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The ‘\Iaremknevncz Interpolation Theorem for Rearrangement-
Invariant Functlon Spaces and Apphcatlons i

F. FEHER

Der Interpolationssatz von J. MARCINKIEVICZ [17] besagt, daB jeder sublineare Operator. 7',
. der gleichzeitig vom schwachen Typ (p,, ¢;) und vom schwachen Typ (p,, ¢;) ist, notwendig
auch ein beschrankter Operator des Lebesgueraumes IL,,(O, ), 0 < | £ oo, in sich ist, und zwar
fiir alle p mit p, < p < p,. Ziel der vorliegenden Arbeit ist, diesen Satz auf den Rahmen re-
drrangcment invarianter Banachscher Funktionenrdume zu verallgemeinern und ihn damlt .
* einem sehr viel groBeren Kreis von Anwendungen zuga.ngllch zu machen.

Hmcpnonﬂuuouuaﬂ Teopema Il. \IAPuHHhEmmA [17] yTBepHaaeT, YTO KaKIBIL cyﬁnmleu
HHIit onepatop T, KOTOpHIi onuoape\ie}mo nmeer cnaluit (p,, 91) TUIT 11 CHAOHI (p,, ¢,)-
TUI, HeOOXOAMMO ABJNAETCA OPPAHMUCHHHWM onépatopoM B JIe6eroBoM mpoCTPaHCTBe L,(0; 1)
(0.< I £ o0) AR BCEX TAKUX p,'lrro Py <-p < p,. B Hacroaweit paOOTe 9Ta Teopema
oGofmaercsa Ha cayvall nepecTaHOBOYHO-MHBAPHAHTHEIX (cuMMeTpUUHHIX) 0aHAXOBHX MpPO-
c'rpaucm q)ym\uxm Tex caMbIM TeopeMa MPUMEHIIMA B 3HAYUTEIBHO 6o.nee mupomlx pam\ax

The'interpolation theorem of J. MarcINKIEVICEZ [1 l] states t,hu-t any sublmear operator T' which
is simultaneously of weak types (p,, q,) and (p,, ¢,) is also a bounded operator from the Lebesgue
space L,(0,1), 0 < I < oo, into itself, provided p, << p < p,. The aim of this paper is to gener-
alize this theorem to the setting of rearrangement-invariant Banach function spaces, and thus
to render the theorem available to a much larger range of apphcatlons

s .

1. Preliminaries _

Let (2, X, u) be a o-finite, non-atomic measure space with u(Q) =:1 < oo, H(R2)
(resp. 2(Q)) the space of realvalued (resp. nonnegative), u-measurable functions on 2
o a rearrangement-invariant (= r.i.) function norm.on 2(2), and X = X () the r.i.
.Banach function space generated. by g, in. the sense of W. A, J LUXE\(BURG [14].
By X’ = X,'(22) we denote the associate r.i. Banach function ‘space of X which 1s“
generated by the norm : . -

.

e’(g)~:= sup { [fgdu f€P@), o) < 1}-
. v 3 . .
\Tote that o/’ = p. Finally, let X,;(£2*) be the Luxemburg representation of the space
X, (9); i.e., 2% := (0,1), u = m = Lebesgue measure, and 4 is a r.i. function norm on
the set 9’(9*) of all nonnegative, Lebesgue measurable functions on 2* such that
o(f) = A(f*) for all f € P(82), with f* denotmg the nonincreasing rearrangementoff ’
Exphmtely, or / € P(2*) the norm X(/ ) is glven by

’

A(f).= sup { f f*(z) g*(w) dz : g€ P(2); ¢'lg) é_" 1},
Sole . f
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and the space X;(2*) by .
Xo(2%) := {f € M(2¥%): /(Ifl) < oo}

where .///(Q*) is the set of all realvalued, Lebesgue measurable functlons on Q*.This’
definition is meaningful, since supp g* = Q% if g € 2(2). In the sequel, the Luxem-
burg representation of X,(2) will systematlcally be used in order to reduce the prob- °
lem to the situation where 2 = (0,!) is an interval and p = m = Lebesgue meas-
ure, as treated in [8].

The first definition which involves the Luxemburg representation is the definition
of the Boyd indices xy and By of the space X,(£2), namely"®

i inf — 08 IBdat g Jog IBdlkuen:

&y -
0<s<1 logs " . - s>1 log s

where E, is the dilation o/perator on . (2%), given by
‘ fsty if steQ*

0 elsewhere,

(Esf) (8) := {

see [2] If, in particular, X,(2) = L,(2), I £ p < oo, then |, [][L @) = s”YP and
ar 2= Pr,e = 1/p. Hence, these “Boyd indices” ay and By generalue the number-
l/p which characterizes the space L, in the Lebesgue case. Generally, it can be
shown'that 0 < By < ay < 1(justas0'< 1/p < 1),anday = 1 = By, By = 1 — oy
For further properties of indices see [9, 10] ,

The second definition we need is that of an operator of weak- type. Asa substltute
for the space weak-L, in the original Marcinkievicz theorem, we now use the re-
arrangement- mvarlant Lorentz spaces 4(X) and M(X) (see e.g.[19, 25]) which can be
assigned to each r.i. Banach furiction space X = X,(2), namely

. l .
A(X) = {f € //(Q) : Il\lll}ux) = [ *(s) drx(s) < 00},

N

. N . l .
M(X) = 1f € Q) : II/me»:=‘S;l;I3t%(t) f f*(s) ds < oo,

* where 7 is the fundamental function of the space X,(£), i.e. TX(t) = [lz0.minemllx 2% )
fort.> 0. Without loss of generality, t, will be assumed to be concave, and rX(O—}—)
= 0. The spaces A(X) and M(X), with || - |4, and || - |lm(x), respectively, as norms, are
r:i. Banach function spacessuch that A(X) = X < M(X) with continuous embeddings.
VIoreover, the space A(X) (and M(X), resp.) is the smallest (largest) r.i. Banach func-
tion space contained in (containing) X with the same fundamental functlon, see
. [10: Corollary 3.2]. If X = L,, 1 < p < oo, then A(Lp) = Ly and M(L,)) = poo (Lpg
" denoting the Lorentz space). o

Definition 1.1: Assume that X = X (Q) is a r.i. Banach function space. A sub-
linear operator 7' : A(X) — M (L) is said to be of weak type (X, X) if and only if

sup (Tf)* (t)rx(t)Sconst Mlaey  (f€ AX) ) N : © (L)

If, in addltlon Bauiy > 0, then the left side of (1.1) is equiva-lent to ”T/”Mu.')- Indeed,
(T/ (¢) S (f (’l'/)* (s) ds)/t on account of the nionotonicity of (Tf)*, and, on the’
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other hand
(ThH> (t = Supaem (T/ * (S) Tx(s) /tx(‘) for ¢ > 0;
hence . '
1 f (Thy* (5)ds =+ sup (7))
- < sup { (Tf)* (3 Tx(s)} f“l’fa”[A(XA(Q‘))] ds/t,\(‘)-‘ _ (1}-2)
P, Y .
Here we used the facts that o : - . . .
‘ . tx(t) rx (t) = t » S : ‘ ) . .(1;3)
and . ‘ . , . ' ‘ - ;
ot . 1 < | . . o ' .
f.ds = [“F”' dé’r"'(t)'i (t*E-Q*) g
Tx(s) T sli{A(xx2 ’)] ol R\ ) ” : . T

_seee. g 20] and [10 (3:6)]; respectlvely, notmg that (1.4)is valrd since ,B,,( ) > Oby .- .
assumption: Multiplication of (1 2) by tx(t) and passmg to the supremum over all

A}

||Tf”M(x> (f ”.Ea”[A(XA(D‘))] dS) sup Tf * (S) x(s))

Hence we have (compare [20]) the followmg lemma

.~ Lemma 1 1: I/ ﬂA(X) >0, then a sublinear operator T: A(X) —>.//(.Q ) is- o/ weak
type (X, X) ¢f and only if T is a bounded operator from A(X) into \I(X ), te. :

HTIIIM(X)Sconst IlfIIAm (/EA(X)) L I (14)

hna.lly we introdace the notations (Z) for the space of all bounded sublmear_
operators mappmg a r.i. space Z into Z, and .

W(X Y) W(X(.Q Y(Q)) {T: A(X) + A(Y) —>./ll(Q) - N
: of weak: types (X, X) and (Y Y)} : ‘ : Ce (1.5)

~

2. Neeess1ty of the Rearrangement Invanant Property

‘ IfX Y& .///(Q) are any two Bana.ch function spaces, and T = (X + Y); we say that ,
.- T is admissable (compare [5]), if the'restriction 7’|y of T' to the space X belongs to (X)
* and, simultaneously, T'|y € (Y).By ad(X, Y) wedenoté theset of all admissable | opera-
tors with respect to_ the space X and Y. The strong-type mterpolatwn problem con-
sists in determining those spaces Z for which ad(X, Y)— (Z), if X and Y are given.

In the particular case that X, Y, Z are Lebesgue,spaces, this problem was solved by .

" the convexity theorem of M. Rmsz/G THORIN [18, 24]. In the frame work of r.i. spaces
concrete methods of how to construct function spaces whlch solve the strong-type |
interpolation problem are studied in {6]. ;
Since ad(X, Y) = W(X, Y), a harder problem is the weak-type mterpolatwn prob-
lem whrch consists in finding, those spaces Z for which W(X Y) = (Z). This prob]em ;

/
8 Analysis Bd. 2, Heft 2 (1983)
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was solved by J. MarcINKIEVICZ [17] for Lebesgue spacesX Y,Z,and by D, W. Boybp,
. |2] in case that X, Y are Lebesgues spaces and Z is an arbitrary r.i. Banach function
space. The purpose of this paper is to solve the weak- -type interpolation problem for -
the case that X, Y are any abstract r.i. Banach function spaces and Z is any Banach
function space. As a first step we now show that the space Z must necessarily also, be
rcarrangement invariant. :

"Theorem 2.1: Let X, Y = ./!(.Q) be r 1. Banach /unctzon spaces such that 0 < min

‘ ABxy By} < max {ay, ay} < 1, and Zc:.//l(Q) be any Banach. ]unctwn space If

W(X 4 Wi (A), then Z 1s rearrangement mvarwmt

Proof: The idea of the proof.consists in reducing the assertion to a partlcular
result 6f A. P. CALDERON [5] for Lebesgue spaces by combining the interpolation
‘theorems of M. Riesz/G. Thorin and of D.-W. Boyd: By assumptlon there exists a
nuinber ¢ € (1, o) such that .

0< 1/q < min ﬂ‘, By} S max {oy, xy} < 1.

If we apply the, mterpolatlon theorem of [2] twice, namely to the spaces X and .Y,
respectively, we can:conclude that W(L,, L;y = (X) n (Y). Since (X) n (Y) = W(X,
Y), if follows that W(L,, L) = W(X, Y). On the other hand, the interpolation
_theorem of M. Riesz/G. Thorin yields that ad(Ly, Le) < [L, 1= (Lg). Since ad(L,,

L)<= (1) and, obviously, (L,) n (Lg) = W(Ly, Ly), we have ad(Ly, Ly,) = W(L,, L),

“and therefore finally, ad(L,, Lo) = W(X, Y). If by assumption, W(X Yy (Z),

then necessarily ad(L,, Lo) < (Z). So by a theorem of [5] this implies that thespace Z
is rearrangement invariant B

With the above theorem in mind; our next aim'is to show that the property of
rearrangement-invariance is also sufficient for a weak- -type mterpolatlon theorem to
hold. .

3. The Generahzed Average Operators

The basic idea of the intérpolation theorem to be established is to try to cha,ra.cterlze

"those r.i. spaces which solve the weak-interpolation problem by conditions upon .

- their Boyd indices. Asa link betweén Boyd indices and operators of weak type wenow
briefly present two integral operators Py and Qy, as well as their basic propertres
studied in detail in [8].

Definition 3 1: Let X = X (92%) = .///(Q*) be a r.i. space. Then

'

a) . A (Pxf) (t) := TX(T)-ff(s) er'(s) (fe./l(Q*),te %),

b) (@i () = E0) f /(s)drx(é) (f 6/!<Q*> Le Q).

\ote that 7x (9,(9 = Tx0 if XA(Q*) is the Luxemburg representation of X (.Q)

" The operator Py, used by L. MALIGRANDA {15] in connection with Hardy’s mequallty,l

is a generalization of the average operator Pg of [2 3]; the operator @y however is
quite different to MALIGRANDA’s [16] operator @,. In ‘the followmg lemmata we collect

those propertxes of the operators Py, @x which will be used in the sequel.

-
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Lemma 3.1: Assume that X = X,, (Q*), Y = Y, (Q*) Z = Z,,(2%) arer.i. spaces
a) If 0 < Baxy < c\,“x, < 1, then for every | € Z, g E 7'

I 7ee _"‘f”g;’( %) o Qe 9 ) g of Pef () o0 &

/A

3 ' 4
L f 1ty Qi g% (t) dt

1 — xqx
: 0

b) (Px)*t) < (Pxf* () (f € #(2%) b€ ),

(@xN)*(t) = (@xf*) ® (f € M(Q*), te Q*)'
c) the operator Py is of weak type (X, X); ¢f Bay) > Oand ry/r,\ isa decreasmg func-
tion, then Py is also of weak. type (Y ), ‘
‘d) the operator Qy ts of weak type (Y Y); if Baxy > 0 and ry/z,l s decreasmg, then Qy

" 18 also of weak type (X, X);
e) Py 4+ Qy = S where S denotes the Calderén operator defined by

(1 () = f f)dmin {2200, M) (/wxm’*),tem).

Tx(t) " Tv(t)

‘For the proofs of these propertles sece [8]. In partu,ular, the constant in the “duality”
relation of a) can be evaluated by recal]mg that

~

H _d t , o
Bacxy TXT() = 3;() = *aix) TX: )a S B .

compare [10].
The Calderén operator S obtams its lmportance for mterpo]atlon theory from the
facts that (see [20]) '

\_ S € W(X,, (Q*‘ Y, (%), o P L (3.2)
and, for each ¢ € W(X,,(2), ¥(@)), B ' R
U (Th* S const. Sf*  (f.€ A(X, () + A(X‘,,(Q ), ; (3.3)

If X, (2% and Y, (2*) are thc Luxemburg representatlons of X, (2)-and Y‘,,(.Q)
respectxve]y On the other hand, the operators Py and @y are connected with the
Boyd indices. In fact, for the case that X, Z — #(2*) are r.i: space§ of Lebesgue
measurable functionson 2* = (0, 1) such that ﬂA(X) > 0, the fo]lowmg holds; see [15],
also [1, 3]. .

If Kz < ﬂ,ﬂ X) then P\' E [Z] ’Ll PX E [Z] then &z S XAX) - (3.4)

An analogous assertion for the operator @y, which is not contained in {15}, can be
 deduced from (3.4) by duality arguments, using Lemma 3.1a). Here we assume tha.t
© Yo M(Q*) is a r.i. space With 0 < Bay) = aar) < 1. Then

If xacyy < ﬁz: then Qy € [Z); Zf.QyIE [Z], then ﬂA(X) <PBz- .. 3.5)

" For the proof recall that a«y- = 1 — By'and fx- =1 — «y for any r.i. space X, note that
AX) = M(Y’), as well as TM(y/) =-Tqyy; see [21, 10]. Hence fmy, = ﬂ,{(‘y y» and:

8*
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we can argue as follows: If xary < Bz, then 1 — By = 1 — Bmyy = 1'— Bayy
= oy < Bz =1 — &gz, i.e. az° < Baw) Soby (3.4) we have Py € [Z'], this being
.equivalent to Qy € {Z] on account of Lemma 3. la.) The second part of (3.5) is proved
similarly. :
Concerning the operator norms of Py and Qy we have the followmg facts.

Lemma 3.2: : S . . ;e

. : .' o " ds
a) If oz < ﬂ.«xn then ||Pxiiz) = aacx) _/; IE iz M(s, X) — < co;

' b) if xayy < ﬂz, then ”lehm = O‘A(Y)f”Ec”[Z] M(s, Y) £ < 00,

_ Here Jlf(s, X) := sup,smeae [tx (st /Ty (t)] and M, Y) a,nalogously

. .Proof: A-weaker version of part a) — ‘without the factor Kax) — was 'proved in
"~ [16}: We confine ourselves to b), the proof of a) being similar. For this purpose let
f€Z, g € Z' such that g = 0, Hg][z = 1. Because of (3 1) .

T

f(lefl) t)gt)dt<amr)ff|f i V((i; dt' ‘ .

¢ l/t ’ . '
t) .
—«w,ffv (st ”(ft) oTe

,

[

g O‘A(Y)f -/(F 1) () M(S, Y) g(t) d‘
‘yleldmg b), since f € Z, g€ z are arbltrary 1 4 <

By means of the method of applymg the Luxemburg representatlon the assertlons
(3:4), (3 5), and Lemma 3.2 can be transferred to the more general situation of r.i.
spaces in M (R2). - .

~ Theorem 3. 3 Assume that X = X,,(.Q), = Y,_(Q), Z= Zg‘(Q)'C‘JZ(Q) are
7.2, spaces with fax) > O0and 0 < Bay) = aayy < 1.Let X, (2%), Y ,,(02%), and Z,, (!?*)
denote the Luzemburg representations of X, Y, and Z respeclwely

I/ «z < Baixy then jor every f € Ze,(Q)
o L ds\ o
||Pxf*”z‘,(a') ‘“A(X)f IIL&”[Z“(Q‘)] M(s, X) < ¥z, o9 (3.6)
4 ; o

. conversely, if '(3.6) .h'olds for every | € Z,,(82), then az < xqix)- S .
b) ff xayy < Pz, then for every | € Z, ()

I " . - - . ds ;
10z = (s [ Iz oo Mo, ) T ) 1y 3.7)
A . E i o ' : ‘
- conversely, zf (3.7) holds for every f € Z,(Q), then Bayy < Bz- -
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.Proof: Note that the indices of a r.i. space coincide with the indices of its Luxem-
burg representatlon and, moreover, that inequality (3.6) for.all f € Z,,(2) isequivalent
to Py € [Z,,(2%)],' in view "of Lemma 3.1b); sumlar]y mequahty (3 7) for all f E Z;_(Q).
is eqmvalent to Qy € [Z,,(@"]) 0 . .

4. The Interpolation Theorem for Rearrangement-Invariant Spaces .

- Now we are.ready to prove the following weak-type interpolation theorem.

Theorem 4.1: Assume that X = X,(Q), Y = Y,(2), Z=Z,(Q) C./l(Q) are
7.1 spacessuchthat Zc A(X) + A(Y), ﬁA(X) > 0 0< ﬂ,‘(y) = KAY) < 1 and Ty/'t(' '
'zs decreasing.

'a) If aary < Bz < 0z < Baxy then W(X Y) < (2); :
b) If W(X, Y) = (Z); then Bayy < Bz = xz < &auxy- :

‘Proof: a) Let T € W(X,Y) and fe€ Z ‘be given. As above denote by X, (2 )
Y ,,(2%), Z;,(2%) the Luxemburg representa.tlons of X, Y, Z, respectively. Since f € Z,

we have f* € Z,(Q2*%) = #(2*) and, by Lemma 3.1 e), Sf* = Pyf* 4+ Qyf*. If the
index condition of a) holds, we can apply Lemma 3.2 to conclude that

IIS/*”z; @ < (lIPY”[ZA'(I?’)] + ||Qy|][z,1.(o')]) ”/*"z,_(o') < . -

. This means, in partncu]ar, that Sf* € Z,, (.Q*), and hence (Sf*) () < oo almost every-
where, since 4; i$ a r.i. norm. This implies that f* € A(X,,(2%) + A(Y; (£*)). In
" order to show that f€ A(XP,(.Q)) + A(Y (), we consider the norm of f* in

7 A(X,(2%) + A YA,(Q* ). By definition of the norm of a sum of Banach spaces,

" *lace;, (9~))+A(y, o) = inf {”91||A(x,1‘(a')) + ”92||A(y1,m-))

=g +056¢€ A((XA Q*)) 92 € A(YA.(Q* )
N Z 0,9, = 0}

/

‘ Accordlhg to [5] there exists a measure presefvmg transformation f* . f from A (82%)
to () such that for each decomposition f* =g, 4 g, with g,, gz as above, there
exist functions f, € A(X(,I ) fo € A(Y‘,.(.Q)) w1th /, =g, L*= = g, and f = f, +.f.
Hence - )

”/*”A(x,l (m))fA(yh(n-))
=.mf{nn*nﬁ(xhaqwntz*uA(yl,g.)) |
t= h+fohe 4(\},(@)) f2 € A(Yo,(Q))} ' . o
= Wilagc, @) a(roqay - - e

This shows that f € 4(X9,(!2)) + A(Xg,(!?)) _and therefore (3:3) can be applied to f,
yielding that - . A B ‘ . )

1Tz, 02 = WTHFIz, 0% = const. 1Sf*]z, a%)
< const. ([IPxll[z, @) + 1Qviiz, a%)) ¥z, (0%
= convstl. ||f|]zh(9) <oo. R . ) | o

Thereforé we finally have Tf € Z,() and 1Tz 2] < 0 - . o

;Y
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b) Since the a-fmlte measure space (Q E #) was assumed to be nona.tomlc there

" exists a measure preserving transformation n : 2 - 0* By means of this transfor-

" mation x the operators Py and Qy on #(2*) can be transferred into operators, say
P\ and Qy, on .///(.0) Forv ¢ 2 we mtroduce two Kernels k, and k, by .

o) :.= {rx(s)/s if vea{s)) ) = {‘ry(s)/s if veas)

10 elsewhere, 0o ~elsewhere,-'

and then defme the operators I'\r and Qy for f € ./II(Q vE 2 by
. _ N

f f, dy it ve wi)

"(0 ]

(Pef) (v) := ”(‘

0 / ) elsewhere

- fhadu it v et
(@Qf) () := 1™ “’ [f) |

0 elsewhere

- In case .Q .Q* the operators Py and Qy are eqmvalent to PX and Qy respectlvely
In the general case

\

(Bx/)* (Q%(%X)(Pxff) ©  (fem@,e0y, (4.1)

@D 02— @m0 (fea@uico), ' @

. where f(v) := f*(s) if ve a71({s}), and f(v) = O elsewhere. Indeed since (7 * = ./A’.“
because of the measure preservmg property of 71, we can estimate (Pf)* from below by

O‘A(X)

(PX/)*(t)— ()f/* ’X“”)ds wz{—— @ o

= (P (e
(XA(

1
\

Here we used (3.1) and the fact that PX/* is decrea.smg (see [8]). Inequahty (4. 2) is.
proved analogously Note that asx; > 0 and aqv) > 0 by assumption. _
Conversely, it can similarly be’ shown that ) -

Bax)

. «Qm*(ngﬁL(Q,-g)* O (fep@,te0%), - 44

R OS S Pt (ea@ e, T @y

with g(¢) := f(v) if v € Z71({8}), and g(t) = 0 elsewhere. :
" Next we benefit from the fact that Py, as stated in Lemma 3. lc) is of weak type -
(X; (.Q* - X3, (.Q*)) in order to show that the new operator Py on J#(Q) is of weak type .

(X al X(,l(.Q)) In fact, rnultnplymg (4.3) by 7x(t) and passing to the supremum, we

7
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“ have by Lemma 3.1b) and c) that

Sy
sup (Pef)* (8) 7x(t) = sup (Pxg)* (¢) 7x(t)
Cgoe Bacxy 1eae

1
L= sup (ng*) (3] Tr(t)

A(X) €

const.- const.
= l ") = |
Bty llg* lA(x, an) = Bace H/ lA(x (@)

’

since g* = f*, and X; (%) is the Luxemburg representatlon of X,.(8). If we- mul- '
tiply (4.3) by 7y (t) instead of Tx(t), an analogous calculation leads to i o

con
- ﬂA(X)

€s
Starting with (4.4) instead of (4.3), one can similarly show that

const
= Baw

swﬂ%ﬂ*mnﬂ)é%giﬂwagp»

., sup (Qy)*
tEQ

Collectmg all these estimates we have that Py, Qy € W(Xe.(!) (Q)) and hence.
Py, Qy € (Z), on account of the assumption upon Z.

Now, let f € Z,,(£2) be glven and construct f as above Since Pre (7) and (fr*= /*
we have . '

1®xllz, o < const. [z = CO"St-H/*HzA;9°y
Passing to f and applying (4.1), we therefore have the estimate ) .-

- WPxfHlzy 00 = xacn IPxfllz, -'(g)é é‘A(X) const. l]f"‘llz,1 @
ThlS implies az < &acxy by Theorem 3.3 a), as maintained. .
Concemmg the first part of the mdex condition asserted, it follows from (4.2) and

' QyE(Z that

. \
llQ}’/ llZ (02*) S AA(Y) COI]St ll, l z (.0‘);
A3 A

and hence Bayy < Bz by Theorem3.3b). This concludes the proof of Theorem 4.1-1

. If the spaces X and Y are of fundamental type (sec [lO]and§ 5) then a,,(x) = &y,
" Bacxy = Bx, and XAy = oy, Bacyy = By, and we have in addition

Corollary 4.2: In addmon to the assumptions of Theorem 4.1 let X and Y be of . .
fundamental type such that ax = fy and oy = By. Then W(X, Y)= (Z) if and only 1f o
Br < Bz S xz < g . '

~ Note that most of the known r.i. spaces such as Lebesgue spaces, Lorentz spaces,

and Orlicz spaces are of fundamental type, see[7]. In particular, Corollary 4:2 contains
the interpolation theorems of D.-W. Boyp- (2] (for X = L,, Y = L,, Z arbitrary,
1S p<qg<o0),of AP CALDERé\'[5](f0!‘X—Lp, Y=1L,Z=L,1Zp<r
< ¢ < oo)and its weaker version of J. E. MARCINKIEVICZ [ 17], as well as the theorem
of M. Riesz/G. THORIN; since each bounded operator on I, is a fortiori of weak type

N S
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'

' (L,,, L,). ] \’Ioreover part b) of Theorem 4.1 mtght be regarded as an ‘answer. to Con-
]ecture 5.4 in [25].

Explicitely, Theorem 4.1 a) -can be reformulated as follows: If T is of weak type

(X, X), we denote by ”THW(X) the lowest posmve constant such that (1.1) holds,, '
similarly we define ||7||;y(y,.

Corollq.ry 4.3: Under the as_sumptions of Theorem 4.1 a) we have

Nz, 00y < &1 /2llz, (o+) max {llTﬂW(fr), 1T weryll

g SN X QA(x)fllEsli{zl.goo)] Ms, X)"s- o
: 0 . ‘.: . - .

2 o . ds . N
+ O‘A(Y)f HEaH[zh(m)] M(s, Y) -s- .
Here we used Lemma 3.2, Lemma, 3.1e), and (3 3) with the constant being equal-
. to “Em”zl (@eymax {||T[]w(x), 1Ty} as a slight modification of Sharpley’s [20] argu-

ment shows: Concerning the distribution functlon Dy (o) := plx € Q:1Tf| (x) > o}
- of T/ we have the estimate .

2T lw
(Dry) (0) ="z (m ”g!"A(X)) + 1y (

. fo{' any representatlon f =g, + g, with g, € A(X), g, € A(Y). Indeed, on one hand it
is known that Dyy(0) < Dgy,(0/2) + Dyg,(o/2) for ¢ > 0. On the other hand, if T'is of
'weak type (X, X), then

sup "TX(DW.(U ) = .SUP (Tg,)* (t) 1"x(t) = ”T”W(X). ||§1”A(x>-

0<a<co

2| Tllwers "
Mugzlm)) 46)

- 7T isof weak type (Y,Y) then ana]ogously it follows that sup O'Ty(DTg'(O' ) S ”7 ”w(y)

X ngHA(y) Therefore - 0<o<as
‘ Ilr”w(,\') llgnﬂA(X)
‘ (Dra.) (a/z - e ohlan,
(1Tl Ngallace
1
(Dr) (012) S 0 (———0/2 |

ifT e WX, Y) yleldmg (4.6). Let. .us remark that in case of Lebesgue spaces Ly, L,,
and L, with',1/r = B/q + (1 = 0)/p,0 < 6 < 1, this leads to the well known con-
stant ”T”w(L,) []T|IW(L”) in Marcmklevrcc s. theorem. .

1 )

5. Applications - BN . -

5.1. ‘Applications to particular spaces ' ‘
of partncular interest with respect to appluatlons is the case when the space Z = Zy
. (Q)is of fundamental type, i.e., when ”Es“[Z‘ %] = M(1/s, Z). In this case,it follows

that IlEgll[zA (%] = M(l/s AZ) ) since t4(zy = 14 is valid even for any r.i. space Z,

From this equality it then can easily be deduced that oy = xazy and 7 = B4z,
- Fora more detalled dlscussnon of spaces of fundamental type see [10]

.
-

'
’
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Concerning the weak-interpolation problem we now show that for this important -
“‘class of.r.i. spaces (which contains the Lebesgue-, Lorentz-, and Orlicz spaces) there

* exist two further conditions which are equlva,lent to the mdex condition of Corollary
4.2:

Theorem 5.1: As i wn Theorem 4.1 let: X,Y,Z < ML) bera. spaces such that Bacx)
>0, 0-< Bayy = (XA(y) < 1and ty/tx decreasmg ‘Further assiume that «acxy = Bacxy

" alent:

" axyy = By and Z is of fundamental type. Then the following statements are equiv-

@) W& V=2 ., e
(b) WX, Y)=(A42); o
{c) ﬂ/!(Y) <Pz S azg < xaxy; )
(d) there exists a finite number A > 0 such that

[Fs,)deity <4 . - ’ (8.1
(] . ..

untformly in S € Q% the fung:libn F.0x0* >R being defined by,

) o fTxds) Ty (s) . P : i
F(s, t):= mm{ﬁ R ry(t)}/rz(s)_ : (s,,t € 02%). _ g (5.2)
The proof of this theorem now follows readlly The equivalence of (a) with (c) is
essentially Corollary 4.2. Since Z is assumed to be of fundamental type, (c) can be
rewritten as By) < Pazy = oaz) < xax)- Therefore, the equivalence.of (b) and (¢)
‘is again Corollary 4.2, but now applied to 4(Z) instead of Z. Finally, the equivalence .
. of (b) and (d) was proved-in [20]. Note'that in addition to the theorem of [20] we now
- also have the equivalence of (d) with (a) | I

As & more concrete example we next consider the case when X and Y are Lebesgue
‘spaces, and Z is arbitrary. -

Corollary 5.2: If Z is of fundamental type and 1<p< q < oo, then the followmg
" statements are equivalent:

(&) IV(L}n LG) C (Z) ’ N ' . Lo . . ’ .'
(b) W(L,, L) <= (A(Z));
(¢) g < fz Sz <1/p;

(d) ‘there exists.a finite number A > 0 such that uniformly in s € Q%,
gt fz Ve d(t +'s””f; Y <; <4
~lady — - . : >
o} 0 @ T2l = |
8

i

Indeed, since 1, () = 17 and L, (ty = t1/7, the function 7 /7, is decreasmg if and

on]y if p<gq. Moreover Bas,) ﬂL,, = 1/p > 0-and 0 < @y, = &, = l/q < 1
Finally, observe that in this case

Flo, ) = min{(sfo)Vs, (slpfeg(ell
[ siMeea(s) i 0<t<s C
o (s/t)Mplr,(s) if tZs,

- . and therefore Theorem 5.1 furmshes the abovc Coro]lary

’
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( g < Vr < Up.

~

.

J : . :

Remark 5.1: For the equivalenée of (a) and (c) it is not necessary that Z be of-
fundamental type. Then this equivalence is the theorem of Boyd.:

Corollary 5.3: If 1 S p < g < 00,1 <1 < o0,and Z is one of the spaces L,, Ly,
Lr(log* L) or the Marcmkzemcz space M,_,,, then the joltowmg statements are equwa-
lent: . )

(a) W(Lpg L)) = (Z); i . Vi .
(b) WLy, L) = (Ly); S

Condition (d) is tnvnal in this case. This corollary follows from the preceedmg co-l
-rollary since in“any case 7(t) ='t'/", and hence A(Z) = L,,.”

Remark 5.2: The 1mpllca.t|on ()= (a) ~contains the theorems of Rlcsa/Thorm'
and of \Iarunklcvnca whereas (c) = (b) is the theorem of Calderén.

Let us conclude this paragraph with the relation
f F(s, ) des(0) = ry( [P2(1/e0)] + ¢ (s [Qz(lln)] S %)

between the mtegml of (5.1) and the average operators of Sectior} 3.

5.2. Applications to Particular Operators .

As a first example we consider the Hardy-Littlewood maximal: operator 6 on R,
“m = 1, in its spherical form gaven forfe R, by

‘

(ef) )i = sup s m((B f fw)du. o ey
B(,,) .o . .

- Here the supremum has to be taken over all balls B(v) with positive radlus and center-

_v. If Q(v) is the circumscribed cube of B(v) with its sides parallel to the coordinate

axes, then there exists a constant 4, > 0, depending only on # {(with 4, = 1) such

that m(Q(v ) =4 m(B(v)) see [23], As an application of Corollaries 4.2 and 4.3 we

obtain the following mappmg theorem for the maximal operator :

- Theorem 5.4: If Z = ZQ(R,,), n = 1, has indices smctly betueen 0 and 1, z.e.,
0<ﬂz<¢xz<lthen06(Z)and . ) -

Bllizy = 2"An NEspallizacaoy f I ollizacaen ds, . ‘ (5.5)
where Z,;(§2*) is the Luxemburg representation of Z.

Proof:In ordér to derive this theorem from Corollary 4.2, choose X := L,(R,)and
¥ := Ly(R) with 1 < ¢ < oo. It is well known that the maximal operator 6 is of

- weak type (X, X) and a bounded operator on Y. More precisely, if Dyo)

= pfr 6 R,: 16(f) (1: | > a} is the dlstnbutlon function of 6f, then (see [23])

-

(€ X), ~ f . 58
2"4, . e
nonm£2(q 1) -

Ve

' (5.7)



N

N

- with N(s) = Sllpgégo [f ¢(u) du f d(u) du] .

Y
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From (5.6) it follows that (6f)* (t) < (2"4 /t Iflx = (‘)'”A,,/t) Iflliy for f € X. Recal- -

ling that 7x(t) = ¢ and A(X) = Ly;, we can conclude that 0 is of weak tvpe in the
more general sense of (1.1) with the weak norm

Ollwxy < 204,,. h . ‘ ' (5.8)
On the other hand, 6?Dy/(a) < [10f]},9 for f €Y, see[23]; hence hH* ). < (||0”(y)/t‘/"

X fily £ ]0||(y)/t”‘l [ifllg1- On account of 7y () = 114 and A(Y) = Ly, thlS — together

with (5.7) — means that 6 is of weak type (Y, Y) with the w_eak-norm'

' lig
e = 2(E2)"

Summarizing we can say that 6 € W(X, Y) for any é,E (1, 0o). The spaces X and ¥ -
are of fundamental type with indices oy = fy = 1and ay = By = 1/q. Further, zy/tx
is decreasmg since ¢ > 1, so that all the assumptions of (,orollary 4.2 are satisfied.

* For any'r.i.’space Z with l/q <BzrSaz;<lwe therefore have by Corollary 4. 2 that
0 € (Z), and by Corollary 4.3 that .

2n4 \le) . . Vo
0llzy = |IE1/2”[Z,1(Q‘)I "‘ax'-{zﬂA"’ 2 (Z — 1) } »

1 oo . : 1y’
, : 1 _
fllbsllm(o')l ds + zfllEallm(a'n st ds/sg .
0 . -7

Here V\VC used that M(s, X) = s and M(é, Yy = s'a. Note that the latter two inte- ~

grals are finite on account of the index condition assumed, see [3]. Letting q tend to
infinity we obtain (5. 5), observing that 4, = 1, and the second integral is decreasing -

“ing K . . S

Remark 5.3: A result similar to Theorem 5.4 could be deduced for the cubic ma\n-‘l\

-mal operator by the same methods. The only change is that the factor A in (5. 5), oo
(5.9)-is omltted

. For concrete spaces Z the norm estimate of (5.5) can be evaluated exphcltely In-
deed, we have . ’

Coro]lary 5.5:a)If Z = A(¢, p), p > 1,isa uniformly convex Lorentz space, then
(B)E(Z)and . . CL

. o (5._10)

|
1lkz, < 204, N(1/2) f Nis)ids < 2+l d, 7 1

N
-

Y If Z = Lyy is an Orlicz space with stnctly mcreasmg Young Iunctwn Y such

: tkat LW, as reflexive, then

L - . =

»4, ) . ‘ :
Wl S of LT AT

K w~1(s) denoting the right-continuous inverse of Ky(s) := supcas [¥(st) /';f’(t)]
"This corollary follows from’ Theorem 5.4 by inserting the norm |||z (a+) of the

reSpectlve space. If Z = A(¢$, p), then [|E |z = N(s)'/?, and for Z = Lyy one has -

1B dhzy = 1/ Ke™s). Concerning the index conditions note that for Lorentz spaces

I3

(3.9



‘124 F. FEHER,

~ Z = A(¢, p) one has 0 < Bz = «z < 1if and- on]y if Z is uniformly convex, whereas
in case of Orlicz spaces Z = Lyy this condition is equivalent to the reflemwty of Lygy.

. The second estimate in- (5. 10) follows from N(1/2) < 2up and f N )’/Pds = f s—Up ds

= pl(p — 1) forp > 1. For the one-dlmensmnal case 4, = 1 and (5.10) therefore im-
'proves the estimate ||z, < 2 - 21/Pp/(p — 1) as stated in [13]

' Remark 5.4 If Z = L,, r > 1] one should expect (5. 7), but Theorem 5.4 leads in
} thls case to ‘. N :

Bl < 204,20

which, for n'=1, differs from the. classncal constant of Hardy-thtlcwood by the '
methodic factor 2‘/' For arbitrary =, the constant.given in [22], name]y 22"r/(r — 1), .
is ]arger than the above constant by the factor 27-1//4,. .

For n = land Q (O l), O <l<oo,u=m= Lebesgue measure it is well known
' [12] ‘that (6f%) (t) = (I/t)fj*(s)ds By means of this representatlon we now can

glve an a,pphcatlon to ergodlc theory. For this purpose, let & be a measure space with
finite measure I, and let G be an ergodic group of one to one measure preserving trans-
formations g of &. Further assume that for each measurable function f on 8 and each, .
g € G the product fg is measurable on G X &. Then the expression '

() 0= |N|ffgv)dg | et as0

T eXIStS for any nonnegatlve fun(,tlon fé€ L,(&). ‘Here {Ns:a > 0} denotes a family of

compact, symmetric neighbourhoods of the identity of G such that N,N, — Ngy,
and {Nza] <K |N,,| where ]Nal is the left invariant measure of N,. Concerning the
‘ operator B

- (Pf) () = es3 sup 7 m><v) C(fen@nves)

"it is shown in- [4] that” o

(p/)* | * (s) ds ’(t € (0, l)).

Hence , P is of weak type (Ll((“p’ Ll(g)) and (Pj ) £ K% 0/*) (¢). Since 0 is bounded
on Lq(é‘Z) for 1 <'g < oo, the latter 1mphes that P 1s also bounded and, a fortiori, of )
weak type (Lq(é’) L,,(é’)) By Theorem 5.4 we therefore have ' .

Coro]lary 5.6: If w(&). =1 <. coand Z(z“;) is ar.i. space of [ measurable functwns '
on & such that 0 < B; < xz <’1, then}’e (Z).

Remark 5.5: Similar considerations cou]d be applied e.g. to the Hllbert trans-
* form, to theconjugate operator, the Poisson operator or, more generally, to kernel

E operators with a kernel which is homogeneous of degree — 1. In these cases Theo-

-rem’ 3.4 would furnish mapping properties of these operators on Lorentz — or Orlicz
. spaces, such as Hardy- and Hardy-Schur inequalities. In particular by means of the
conjugate operator a.theorem [11] about norm. convergence of Fourier séries on r.i.
spaces could be reesta,bhshed of. . o ) /
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