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On the numerical solution of pseudoparabolic equations	 ( 

ROBERT P.. GILBERT') and LEROY R. LuNnth	 - 

In der Arbeit werden diskretc Analoga der Fundamentalsingularitaten für die ps'eudopiira-. 
bolische Differentialgleichung gefunden. Dabei dient eine' von COLTON und GILBERT für ana-
lytis'che Koeffizienten entwickelte Methode zur Motivation der. Annaherung. In der Tat, die 
Green'sche. Differenzenfunktion spielt hier die gleiche Rolle s'ie im analytischen Fall. Das 
Linienverfahren dient zur Behandlung der. Differentiation nach dér Zèit. Schliel3lich werden 
Fehlerabschatzungen erhalten, in dénen die stetigen Losüngen mit den Differenzenapproxi-
mationen vergliehen werden. 

B paGoTe Hat)eHi,I )14cR'peTIlaie aaajiorii 4yHJaMeHTaJIbHMX cMHryJrnpHoCTe jsIn nceeo-
napa(ioJrn'IecxHx epeiiwaiiuix ypanueiiufl. flpM aTOM MeToJ, pa3pa6oTa1uIwt COLTON 
11 GILBERT ThJIB aHarnlTMqecxMx }foa(I)(I)uIuIeHToB, CJ1+U4T JI.JIB M0TIIBIIp0BKM annpolciaEuii. 
JencTBuTe3mHo, (I)yHKUW1 paaHocTM FPI[Ha,HrpaeT aAeCb Ty He caMylo' pOJTh HII B aitajiu-
TIf'lecIwM c.rIyae. MeToj CJ1fl1T U1H 06pa6om11 AlloepeinjitponaHM no , npeMeHa. Ha-
xoiiei noIyeiiai oIeHxe florpeEUHOCTet, B Fcopopb!X cpaBHuBaIoTcn lIerIpepaIDHale peweIlMM 
C3HOCTHh!MH annpoHcHMaLuHMH.	 . . 

In this work the authors find discrete analogues of the fundamentalsingularities for pseudo-
parabolic equations. The method developed by CouroN and GILBERT for analytic coefficients is 
used to motivate the approach. Indeed, the finite difference Green's function is seen to play the - 
same role here as in the analytic ease. The method of lines is employed to treat the time diffe-
rentiation. Furthermore, error estimates are obtained which compiire the continuous solutions 
to the finite difference.approiinations.  

1; Introduction	 .	.	. 

The investigation of partial differential equations of pseudo-parabolic -type have 
received much interest recently. In particular, the methods of functional ,analysis 
have been' effectively brought to bear on these problems by' SHOWALTER and TrNG 
[9-1.1, 13, 14]. An alternate approach, which stresses the use of function theoretic 
methods has beendeveloped by COLTON, GILBERT and HsrAo [4, 5, 7, 8]. Indeed, a 
fairly general function theoretic method now exists for investigating pseudo-para-
bolic equations in two space variables [7, 81. These are equations of the form, 

11 lul	1U, I - 4a] =0  
where ord M> ordL and M is elliptic.  

Pseudobarabolic equations arise in a variety of physical problems, such as the 
velocity of non-steady flows of viscus fluids [1], and' the hydrostatic excess pressure 
occurin'g during the consolidation of clay [12].  

/ 
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The papers cited above by GrLBERT [7], and GILBERT-HSIAO . [8] generalize the 
approach used by COLTON [4, 51 for the case where ord M = 2 to order 2n. in these 
works the approach depends on the analytical construction of fundamental singular, 
solutions to the adjoint equation  

2*[v]	M[v] +*[v] = 0,	 (1.2) 

where M*, and,L* are the formal Lagrange adjoint operators for. M and L respective- - 
ly. It has been shown, moreover, that it is possible to develop the fundamental sin-
gularity in the form 

-	.... . S(P, 1; Q, r) := A(P, t; Q, r) In 1 + B(P, 1; Q, i), 

where	 . 
r:=P—QI,	(X, Y),.	Q:=(,?)), 

and  
00	(t

A(P, £ Q r) =Z A,(P, Q)	
, r)', 

(t—i)	 - 
•	 .	 B(P,t;Q,r) :='B(P,Q)	•1	 - 

The remarkable result of this apprbach is that A(P, Q) is the Rietnann function 
/	associated with the operator M, that is, if M is written as a hyperbolic operator by 

formally mapping (x, y) -> (z, z*), z = x +' iy, z = x - iy. The other coefficients 
A, (j Z^ 2), and theB (j	1) may then be obtained by recursive schemes. 

Two obvious disadvantage's of the above method are that (1) the coefficients of 
and L must be analytic in the space variables, and (2) it is very difficult, in general, to 
do the necessary analytical computations for the A 	2), Bi	1) even when the 
Riemann function for M is already known. • 

It is the purpose of the present paper to circumvent these difficulties by replacing 
the required analytical computations by numerical algorithms. Furthermore, we 
modify the approach cited above to include the case of nonanalytic coefficients. This 
permits circumvention of the necessary procedure of analytically continuing the 
coefficients into the (z, z*) space. For simplicity of exposition we discuss only the 
case where	 . 

M[v]	A  —q(P) v,	q(P) > 0 for P E Q	 .	(1.3) 
and

L[v] : a(P) v,	a(P) <0 for P E Q, 

and where for purposes of numerical estimation we assume that the coefficients are 
in C2. "(Q), [3], and in particular we consider the initial-boundary value problem'-. 

of	2[u] (P, 1) = F(P, t),	(P, t) E Q x [0	) 
- u(P, t) = /(P, t) for 1 E C	 t > 0	 (1.4) 

u(P,0)=0,	•PE.	 - 

Here Q is taken to , be a simply-connected region, such that the bundary Q, is 
smooth enough for the various Green's identities to hold.. 

In the exposition which follows we shall treat first the problem of (1.4) with con-
tinuous coefficients, and develop a representation formula for its solution. Having 
done this we shall turn our attention to various , discretized forms of this problem and 
obtain error e,stimates comparing the solution of (1.4) with the discretized solutions.
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2. The Continuous Case	 V V	 V 

Following the idea of [4,:51 and [7, 8] we attempt to construct a fundamental so-
lution. Bya "Green's function" for (1.4), we shall mean a function G defined on 
Q x Q x [0; cc) which satisfies	

V	

- V	

V 

•	£pG(P, Q; t) = 5(P - Q) for P E Q, .	0; 
G(P, Q; t) = 0	V for P E C,	t.> ;	V	

(2.1)	

V 

G(P,Q;O)=Ô '	for P,QEf. 
Theqrem 2.1: There is a unique/unction G- which is analytic in t and satisfies (2.1). 

'Furthermore G may be represented in the form	
V	 V 

V	 00 t'+1. - G(P, Q;t) = ' (3,(P, Q) V	

.	 ( 2.2)

(n+1)., 

where G0 is the Grien's function associated with the problem Mw = f ' w1 c, = 0. The 
coefficients G 1 may be uniquely determined as solutions of the recursive system	

V 

•	MpG,, +1 (P, Q) = LPG(P, Q) for P. E Q, 
V	

VV; V

	 3	V 

V	

G1(P, Q)
 

=0	- V	 . for P E c.	
V 

	

Proof: For the genral scheme used to construct fundamental solutions see [4 5	V 

7., 81. The result then follows by noting U satisfies definition (2.1). It can be seen that G	V €

converges as it is a special fundamental solution of the form investigated already in 
V	 [4,5,7,8]1  

In what follows, U will always be taken to mean thefundamenal solution (2.2-2.3). 
An important property of Green's functions for elliptic equations is their reproducing 
property. This-is also the case for our G. Let v be defined on Q x [0, cc) such that it is	

• V


simultaneously C 2 in the space-variables and C 1 in the time variable. We designate 
this space as Z. Starting with the integral identity	

V, 

v(P, t)	/ dTf --- v(Q, t) 30[G(Q, P; t -7 r)] dA(120 )	 - 

V	

• - _ f drf	v(Q, ) { [ Aa -. q(Q)]	
V[0 

P; t - r)] ;• 

+ a(Q) G(Q, P;Vt — )} VdA(Q) V dA : dx.dy, 

and applying Green's third identity one obtains	/ 	

V 

v(P, t) = _fdj fM[	v] (Q, r)•	[G(Q,P;	
V	 V 

+ a(Q) -- v(Q, r) G(Q, P; t — r)} dA(Q0) -	- ar 

fdr f
V(Q, r)
	

a2	[G(Q, P; t	

V	

V	 -
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' Here ---denótes diffeientiation.in the direction of the outward normal, and daQ aflQ 
denotes the are length differential along C. Integrating by parts the a(Q) term and 

• 'using the initial conditions for v and 0, yields -	 - 

f drf a(Q)	v(Q,.) G(Q, Pt t) dA('Q0) 

=	
a(Q) v(Q r)	[G(Q P 1 - r)] dA(Q0) 

• ' We obtain in this way the integral representation given in the following theorem. 

Theorem 2.2: Let v E L'and satisfy the homogeneous initial conditin v(P, 0) = 0 
for P E Q. Then for (P, 1) € Q x [0, 1), v has the representation 

	

•v(P,t)=\_f dTf	G(Q, P; I —. ) 20, x) dA(QQ) 

	

:—fd ,,f	v(Q,,)	G(Q,P;t—T)dcFQ. 

3. Diskretization in the Space Variables	 S 

A natural method of approximate the fundamental solution G(P, Q; t) of (2.2) is to 
approximate the coefficients of the powers of t. For simplicity in exposition we first 
assume that Q is a rectangle such that we may place a rectangular grid of equal 
spacing over Q and thereby discretize. the. space variables. In the usual way we 
'designate certain grid points as interior points and their set as. Q. The boundary 
points are the intersections of the mesh with C, and this set is designated by C. We 
set Qh : = h u Ch . Our particular choice fo ,r Q does not require that the neighborhood 
of the boundary be treated in a special way at this point. The discrete version of £ is 
obtained by replacing A by its centered-difference approximation /. This results 

- - in the problem -	-	-	,• 
•	 S	

huh(P, I) = F(P, I) for (P, t) E Qh x [0, oo), 
S	.uh(P, t)	f(P, I)	for- P E. Ch,	I > 0,	 -	(3.1) 

•	•	uh(P , 0) = 0	for. P E 1 h'	 - 

where 2hv' := Mhv t - Lv, Mh := Ak - qE, and where, uh is defined on Qh x [0, oc) 
'. and is analytic in its second variable.	 S 

- As a space 'discretized-Green's function we shall require a function 0h defined on 
Qh x Qh x [0, 00 ) which is analytic in t and satisfies	-	 S 

2hpGh(P, Q; t ) = — h- 2 (P, Q) for P, Q E Q, . t> 0,	•	 S 

- G(P, Q; I) = 6P, Q) 1	- . • for P E Ch ,	- I . > 0,	 (3.2) 
5	 Gh(P, Q;.0) = 0	•	- for P, Q E- i,	•	-
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where
P=Q  

io if PO. 

For a review of the discrete generalizations of the classical fundamental singular 
solutions the reader is referred tOWENDLAND [16: Chapter 71.	- 

Theorem 3.1: Problems (3:1) and (3.2) have unique solutions, designated by u h and 
6k respectively. Moreover, they have expansions of the forms  

-	 tn±' 
uh(P,Q;t) =Zu,/'(P,Q)	,	 (3.2a)" 

fl—O'	 (n+1Y	 - 
0•	

tn+1  
G'(P,Q;t) = ZG'(P,Q)	'.	.	 .:	.'	 (3.2b) 

•	 no	(n+). 

Here GOh(P, Q) is the discrete Green's /unction, associated with M I,, and the GI , are 
determined recursively.	 S 

Proof: Direct substitution of (3.2b) into the differential equation of (3.2) and 
• aomparing powers of t shows that G0' must be the. discrete Green's function as defined 

cbove. Furthermore, we must have fór.n	0 that G -, 1 are the unique solutions of 

Mh p[G +l(P, Q)] = Lp[G('P-, Q)] : (P E DO, ,' G 1 (P, Q) = 0 
' for P E Ch,	 (3.3) 

which yields  

G +1(P, Q) = —h2 Z G0 (P, T) Gh(T, Q) a(T). - 
•	

'	

TEQ 

• ' To show that the infinite seri6s'(3.2b) exists it is sufficient to demonstrate that the 
finite sum of positive term. S2)	,	 -• '	 '	 ' 

G(P, Q, t)	(t'> 0)  

Is bounded. To this end, we note that from Lemma 5.2 we have the inequality' 

O(P,'Q) ^5 -	(k> 0)	•	 '	

-	 -' h	 ..	' 

where k : = [mm q(Q)1 1 • Consequently  
LQe°  

h2 E h2 F 'G0h(P T) GOh(T, Q) ^ kh2 -	GOh(P, T) ^ k2 .	:. 
Q€Q,,	TWA	

'	
'	 TED,,  

Hence,	 -	 • S	 '	 '	 •	 '	 - 

S	
5; 

h2	h2	O(P T)	Q) a(T) ^S A+'[k]+2, 
• •	

-	 QEQA	TWA  

• where A := max Ia(T)i and	(P, Q, t) 	-- k exp [At/c] (h ' > 0. Uniqueness 
TED,,	 -	 QED"	 h	•	 •	 '	 -	 . 

'' .of' the solution to either problem follows by considering the case' of homogeneous 
data.. S	-	5	 5	 '	 •	 - 

2), That each G,/'(F, Q)	0 is shown in the proof of Lemma 5.1., ,	'S
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Existence of the solution (3.2a) follows from its unique representation in terms of 
the Green's function, which we list below. 

Theorem 3.2: Let v E Z and satisfy the .hmogeneou.s initial data v'(P, 0) = 0 for 
PEQ4. Then for each PE Qh, 

v(P, t) = h2 f dt	-- Gh(P, Q; t -) S3v(Q, ) -€\QEQhdt

dv 

f QE'Qh	
dT 

Q t -	(Q r) 

Proof: Let w(P,t) denote the right-hand side of (3.4). Clearly, w(P, 0)= 0 for 
all P. If P E Ch and t> 0, -- C(P, Q; t - r) = (P, Q) and so

dv 
w(P t) = f drô(P Q)	v(Q t) 

=	
(P(r) d 

 QECh	f 
=v(P,t) —v(P,0) =v(P,t).	 - 

Integrating (3.4) by parts yields
dv 

w(P, t)	 h2	Gh(P, Q; t)%0, 0) - ' G(P, Q; t)	(Q, 0) 
QE Qh	 QEC,,	 dt 

-
 h2f

dr	Gh(P, Q; t - t)-- [hv(Q,.r)] 
QQ 

f
h( p,dTEG	Q t—r)(Q r)€

QECh	 dr€
0 

Thus, for . P E Qh and t ^ 0,	- 

2hw(P, t) =f NP, Q)3hv(Q, 0) + h 2 o(P, Q) -- (Q, 0) 
QEDh	 QEC,  

+ fdr	(P, Q)	[2hv(9, )1 
J	QEQh	 dt 

• +h2f.dto(PQ)(Qr) 
Q(Ch	 dr 

0 

3hv(P,O)	[2hv(Q3 r)] d = 9-ftv(P, t).	 • 

- From the uniqueness result of Theoreiii 3.1 follows that  = v, and so the proof is 
complete I	•	 -	 •
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C. The Method of Lines	 - 

One method of removing he infinite sum in the representation of the fundamental 
singularity th to truncate the series, another and perhaps better for numerical proce- 
dures is to discretize. the time variable [15]. We do this now, using equal-spacing with 
step-size k, and use a forward-difference scheme for which the discrete operator is 

k'M[v1+1 — v1 ] — Lvi. 
• The adjoint backward-difference operator- is 

•	= k'M[v1+1 - v] + Lv11. 
Let N denote the set of natural numbers and N = N - {O}. We seek Gk definedon 
Q x Q x N satisfying 

•pGk(P,Q;i)'rr5(P_Q)	for.PEQ,	iEN, 
•	

Qk(p, Q; i) = 0	 for P E C,	ViE N,	 (4.1) 
Gk( p, Q; 0) = 0	 for P, Q ( Q.	S 

Theorem 4.1,: 0k exists and is unique. Furthermore, G"(P, Q; 0) = 0 and for i 

•	 Qk(p, Q; i) =	
() 

kG 1 (P, Q)	-	-	 (4.2) 
-	

S	 ,=:?•-
where {G1}. 0 is as in (2.3). 

Proof: Existence may bb verified directly using formula (4.2) and substituting 
into (4.1). Uniqueness may be shown using formula (4.3) which is given below. - 

	

Lemma 4.2: Let i be a (fixed) poitive integer and let.Q E Q. Then for 1	j	i, 
• Gk(p, Q; i — j) satisfies- 

O	 --

	 -	 V 

- 	

j £"(P, Q; i°— j) = 6(P - Q) for P E Q, 
lGk(P,Q; i - j) = 0	 for RE C.	 - V 

Theorem 4.3: Let {v} 1EN be defined on Q with v 0 = 0. Then for each  E N and for 
each P E Q we have the representation formula 

V - vj1(P) =

	

	f[G(Q, P.; i — + 1) -- Gk(Q, F; i — 5)] 2k 
FV,(Q) dA(QQ) - 

=OQ 

V	 ± k-i L+f [v,^ 1 (Q) — v5 (Q)] -!__ [Gk(Q, F; i'— S ± 1) 

- G"(Q, P; i - 5)] do.	•	 -	 (4.3) 

Proof: We begin by employing Lemma 4.2, a telescoping series and the definition 
• of v0 . Setting r,(P, Q) = G"(P, Q; j	1 — 5) we have 

• v11 (P) = -	f [v1+1 (Q) — v(Q)] 2P +1(Q, P) dA(QQ )	•	 V 

-	

•	 V	

V 

V = —	f [v1+ 1(Q) — v1(Q)] {k'MQ [Pj+l (Q, F)	P(Q, F)]	
V 

•	 j=OQ	
•	 •V	

V	 V 

•	 V 

+a(Q)1'+1(Q,P)}dA(Qq)	
V	 V
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= -E f [r14, F) - P(Q, P)] kFvj(Q) da(QQ) 

	

7=00	•,'	 .	 , 

	

- k'	[v5^1(Q)_vj(Q)] -p-- [J, 1(Q, F) - I'7(Q,P)] dci0 

-Z f {a(Q) v7(Q) [P^ 1(Q, P) - P1(Q, P)]  
jlQ 

	

± a(Q) I', 1(Q, P) [v j . 1(Q) - v1(Q)]} dA(Q0).	 - 

The last sum vanishes due to ob v ious cancellations; hence, the proof is complet e
 upon replacing the ri-terms by the corresponding Gk terms I 

At 'this point we investigate the simultaneous dcretization of the space and time 
variables.. To this end we define Qh :=01, u Ch as in Section 3, and we consider the, 
operator  

:= Mh[v+,(P) - v 1 '(P)] - Lv1'(P) 

where {v,'}1eN is "a sequence of functions defined on f2j, We seek {u1}1eN satisfying 

2u 1 k (P) =F(P, 1k) for' P6 Qh,	I EN, 
u(P) = /(P, 1k)	for P 6	1 EN,	 (4.4) 
uo(P) =0	'	for P 6 

Theorem 4.4: There exists a unique solution -{u 1 } 1 €N to problem (4.4). 

Pr'oof:.This follows by the fact that for each fixed i we may uniquely solve 
•	M4u1(P)] = F(P, 1k) + Mh[ujh(P)] - Jh(p) for u 1 in terms of a known 

Indeed	•	 •	 ' 

u 1 (P) = —h2"' 00h(P, Q) {F(P, 1k) + Mh[u '(Q)] - 
QEQh 

	

± E G(P, Q) . f(Q, 1k),	• i^ 0,	 •	 (4.5) 

	

QECh	•	 '	 ' 

and u(P) := 0 I
\ 

Associated with the problem (4.4) we define a discrete Green's function -Gk,h de- 
fined on , Qh xQfl . xNasfollows: •	 .	 - 

	

S	 (4.6)	- 
• G(P, Q; 1) := ,' ( ) k"G_1(P, Q) . for I > 0, 

	

n = O\Th,	•. 

where the G,', n ^_-. 0, are defined by (3.3). It is easy to show that Gk.h acts as a re-•. 
producing singularity. TO this end we observe the -following result, whose proof is 

•	

'	 / direct.	•	 • •	 -	 ,	 ,	 , 

	

Theorem 4.5: Gk.h saiis/ies	 .	 '•	

• 

	

•2F
hG(P, Q;i) = —h 2c5(P, Q) • for P 6 Qh,	1 6 N,	• 

Gk. h(p, Q; i) = ikô(P, Q)	,•	 for P E C,	16 N',	(4.7) 
'G"(P, Q'; 0) = 0	 for P, Q 6 92h -
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The following representation theorem may be used to solve the nonhomogeneous 
initial-boundary value problem..  

Theorem 4.6: Let {V Ih } IEN be de/ined on	where vo h 
-_ 0. Then for i E N and for 

• P E Lim	 . 

v1+1(P)= — h2 E E[G ( P, Q; i + 1 - j) _ G' - '(P1 Q; .i - j)] 2hvI+(Q) 
j=OQEQ, 

+ k' ' .L' [G(P, Q; i + , 1 - j) - Gk (P, Q ; j 
•	 j-=O QEU. 

X [v '1(Q) - v1(Q)].	 .	 (4.8)€

Proof: Let w(P) denote the ,right-hand side of (4.8). For ' P € ., we have 

•	 V	 2w(P) = —h2E	[--h- 2 (P, Q) + h- 2 (P, Q)]	v+(Q) 
V	

S	
jOQEQ,	 V 

- h2	[—h- 2 (P, Q) - 0	hv1+l(Q) 
QEQh  

•	
V + k'' E [—h-25(P, Q) + h- 2 5(P, Q)] [v^ 1(Q) - v(Q)] 

j=OQEC	 V	 V 

•	'V	
• + k-'	[—h- 26(P, Q) - 01 [v +1 (Q) - v(Q)].	

V 

QECh	V 

Only the second term above fails to vanish, and it. equals	hv,+l(P). 
IfP(Ch ,	

•	 V 

•	• w(P) = —h2 2	[( - + 1) kô(P, Q) - (i,— j) kô(P, Q)] 2 hvj+l(Q)	V 

j=OQEQ	
•	 •	

V 

V	

+ k' Z E [(i - j + 1) k(P, Q)	. V	

j=OQECh 

V	 •	

- 	 - 

kâ(P, Q)1 [v5,(Q) - v,(Q)]	 V	

V 

V	

—L'[ (P)	

v(P.)] = v +1(P) —v0(P) = v1+1 (P).	•	

V 

The proof is completed-by invoking Theorem 4.4 I 
•	Formula (4.8) is simplified somewhat by using the identity 

G(P, Q; i + 1	j) - G(P, Q; i - i)V= .(	

) 

k + 'G(P, Q) 
V	 V	

•	 (4.9) 

Defining	
V V •	 •	

• 

- fh1 1(P, Q) :=E1 
(i	

) 
knGh(P,.Q)..	

V	

(41 

we may rewrite (4.8) in the form	
V	 - 

- 	 v11(P) '= —h2k 7 ' P 11(P, Q) 2k.hvj+1(Q)	 •	 ' 

V	•	

JOQ€Q	 V 

V 
•	

+Z Z r(P, Q) [v 1 (Q) - Vi(Q)j.	
•	 (4.11) 

-	.	•	

jOQEC,  

-	3 Analysis BU. 2, Heft 1 (1983) V	 •	 V	 V	 V
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5. Error Bounds  

In this section we incorporate the usual error estimates which have been developed 
for elliptic partial differential equations, solutions represented in terms of fundamental 
singularities - [2, 3, 161. In order to extend these estimates to the case of pseudo-
parabolic equations we must first establish several lemmas.	. 

Lemma, 5.1: For each i	0, and for 0	j :!E^ j, F 1 2^ 0, where I 11 is defined 
-in- (4.10).	 ..	.	 . 

Proof: We know G'j ^ 0 by the Colltz maximum principal. Further, for n ^ 0, 

G 1(P, Q) = —h2 Z GOh (P, T) a(T) Gh(T, Q),	 . 

	

f	 .
 

TED,  

and since a :!E^ 0, it follows by induction that 	0 for all ii. Hence, the desired - 
result is immediate from (4.10) I  

Lemma 5.2: For P E 7h; 12.E GOh(P, Q) ':!E^ K 	[thin q(Q)1• 
•	 . -	

-	 LqEQ	J	-	- 

Proof: As usual, let Ch* denote all points of Qh which are neighbors of points.in 
C, and for Q E h let Nh(Q) denote the set of neighbors of Q . Then for P E f2h, 

L= —h2 . C0h(P, Q) [—q(Q)] + h2	GOh(P, Q) . cad (Nh(Q) n Ch). 
-	•	 - QEC  

Since G 	O,.we conclude  
1 ^h2K' GO (P, Q)  

QeQ 

from which the desired result easily follows I	 .. .	-	. 

Lenima5.3: Let i	0 and let 0ji. Then for PEQn, - 

- h2 Z f.k.(p, Q)	K[i'- k IIaI KJii.  

- -	Proof: For n.	0 and P E Q,,  
-	

h2 ' G 1(P, Q) = h2 E [—h2 Z 00h(P, T) a(T) b'(T, Q) 
' QED -	 QED, I.	TEQ,,	 .	. 

h2 ' t—a(T)] GOh(P, T) h2 [ ' G'(T, Q)	. 
TE Qh	 LQEQ. 

IIaII [max h2 V GA(T, Q)	' i [h2	GOh(P,T) 
LT€Q	• QE	 i 1- TED,	,. 

- By induction, it follows that for n L>- 0 and P-E Qh,  

• h2'G h(P,Q) 5 aK''. -	'	
*	 .•	 .	 , 

	

- -.	 QEQA.  

Inequality (5.1) easily follows now.frorn (4.10) I 
Finally, we bound the error r(P) := u(P, ik)	uc.(P), where u1, is a solution 

of (4.4). We have e0k1	0 and.r,(P) = Q for P E-C.. For i	0 and P E Qh, we 
apply (4.11) to obtain	,•	 -	 ,	- 

c 1(P) = —h2k E	pkh 
)(P Q) 2,11(Q) 

-	-	-	 j-=O Q€Q,  

-	•	 =,—h2k Z Z r(P, Q) {Mh[u(Q, (j ± 1) k) - uQ, jk)] 

	

•	 --	 ,	

.

 

j=0 QED,
 

-	 —M(Q,jk)}.	'	:	 '	. •	 • 

-	-'	 --
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So applying (5.1,) we find	 . 

e(P) ;5 ,,KkE [1 + k IIaII K]'i :!E^ ,+1K(z + 1) k[1 + k IIaII K]', 

(5.2) 
where	 .	 S 

•Yi,l:=niax max I Mn [U(Q, (j ± 1) k) - u(Q, 1k)] —Mu(Q, jk)I. OjiQEQ,	 S 

Our error bound now follows from (5.2) under typical continuity, assumptions on u. 
Theorem 5.4: Let u be simultaneously C4 on Q and C2 on [0, TJ. Then thereexists a 

constant x independent of k arid h, such that for P E Qh znd 0's-i	rn + 1 !E^: [i'/kl, 

•	 '	 e(P)J :E^xKT[1 +. k'ja	K kh2 .	:'	-	
(53) 

6. Concluding Remarks 

It is not necessary that Q be a rectangle; indeed, we may consider irregular regions Q, 
• providing that is sufficiently smooth. We ask that Q be such that ur Green's 

identities hold. As before, we place a rectangular grid of equal spacing over Q. The 
boundary points, which we shall designate as points of C, are the intersections of.Q 
with the grid lines. Net we designate an "inner, boundary" C, as the set of points 
which are nearest neighbors to points of Ch. The remaining points of Q which coincide 
with grid pointsrre interior points and their collection is designated by h The 
closure of-Oh is Qh :	-F C,, -F Ch*..  

For the most 'part, we may procCed as before by replacing in our definitions ad 
-formulae Q4 by S2, + Ch	m *. Some concern must be taken, however, when dealing with 
the Laplacian on points of Ch". For this' case, we cEoose an interpolated Laplacian [3] 

h	
—	1 (i + a)	(al. F a2) a 2	(i + 2) i91 

u(xy- 1h):/ 1.  
+	 —(--+---)u(x,y)F,	 - '(6.1) 

• '.	 (ir #2) #2	•\12	th21  

•	'where 0 < , , # 11 fl2 ';^; 1. Not all of these parameters will be strictly less than one, 
since the disttndes a 1h, 19th (i	1, 2) where a il or	< 1 are measured from a point

on C,* to a neighbour or Ch , and h is chosen small enough o that Qh is simply connected. 

• -. To verify Lemma (5.2) for the present ease, we introduce the function	-. 

10,
P E Q ±Ch*

, PEc.	••	 •.	 -	 .•, - 

Proceeding as before we employ a discrete Green's identity [2, 3, '161 associaed with 
the finite-difference operator. •	 '	 S	 •	 '	'	-• 

Mh[ U] =(A—q)U 

Hence, foi irregular regions we have	-	.	•, ' 

U(P)	-41 Z Mh[ U ](Q) G0(P, Q) ±- 00(P, Q) U(Q) . •	
'	 QED+C	-	•, 'S	 - QEC,, -	-	-	. 

3*
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Now inserting Z(P) for U(P) in (6.3) yields 

1=h2 Z (Q)GO(P,Q)—h2L'(/hZ)(Q)GO(P,Q)'for PEQh+ Ch* . 

A short computation with the interpolated Laplacian (6.1) verifies that(AZ) (Q) <0 
for Q E C,,; hence, as before, we have the inequality of Lemma (5.2), 'namely 

1 ^th2 7 q(Q)G0(P,Q).	- 

It is now clear that the formula for the error estimate (5.3) may be extended to the 
•	:present case when we define 

-	 K := max [q(Q)I'' and IIa II	sup [a(Q)I. 
•	 - QEO,,+C	"	 QEQh+C,*, 
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