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A Note.on the Invertibility of Generalized Vgiener-ﬁo'pf Operators '

s

J. Donig” o . A

Wn' betmchten im, Hllbertra,um veral]gemcmerte Wlener Hopf Opemtoren ‘der Form T\(A4)
= PA } R(P), wobei A und P lineare beschrinkte Operatoren sind und P férner einc Moore-

Penrosc Inverse besitzt. Das Zicl der Untersuchungen besteht darin, ein Kriterium fir die
Invertlcrbarkcxt von T(A) in R(p) anaugcben . :

l/[cc.nenylo'rcsx 0606IEHHEIE OMepaTOpH Buuepa Xond)a Buga T(4) := PA r R(P) B rlmbﬁep-
' TOBOM NMPOCTPAHCTBE, NMPHYEM A u P — orpanuyeHHbie oneparopu u P umeer oGpa’muﬁ‘
Moore-Penrose omneparop. OKOHuYaTeabaA Ledb COCTOUT B HAXOMIEHMM npamoro’ 1 06-
 paruoro 3HaucHul mmepcmx T(A). :

. ~ fl

- We consider generalized Wiener- Hopf operators of the form T(4) := PA P R(P) in a Hllbert‘,
" space, ‘where 4 and P are linear, bounded ‘operators, and P permits a Moore- Penrose inverse..
_The purpose of our mvestlgatwns is to denve a crltcrxon for the mvcrtlblhty of T(A4)-in R(P).

lﬂlnti'o‘duc‘tio‘n' o - o
Let H be a Hilbert space and suppose that 4 is a bounded linear operator in'H and

“that, for the time bemg, Pisan orthogonal prolectlon onto a proper subspace M of H.
"Then the part of Ain M is defmed by

T(4) := P4y, T (1)

' ‘where A, denotes the restriction of A onto ‘R(P) (the range of P). The operator T(A);
~which we also write as Tp(A) in order to indicate P; is well-known to be the prototype .
" of a Wienér-Hopf operator. For example, if a € R, k€ L‘(R) and 1f 4is the operator
in L¥(R) defined by '

CR - A=) —0‘/(96 +fk(x—?/)/y)dy ’(f6L2(R),x€R),

- if furt,herP is defmed in L*(R) as the prOJectlon onto L (R / | f E L2(R) ](
forz < 0}, we obt)am o
T(4) gl@) = agl@) + Jke—pomds (LA zeR) (@
- ' R. 4 N
By the int,egral expressxon (2) a speczal Wlener Hopf operator T( )‘ in.LLz( R) is
. defined [7].. . _
" Let us now in place of (2) consnder an expression .

T(A) g(x) := «P*(z) + P f k(x — 9 Py)dy (g€ L¥R),z ¢ R),.

) where P is any bounded operator in L%R) whlch has a (bounded) Moore-Penrose in-
verse P*, e.g. N

P = PP*P. B 5 ‘ _(4)‘



s

_ This definition differs from ‘the one given in [3).

. priate y >0,
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' Eﬁﬁ‘ation (4) .is readily seen to be equivalent to B(P) being closed (cf. ATKINSON [1]).-

The operator T(4) in R(P) as defined by (3) is still of the form (1) except that P is in
general not -a projection. In this case, T(4) is called a-generalized Wiener-Hopf-

- operator (abbreviated, GW H-operator).

In a fundamental article DeviNatz and SHINBROT [3] studied a.fbitrafy Wiener-
Hopf-operators (1) and derived necessary and sufficient conditions for these operators

. to be invertible and onto. The purpose of the present note is to establish such a cri-

terion for GWH-operators. Before stating our main result, let us recall that a linear

operator 4 in H is termed invertible, if there exists an operator 4-1: R(4) — H satis- -

fying . . .- . R
474 = (e

A4 =f- (fe R(4)).

Our principal result is the following theorem.

Theorem 1: Suppose that A is inbertible and onto. Then T(A) is invertible and onto
if and only if there exists a bounded operator B in H which is invertible and ‘maps R(P*)
onto R(P) and has the further property that AB is strongly accretive, e.g., for some y > 0,
we have ) :

VP <yRe(4Bf) (eH). )

-2 .Preparatoiﬁy Lemmata

We initially 'ir'ltrod_uce ‘Some hdt.atiori..Similar to the above definition of 4,, we put
f (A%, = A* P R(PY). ‘ ,
We further denote by T(A)* the adjoint of T(A) acting in R(P), i.e. ‘

* T T(4)*:= PP*A*P* | R(P),

which we compare with

Tpu(A*) := P*A* | R(P¥).

Finally, we require a notion cgﬁnéerning the angle of two subéﬁa’ces Mand Nofa
Hilbert space H. For this purpose, we define the number '

o(M, Ny := sup |(f, 9)l,

where f and g range over the unit balls of M and N, respectively. Following HELsON -
-and SzEGO [5], we term M and N to be at a positive angle, if o( M, N) <.1. .
In what follows, P stands for an operator having a Moore-Penrose inverse, and

;N

- 1(A4) denotes a GWH-operator™

We first prove the following lemma. _ o
" Lemma 1: The operator T pi(A*) permits a bounded tnverse if and onlg) if T(A)y*
shares this property. : ‘ ' :

" Proof: Let T p+(A*) have a bounded inverse. Then e can est,ims;te, for an appro-

Ul £ 1P IB*A < 3 P IT po(A%) P < » 1P| 1P| IT(A*fl| (f€ R(P)).

This shows that T(A)* has the'de_sired propeitieé. T
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Coilversel'y, if 7(A)* has a bounded inverse,’then‘there‘ is a y > O such that
IP* < y [PIIT(A* fl < ¥ IIPII ||P+II T pe(A*) P¥||- - (f € R(P)).

. Hen(,e using a result of GOHBERG [4: Lemma 1] which states that all elements g in
) (P*) are representable in the form g = P*f with f € R(P), we arrlve at . T

‘ lgll = ¥ IITpe(A*) gll (g €RPY), -
" where ' > 0. The lemma is t,herefore‘estabhshed [
In the same manner one proves the next lemma.

B . - N
Lemma 2: The operator (T p.(A* ) permits a bbunded tnverse if and only if T(A4) has
thzs property. C '

-

The next stage in our development is to derlve conditions in terms of Ao, (4%),, P,
and P* which guarantee that T'(4) is invertible and onto. ’

Lemma 3: The operator T(A) permits a bounded inverse if and only of A, permus ’
a bounded inverse, and if R(4,) and N(P*P)are at a positive angle. ~

Proof: Assume first that 7'(4) has a bounded inverse. 0bv10usly, then the same
.holds true for A,..In order to.verify that E(4,) and N(P*P) are at a p051t1ve angle,
) let us suppose the contrary, l.e. o

oR4e), NPP)=1. ~, e L(6)
We sho‘wﬂ that for every ¢ > 0 one can find a f € R(P) satisfying - Sy
S <e  lidofl =1, S . o

which is certa.mly inconsistent with the boundedness of 4. To this end, we rewrite (6)
by noting that PP+ and I — P*P are prolectxons onto R(P) and N(P), respectlvel)
[2] We thus obtain -

sup {I(Ao/ I — P*P)g)|: f€ R(P), /E N(P I4ofl = 1, lgll = 1} = 1. (8)
Lettmg e >0, we conclude from (8) that there exists an f € R(P) with || 4,f]| = 1,and ~
_ L — PP Al 21— e . . -(9)
‘Hence, by cmploymg the boundedness of (T(A)) 1 and inequality (9), we can estxmate,
for ¥ >0,

Iz < }'2 IT(4) fIF < 72 IPI (1 — 1T — P+P) A0/||2) =2° Pl e.

This shows that the dcelred elenient f which satisfies both conditions (9) exists, and we
have a contradiction.
To prove sufflmency, we start out from the fact that fory > Oand ¢ € (0 1], we
have A ~
lIfIl S Y lle/II (f€ B(P)), .and ¢(R(4,), N(P*P)) =1—e.
Then we est,lmate : ' R , - Lo

M= = (Ile/!l — (=9 ”Ao/” = -y— (Ile/ll — o(B(4o), N(P‘“P)) I'Aofll)

. =7 (IIAo/lI— H(I—P*P ofll) lIlP*II HT(A)/II  (te R(PY).

. Therefore, T(A) has a bounded inverse, and the lemma is verlfled |

~

o
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Corollary 1: The following are equivalent:

(1) T(A) 18 1nvertible and. onto,
(11) T'pe(A*) is invertible and onto, . - ’ o - T
(m Ao ‘and (A*), have a bounded-inverse, and R(A,) and N(P*P) as well as R((A*)o)

and N(PP*) are at a posztwe angle. o : .

1
‘

i 3. Proof of Theorem 1

Leb T(4) be mvertlble and onto. Then, by Corollary 1, Tp-(A*) is invertible and onto.
Since 4* is invertible, we can apply a lemma of SHTNBROT [6: p. 400] asserting that
A*=Us, . '

where U is umtary, and S is a bounded invertible operator mappmg R(P*) = (P*P)
. onto itself. We thus conclude that ’1’po(U) agam is invertible and onto. Consequently,
_ by Corollary 1, we obtain . : : .

I = PP*) UP*P| <1, |PP'UJ — PPl<1. | (1_0)-

" Let us now put : EP .

C: —PP*UP+P+(I—PP+) U(I—P*P) S Coan -

We show that by (11) an operator Cis defined in H, which is invertible and onto It is,
‘as can, easxly be scen, enough to show that the operators

0, := PP*U } R(P¥), Cyi=(I—PPHU b R(P*)L

are invertible and respecblvely ' ma,p R(P*) onto R(P) and R(P*)Y onfo R(Py!L
. limit ourselves to verifying this for C,. Suppose that Lhere exists an f € R(P*) satls-
fymg [Ifll = 1 and C,/ = 0. Then we obtain ~ .

(I — PPY) UP*Pf vf, . - ,

\

. whence we. have

(I — PP*) UP+P/ll =1. ‘ ,

" Sirice this contradicts to the first condition (10), C, is invertible. In order to verify
that C, is onto, one shows in the same manner as before that C,* is invertible. -
Now it is not-difficult to demonstrate, by usmg both LOndlthYlS (10), that a y > 0
evusts satisfying : -

* P < y((C*U-+ U*C) h i) (e .
.Puttmg B:= CS then B meets, the asserted-properties, and we obtam (:))

. The sufflclency of (5) follows from standard properties of strongly accretive opera-

~ torsin combination with the: ‘mapping propertles of B. The Theorem is.established.

< v '
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