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A Spectral Mapping Theorem for. Representations of Compact Groups 

W: ARENDT and C. D'ANToNI')  

Sei U eine stark stetige beschrknkte Darstellung einer lokal kompakten Cruppe G aufeinem 
Banachraum E. 1st z ein beschränktes regulkres Borelmaf3, so bezeichnen wir mit U(u).deit 
Operator U(1z)	f U(t) d1i(t). \Venn C abelsch ist, so ist bekannt, daB 

= (sp (U)) 

wenn der singulare stetige Anted von It Null 1st (wobei a(U(z)) das Spektrum des Operators 
U(s), sp (U) das Arveson-Spektrum von U und A die Fourier-Stieltjes Transformierte von 
bezeichnet). 

Tm vorliegenden Artikel wird cin entsprechender spektraler Abbildungssatz Mr kompakte 
(nicht-abelsche) Gruppen und absolut stetige MaBe bewiesen. Feiner vird gezeigt, daB - im 
Gegensatz zum abelsehen Fall - der spektrale Abbildungssatz für atomre MaBe nicht gilt. 

flycm U 6I.1bHO HcnpCPLIBHOC orpaiineiiiioe npecaianeiiue .uoHa.nbno 1oMnaTII0ii 
rpyrini C Ha öaliaxoBoe npocTpaHcTeo. Ec.im It orpawieuan peryiinpiian Gopeienexan 
iepa, flCTb U(1z) o6o31Ia'IaT oneparop U(t) = f U(t) d1z(t). Eciiri G-aöe.nenai, TO 11.3-

I3ecTHo, '(TO  

.a( U(10) = A( sp (U)) 

- ecilil cnHryJLnpHan iienpepniian 'iacm It paniia HJI1O (rje cr(U(ji)) 'oöoaIia'IaeT CflCHT 
onepaopa U(p), sp (U)-apuecollciulfi CnCHTP U, ii fi-(Jypbe-cTHMbTbecOBOe npeo6paaoua. 
HIle/t). 

B Aamioiot cTarbe ;Xot;a3aHa no06HaR CflXT.331bHH Teopchia oG oTo6paHe11ILH )JlFl HOM-
nalcTHbIx (iie a6eienux) rpynri ii a6coiioriio HenpepblBIlux Mep. EpoMe TOrO Aoiiamio, 'ITO 
B flpOTI1BOnO21OaHOCTb a6eJenoMy cyaio U1R 4UCTO npepwmlblx MC enexTpaJlbHan reopeMa 
o6 6To6paeHIIIt iie Bepua.  

Let U be a strongly continuous bounded representation of a locally compact group C on a 
Banach space E. For a bounded regular Borel measurey on C, we denote by U(p) the operator 

= fU(t) d(t). If C is abelian, it is known that 

= (spU., 

holds if the continuous singular part of It is zero (where i( U()) denotes the spectrum of the 
operator U(p), sp (U) the Arveson-spectrum of U andtl the Fourier-Stieltjes transformation of z.) 

In the present article a corresponding spectral mapping theorem is proved for compact (non-
abelian) groups and absolutely continuous measures. Moreover, it is shown that - in contrary. 
to the abelian case - the spectral mapping theorem fails for purely discontinuous measures. 

1) Supported in part by the Italian C.N.R.
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1. Introduction	 . 

Ghen a suitably continuous homomorphism U of. a locally compact group G into the 
group of all isoinetries on a Banach space E, it is possible to define the representation 
of M(G), the Banach algebra of all bounded regular Borel measures on G, by 

MY)	fUd/L(t).	 . 

IlGisabelian (resp. compact) in the theory of spectral subspaces the èpectrum sp (U) 
of 'U is defined.asa Oertain subset of the dual group of _G [2] (rcsp. the dual object of 
G[6]).	.	 .	. 

In the abelian case a..spectral mapping theorem is proved in [5] (see also [9]), 
stating  

= (sp'(U))' 

for every measure 1u E M(G) whose continuous part belongs to L1 (G). The purpose of 
this paper-is to prove the analogue of-this'theoremfor compact groups. - 

It is interesting that the corresponding theorem does not hold in this generality for 
the non-abelian case: In fact, a counterexample given in this paper shows that it may 
fail to hold for purely discontinuous measures. 

. The main theorem	 0 

Let E be a Banach space, G a compact group and U a homomorphism of C into th 
group of invertible . operators on E. That means: 

U1 EY(E), U 8 = U8 U1, U= I for s, t E C, where e E C is the unit of C 
and I the identity operator on E.	 -. 

Suppose, U is continuous in the sense of [2: assumption 1.1]. In particular, U may be 
•	strongly continuous. Then for z € M(C) the operator U(1i) can be defined by 

U(z)'= f Ud1z(I)	 • .	

0 

(see [2]). U(1u) is a bounded operator on F, IU(u)I[ 'cuj[ for a positive constant c 
and all it € M(G).. For u, v € M(G) we have U(4u * r) = U(y) U(v), and U = U(61 ) for 
the Dirac measure 6 at the point . t E C. Thus U extends t9 a representation of M(G) 
on E. 0	 ,'  

Denote by O the dual object of C, i.e. O is the set of all equivalence classes of con-
tinuous unitary irreducible representations of G For c € O chose Ua € a. u is a homo-
morphism of G into the group of all unitary n x n,-matrices. Denote by u 1 (t) the 
matrix entries of u(t), and by u the coordinate function I - u(t) on, C (1 

ne ). For u € M(G) let / = f u(1 1 ) d1u(t) for x E O ,(i.e.	is the n >< n-niatrix 
-(f u(t-') c4i(t))). We identify 111 (0) with a subspace ofM(G) in the canonical way. 
Thus we set f = (fm) (x € O) and U(j) := U (!ni ) for / € L1 (G), where m denotes the 
Haar measure On C.	. 

2.1 Definition: sp.(U) =.{oc € O I f =00 for all 1€ I), where I is the closed 
ideal of V(0) defined by I = It € L'(G) I U(f) ='O}. 

This definition is equivalent to the one given in [6] 'and coincides with Arveson's--
definition in the abelian case. .We can now formulate the main theorem. 

C-
/
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2.2 Theorem: I. Fory E M(0), Po(Ucu)) = U a(). 
•	 Esp(U) 2. For / E

U a(f ) U {0} it sp (U) is infinite 
= Esp(U) 

	

U a(/)	if' sp (U) is finite. 
Esp(U) 

Note: a(T) denotes the spectrum and P(T) the point spectrum of a bounded 
operator 'I' on E. For 1A E M(G), cc E O let a(1à) denote the set of all eigenvalues of 
the matrix . 

For the proof of the theorem we need some lemmas. 

The coordinate functions are continuous and satisfy 

*U41 = I/fl	1JU,,jg 

(c E O, 1 ^ i, j ^ n, 1	k, 1	(see [8: 27.20]).	 S 

Let V := U(nu)	(a E 6-,	:5: na). 
The operators V,, satisfy the comjositión rules	 S 

VV	= 0 if	dr j = k,	
(C	 ••.	 • ' 

.1 
vSijv,j1 =	 S	 S 

In particular V. ii andP, : =2' J{ are projections (x E O,i :5 i	n


2.3 Lemma: Fory E M(G), a E O, 

a) PU( 1u)	U( 1u)P =	' fIV 1	(1 ^ i, j ^ 
-. 

b) Va ijPa =P. Va i i = Va ,,	(1	i, j ^ na ),	 -, 
C) P,P=PP,=0 for	 -' 

Proof: By [8: 27.20],	 • 

*	=Ef u,(s) d1u(s) u , 

and	 •	 • 

*,U 

=	f u i(s ) dy(s) u, 

• Consequently, 

	

PU() = U (. . 
U.i i *,a 

= U(n 2	i) = V. 
-	i1	 •	 j1	 ij'l	 S 

I	n•	\	/	 - 

=U(*nu,jj)=Uu)P.	 S	 0 - 

b)and c)are obvious from (C) U - • 

Theie is an alternative desqription'of sp (U).	 S. 

/ 
9 Analysis Bd. 2 Heft 2, (1983)
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2.4 Lemma: sp (U) = a E O P	0}.	 - 

Proof: Let S= (ix EOIP# 0} .	 .	.. 
a) Let a E sp (U). Since (u 1 ) 11 = 1/n. (see [8:-27.191), u	I by the definition 

•	of sp (U). From.the definition of I follows that V 4 0 (1	i	n.) and consequent-

•	ly, P 4 0 (use-2.3b)). Hence a € S.	- 
b) Let a € S. Then V; 4 0 (1 ^ i, j ^n). From 2.3a) and (C) follows that 

V 11PU(/) V. =	Hence, /.E.1 implies f = 0; i.e. a € sp (U) U 

2.5 Lemma: If U(f) x = 0/or all  € L1 (G), then x = 0. 

Proof: For every q E E* (a separating subspace of the dual space of E according 
to the assumption in[1] (if U is strongly continuous. E is just the dual space.of 1)), 

f (Ux, ) /(t) d.t = Ofor every! € L'(G) by hypothesis.Since the function t --> (Ugx, ç) 
is continuous, it is identically zero, hence-(x, p) = 0. This implies x = 0, E i being 

separating U	 -	 - 

2.6 Lemma: if Px = 0 for every a € sp(U), then 5x = 0. 

Proof: The hypothesis implies that Px = 0 fbr every, a € O. Consequently, 

• - 
U(u 1j) x = 0 for every a € O, i, j€ (1 ) ..., n}, hence U(p) x = 0 for every trigono-
metric polynomial pon 0, which implies U(f) x .= 0 for every / € L'(G), the trigono-. 
metric polynomials being dense in L'(0) It follows from 2.5 that x = 0 I 

2.7 Lemma: It A. = 0/or every a € sp'(U),then U( 1z) = 0. 

Proof: If ft = 0 for every a E sp (U), then P,L(JL) = 0 for every a € sp (U) by 

2.3; consequently U(s) = 0 by 2.6 I-	-	- 

Proof of the theorem: 
1. Let y E M(G). For € sp (U) let F.. = P.E. F is not reduced to 0 and invariant 
under U(u) by 2.3. Denote by U the restriction of U(i) to F. V is a projection which 

leaves F invariant by 2.3 Set F 1 := VF (1 ^ i ^ n,n:= ne ). We have F .  F1 

+ F,, and F 1 n F, 0 for i 4 j. From. the composition rules (C) it can be seen 
that the restriction of V,,,,.to F 1 is an isomorphism of F, onto F, which we denote by 

Moreover, V 1 = I, (the identity operator on F t )',	 S 

(V 1 )-'=V 1	'(1i,jn). 

For  =	+x €F + + F. = Fehave.by23and (C) 

x = U(4 Px =	fZjVjjx =	f017jx1.	•- -	
-	 (1) 

/	Set. H :=XF1 (n-times the Cartesian product of F 1 with any norm inducing the 

•	product topology on-H) and define V: F .—> . H by (x1 ±	+ TO	(V 1x i , V12x2, 

•	V1,,x,,). V is an isoniorphisr' with inverse	- 

V: H —* F, (y , ...; y,,) 4- ( V11y1 + V21y2 + . + V,, 1 y,,).	• 

Let U = VUV- * From (1) it can be seen that U,, has the matrix representation 

/iiIi ft21 1 1 ...	ni'1	 - 

Iu1 121	P22'.....Pn211	-	 -.	 - 
•	

•	

¼..	•	 .	 •	 .,' 

P2fl11 ...	flflIj	-	. -	-
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From this it is easy to see that a(U) = a(U) = u() and a(U) ='Pa(U). Thus'. 
U' a() c Pa(U(u)).  

Esp(U)	 S	 ' 

Toshow the inverse inclusion, let A E PaU((i)). Then there exists x E E such that 
/	x == 0 and U(t)x=2x.By 26 there is an a E sp(U) such that y = Px r= 0. It-




follows, from 2.3 that U(p) y = Ay. Hence A E o(U) = 
2. Let / E D(G). a) If sp (U) is infinite,' 0 E U o,), because (IIfaII)E tends to  

Esp(u) 
at oo(in the discrete topology on O). Hence 0 E a( U(/)I by 1. 

	

We show that i(U(/)) \ {0}	U a(/). Let A U o() u (0}. It has to beshown that 
Esp(U)	aEsp(u) 

I) E  A c(U(/)). Since (IJf	tends to zer'o at co, the set N:= joc C O I A a(f)} is 
finite. There exists a trigonometric polynomial g on 0 such that = 1 for all Lx C N 
and =0 for x j N (use (u)kj = (u 1 * ufl,) (e) = 1/ne &j,ö f by [8: 27.20 (iii)]). 
Let  =/— g. Then hE L'(0),k =1for  4 N and k = 0 for xE N. In particular, 
A U(k); which' implies by [1:4.3] that ) q CLI(o)(h), i.e. there exists k C L1(G) 

such that (Abe - h) * (1/A66 - k) = (l/Aöe - k) * (A66 - Jz) = 5e. Hence 

(A - U(h))(1/A - U(/L)) = (i/A - U(k))(A - U(h))=.i	,.	 (2) 

From our assumption on A; N n sp (U) = 0, 'hence k = f for all N € sp (U). This 
implies that U(h) = U(/) by 2.7. Consequently (2 - U(/)) is invertible in 1(E) by (2), 
i.e. A j a(U(/)). 

'b) Let sp (U) be finite'and uppose 0 j U c(J). In order to 'show thatO 
Esp(U) 

take a trigonometric polynomial g satisfying	= (/)-' for all C sp (U). Then 
(g * -/) =	= I = (66) = (/ * g) for every a € sp (U). It follows from (2.7) that 

U(/) U(g) = U(g) U(/)' = I, hence of 0 a c(U(/)) U  

3. Discrete measures  

It has been shown in [5] that for abeliangroujs the theorem corresponding to the 
second part of 2.2 remains- true if / is replaced by' a measure on 0 whose singular 
part is completely discontinuous. This is no longer true for compact non-abelian 
groups. In fact, while we can prove that theorem 2.2 part 2 holds for point measures, 
we show that there exists a completely discontinuous measure z on a compact group 0 
such that  

a(U(u)) + U 
aE8p(tJ)  

where U is a suitable representation of 0 on a Banach space E. 

3.1 Proposition: For every t€0,  

= ( U ct(u(1'')) —.  
\Esp(U 

Proof (cf. [4: 6.3] for the abelian case): One inclusion follows from 2.2 part . .1. For 
the,reverse inclusion suppose A q , M :='( U i(U(t- l)) andiet W an open set in *	 '	 \*EsPU)	/	S 

P= {z E. C I Jzj= l} containing M but A W. We can findaC 2-f unction /onfwhich 

9*	
5	 '	 '	 S	 S
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coincides with z - (A - z)' on W. Then the Fourier expansion is absolutely con- 
vergent and we have 1(z) = ' a,,z" with ' a,, <. Let S = Z a,,U. In order to 

n EZ	nEZ	 nEZ 
show S(A - U) = I let It= (' a,,O * (A - â). By 2.7 it is enough to show that 

\nEZ 
= I, i.e. ('.a,,u(tn) (A - u( -1 )) = I, for every E p (U). 

nE Z	/ 
Let a E sp (U). If we consider the representation V of Z given by V(n) =u(t"), 

and its lifting to l'(Z) given by V(b) = ' b,,u(t") for b E l(Z) then by [4. 6.41 sp (V)


	

nE Z	 --
=.[(u(t_1))]1 (being aware that the co-Fouriertransformation is cOnsidered.in [4]). 
By definition of W, sp (V) c: W. Consequently, d(z) (A - ö1 )'(z) = /(z 1) (A - z-1) 
= 1 for all z E W 1 .This implies V(a) V(A - 6 1 ) = I by [4:3.3 vi], that is'a,,u(t') 

-	 nEZ 
(2 - u(t 1 )) = I. (2°— U) S = I can be shown in the same way. Hence, 2 c(U1) I 

• For the counterexample we need-some additional notation. Let G be a locally com-
pact group. For B c M(G) we define B' = Lu E M(G) I inf {I,uL Iv} = 0 for all 
v E A). A subsetBof M(G) is called a band if B = B''. If B is a band in M(G), M(G) 
is the direct sum of B and -B I . By M(G) we denote the space of all continuous measures 
in M(G). Md (G)	M(G)'. is the space of all completely discontinuous measures in 

• M(G) and is isomorphic to l'(Gd). Md(0) is a subalgebra and M(G) an algebraic ideal 
of M(G) (dee [8]). Recall, a subalgebra A0 of an algebra A is called full if for every 
x E A0, which is invertible in A, X 1 E A0..  

•	3.2 Lemma: Md(G) is a full subalgebra of M(G). 

Proof: Assume € Md(G) is invertible in M(G).-We have to show that sic' € M(G). 
There are uniquely determined measures v 1 E Md(0), V2 E Md(G)' = M(G) such that 

• u 1 = v1 + v2 . Hence ó = * v 1 + * v2 . Since M(G) is an algebraic ideal, IA * 
= - * v 1 E M(G) n Md (G1) = {0). Thus U * V2 = 0, which implies v2 = 0, i.e. 

• /2€Md(G)I	S	 .•	 S 

Let H be a subgroup of 0d (G with the discrete topology). 1 1 (H) can be identified 
with the band inM(G) consisting of the measures in Md (G), which are concentrated on 
H.	

S 

33 Lemma: l(H) is a full subalgebra of l ' (G). 

Proof: a) l'(H) is a subalgebra of l'(G). This is obvious. b) l'(H) * l'(H)' c 11(1.1)1 
Let 4a € l'(H)'. It is enough to show that ô * y E.l'(H)' for all t € H. Let t E H. ,u can 
be written y = E	where t,, € G \ H and Z. Ia.l < oo. Thus 6 * /2 = ' aAj 

nE N	 nEN	 -	 nN 
€ l(H)L , because U,, E G \ H, H being a subgtoup, of G.	- 

c) 11 (H) is full in l'(G): Assume € l(H) is invertivle in 11(0). Then	= v 1 +v2

for uniquelydetermined measures v 1 E1 1 (H),v2 € l'(H)'. Hence 6. = /2 * V1 + It * 
and 1u * v, = 6, - 1u * v1 E l'(H) n l'(H)' = (0) by a) and b), which implies v2 = 0, 
i.e. U ° ' E l'(H) I	 •	 S	 •	 - 

3.4 Corollary: l'(H) can be identified with.a full subalgebra of M(G).. 

To construct the counterexample, let 0 = SO(3, R), E = V(G). Define U: 
G -- 1(E) by. (U/) (s) = f(t's) (s E 0) for all t € 0, / E L' (G). Then U(1a) f = * / 
for u € M(G), f € L'(0), according to the definition in section 2. For y € M(G), 

S.

 

0`M(G)(/2)= a(U(/2)) -	S	

•	 ••	 .	
•	

( 3)
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as is well known (see also [1]). The free group on two generators H is a subgroup of Gd 
(see [71). In l'(H) there exists a hermitian measure 1u such that i E ap(H)(fi) ([3]). 
It follows-from 3.4 and (3) that i	 But since u is hermitian, the matrices 
A. are selfadjoint, which implies U a(ft,)	R. 
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