution. By.a ‘“‘Green’s function” for (1.4), we shall mean a function G defined on
"~ 2 x QX [0, 00) which satisfies .

LGP, Q;t) = 6(P — Q) for PE.Q i =0; , ‘
G(P,Q;)=0 .~ for -PEC, t>0;¢ - . (20
PQ~0)=6 for P,Q¢ Q.
Theorem 2.1: There is a unzque function G-which is analytic in ¢ and satzs/zes (2.1).
"Furthermore G may be represemed in the form

\

tn-H
(n+1

’ where Gy is the Gréen’s function assocmted with the problem Mw = / wle = 0. The
coeﬁwzents G oy may be uniquely determmed as solutions of the recursive system

MpGoii(P, Q) = LpGa(P, Q) for Pe 2,
Goir(P,Q)=0 - . for PcC.

- (P, Qit) = 20- P,Q) (2.2

\.

Co (23)
‘ Proof: For the gcneral scheme used to construct fundamental solutions see [4 5,
7, 8]. The result then follows by noting ¢ satisfies definition- (2.1). Itcan beseen that G -
converges as it is a special fundamenta] solution of the form investigated already in
(4,517, 8] 1

In wha,t follows, G will always be taken to mean the fundamental sollltlon (2.2—2. 3)
An important property of Green’s functions for elliptic equatlons is their reproducmg
property. This-is also the case for our G. Let v be defined on Q X [0, co) such that it is

simultaneously C?'in the space-variables and C! in the time variable. We designate
this space as 3. Startmg with the integral 1dent1ty

u(P, 1) _'fdtf—v , T) O[G(Q Pt — r)] dA(Qo)

=—/drf—b(Q,T){[Ao*Q(Q] (@, P;t — )

+a(@ (QPt—z)}dA(Qo) " dA —dxdr, | 4 :

and applying Green’s third identity one obtains ¢

v(P t)——fdrf{ ,[—v](Q )~ —%[G(Q,P;t—‘%)]

+ @2 @, 0 6(Q, Pt — r>} dA(20)

—fdrf a [G(Q,P t—r)] dao._ o
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Here 6_ denotes differentiation.in- the direction of the outward normal, and dog
nQ

denotes the arc length differential along C. Integrating by parts the a(Q) term and
- using the initial conditions for v and G, ylelds .

L fdtfa(Q) —:—;Av(Q, ) G"(Q, Pt — 1) ‘dA(.'.QO') -
o . Q2 - . ' ’ _ .

t ’ - .
— .—fa(Q) (@, 1) a—at [G@, Pt — ."f)] dA(Qy). o
7 ‘ B AN

'~ We obtain in this way the integral representation given in'the following theorem..

- Theorem 2.2: Let v € 5 and satisfy the komogeneous initial condztwn (P, 0) =0 .
» for P¢ .Q Then for (P, t) € 2 %[0, t), v has the representation :

_.upz——fm]l—aqu—ﬂm@,mm%)

aa 5 '
—fd‘rf no,a G(Q, P,t—T)doo.

3 Dlskretnzatlon in the Space Variables g

—\ natural method of approxnmate the fundamental solutlon G(P Q;t) of (2 2) is. to
approximate the coefficients of the powers of ¢. For simplicity in exposition we first
assume that Q is a rectangle such that we may place a rectangular grid of equal
spacing.over Q and thereby discretize the space variables. In the usual way we
‘designate certain grid points as-interior points and their set as. 2;. The boundary ‘

N points are the intersections of the mesh with C, and this set is des1gnatcd by C,. We

set' @, := Q, U C,. Our partlcular choice for 2 does not require that the nelghborhood
of the boundary be treated in a special way at this point. The discrete version of € is
obtained by replacing A by its centered-difference approximation /\,. This results
" in the problem- _
Bhuh(P:t)z-F(P;t) for (P’;)EQAX[O’OO): .
uM P, t) = f(P,t) for: P €Cy, t>0, . (3.0
u”(P 0)=0 - for. Pg 2, : T N
where Qv := M,,v, Ly, M, = A\, — qE, and where. u" is defmcd on £2, x[0, oo)

- and’is analytic in its second variable.

As a space ‘discretized-Green’s function we shall require a funcblon G* defined on
Q% Q, x [0, ‘o0) whlch is analytlc in t and satlsfles

o L, pGHP, Q l) = —h 25( P, Q) for P,Qe Q,, =0, .
{ . GNP, Q;t) = 8P, Q)t © . for P Gy, >0, (3.2
L GMP,Q;0)=0 for P,Q€ 8,
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- where . o
1if P=¢Q -
P . i
8P, Q) {0ifP¢0 )
- For a review of the discrete generahzatlons of the classical fundamental smgular
" “solutjons the reader is referred to WENDLAND [16 Chapter 7.

- Theorem 3.1: Problems (3.1) and (3.2) have unique solutions, deszgnated by u* and
G* respectwely Moreover, they have expamzons o/ the forms ' .

<

WPQt gXAPm(+)V o
Gn(P,Q;t 26 h(p Q) ( s o . (3.2b) |

’

Here G’o"(P Q) is the dzscrete Greens functzon assocmted wztk M,, and the G,.l, are
determmed recurswely : :

Proof: Direct substitution of (3 2b) into the dlfferentlal cquation of (3 2 and
aomparing powers of ¢t shows that Gy* must be the discrete Green’s function as defmcd
cbove Furthermore, we must have for.n = 0 that G* ., are the unique solutlons of

My p[Gra(P, Q)] = LP[G "(P Q) ] 4,(P €4, - Gﬁﬂ(P Q) —_0

for PEC,,,, o o oo ‘3‘3)

| 'whlch ylelds _ AR PR
mmeo;;mzmwwwwmqwm

[
. To show that the infinite series (3 2b) ex1sts it is sufflclent to demonstrate that the

\

fmlte sum of positive terms?) _
ALY (>0 " - -
QeQ, ' i

is bounded To thls end, we note that from Lemma 5. 2 we- have the mequahty

'.QGA,

ZWHPst—_w>m B l'\‘ -

Qen,

where Ic [mln q(Q)] 1, Consequently
'mzwzﬂmehWMmsMQﬂwRﬂgw
o C o TEQ, Sy

QeQ, T€ENQ,
Hence, : : o R '
O RYR Z GNP, T)G"(T Q) a(T) < A"H[Ic]"“ e

(0%, Ted, A !
. where 4:= max |a(T| and Z GNP, Q,t) < hz
data

%) That each G .MP, Ql 2 0 is-shown in the proof of Lemma 5.1.

; . T . Al

(3.2a)

1

k exp [Atk) (h > 0 Unlqueness .

" .of the solutlon to either problem follows by consndermg the case of homogeneous .

¢
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Existence of the solution (3 2a) follows from its umque representatlon in terms of
the’ Green s function, which we list below.

'

'Thcorem 3.2: Letv ¢ Y and satzsf_/ the. homogeneous initial data PP, 0) = 0 for
. P. E !2,, Then for each P'¢ Qh,

~

t

v(Pt =;;zfdr'z L @MP,Qit— 1) L@ 1) -

\OE-Q,. t R ~

+fdr):G"<PQt r)d (Qr)

Qe

Proof: Let w(P £) denote the right- hand 51de of (‘3 4) Clearly, w(P, 0) = 0 for
/'allP IfPEC,,andt>0 dG(PQt 7) = 6(P, @) and so -

) o t .
o w(P, t):fdtZéP Q) — v(Q f%(f’(r)dt B

QeC),
. %U(P ty — (P, O)_t(P t
]ntegratmg (3 4) by parts yields _ . .
w(P, i) = =k 3 GMP,Q;1) 84(Q 0) — T GXP, @) = (@, 0)
| N g de

Y

ferG”PQt—r)—[Sl,.vQ,z)] B

069,‘

QeC,,

. . o
\ . ferG“(P Qit— 1) = (@)
Thus, for P € Q,, and t=0, .
Lrw(P, t) = 25(1’ Q.20(Q, 0) + B 225(1’ Q (Q 0)

Qe

| fercSPQ Fa [200(@, 7))

OEQ,‘

Q€C,

- ‘[ertSP,Q)-dTZ(Q,r) :

= -8,,1;(1’,,0) + f% [2w(Q; 7)] de = (P, t)..

From the umqueness result, of Theorem 3. 1 follows that w= v, and so the proof is .
complete | . . _

\

t.
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N

4. The Method of Lines I . .

One method of removing the infinite sum in the representation of the fundamental -
smgularlty is to truncate the series, another and perhaps better for numerical proce-
Jdures is to discretize the tiine variable [15]. We do this now, using ‘equal- -spacing with
step-size k, and use a forward difference scheme for which the dlscrete operator is

’ngvl = k 1-Zu[?)wl - v(] -
- The adjomt backward-difference operator is
' Sk 1’;-&-1 = k! M['UH-I v;] + Dvwl

Let N denote the set of natural numbers and N* = N — {0}. We éeek Gk defi'ned‘on
RXOxN satlsfymg ‘ : : ‘

EGH(P, Q; z)—«s(P Q) for Pc®, &N,
a G"(P, Q;i) = .. for PE€C, i€N*, o (4.1)
G"(P,Q;O) = 0 . for P,Qe€ Q. '
- Theorem 4.1: G¥ exists and is unigue. Fuﬂhemwre, GKP,Q;0)=0 and fori € N*,
Gk(P: Q9 ?’) = 24 (7) kIGi—I(P) Q)

j=1

(4.2)

1

‘where {G})72, is as in (2. 3)

=

Proof: Existence may be venfled dlrectly usmg formula (4.2) and substltubmg
into (4. 1). Uniqueness may be shown usmg formula (4.3) which 1s given below.

Lemma 4.2: Let ¢ be a (fixed) positive mteger and let. Q€ Q. Then for 1 <j <1, '
G*(P, Q; i — §) satisfies- .

j : S‘,‘BG’"(PQ@—y —O(P—Q) for PEQ,

' CHP,Qii—f) =0 - for* Pc C.

Theorem 4.3: Let {v:}ien be defined on 0 with vo = 0. Then /or each i € N and /or
each P € Q we have the representation formula

wii(PY = 3 [16@ Pii—j+ 1) — GXQ, P; z—ylﬂk’v,(Q) dA(Qo) o

; =0 Q2
+ 52 2 [ (@ — 5(@) [G"(Q; Pii—jhl)

=0 : ) . : ,
— GYQ, P;i — f)dog. - - o (43)

Proof: We begin by cmploymg Lemma 4.2, a telescoping series and the definition '
of V- Setting Iy(P, Q) = G*(P, Q; z + 1 — §) we have

- vi-H(P) = _L f [v]+l(Q -7 (Q)] nggriﬂ(Q: P) dA(QO)

= —2 J 51(@ = (@0 1k IMO[P,H(Q, P) — I(Q, P)]
' j=09
a(Q) Tn(@: P)} dA(%)
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M‘ﬂ-

f [F(Q, P) — P,-(Q, P)) 8,F0,(Q) da(2g)
2 o o S

."

. . N | o
—k ‘Z [vm(Q) v,(Q] g (L5(@: P) = I(Q, P)) dog

2' [ (@(@) %) U’m(Q, P) — I'(Q, P .
j=1Q R

+ a(@) I #1(@ P) [0524(@) — 2@ dA(2q)-

The last sum vanishes dué to obvious cancellat,lons hence the proof is completc'
- upon rep]acmg the I'; terms by the corresponding G’"-terms |

At this point we mvestlgate the simultaneous discretization of the space and timé
variables. .To 'this end we define 3, := .Q,, uCy asin Sectlon 3, and we cons1der the
opera.tor :

khvth(P) = Mh[le(P) - ?Jz ] — Lo(P)
where {v, },GN is'a sequence of functlons defmed on 0, We seek {u; },~€"N satisfying
F u MNPy = F(P, ik) for- P € , t€N, . . o
utMP) = f(P;ik) - for P€C,, i€N*, ¢ - (4.4) -
utP)y=0 - for P 0. : =
Theo rem 4.4: There exists a umque solutwn {u "ien to problem (4.4).

Proof . This follows by the fact that for each fixed i we may unlquely solve
My[ub (P)] = F(P ik) + Mfu(P)) — I/u"(P) for ufh in terms of a known . -
_ Indeed

\

CuBA(P) = =¥ ) G_o (P, Q) {F(P, ik) + My{uQ)) — w(@}
+ZGo"(P Q) /(Q zk i 20 0 48
andu""(P)—Ol K \

Associated with the problem (4 4) we defme a discrete Green’s functlon GF* de-
fined on 2, X Q, X N as follows:

: G’""‘(P‘, Q@;0):= 0,

(4.65
n=0 ‘

GEMP, @y i) 1= 3 (;) kGt (P, Q). for i>0,

where the G,*, » = 0, are defined by (3. 3) It is easy to show that G** acts as a re-,
r producmg singularity. To thls end we observe the followmg result, whose proof 15,
- direct. . :

Theorem 4.5: G&2 satisfies o _ .
SEAGENP, Qi) = —h(P, Q) for Pe®, i€,
G*MP,Q;i) = tk§(P,Q) - for P€EC,,  i€N, ' (4.7
‘GNP, Qi 0) =0 -+ for P,Qe€ B, -
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~The following representatlon theorem may be used to solve the nonhomogeneous
. initial-boundary value problem. . , . S

* Theorem 4. 6: Let {v;*}ien be de/med on Q,, where vyt 0 Then for 1 € N and for
P € Oy, . . :

sualP) = "‘220029 (OB, Qi+ 1= ) =GP, @: =) L@
, <. :
‘ .
+k"LZ[G’“"(PQz+1—7—G""(PQ 7,—7)]
N j=0 QeCy . ' . .
’ X [954(Q) — u@). : ) (4.8)

Proof: Let w(P) denote the. right-hand side of (4.8). For P 6‘5_2,,; we have

QF w(P) = —h22 CS[=h(P, Q) + b 2a<P Q)] L£014i(Q)

j= OOED,, .
= B X [P, Q) — O] & 0in(@). ;
N . o . o
Ttk ‘Z;og[ ~h~%(P, Q) )+ h-2(P, Q][vm(Q —vy(Q)]

= r *
+ &k ‘%C[ —h72(P, Q) — 0] [vin(@) — v.-(Q)]’-A

Only the second term above fails to vanish, and it equals Sth,+,(P)
If P e C,,

w(P) = .—h22 Z[ (t—7+1) ké(P Q) —(t.—7) ’“5(1’ Q) ] anvm(Q

j=0Q€9Q,

+ k“): 2E—7+ 1D)kdP,Q)
. j=0Q¢€C, -

— (2 —j) k&(P, Q)] [v;+1(Q) - v;(Q)]

=, X [v}+,(P) vi(P)] = v,“(P) —v(P) = v,“(P)
i=o
The proof is completedby invoking Theorem 4.4 1
Formula (4.8) is simplified somewhat by using the identity
' =]

G“"(PQz+1—7) G”‘"(PQz—y 2(’? )Ic"“G”(PQ

n=0

. . (4.9) -
Defining . ‘_ ) . o .
' Il (P, Q) := '27 (Z ; 7) kGNP, Q) . ' (4.10)
n=0 4 . .
we may rewrit,'e‘(4.8 in the form 4 ' )
P = —k%z S TERAP.Q Swin@ o
+Z 2 +n,(P Q [v,+1(Q) — (@)1 _ (41D

3 Analysis Bd. 2, Heft 1 (1983)
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5. Error' Bounds

“In this section we mcorporatc the usual error estimates’ whlch have been developcd
for elliptic partial differential equations, solutions represented in terms of fundamental
singularities_{2, 3, 16]. In order to -extend these estimates to the case of pseudo-
parabolic equabxons we must, first establish several lemmas.

Lemma 5.1: For each i =0, and /or 0=sj<3, I‘{‘H, = 0 uhere 1’{‘}’17 is defined
tn (4.10).

Proof We know G’o" >0 by. thc Collatz ma\imum principal. "Further, for n = 0,
l,num —#zmemmwG%Tm,

~and since ¢ < 0, it follows by mducblon that G A > 0 for all n. Hence, the desu‘ed -
result is immediate from (4.10) 0 -

Lemma. 5.2: For P € @y, B ST G P Q)< K := [n'i'in q(Q)]“.

N TIN Qe

Proof As usual let C,* denote all points of £, ‘which are neighbors of pomts in
Ch, and for Q € Q, let Ny(@Q) denote the set of neighbors of @. Then for P € £,
L= —hzoz GNP, Q) [ 4(@] + h22 Go™(P, Q) card (N(@) n Cn)
- €9, - o,

Slnce G = > 0,-we conclude . o N

° 1>h2K‘ZGO"(P Q) P Ce

- Q€N
from which the desu‘ed result easnly follows B

Lemma 5.3: Let ¢ = 0 and let0<7 (8 Then /orPEQ,,,
WD TEAP,Q) S Kl Klelw K0 0 (6)

QeQ,

Proof Forn = 0and P € ), . .
BY G (P,Q = By [—IﬂZGO P T) a(T) G,MT, Q)]

QER, ‘ Qe, T€0, -
RS =T ]G’"(PTh2[ZG,."T,Q)]
TEQ, - LQef, ;
< llallo [max R X G "(T Q hZ‘L GMP; T ] i
v TES, Oe A . TER, . . :
" By induction, it follows that for n = 0 and P€ Q;, ‘ ‘
| 'MZGNPQSMMKH"*”‘ S
Qen, . <

: lnequa,hty (5.1) easily fol]ows now.from (4. 10)
Fmal]y we bound the error e**P) := u(P, zk) — u*M Py, whcre ukP is a solutlon
of (4.4). We have ¢*# =0 and. s,""(P) = 0 for. PE C’ Fori=0 and Pe 02,, we

'apply (4 11) to obtain .
l-l-vl(P) = _hsz Z Fffhl ;(P Q) 53Fh£7+1(Q)

S j=0 OEQ,.

.=em22+WWAW@ulm—M%w

j= OOE.Q,. ,
~ M@, jk)}.
. ( - : . .
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So applylng (o 1) we fmd

el WlemKhLﬂ+kMM K)~i < oaK (i + 1) H[L + & llalleo K,
ST . S o (52)
where | T v ‘ : . . . S

A /,H :='max max |M,,[u(Q, G + 1) ) — u(Q, ik) ] — . Mu(Q, 7k)|

0=jsiQed,

" Our error bound now follows from (o 2) under ty plcal contmmby assumptlons on u.

Theo rcm 5.4: Let u be szmultaneously 4 on Qand 02 on [0, 7). Then theré exists @
_constand x zndependent of k and h, such that for P E Q,, and 0 = t=m + 1= [1’/Ic]

l"”(P)]SAKT[1+IcHa]]°°K]'"Ick2 L R X))

’

6. ~Conéluding I{-eniarks i

Tt is not necessary that Q be a rectangle mdeed ‘we may consider 1rregular regions .Q

- providing that Q is sufficiently smooth. We ask that £ be such that our Green’s

identities hold. As before, we place a rectangular grid of equal spacing over Q. The

‘boundary points, which we shall desngnate as points of C, are the intersections of. Q

" with the grid lines. Next we designate an “inner. boundary” C,*, as the sct of points
which are nearest neighbors to points of Cj. The remaining pomts of 2 which coincide.-
“‘with grid points dre “interior points” and their col]e(,tlon is-designated’ by .Q,, The

closure of 0,18 @, := Q, -- C, -k C,*. ' :

"For the most part, we may proceed as beforc by replaung in our definitions and

-formulae 2, by 2, + C,*. Some concern must be taken, however, when dealing with - -

the Laplacmn on pomts of Cy*. Tor thls case, we choose, an mtcrpolated Laplacmn [’%]

A _ ( + o4h,'y). (x — 0‘2h Y) wz, y + ﬁlh)
= h=2
L Ahu f{(“l‘f‘az)“x\ (0‘1 -+ oxg) oxg ﬂl+ﬂ2 B '
S umy— Bk (L ' T ey
S EyAYA (maz+ ﬁlﬂz)“(x’ y)} . - 6h

‘where 0 < «, &g, By, B2 = 1 Not all of these parameters will be strlctly less than one‘

since the distances «;k, f:h (2 = 1, 2) where «;, or f;-< 1 are measured from a pomt
~on Cy* to ancighbouror C,, and k is chosen small enough so that 2, issimply connected.

" To vcrlfy Lemma (5. 2) for the present case, we introduce the function. . )

L [LPeR 0, o
Z(P')'_{o PeCy. . T

Proceedmg as before we employ a dnscrete Green’s 1dent1ty (2, 3,16] assouated with
_the flmte difference operator . - .

Mn[U] =(Ln=—19 U.

Honce, for irregular reglons we havc

LGEE MUY 6P, Q) + 57 G(P, Q) U(@)-

Qp+Cp* OECp. :

3* N ‘ : ' ) -
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Nowvinserbing Z(P) for U(P) in (6.3) yields f
1=R 5 Q) G(P,Q — W '2_(AA'Z> (Q Go(P,Q) " for P €2+ Cp*.

Qe+ Cp*

‘ A Shor_t,computation with the interpolated Laplacian (6.1) verifies that (A, Z) (@) < O

for Q € C,*; hence, as before, wé have the inequality of Lemma (5.2), namely

Lzh 3 9@ GoP, Q).
: Qe2,+Cp*
It is now clear that the formula for the error estimate (o 3) may be extended to the .

“-present case when we defme ; o

K := max [Q(Q)] ' and Jalle ;= sup [a(@)].

< . QedtCyt Qe+ Cr®-

.R'EFERENCES .
- . L \ . - ,
- {1] BARENBLAT, G., ZHELTOV, 1., and I. Kocurva: Basic ¢oncepts in the theory of seepage of
_homogeneous flulds in flssured rock. J. Appl. Math. Mech. 24 (1960), 1286 —1303.
[2] BraMBLE, I;, and B. HUBBARD: A priori bounds on the discretization error in the numerlcnl
solution of the Dirichlet problem. Contrib. Diff. Equat. 1 (1963), 229 —252. . .
- [3] CoLraTz, L.: The Numencal Treatment of leferentml Equatrons (3rd ed.). Sprmger Ver-
" lag: Berlin 1960. i -
[4] CoLTox, D. L.: Integral operators and the first initial boundary value problem for pseudo~
parabollc equations with analytic coefficients. J. Diff. Equat. 18 (1973), 506 —522.
'{5] CorToN, D. L.: On the analytic theory of pseudoparabollc equations. Quart. J. \(ath 23
(1972), 179—192.
. [6] CouraxT, D. L., and D. HILBERT: Methods of"\‘[a.thema-tica.l Physics (Vol. Il) Wiley:
i New York 1962..
[7] GILBERT, R: P.: A Lewy-Type’ reflection principle for pseudoparabohc equatlons Journal
of Diff. Equat. 37 (1980), 261 —284.
. [8] GiLBERT, R P., and G. C. Hs1a0: Constructive funcmon theoretic methods for higher
order pseudoparabolic equations. In: Lecture Notes in Math. 561. Springer: Berlin 1976.
- [9] SHOWALTER, R. E.: Well-posed problems for a partial differential equatlon of order -
2m + 1. SIAM J. Math. Anal. 1 (1970), 214—-231." =~ '
- [10] SHOWALTER, R. E.; Partial differential equations of Sobolev- Calpem type Paelfch ‘Math.
. 31 (1969), 789 —794.
{11] SHOWALTER, R. E., and T. W. Tixa: Pseudoparabohc partial differential equat,rons SIAM/
J. Math. Anal. 1 (1970) 1—26.- : .
© [12) TAYLOR, D. W.: Research on Consolidation of Clays. MIT Press: Cambridge 1942
* [13] Ting, T. W.: Parabolic and pseudoparabolic partial dlfferentml equations. J. Math. Soc
Ja.pan 21 (1969), 440—453.
[14] Tixg, T. W.: Certain non- stcady flows of second order flurds Arch. Rat. Mech. Anal 14
(1963), 1—26.
_[15] WaLTER, W.: Differential and Integral Inequalltres Ergeb Ma.th Grcnzgeb Bd. 55. .
Springer-Verlag: Berlin 1970. . _ ,
[16] WexNDLAXD, W.: Elliptic Systems in the Plane. Pitman-Verlag: London 1979. - .

Manuskr'iptei_nga.ﬁg: 26. 2. 1982 -

o

. VERFASSER: o

_Prof. Dr. RoBERT P. GILBER'I‘ and Dr. LEroy R. ‘LuspIN

Applied Mathematics Institute of the Umversnty of Delaware
© Rees Hall, 5 West Mam Street” . o .
Newark, Delaware 19711, USA - . . ) ‘ ,

v



