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The Mareinkievicz Interpolation Theorem for Rearrangement-
Invariant Function Spaces and Applications 

F. FEHR 

Der interpolationssatz von J. MARCINKIEVICZ [17] besagt, daB jeder sublineare Operator T,' 
der gleichzeitig vom schwachen Typ (p l , q1) und vom schwachen Typ (P2, q2) 'St, notwendig 
uch em beschrinkthr Operator des Lebesgueraumes'L(O, 1), 0 < 1 no, in sich ist, und zwar 

für alle p mit P2 < p < p 1 . Ziel der vorliegenden Arbeit ist, diesen Satz auf den Rahrnen re-
arrangeinent-invarianter Banachscher Funktionenräume zu verailgemeinern und ihn damit 
eiñem sehr viel gröl3eren Kreis von Anwendungen zuganglich zu machen.  

FIIITePHWInUHOHHaH reopeMa VI. MAP[IIHHEBI11A [17] ymepiiaeT, 4T0 BaBHfl cy6Jlunefi-
Hblfi onepaop T, HoTophlü WU1OBPMCIiHO uMeeT cJ1aa1f (p1, q1)-TIM II cia6aif (P2, q2)- 
TIM, Heo6xojuMo nr3aaeTcn orpaHII'IeHHIJM orlepaTopoM B TIe6erOBoM EJPOCTPaIrCTBe L(0; 1) 
(O,< 1 oo) JIH ,Bcex THHX p, 'ITO P2 <P < p. 13 HacroaueS paoe na Teopema 
o6o6uaeTcH ua Cjjyqaft nepecTaHono4110-nuBapnaHTHbIx (cur.neeTpwillux) 6allaxoBblx npo-
CTIICTB 4yHxIHft. Tei caiaiM veopea npueiiuia B 3Ha qwte.mno 6wiee wnpOiiIx paMIax. 

The'interpolation theorem of J. MARCINXIEVICZ [17] states that any sub1inar operator Twhicli 
is simultaneously of weak types ( pa, q 1) and (P2, q2 ) is also a bounded operator from the Lebesgue 
space L(O, 1), 0 < 1 on, into itself, provided P2 < p < p1 . The aim of this paper is to gener-
alize this theorem to the setting of rearrangement-invariant Banach function spaces, and thus 
to render the theorem available to a much larger range of applications. 

1. Preliminaries	 - 

Let (Q, E, z) be a a-finite, non-atomic measure space with (Q)	1	no, .11(Q)

(resp. (Q)) the space of realvalued (resp. nonjnegative), j-rneasurable functions on Q 

a rèàrrangernent-invaiant (= r.i.) function norm,on(Q), and X -_ X 5 (Q) the r.i. 
Banach function space generated. by Q, in the sense of W. A. J. LUXEMBIIRG [14]. 
By X' = X'(Q) we . denote the associate r.i. Banach function space of X which is' 
genera ted by the norm	

S 

'(g)-:= sup {J, /g d :,f E (Q), e(/)  

Note that " = e• Finally, let X2 (Q*) be the Luxemburg representation of the space 
Xe(Q), i.e., Q*	(0,1), i = rn. =Lebesgue measure, and A is a r.i. function norm on - 
the set (Q*) of all nonnegative, Lebesgue measurable functions on Q* such that 

for all / E (Q), with /* 'denoting the nonincreasing rearrangement of - 
Explicitely, for / E (Q*) the norm A(/) is given by 

-	AU). = sup {J /*(x) g*(x) dx : gE(Q); '(g)	
1},
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and the space X(Q*) by	 S 

X1 (Q*) := {j E 7(Q*) :2(1/I) < 00), 

where .47(Q*) is the set of all realvalued, Lebesgue measurable functions on Q*.This 
definition is meaningful, since supp g* Q* if 9'E '(Q). In the sequel, the Luxem-
burg representation of X 8(Q) will systematically be used in order to reduce the .prob-
lem t6 the situation where Q = (0, 1) is an interval and u = = Lebesgue meas-
ure, as treated in [8]. 

The first definition which involves the Luxemburg representation is the definition 
of the Boyd indices xt- and fix of the space X 8 (Q), namely 

log IJE3I!(xQ . )j	 log 11E8 (XA(Q)1 
:= inf -  Sup -  

0<8<1 logs	8>1 logs 

where E3 is the dilation operator on ..i7(Q*), given by 

(E3/) (t) := .!t) 
if stEQ* 

0	elsewhere, 

see [2]. If,- . in particular, X0(Q) = L(Q),	p < 00, then IEjJ(L9(D)1 = 8- 11P and

#L(Q) = i/p. Hence, these "Boyd indices" c and fl generalize the number 

I/p which characterizes the 'space L in the Lebesgue case. Generally, it can be 
shown'that'0	x	1 (just as0< i/p l), and ax.	—flx,flx' = 1 
For further properties of indices see [9, 10]. 

The second definition we need is that 6f an operator of weak type. As a substitute 
for the space weak-La in the original Marcinkievicz theorem, we now use the re-
arrangement-invariant Lorentz spaces A(X) and M(X) (see e.g.[19, 25]) which can be 
assigned to each r.i. Banach function space X = X(Q), namely 

A(X) := {t E XA : 11111 *4x : f /*(s) dr(s) < oo} 

M(X) : = / E	(Q) : Il/IIx': = sup t(t) f 
/*() ds < oc 

-	 £E)	t
0 

where TA- is the fundamental function of the space X 8(Q), i.e. r1 (t) := 
fort--> 0. Without loss of generality, r1 will be assumed to be concave, and rx(O+) 
= 0. The spaces A(X) and M(X), with I] . Iin and II IIM(x), respectively, as norms, are 
r;i. Banach function spaces such that A(X) c I c M(X) with continuous embeddings. 
Moreover, the spaceA(X) (and M(X), resp.) is the smallest (largest) r.i. Banach func-
tion space contained in (containing) I with the same fundamental function, see 
[10: Corollary 3.21. If I = L, 1 :E^ p < oo, then A(L) = L 1 and M(L) =	(Lpq

denoting the Lorentz space). 

Definition 1.1: Assume that X = X8 (Q) is a r.i. Bánach function space. A sub-
linear operator T : A(X) -± ..i7(Q) is said to be of weak type (X, X), if and only if 

sup (T/)* (t) rx(t) ^ const. II/114x	(1€ A(X)).  

If, in addition, 94	> 0, then the left side of (1.1) is equivalent to JT/IIM( x ) . Indeed, 

(T/)* (1)	(i (T/)* (s) ds)/t on account of the monotonicity of (T/)*, and, on the
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other hand	 S	 S 

•	(T/)* (t) ;5 SUPSEQ* {(T/,)* (is) rx(s )}Irx(t) for t > 0;	. 
hence	•	 S	 S 

If (T/)* (s)'ds :5,-1 sup {(T/)* (s) rx(s)}f

 

sQ 

	

^ sup {(T/)* (s) T(S)} I J L B II [A(x1(Q s ))] ds/TA (t)	( 2) 

•	Here we used the facts that  
• T(t) t(t)	 (1.3) 

and	 S	 S	 S 

IIIE6I[AxQ. I ds) (t)	(t	 (1.4) 

- see e.g. [20] and [10: (3.6)], respectively, noting-that (1.4) is valid since 194(X) > 0 by 
assumption; Multiplication of (1.2) by rx(t) and passing to the supremum over all 

•	t E Q*, yields	 S 

II T/IIx>	(1 IIEaII[A(xQe)J ds) sup (T/)* (s).. 
o	 S 

Hence we have (compare [20]) the following lemma.	 S 

Lemma 1.1: I p4(x) >0, then asublinear operator T :A(X) --.If(Q) is . 61 weak 
type (X, X) if and only if T is a bounded operator from A(X) into M(X), ie. 

•	JT/	const• I!/IIA(X)	(I C A(X)).	.	 (1 A), 
• - ' Finally we introduce the notations (Z) for the space of all bounded sublinear 

operators mapping a r.i. space Z into Z, and	 S 

•	
W(X, 1')	W(X(Q), Y(Q)) := { T: A(X) + A(Y) —s7(Q); T 

of weak types (X, X) and ()J, Y)}.	 '	(1.5) 

2. Necessity of the Rearrangement-Invariant Property '	S •	 S 

• If X, Y .7(Q) are any two Banach function spaces, and T c (X + Y);we say that, 
• T is admissable (compare [5]), if therestriction	of T to the space X belongs to (X) 
• and, simultaneously, TIy C ( y ). 'By ad(X, Y) wedenot6 the setdf all adrnissabIepera-

tors with respect to . the space X and Y. The strong-type interpolation problem con-
sists in determining those spaces Z for which ad(X, Y) (Z), if X and Yare given. 
In the.particular case that X, Y, .Z are Lebesg ue, spaces, this problem was solved by 
the convexity theorem of M. RrEsz/G. ThORIN [18,24]. In the frame work ofr.i. spaces 

•	concrete methods of how to construct function spaces which solve the strong-type 
•	

•	 interpolation problem are studied in [6].	 •	

•	 .5 

•	Since ad(X, Y)	W(X, Y), a harder problem is the weak-type interpolation prob-
•	lem which consists in finding5 those spaces Z for which W(X, 1')	(Z). This problem 

8 Analysis Bd. 2, Heft 2 (1983)	•	 •	 - •
	 S
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was solved by J. MAzcINKIEvIcz [17] for Lebesgue spaces X, Y, Z, and by D. W. BoYD; 
[2] in case that X, Y are Lebesgues spaces and Z is an arbitrary r.i. Bainach function 
space. The purpose of this paper is to solve the weak-type interpolation problem for 
the case that X, Y are any abstract r.i. Banach function spaces and Z is any Banach 
function space. As a first step we now show that the space Z must necessarily also, be 
,rearrangement invariant.	 - 

Theorem 2.1: Let X, Y .11(Q) be r.i. Banach junction spaces such that 0 < mm

.{a8x,fly} ^5 max (ax, c) < 1, and Z	.H(Q) be any Banach, junction space. 11 
W(X,' Y) c:(Z), then Z is rearrangement invariant.	 -. 

Proof: The idea of the proof consists in reducing the assertion to a particular 
result of A. P. CALDERóN [5] for Lebesgue spaOes'by combining the interpolation 
theorems of M. Riesz/G. Thorin and of D. W. Boyd: By assumption, there exists a 
number q E (1, c) such that	 - 

0 < I/q < iiin (, fly} ;5 nax {ax,a}'} < 1. 

If we apply the , interpolation theorem of [2] twice, namely to the spaces X and .Y, 
respectively, we can conclude that W(L1 1 , L)c (X)n (Y). Since (X) n (Y) c W(X, 
Y), if follows that W(111 , Lq ) c W(X, Y). On the other hand, the interpolation 
theorem of M. Riesz/G. Thorin yields that ad(L1 , L)	[La ]	(La ). Since ad(Lj, 
L,) c (L1) and, obviously, (L1 ) n (La) W(L1 , Lq ), we have ad(L1 , L,,,,) W(L1 , Lq), 

and therefore finally, ad(L1 , L) c W(X, Y). If, by assumption, W(X, Y) c (Z), 
then necessarily ad(L1 , L) c (Z). So by a theorem of [5] this implies that the space Z 
is rearrangement invariant I	- 

With the above theorem in mind, our next aim is to show that the property of 
rearrangettient-invariance is also sufficient for a weak-type interpolation theorem to 
hold. 

3. The Generalized Average Operators 

The basic idea of the interpolation theorem to be established is to try to characterize 
those r.i. spaces which solve the weak-interpolation problem by conditions upon 
their Boyd indices. As a link between Boyd indices and operators of weak type we now 
briefly present two integral operators Px and	as well as their basic properties, 
studied in detail in [8].	 - 

Definition 3.1: Let X = XA (Q*) c:.4'(Q*) be a r.i. space. Then 

a) -	(Px t) (t)	
rx(t) fl(s)
	

(I C ,ft(Q*) t C Q*); 

Tx

	fl(s)
	

(I C 7(Q*) , t C Q*). 

Note that rx ( Q ) (Q) = 'rx A w s) if X2(Q*) is the Luxemburg representation of X(Q). 
The operator Px, used by L.MALIGRANDA [15] in connection with Hardy's inequality, 
is a generalization of the average operator P9 of [2, 31; the operator Q- however is 
quite different tOMALIGRANDA'S [16] operatorQ. In the following lemmata we collect 
those properties of the operators Px, Q. which will be used in the sequel.	-
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Lenirna 3.1: Assume that X = X , (Q*), )7 = Y 1 (Q*) , Z = Z25 (Q*) are r.i. spaces 

a) I/O <p4(X)	4(X) < 1, then for every f E Z, *9 EZ' - 

1	(X) f /*( t ) (Q' g) (t) dt	(P1/*) (t) g*(t) dt 

A(X)	f 1*(t) (Qi, g*) (t) dt; 
l—aAX)

0 

b) (Px/)*(t)	(Pxf*)(t)	(I E ft(Q*),t € Q*), 
(Q1/)*(t)	(Qx/) (t)	 (I € f(Q*), t € Q); 
c) the operator Px is of weak type (X, X); if /94( y ) > 0 and ry/-rx is a decreasing func-
tion, then Px is also of weak type (Y, Y); 
d) the operator Qy is of weak type (Y, Y); if 1 94(X) > 0 and Ty/TX is decreasing, thenQy 
is also of weak type (X, X);	 S 

e) Px + Q = S where S denotes the Calderón operator, defined b 

(St) (t) f/() d(min	
{}) 

(I € i7(Q*) , t E Q*). 

For the proofs of these properties see [8]. In particular, the constant in the "duality" 
relation of a)can be evaluated by recalling that 

r1 (t)	dr(t)	r(t) 
fix	t .	dt	A(X) __,	 (3.1) 

compare [10]. 
The Calderón operator S obtains its importance for interpolation theory from the 

facts that (see [201) 

S € W(x2 ,(Q*), Y1,(Q*)),	 (3.2) 

and, for each t € W(X01 (Q), Y(Q)), 

(Tf)*	const. Sf*	(f . € A(X,(Q)) + A(X 1(Q))),	 (3.3) 

If X ,(Q*) and YA, (Q*) are the Luxemburg representations of X,(Q) and Y(Q), 
respectively. On the other hand, the operators Px andQy are. connect ed with the 
Boyd indices. In fact, for the case that X, Z 47(Q*) are r.i. space of Lebesgue 
ineasurablefunctionson Q* = (0, 1) such that ,84(X) > 0, the following holds; see [15], 
also [1, 3].	 -	-	 - 

If LX < 4(X) ,then Px € (Z]; it ?x € [Z], then	 -	( 3.4) 

An analogous assertion for the operator Qy, which is not contained in [15], can be 
deduced from (3.4) by duality arguments, using Lemma 31a). Here we assume that 

jj(Q*) is a r.i. space with 0 <A(Y) ;5 4(}') < 1. Then: 

It CIAM <i9z, then Qy € [Z]; if Q€ [Z], then #A(x)<az.	 (3.5)


For the proof recall that ax , = 1 - j9 and 9x = 1 - ax for any r.i. space X, note that 
= M(Y'), as well as TM(Y') =rA(y'); see [21, tO]. Hence 9M( y') = 9A(Y'), and 

8
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we can argue as follows: If LXAY) < flz ' then 1 - 4(Y')	1 - /1M(Y) = 1 - 194(Y)' - 
= .4(Y) <flz = 1 - ocz, i.e. c'r <• 4(Y') . So by (3.4) we have € [Z'], this being 
equivalent to Qy € [Z] on account of Lemma 3.1 a). The second part of (3.5) is proved 
similarly. 

Concerning the operator norms of Py and Qx we have the following facts. 
Lemma 3.2:	 I 

ds a) If	 then IIPxIhij	 IE8Ihzi M(s, X)	<00; 

b) if -A(Y)	then JQy llzj	Y) f IES ! I [ z J M(s, Y) - ds  < 00. 

HereM(s, X) : sup8 8j€a• [rx(st)/rx(t)] and M(s, Y) analogously. 

Proof: A weaker version of part a) — without the factor xA(X) - was proved in 
[16]; We confine ourselves to b), the proof of a) being similar. For this purpose, let 
/ E Z, g € Z' such that g	0, JLqjjz, = 1. Because of (3.1) 

' (QlfI (1) g(t dt :5: 4(Y) ff /(s)	g(t)	dt f  

• I'!' 	 ds

A(Y) J J l!(st)I Ty(t) g(t) - dt 

•	 01 

	

CA(Y)f (f (E fI)(t)M(s,	 g.(t) 

yielding b), since / € Z, g€ Z' are arbitrary I	 •• 

By means of the method of applying the Luxemburg representation, the assertions 
(34), (3.5), and Lemma 3.2 can be transferred tothe more general situation of r.i. 
spaces in .H(Q). 

Theorem 3.3: Assume that I = XQ1 (Q), Y= Y 1 (0), -z =.Ze s (Q) c .11(Q) are 
r.i. spaces with p4(X) > 0 and 0 < 194(Y) a,(Y) < 1.Let X 1 (92*), Y 2 (Q*), and Z,(Q*) 
denote the Luxemburg representoAions of X, Y, and Z respectively.	-	- 

If c </94(1) , then for every I € Zes(Q) -	 -	• V S 

ds 
IPx1*z1 ; Q .,	(aA(x)I lI E 8! J[ZA(Q)] M(s, X)	!/IIzA(.o.);	(3.6) 

conversely, if (3.6) holds for every / € Z 5(Q), then az < a,ix) .	 - 
b) If OA(Y ) < i9z, then for every / € Ze;(Q)	• -	 -	-	 -

ds 
IIQYI*IIz A,9*)	(aAY) f IIFaII[zQ•] M(s, Y)	I/*IIzA(Qs),	 (3. 7)

 S) 

conversely, if (3.7) holds for ever! / € Z(Q), then	<'19z.	 V
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• Proof: Note that the indices of a r.i. space coincide with the indices of its Luxem-
burg representation and, moreover, that inequality (3.6) for all / € Ze,(Q) is equivalent 
to P E [Z3 (Q*)] ,' in view of Lemma 3.1 b); similarly inequality (3.7) for all / € Za.(Q) 
is equivalent to Qy € [ZA (Q*)] 1	 '.	•.	 . 

4. The Interpolation Theorem for Rearrangement-Invariant Spaces 

Now we are ready to prove the following weak-type interpolation theorem. 

Theorem 4.1: Assume that X - X(Q), Y = YQ,(.Q), Z = ZQ,(Q) .A7(Q) are 
r.i. spaces such that Zc A(X) + A(Y), #A(X) >0,0< #A(Y)	X4(}) < I, and Ty/TX 

•	is decreasing.	 -	 .• 

'a) It aA(y) <liz aZ <P4x, then W(X, Y)	(Z); 
b)I/'W(X, Y)	(Z); then- flA(Y) <liz	z < AX)-	

0 

Proof: a) Let T € W(X, Y) and / € Z be given. As above denote by X11(Q*.), 
• y1 (Q*) , ZA,(Q*) the Luxemburg representations of X, Y, Z, respectively. Since I € Z, 
• we have /* € Z25(Q*) , Jj(Q*) and, by Lemma 3.1 e), 81* = PxI* + Q/*. If the 

index condition of a) holds, we can apply Lemma 3.2 to conclude that 

lIS/IIz21 .	(II .eII[zQ. ] + QYIJ[z3 Q. ]) III*IIZ.(Q*) < 

This means, iii particular, that 81* € Z(Q*), and hence (81*) (t) <	almost every-

where, since' 23 is a r.i. norm. This' implie that f* € A(X21 (Q*)) + A(.Y,(Q*)). In 

'.order to show that ' € A(X,(Q)) + A(Y,(Q)), we consider the norm of /* in 

A(X(Q*)) ± A(YA,(Q*)). By definition of the norm of a sum of Banach spaces, 

JI*A(I(Q.))^A(y(Qs)) = inf {I!91IA(x . ) -I- It9IIA(Y,(D')) 
I = 91 + 92,91 € A((XA,Q')), 92€ A(YA,(Q*)), 

•	.	 S	 910920}.	 0 

According to [5] there exists a measure preserving transformation f?" / from 47(Q*) 

to .H(Q) such that for each decomposition /* = 91 + 92 with, 91, 92 as above, there, 
exist functions / I € A(XQ,(Q)), /2 € A( Y,(.Q)) with /* = 91' /2 =92 and /	ñ + /2. 
Hence	-.	 •	 -	 '	 . 

III* IIA(X(Q*))4(Y())	•	 .	 -	 , 

= inf(II/ l *I!A( x 1Q*)) + II/2 *I14(Y1,(Q)) .	 •	 '• 

I	L + /2,/I € 4(X(-Q)), /2 € -A(Y.(Q))} 

= I/lIA(x(Q))+A(Y,(Q)). .	 •'	 • -	 •.	 : 

This shows that / € A(X(Q)) ± A(X(Q)),. and therefore (13) can be applied to /, 
yielding that •	•	 '	 .	 •	

' 

•	II T/PPz,Q) = I(TI)0*IJ	^ const. I$/*IIzQ)  - 
•	!E^: const. (UPxI I [zi (Q s )] + iQYh[Z(i20)) II/*iZ(Q*) 

= const. 111 11z (D) < 00.	 -	— 

Therefore we finally have Ti E ZQ,(Q) and I] 1'II[z Q (2)] <
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b) Since the r-finite measure space (Q, E, !') was assumed to be i jonatonlic, there 
exists a measure preserving tranformation 7r Q - Q*• By means of this transfor-
mation 7t the operators P and Qy on .,1i(Q*) can be transferred into operators, say 
P and Q, on .11(Q). For v E Q we introduce two kernels k 1 and k2 by. 

k, (v)
I r1(s)/s if v E	

k2 (v) 
'({s})	I ry(s)/s if	1- V E "'({s}) :=	 . 

elsewhere,	-	 tO	elsewhere, 

and then define the operators Pf and Qy for / E .11(Q), v E Q by  

-I-- C !, dz if v E	1({t}) 
(P11) (v) := rx(t)J	 - 

0	 elsewhere,	 S 

•	 1
 

f• 
S	

/k2 dfi if .v E	t}) 

(Qyf) (v) := TY(e),)	
S	

S 

0	 elsewhere.	 , S 

In case Q = Q*, the Operators Px and Qy 'are equivalent to Px and Q1 respectively. 
In the generalcse	 S 

(Px7) (t)	(P/*) (t)	(I E
S
J1(Q), t E Q*)	 (4.1) 
 S 

•	(QyJ)* (t) ^ _L (Q),/* (t)	(f € ?(Q), t € Q*),	 (4.2) 
S	

'	 4(Y) 

where 7(v) := /*(s) if v E i({s}), and 7(v) = 0 elsewhere. Indeed sihce (j)* _' /* 
because of the measure preserving property of n, we can estimate (Px/)* from below by 

* 

1 

0

1.	'r9
	 ICNA(X)1

(PxJ)* (t) =	I /"(s) --- ds	(t) ^ .- (Px/*) (1)
+)j 	3 

S	
'	 S 

	
5	 S 

•	 '•	 ' = _L (Px/*) (1). 
4(X)  

Here we used (3.1) and the fact that Pxt* is decreasing (see [8]). Inequality (4.2)' is, 
proved analogously; Note that 4(x ) > 0 and A( > 0 by assumption.  

Conversely, it can similarly be shown that 

(P1f)* (1) (Pg)* (t)	(f .€ ft(Q), t E Q*), 	'(4.3) 
p4(X) 

(Qyf)* (t) 'L _L (Qg)* (t)	(I € .47(Q),.t E Q*) , ' -	 - (4.4) 
S	 1A(Y)

withg(t) := 1(v) if v € r'({t}), and g(t) = 0 elsewhere.  
Next we benefit from the fact that P, as stated in Lemma 3.10 is of weak type 

(X,(Q*),- X , (Q*)), in order, to show that the new operator Px on i7(Q) is of weak type 
(XQ,(Q), XQ,(Q)). In fact, multiplying (4.3) b -rx(t) and passing to the supremum, we 

55'•
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have by Lemma 3.1 b) and c) that	 - 

Slip (Px/)* (I) (t)	_.L sup (Pxg)* (t) r(t) 
P4(X) IE	 - 

sup (Pg* ) (t) t'(t) 
1Q 

•	 const.	 const.	-

I91l4(1 (0*)) = 

P4(X)	 P4(X) 

since * /*, and X, (Q*) is the Luxemburg representation of X Q (Q). If wemul-
tiply (43)by -r(t) instead of rx(t), an analogous calculation leads to 

SUP (P 11)* (t) r(t) , ,
const. 

I14(Y, (0)). 
tE0	 P4(X) 

Starting with (4.4) instead of (4.3), one can similarly show that 


const. 
SUP 

(Q) ./)* (t) t1 (t)	 IIII14(xQ)' 
'E-Q0 P4(Y) 

SUP (Q.j)* (t) r(t)	
const. 

LfII4(Y ()) 
P4(Y) 

Collecting all these estimates we have that Ps-, q } E W(X,(Q), Y , (Q)), and hence. 
Px, Q . E (Z), on account of the assumption upon Z.	-	 - 

Now, let / E Ze,(Q ) be given and construct '/ as above. SincePx E (Z)and (j).* = 1*, 
we have 

-	J! PXJIIzQ)	const. III IIZ (0)	const. )It*IIz(Q.) 

•	Passing to / and applying (4.1), we therefore have the estimate 

•	 !IPX/*I}Z()	A(X) II PXI IIZ,(0)	4(X) cont. II/*IIZ(Q). 

This implies oc Z <c4(X) by Theorem 3.3 a), as maintained 
Concerning the first part of the index condition asserted,-it follows from (4.2) and 

Qy E (Z) that 

IIQ Y/*IIz (Q*)	c4(Y) const. II/*I!ZA(0*),	-	 I - 
and hence	<flz by Theorem-3.3b). This concludes the proof of Theorem 4.1 U 

If the spaces K and V are of fundamental type (see [l0]and 5) then c4(X) = 

P4(X) = Px' and X 4( y) = ar-, /94(y) = 9y, and we have in addition 

Corollary4.2: In addition to the assumptions of •Theore?n 4.1 let K and Y be of 
fundamental type such that ax = fl and ay = y. Then JV(X, Y) (Z) if and only if 
Pv <-Pz	z <cx. 

Note that most of the known ri spacessuch as Lebesgiie spaces, Lorentz spaces, 
and Orlicz spaces are of fundamental type, see [7]. In particular, Corollary 42 contains 

•	the interpolation theorems of D.W. BOYD [2] (for X= L, Y = L, Z arbitrary, 
1 p <q < cc), of A. P. CALDERóN [5] (for K = ti,, Y = Lq, Z Li,- I p <r 
<q < cc) and its weaker version of J. E. MARCINKIEVICZ [17], as well as the theorem 
of M. RIEsz/G. TnoaN; since, each bounded operator on lii, is a fortiori of weak type
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/ 
(LP , Lu ). Moreover, part b) of Theorem 4.1 might be regarded as an answer to Con-
jecture 5.4 in [25].	* 

Explicitely, Theorem 4.1 a) can be reformulated as follows: If T is of weak type 
(X, X), we denote by !TIJv(x) the lowest positive constant such that (1.1) holds; 
similarly we define IITII;v(Y). 

Corollary 4.3: Under the asuinptions of Theorem 4.1 a) we have 

;S:	 max {II T w(x) , 11Tw(y)II} 

I X	IIE8II[z, (Q)] M(s, X) 

+ 4(Y) fI F [ZQ . )] M, Y) 

Here we used Lemma 3.2, Lemma 3.1 e) and (3.3) with the constant being equal 
to 11E1I21122(Q.) max {IITIIW(x), IIiIw( y)} as a slight modification of Sharpley's [20] argu-
ment shows: Concerning the distribution function D,(&) := (x € Q: IT/1 (x)> a) 
of T/ we have the estimate 

(Dj)	
(2 JT(x) 

1914(x)) +	
(2 IITthV(Ys I92IAY))	(4.6) 

• fdf any representation / = 91 + 92 with g € A(X), 92 € A(17).* Indeed, on one hand it 
is known that D 1(a)	1?rg,(a12) + D TO,(a/2) for a-> 0. On the other hand, if T is of - 
'weak type (X, X), then 

sup crx(DTOa)) = SUP (T91 )* (t) r(t)	II TII1vx IJgIIIA(x). 
O<t<oo 

	

• If 7' is of weak type (Y, Y) then analogously it follows that sup ary(Drg,(a))	II'IFwv 
X I91I4y. The j efore	 V 

ID	1 /	.	I-t'IIW(X) 119i1I4x)	 V	 V 

•	 k Tg-) a,	-. TX	 a/2	'	 V 

—i IIITIIw(x I192I14(x)	 .	. V	 .	 V	 V (D g,) (o12)	.ty	a12	 V 

if T € W(X, Y), yielding (4.6). Letus remark that in case of Lebesgue spaces L, Lq, 
and Lr with,J/r=,0/q + (1 - O)/p, 0<0 < 1, this- leads to the, well known con- 
stant II TlJV(Lg) II TII(8i) in • Marcinkieviez's theorem.	- V V

	 V 

5. Applications	
V	

-	 V V

	

-	 V	

•	 VV 

51. Applications to particular spaces	.	V 

Of particular interest with respect to applications is the case when the space Z = 
V (Q) is of fundamental type, i.e., when 11 E 811[z 21 Ds )] = M(11s, Z). In this Vcase,it follows 

that !IESlI[zQ)] = M(l/s, A(Z)), since T4(z) = Tz, is valid even for apy r.i. space Z. 
From this equality it then can easily be deduced that oz = 4(Z) and	= 

- For a more detailed discussion of spaces of fundamental type see [10].
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Concerning the weak-interpolation problem we now show that for this important 
'class oflr.i. spaées (which contains the Lebesgue-, Lorentz-, and Orlicz spaces) there 

• exist two further, conditions which are equivalent to the index condition of Corollary 
•	4.2: 

Theorem 5.1: As in Theorem. 4.1 leiX, Y, Z .11(Q) be r.i. spares such that ,84(x) 
>0, O< A(y) ;^ a4(y) < 1 and Ty/r de'creasing.' Further assume that (xA(X)	PA(X)' 

o4(y) = #4(Y), and Z is of fundamental type. Then the following statements are equiv-
alent: 
(a) W(X, Y) c Z);	,	 •	 '	 '	 -	 '	 • 

• (b) W(X, Y) c (A(Z));	 I 

(c) f94(y ) <i9 C <x4(x);  

(d) there exists a finite number A >. 0 such that  

fF(s t)dT2 (t)	A	 (51) 

uniformly in s E Q* , the function F : Q* x Q* R being defined by 
1 / F(s, t) := nun 

Tx—(S) r, —
(s)

p / ri (s)	(s,t € .Q*) .	 (5.2)- 

	

I (t )	r(t) ,1	 S 

:

	

	

The proof of this theorem now follows readily. The equivalence of (a) with (c) is

essentially Corollary 4.2. Since .Z is assumed to be of fundamental type, (c) can be 
rewritten as 1A(Y) <194(Z)	4(Z) <4(x). Therefore, the equivalence.of (b) and (e) 
'is again Corollary 4.2, but now applied to A(Z) instead of Z. Finally, the equivalence, 
of (b) and (d) was proved in [20]. Note that in addition to the theorem of [20] we now 
also have the equivalence of (d) with (a) I 

As 'a more concrete example we next consider the case when X and Y are Lebesgue 
spaces, and Z is arbitrary.	 - 

Corollary 5.2: If Z is of fundamental type and I	p <q < oo, then the following'

statements are equivalent: 

•	(a) - W(L5 , Jq) (Z);  

(b) 'W(L,. Lq )	(A(Z));	 ••	 .•	• -	 ••'•	 , 

(c) 11q <flz	z < I /P	 •	 •	 I 

- (d) there exists.a finite number A > 0 such that uniformly in s E Q* ,	•	

•. 

SlIq
8	 • 

f

'5iIp

t — '." dr(t) + ---' ft'i dx(t) ^ A. 
T(8) 	 'rz(8)j 

•	 -	•	0	 8 

Indeed, since TLg(t)	
t1jq and TL( t ) = VIP, the function -rL ./t- L is decreasing if and 

only if p <q. Moreover; 4(L9) = PL, = lIp> 0 and 0 < aA(L,) =	= 1/q< 1. 
Finally, observe that in this case	 • 

'Ji"(s , t) = niin((s/t) hiP , (s/t)li/(s)} • 

(s/t)//xz(s) if 0 < t < 

• - 'I (s/t)'/P/r5(s)	if t ^t 5,	•	 - 

- and therefore Theorem 5.1 furnishes the above Corollary.	 •
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Remark 5. 1:- For the equivalence of (a) and (c) it is not necessary that . Z be of 
fundamental . type. Then this equivalence is the theorem of Boyd. 

Corollar y 5.3:1/I :E^ p <q < oo, I < r < oo, and Zis one * o/ the spaces L, L,3, 
IJ(log L) or the Marcinkievicz space Me,., then the following statements are equiva-
lent:  
(a) W(L, Lq) c (Z); 
(h) W(L, Lq )	(Lr,);	 - 
(c) .11q < hr < i/p.	.	 .	 . 

Condition (d) is trivial in this case. This corollary follows frm the preceeding co-
.rollary since in -any case rz(t) =t l fr, and hence A(Z) = 

Remark 5.2: The implication (c) = (a) -contains the theorems of Riesz/Thorin 
and of Marcinkievicz, whereas (c) => (b) is the theorem of Calderón 

Letus conclude this paragraph with the relation 

f F(s, t) drz(t) = Ty(S) [Pz(11ry)] + y(8) [Qz(1/tx)] (a),	 (5.3)


bëteen the integral of (5.1) and the average operators of Section 3. 

- 5.2. Applications to Particular Operators 

•	As a first example we consider the Hardy-Littlewood maximal operator 0 on R, 
n	1, in its spherical form, given for I E R. by 

S	

(0/) (v) := sup .
	C /(u) du.	 -	.	 (5.4) 

	

(v ) m((B(v)) J	 . 
•	 .	 .	 B(v)	 . 

Here the supremum has to be taken over all balls B(v) with positive radius and center. 
V. If Q(v) is the circumscribed cube of B(v) with its sides parallel to the coordinate 
axes, then there exists a constant A > 0, depending only on ñ (with A 1 = 1) such 
that m(Q(v)) ;5; Am(B(v)), see [23], As an application of Corollaries 4.2 and 4.3 we 
obtain the following mapping theorem for the maximal operator. 

Theorem 5.4: If Z	Ze(Rn), n ^t I, has indices stri1tly between 0 and 1, i.e., 
0< 19z	az. 	1, then 0 C (Z) and	 S. 

II°(Z)	20"A . !112II(ZA(Q*)1 f II E8I!zsi ds,	 (5.5)


where Z2(Q*) is the Luxemburg representation of Z. 

Proof: In order to derive this theorem from Corollary 4.2, choose X L 1 ( R) and 
Y := L(R) with I <q < oo. It is well known that the maximal operator 0 is of 
weak type (X, X) and a bOunded operator on Y. More precisely, if D9,(a) 

• := z{x E R: 0(f) (x)I > a) is the distribution function of 0/, then (see [23]) 

D91(a) < 2-A '  II/Ix	(/ C X),	 .	.	(5.6) 

•	11011(y) 2
 ( 

q2	)'1	 -	 - .
	(5.7) 

-	•\
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From (5.6) it follows that (Oj)* (1) g; (2"A1t) 1111Ix = (2'A11) 11/11, for / E X. RecalL 
ling that Tx(t) = t and . A(X) = L 11 , we can conclude that 0 is of weak type in the 
more general sense of (1.1) with the weak norm 

IL0 IIW(X ) :!E^	 (5.8) 

On the other hand, o4D91(a) ^ 1101 11,q for / (' Y, see [23]; hence (0/)* (t).	(I101(y/t'1) 
X l/lly	(I10 I1( y.0) 11 111.1 . On account of r(t) = tIIq and A( Y) = Lqj , this - together

with (5.7) - means that 0 is of weak type (Y, Y) with the weak-norm - 

nA1/ 
- 1I 0 11w(Y ) ;5 2(	q	

.	
.	(5.9) 

• Summarizing we can say that 0 E W(X, Y) for any 4,E (1, oo). The spaces X and Y 
are of fundamental type with indices a--= flx = 1 and oc y	= 11q. Further, Ty/TX 

• is decreasing since q > I, so that all the assumptions of Corollary 4.2 are satisfied. 
For any r.i:space Z with 1/q <j9z az < I we therefore have by Corollary 4.2 that 
o E (Z), and by Corollary 4.3 that	 .	•	 .	 . 

ll°ll(Z)	
IIEI,2IIIZA(Q*)1 max {A n 2 

(2nAfl)1I} 

X	IIESII(z2(Q.)J ds + - f jjE,,jJ jzA (D. )j s'Iq ds1s}.	

• 

Here we used that M(s, X) = s and M(s, fl = sI/q• Note that the latter two inte-
grals are finite on account of the index condition assumed, see [3]. Letting q tend to 
infinity we obtain (5.5), observing that A	I, and the second integral is decreasing mgi	.	.	.	 . 

Remark 5.3: A result similar to Theorem 5.4 could be deduced for the cubic maxi-.' - 
- mal operator by the same methods. The only change is that the factor A in (5.5), .-.., 
(5.9)- is omitted.	 .	.	.	. 

•

	

	. For concrete spaces Z the norm estimate of (5.5) can be evaluated explicitely. In-




deed, we have - 
Corollary 5.5: a) If Z = A ((k, p), p> 1, is a uniformly convex Lorentz space, then. 

(0)E(Z)and	
•-'	 •1 

	

- 0lkz) 5 2A N(1/2)fN(s) 1IP ds ^ 2'+'IPA	 (5.10) 

• with N(s) := SUPt(,QI [î u) du/f(u) du].
 

b) If Z = LMI, is an Orlicz space with strictly increasing Young junction q' such 
•	that	 reflexive, then	•	 .	 -	 . - 

	

•	 2'A	 . 

	

•	 •
	

-k1(1/	 (5.11) 
fd

5/K-1(s) ,	..S•	 .	 (5.11) 

K.,r'(.$) denoting the right-continuous inverse of Kp(s) : sUpte* [W(st)/'(t)]. 
This corollary follows from .Theoreni 5.4 by inserting the norm llE$llc(Qs)j of the


	

• •
	 respective space. If Z = A(4, p), then I1 E8111z = N(s) h IP, and for Z = LM,1 one has 

= 1/Kr'(s). Concerning the index conditions note that for Lorentz spaced



-. 124	F. FEllER, 

Z= A(, p) one has 0 <z cz < 1 if and-only if Z is uniformly convex,' whereas 
in case of Orlicz spaces Z = Lmy, this condition i equivalent to the reflexivity of LM1. 

The second es'timate in'(5. 10) follo*s from N(112) :c^ 2 1 IP and J N(s) 11P ds ^ f s'IP d 

p/(p - 1) for.p> 1. .For the one-dimensional case A, -' I, and (5.10) therefore im-
proves the estimate IOl(z)	2 . 21 IPp/(p - 4) as stated in [13]. 

Remark 5.4': If Z =L, r> 1,one should expect (5.7), but Theorem 5.4 leads in 
this case to	 . 

101(L,)	2$A211t 
r  

which, for n= 1, differs from the classical constant of Hardy-Littlewood by the 
methodic factor 21k. For arbitrary n, the constant.given in [22], namely 22"r/(r - 1), 
is larger than the above constant by the factor 2'- 11 r/A0. 

For n = 1 and Q (0, 1), 0 <1 < oo, ju = rn = Lebesgue measure it is well known 

[12] that (0/*) (t) = (lit) f j*(s ) d.s. By means -of this representation we now can 
0 

give an application to ergodic theory."For this purpose, let be a measure space'with. 
finite measure 1, and' let G be an ergodic group of one to one measure preserving trans- 
formations g of . Further assume that for 'each measurable function / on 6 and each. 
g E U the, product /g is measurable on G x . Then the expression 

(l) (v) =	j fI(9v) dg	(v E ,a>0) 
IN 

N. 

'exists for any nonnegative function / E L 1 (). Here ( Na : a> 0} denotes a family of 
compact, symmetric neighbourhoods of the identity of G such that NONb 
and (N,,* I	K IN,J where I Nal is the left invariant measure of Na- Concerning the

operator  

(P/).(v) := ess sup Pa(III) (v)	(/ E L1 (), v 
a>0  

it is shown in [4] that	 . 

(P/)* (1)	/* () d	(t E (0,1)) 

Hence, P is of weak type (L1 (), L1 ()) and (P/ ) * (t) K2 (0/*) (t). Since 0 is bounded 
on L() for 1 <g < 00, the 'latter implies that P is.also bounded and, a fortiori, of 
weak type (Lq(),'Lq()). By Theorem 5.4 we therefore have  

Corollary 5.: 1/	= 1 <cc and Z() is a r.i. space of 1u-measurable functions 
on 6, such that 0 <	<1, then P E (Z).  

Remark 5.5: Similar considerations could be applied e.g. to the Hilbert trans-
form, .to the'conjugate operator, the Poisson operator or, more generally,. .to kernel 
operators with a kernel which is homogeneous of degree - 1. In these cases Theo-
rem' 5.4 would furnish mapping properties of these operators on Lorentz - or Orlicz - 
spaces, such as Hardy- and Hardy-Schur inequalities. In particular by means of the 
conjugate operator a theorem [ii] about norm . 'convcrgence of Fourier series on r.i. 
spaces could he reestablished of.
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