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General Random Sum Limit Theorems for Martingales with large 0 - Rates 

PAUL L. BUTzER and D. ScHULZ') 

Die vorliegende Arbeit beschäftigt sich mit groB-O Fehlerabschatzungenfur die Konvergenz in 
Verteilung von zufalligen Summen nicht notwendig unabhangiger Zufallsvariablen. Als An-
wendungen einés aligemeinen Satzes werden iowohl Versionen des zentralen Grenzwertsatzes 
als auch des schwachen Gesetzes der.grol3en Zahien für Marti ngaldifferenzenfolgen im Falle der 
ufailigen Summation durch spezielle \ahl der Grenzzufallsvariablen hergeleitet. Beide Sätze 

werden mit 9-Konvergenzraten versehen. 

Pa6oTa nocBnu4eHa 19701ACHRaNt nOrpeliluOCTu Jrn CXOHMOCTII B pacnpeeiieiiuit CJ1y4aflHau 
CYMM 113 61ya1l1Hx Beiwiiiii, KOTOUC HO O6H3aTeJThIIO He3aBItCmlMbI. llpnMeHeH item HeRo-
Topoft o6ueft TeopeMbl BHBOHTCR BHHTH IeHTpaJm1I0ft npeLenbHofl Teope'lM it cia6oro 
3alcoua 601btmtx quceji jni paaHocTHoI'o pa mapTHHranOB B ciy'iae ciyathioro cyMMupo-

- BaHUH [1OCOJCTB0M qacTuoro nai6opa npeenbHoft C 4aftHoft nepeMemlilon. B o6eiix reo-
peiax XaIOTCH 0-0UeHHH jjJIF1 CHOOCTIi cxouMpcTu. 

• This paper is concerned with large-9 error estimates for convergence in distribution of random 
sums of not necessarily independent random variables. As application s of a general theorem one 
obtains the-random-sum versions of the central limit theorem and of the weak law of large 
numbers for martingale difference sequences by specializing the limiting random variable. 
Both theorems are equipped with 0-rates. 

Dedicated to the memory of WOLFGANG RICHTER (1932-1972), a scholar of the 
theory of randomly indexed random variables.	- 

1. Introduction and History 

The central limit theorem (CLT), perhaps the most important limit theorem of prob-
ability theory, may be formuIatd as follows: Let (Xi)IEN (N = {1, 2, ..,}) be ase- 

•	quence of real, independent, sqdare-integrable random variables (r.vs.) defined on a 
•	'. probabilit space (Q, 21, P), let S :=2'X1 denote its nth partial sum, E[S5]the 

expectation, and Var [8,3 ] the variance of 8,. Then (Xi)IEN is said to satisfy the CLT 
provided the sequence PI;. of distributions of the normalized sums	- 

(8 - E[Sn1)/( Var [81)112  

converges weakly to the standard normal distribution, i.e., 

urn E[f( 5 )} = E[f(X*)]	(1€ CB),  
n—•  

1) The research of the second named author was supported by DFG grant Bu 166/37. 
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where X* is the standard', normally distributed r.v., and CB	CB(R) the class of 
all bounded, uniformly continuous, real-valued ,function / defined on the axis R., 
endowed with norm IIIIic	SLIPXER I/(x)I.	 . 

In 1948 H. ROBBrNS [37] gave sufficient conditions for the validity of the random-
sum CLT. He generalized the classical CLT in the sense that he replaced the index 
"n" of S by a positive, N-valued r.v. N2 depending, on a parameter). E lt'4 , the family 
(N2)AER. being defined on the same probability spac(Q, vt,' F) as the sequence (XI)iEN. 
Relation (1.1).in the case of the CLT for randomly indexed sequences of r.vs. , reads 

urn E[/(T,2)] = .E[/(X*)]	(I E CB ),	 (1.2) 
-	 N 

where 1N1 := (S v2	E[8y1 ])/( Var [SN2 ]) 112 , SNA := Z X1. 
1=1. 

Whereas H. ROBBrNS [37] assumed the r.vs. N1 , 2. E W,'to be independent of the 
X 1 , i E N, F. J. ANSCOMBE [2] was the first to consider conditions for the validity of 
the random CLT without this restriction. These two classical papers were followed 
up by a series of papers on limit theorems for randoml y indexèd'sequences 'of r.vs., 
such as A. RENYI [34], J. R. BLUM, D. L. HANSON, J. ROSENBLATT [ 7], W. RICHTER 
[36], S. H. SmADINov—G. ORAzov [43], Z. RYCHLrK [39] and D. J. ALDOUS [i]. An 
excellent survey on limit theorems in this connection is to be-found in the Habili-
tation - thesis of RIcHTER'[35]. 

Anotherpossibility to generalize (1.1) consists in dropping the independency assump-
tion upon the r.vs. X, i C N. Since it is generally difficult to find sufficient conditions 
for the conveence of.arbitrary dependent r.vs., one usually restricts oneself to 
particular types of dependency. in this respect martingale difference sequences (MDS) 

• and martingale difference arrays have been examined to an especially great . extent. 
The pioneering papers and books here are those of P.' LÉv [29, 30, 31: p. 2421 and 
J. L. DOOB [18: p 383], which were followed up by [6, 25, 19,'9, 42, 28, 21], for 
example. By a MDS is meant the following: Let (X1)IEN be a'sequence of real r.vs. de-
fined on (Q, W, P), and let ()jp (P := N u 0}) be an increasing sequence of sub-a-
algebras of W such that X 1 is -mneasurable for each 'i C N. Then (Xi, )iEP, X0 := 0 
is called a MDS if  

E[Xi I	= 0 a.s.	(i C N).	 (13) ,, 

For the martingàle random OLT the reader is referred to [16, 32, 17, 40]. 
The paper by M. CsöRoö [16] cited is, according to the best of our knowledge, the 

first ever concerned with. the CLT for martingales in the case of randomly indexed 
r;vs. The . first result dealing with rates of convergence for the CLT for martingales is 
apparently due to I. A. JBRAGrMOV (see [25]). The latter paper is the forerunner of a 
series of results in this field (see e.g. [24, 22,3,44, 15: p. 314, 26, 8, 4,38,23: Sect. 3.6, 
141, the . rates in [4] being established for R"-valued r.vs., and in [38, 14] for Banach-
space valued r.vs.)  

The purpose of' thispaper'is to' study rates ,of convergence, for martingales in the 
instance of randomly. indexed sequences of r.vs., a topic that has so far been consid-
ered only by B. L. S. PRAXASA RAO [33] and' J. STROBEL in his dissertation [44]. 
More concretely, the aim, is to deduce thd random CLT as well as the random weak law 
of large numbers (WLLN), both taken with rates, as-'applications of one general 
theorem. To carry out this unified approach, conditions are given which lead to large-
0 estimates for the difference 

-	 (1.4)'
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for all / E C" (R). Here	.,	 . 

TN2 := 99(2VA)SV2,	 (1.5) 

(X ) p are the ,first components of the MI3S (Xi, a0iEP, p N -± R is a positive, 
normalizing function, and Z is a limiting r.v. that is assumed to be p-decomposable. 
This means that for ech n E N there exist independent r.vs. Z ) Z 1	Z, 1	i	n, 

•	such that the distribution Pz of Z can be represented as 
•	 V	 Pz =. P	,.	V	 -	

( 1.6) 

Furthermore, for r E P we have set CO (R) = C(4), 

C(R)*:={/ECB(R):/()ECB(R), 1:5-- jr).	V	 V	 - 	 ( 1.7) 

For details concerning the relationship between the concepts of q'-dpe'oniposability V 

and infinite divisibility see [14].	
V 

In the sequel itwill always be assumed that the r.vs. N1 , 2 E R, and X 1 , i E N, are 
•.	independent, and that N 2 .-* 00 in probability for A -± oo. 

Since the limiting r.v. Z can be chosen rather generally, in particular as the Gaussian 
r.v. X* and the degenerate r.v. X 0 (which takes on the value 0 with probability 1);	V 

respectively, both being p-decomposable, the random — sum CLT and WLLN with 
'rates will he deduced as particular cases. The latter does not seem to have been con-
sidered at all in this frame.	V 

	

inspite of our general approach for MDS; our convergence rates are even better	V V




than those for sums of independent r.vs. due to'Z. RYCULK and D SZYNAL [41] on 
aceountof our use of K-functional methods. They are indeed just as sharp as those-of 

V 
P. L. BUTZER and L. H.&JrN [11, 12] in the case of non-randorn'surnmation of inde-
pendent r.vs. Returning to , the proofs again; our main theorem is based , upon a mod- 
if icat ion of the Trotter operatortheoretic method to the situation of not necessarily 
independent r.vs. as already applied in [3, 141. This time it is tailored to the situation 
of randomly indexed r.vs. X• which are ihdependentof the index'variable N2 , ) E R. 

As an illustration of our results let us formulate a particular case of our, random 
V	 CLT with O-rates:	'	V	 V	

V	
V V

	

•	 V V 

V 

Let (X1, i)iEP be a, MDS, and let 0 <c	3. If / E Lip (o;3, GB) (see (2.3)) and	
V 

V V• 

•	E[X1l3]- < O (iE N),	,VV 	

V V	

V	

V.	 V	
(1.8.)	 V 

as well as
V	,	V	

•V	

V	 V,	 • '	

V V,	 V	 '	 ' ' ' ' V . 

E[X I	i_1] = E[X*i] a.s. V	 (1	j	2, j EN),V ' 
V V

	

VV (1.9) 

then.	 V 

V	

V	 ,	
V 

V	

V	

V 

IE[f (SN2 /j/)] — E[/(X *)1I	V V V	

V,	
V	

V	

V VV	 V	

V	

V 

I	
[N2;_,12 NI	• 11/3

.5C1 B 	L' (E[1 x 11 3 ] + E[IX*1 3])	(2	oo).	, '	(1.10) V 
!	 =I	V	V	 V	 V 

In particular, if the r.vs. X i are identically distributed, then the order ofapprox-
imation in (1.10) is 0((E[N2/2]}'I3).:	 '	V	

V	V V 
V V V In the case of independent, identically distributed rvs. Xi, - i E N , Z.VRYCaLIK 

and D. SZYNAL [411 deduced the rate e?(E[N2-012]) with 0 <	.1 under'orrespond-
ing assumptions upon the moments of X.	V	 V	V	V	-


By applying a result of V. M. ZOLOTAEEV [47] VOfl the Kolmogorov distance between 
the distribution functions'Fx and Fyof two rvs. X and V (see (4.2) below), the follow-

7*
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ing estimate concerning the strong convergence of distributions can be derived from 

If (X 1, j)jEp is a MDS and'/ E Lip (3; 3; GB), then one has under the assumptions 
(1.8), (1.9)	 0 

sup F8 1 (t)—. F.(t1	M {E [N 312 E (E[IXI 31 + E[IX*13]) 
114 

IER	
]} 

and ih the case of identically distributed r.vs. (Xj)1€p this estimate is of order e3(2-1/8) 
A -* co, provided E[N4 - 1 1 2 ]	0)-I/2) 

The best possible convergence rate reached by D. LANDERS and L. ROGGE [27] in 
the case of independent, identically distributed r.vs., namely 0(). "1/2 ), cannot be 
achieved by our methods. This is due to the ZOLOTABEV estimate (see [47, 48]) used 
(see also Sec. 4). 

Section 2 is concerned with questions' of notation, the K-functional, moduli of, 
continuity and Lipsehitz classes. Setion 3 is devoted to our general theorem on the 
convergence in distribution of the r.vs. TN, towards a q-decomposable r.v. Z. In 
Section 4 this theorem is applied to the strong convergence in distribution, and in 

• Sections 5 and 6 to the random CLT and WLLN, respectively. 

2. Notations and Preliminaries 

The K-funktional and modulus of continuity, defined in terms of the spaces G B and 
CB, r E N (cf. (1.1) and (1.7)), need to be recalled. For any! E C8 and t 0 the former' 
is defined by 

K(t; 1; GB, C5T) := inf (II! - gIc ± t gIc8},	 (2.1) 
gEC8' 

I being the semi-norm on C8 , given by g c8' := g(018, and the rth modulus of 
continuity by  

w,(t; I; GB) := sup	(_1)t_k (r) j( + kh) 
\	IhIt k=O	 k 

For éach'f E CB and each t . 0 the K-functional is equivalent to this modulus (see 
[10: pp. .192, 258]), i.e., there are positive constants c1 ,. and C2., independent of f and 
t ^ 0, such that 

c 1 w(t"; 1; GB) ;5 K(t; I, C, C8T )	C2 ,w,(gl/T, /; GB).	 (2.2) 

This enables one to define a Lipschitz class of index r E N and order ,O <	r by	- 

Lip (; r; GB) :=(/ E GB: -(t;/; GB)	L, t > 0},	 (2.3) 

• Lj'being the Lipschitz constant. 
The concept of -deconipdsability, defined in (1.6), can be extended to randomly' 

indexed r.vs. since the range of the index variable N4 is-a subset of N. In fact, if Z is a 
•	q-decomposable r.v., then (1.6) implies  

•	 N4 

-
P, Pç p, 4	Z1	(A E It).	-	.	-	 -	(2.4)
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If p,, = p(A) denotes the probability with which the index variable. NA takes on the 

value n E N; then	p = 1, and so (2.4) yields that	 - 

00	 n 
Pz = Z pP fl) ' Z i .	- . 

provided the r.vs. Z 1 , i E N, are independent of N 2 for each A C Rt Likewise one has 
for the expectations E[Z] and E[TYA] of Z and TNA (recall (1.5)), respectively, 

E[Z]2PE[92(n)L']	 S	 (2.5). 

E['l'NA] =,'pE[T].	
r	

.	 (2.6) 

3. General Convergence Theorem for MDS with Rates 

This section is concerned with the general limit theorem with rates described in the 
introduction. The proof is based upon the Trotter operator approach, first appliedto 
the CLT in [45]. Hcivever, it has to be generalized so as to be applicable to MDS in. 
the case of random summation instead of just sequences of independent r.vs. Although 
the proof may appear rather long and technical, it is nevertheless elementary. It 
uses Taylor series expansions, the operational rules for conditional expectations, and 
standard K-functional arguments of approximation the&ry. 

Theorem. 1: Let (Xi, a0iEp be a MDS and Z be, a (p-decomposable r.v. with 
E[Z]-= 0, such that	 .	 . 

	

Eflxd'J < co,	:= E[Z 11 r] < oo	(i E N) '	(3:1; .3.2) 

for some r C N, r	2, as well as .. 

E[X 1 1 I	E[Z] a.s. (i E N, 1	r 

a) Under these hypotheses one has for.j C C 
-	.	.	.	. N1	 fir 

	

EEl (T 1)] - E[/(Z)]l f-- C rr ({E [((N	(rj + ri)]} ; j;

(3.4). 

C2., being the constant of (2.2). In particular, it C Lip (a; r; GB), C (0, r], then 
NA	 /r 

IE[f(Tv A )] - E[f(Z )]I ;52c rLi JE {((N A ))	 + .)]} ..	( 3.5) 

b) If the r.vs. X, i C N, as well as the decomposition components Z 1 , i C N, are identi-
cally distributed, then	 . 

E[f( TNA)] - EEi(z )II ;5 2C2 rWr({(r 1 + ri)E[((N2))1 Nj]}11r; /; CB).
(3.6) 

ff1 C Lip .(a; r; C8 ), 0< a	r, then the left side of (3.6) has the bound	-	- 

2c2 , 1L, {(r:1 -I-.	E[((p(NA))r NA]}Ir .	.	 S	 ,	 . (3.7)
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Proof: a) Let / E C8, y € C B r be arbitrary. Making use of the fact that 
J EIJ(Z)JI	Jf c8 , for all f E OB and any r.v. Z,  

I E[f(T A )] - E[f(Z)1 
I[/(1'2)].— E[g(T 1 )] + E[g(TN2)] - E[q()] + E[g(Z)J - E[/(Z)Jj


	

2 111'gp + I E[g(TN1 )] - E[g(Z)]I.	
V	

(3.8) 

In order to estimate the scond term, if (Zi) IEN isthe sequence of independent r.vs. 
of (1.6), not only can the, (Zg)IEN be chosen to be independent of the r.vs. N1 , 2€ R 
by a proper choice of the underlying.probability space (c.f. [20: p/19/80]), but also 

*	the ti-algebras generated by the Z, can be assumed to be independent of the sub-i- 
algebrasa i , i E N.  i-i	I	n 

Setting R1 := '. Xk --	Z., 1	k	n, n E N ' 	double application of 
k=i+1 

Taylor's formula for g E Cj yields	V 

/	 V 

g(T) —g(q(n)Z 1 V	 V	 V 

•	 \	1=1 

•	
=	{g((n) R ,1 + (n) X1) - g((n) R..j ±(n) Z1)} 

•	 V 

=

190) (,p(n) R )	j!	g(i)((n)R 
), ((1) , Zi} 

•	 (r - 2)1 f
(I - g)r-2 {g(r_I)((n) R 1 + t(n) X) 

•	
V.	 g(r1)(0) R)} (q(i) X) 1 dt	 'V 

• (r— 2)! /	ty_ {g(r1)((n)	+ t(n) Z1) 

g(r_I)(p(n) R0,1)} (t(nzI)TV_.1 dl.	- 

• Since g E CB r one has g(r_l) E Lip (1; 1; C8) with L9 := f!gtI, and so for  < I	1, 
{g(r_1)((n)	+ t(n) V) - g(r_ fl(çv(n) R)} ((n) X1)r-1 

	

IlgJj (cv(n))T X	.s.,	 •	 V 

and analogously for the r.vs. Z 1 . In view of (2.5) and (2.6) this leads to 

V	E[g(T] - R[g(Z)] ^pflVE[g(Tfl)] - E [g ((n)	Zi)]	 V 

•	I .n r-i	 (X V	 •	 •	

•	 ^	p,	' E [g( i) ((n) R	 '__ i
p(n) ) i 

 • 

•	 •	

•	 •V	 (Z.9,(n))i1 
V	

-V (i)(() R)	
j!	]	

V 

119II 	V	

V •	 •'	

•	 1	•	 • -

	 V 

+ (r— j)!	 +	)J .	(3.9)
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Leriis now show that  
E[X 1 ig( i)((n) R , )]	 S 

= E[Z ig( i)(p(n) R , )]	(I	i	n, n E N; 1	i	r).	(3.10) 

.Setting 91 j, :=	u WA,1, ..., Z,,)),, 91((^) and c [(X) being the oaIgebras gen-' 
erated by and X, respectively, where c: 3(Q), bne has by standard argumçnts 
for the conditional expectation of real r.vs;, 

E[XT 1 Ig0)(9,(n) R. , j)] 
- EZigO)(q(n ) R, ) j	-	 - 

= E[g(1)(q,(n) R ). (E[X' I	- E[Z 8' I 

since gW(p(n) R. , ,) is measurable with respect to 91,,. Since moreover 91(Z 14, •., Z,,) 

is independent of 9i(_ u 91(X 5 )), one has (cf. [5: p. 295]) E[X i I 91,,] = 

a.s. As 91(Z) is independent of 9I.,,, oi'ie finally has E[Z' I 91] = E[Z I'] a.s.,ând so 
E [X1I 91,,] = E [Z 5 i I S2t,,,] a.s.on account of assumption (3.3). This establishes the 
validity of (3.10). Since the double sum in (3.9) . vanishes, (3.8) yields 

- E[/(Z)]I 

	

g(V)j'	f	-	NA 
^ 2 II! - II ''	1'' 

E I (q(N1))':,L'	+ r,i) 
-	r— )	L	i1 

on account of (2.5) and (2.6). But.the left side of this inequality is independent of g, 
so that taking the infimum over all g E CBr yields by (2.1) 

- E[/(Z)]I	 I 

N'	 hr	 S 

^ 2K ({E [((NA ))'	(Cr.j +	S]1 C8, Ci). - 

The first asserfion, namely (3.4), of part a) now follows immediately by (2.2), and 
the second, namely (3.5),-by (2.3). Part b) is a particular case of a) I 

• Remark 1: Note that Theorem 1 covers the situation that the r.vs. X j are inde-
pendent (since such r.vs. with E[X] =.0 form a MDS) In this instance condition 
(3.3) reduces to E[X 1 i] = E[Z 1 i ], i E N, 1	j r - 1, an assumption already used 
in [12], for example.	 -	'•	 - 

Remark 2: The estimate in (3.4) is only of pra9tical irter .est provided the modulus 
0r tends to zero for A - c, that is, if  

N; 
E [())T	(E[IXV] + E[IZI n])]	-	 S. 

tends-t6 6for). - co. If the r.vs. K 1 , i EN, and Z 1 , i E N, are in particular identically 
distributed, and one sets q(N2 ),= N2 -r/ 2 ,. r -,=-f 3 (see Theorem 3b)), then the special - 
bounds in (3.6) and (3.7) tend to zero'since E[N2 ( 2 -h112] - 0 for A .- co in view of the 
hypothesis that N A -> co in , probability. 

4. Approximation Theorem for Distribution Functions with Rates	 S 

In this section we shall examine the rate of approximation for the strong convergence 
• in distribution of the r.vs. TN towards Z. For this purpose, it suffices to apply the 

'following result of V. M. ZOLOTAREV, contained implicitly in[47]; it permits one to 
pass from weak convergence to strong convergence indistribution.	V
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Lemma: Let 3' be a.real.r.v. with distribution'/unction F for which there exists a 
constant M3 = M > 0 such that 

IFy(t) - Fy(s)I	M1 It - s I	(s,.t E R, S <t),	 (4.1)

and let r E N. For each r.v. X and each constant M2 > 0 there exists a constant M 

M(M1 , M2 ) > 0 such that the so-called Kolmogorov distance between the distribution 
junctions Fx and F, namely*  

I	 11/(r+i) sup Fx(t) - F(t)I ^ LW	E[/(X)] - E[/( Y )]l	,	. (4.2) 
t E R	 IfED	 J 

the function class D D(M2 , r) being defined by 
D := (f E CB 	LipM (1; 1; CB)},	 -	 (4.3) 

the Lipschitz constant Ljfr-> being uniformly bounded by M 2 .	 S 

As an immediate consequence of Theorem 1 And (4.2) we have the following theorem. 

Theorem 2: Let the assumptions of Theorem 1 be satisfied, and let (4.1) hold 9or the 
limiting r.v. Z. Then

I	I	Nl	 11 if(r+i) 
a.) sup IFTNA(t) - F(t) ^ M {E I ((N4 )) T L (r.i + 'r.i) I E R	 I.	L	1=1 

•	b) If the 'r.vs. X and Z, i E N, are additionally identically distributed, an = N 2 -112 , then
/1	1	2—r]\i/(r-3-1)\ 

sup F ' (t) - F(t) = IE [N2j)	)	(A co). 
IER 

• The order of approximation deduced for the weak convergence can in general not 
be transferred to the associated strong convergence in distribution although it is 
known that both types of convergence are equivalent when considering convergence 
per se (without rates). (Further details to this and to other assertions equivalent to the 
convergence in distribution without as well as with rates may be found in BUTZER-
HnN [13]).	 .	 - 

Since the supremuni of the right side of (4.2) over all f E D is smaller than the 
same supremuni taken overall! E Cj(R), it is to be expected that the power 1/(r +1) 
cannot be dropped in estimates of type (4.2) for general r.vs. Y that need not satisfy 
condition (4.1). This will now be shown by means of a simple example taken froiii 
[46].	 S 

If one considers the distribution function F, of the degenerate r.v. X0 (cf.- Sec-
tion 1), and if F1, is a further distribution function of the form FL(t) = (1 - e) 
X Fx,(t) + eF .,(t - r), t E R, fOr some e E (0, 1), then one has. immediately 

sup JFx.(t) - F1(t)j	.	-	 S	
(4.4) ,tER	 .	.	. 

Now with the help of the metric x, defined in [46] by	 - 
x3 (X, Y) := s  jt 8-' F(t) - Fy(t)i dt	(s	I) 

for any real r.vs. X, Y, Zolotarev established the inequality	S 

sup E[f(X)]— E[/(Y)II :!9 --- ,c(X, Y),	 - (4.5) 
fED	 rfr) 

- where r E N is taken as in the definition of the class D of (4.3).
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In the case of our example, the r.vs. X0 and X0 are at a distance x,(X, X0) 
= (r/(r + 1)) Ct±I apart. So one haby (4A) 

SUP F1 (t) — F1 (t) ^5 {2%,(X0, X0 )} 1 I( r + 1 )	(r € N).	 (4.6)' 
•	 IER 

A comparison of (4.5) with (4.6) theréfor shows that when passing froni the distance 
SUP/ED IE[/(Xo)] — E[/(X0)}l to the Kolmogorov-nietric supzER F,(t) - 
the rate of convergence becomes poorer, at least for those r.vs. Z which do not, ne-.. 
cessarily satisfy a Lipschitz condition of type (4.1). Indeed, the r.v. X0 does not 
satisfy (4.1). However, whether the estimate (4.2) 'and so the convergence rate in 
Theorem 2 could possibly, be improved (in the sense that the power 1/(r ± 1) in the - 
estimate of Theorem 2 could be dropped or increased) for those limiting rvs. Z satis-
fying (4.1) is a fact that is unknown to the authors. 

5. The Random - Sum CLT for MDS with Rates 

Let us apply our two 'theorems to a concrete limiting r.v. Z, namely t'o the Gaussian 
distributed r.v. X* with mean zero and variance 1. Theorem '1 yields the following 
random CLT with large-@ rates for martingales.	 ,	0 

Theorem 3: Let (X1, i)iEP be a AIDS, r E N and (a l )1(N any sequence of positive 
real numbers. Assume that (3.1) holds, i.e.,	 ,	. •	 - 

E [I X1I] < oo	(i € N), 

as well a-s

E[X 1 i	:= aE[X* ii a.s. (i € N, 1 :c_:^	r — 1).	 ' (5.1) 

a) Under these hypotheses one has for / € C,  

EEl (ASNA )] — E[/(X*)]I  
/1	1  Ir N	 Th  

^ 2cC, rWr (I E	E (r.i + a tTE[JX*V])IF ; /; C ),	'	(5.2) 
\	L	1=1	 u	/ 

/ NA I/2 

C2, being the constant of (2.2), and A NA := ( ' a 12 ) . In pzrticular, if f € Lip (a; 

	

\i = 1	I 
a E-(0, r], then the bound in (5.2) takes on the form 

[A —r 2c2L1 
1
E	 —F+ a,E(IX*Ini)

I. 	1=1 

b) 1/, in addition, the r.vs. X, i E- N, are identically distributed, and (5.1) holds for 
a 1 = 1, i €N, then

— E[/(X*)]I	.	•	 ''	 S 

•	;;5; 2c, , ,co,( 	i + E(V*) E[1T412_T2])}1' /; C5).	 .	(5.3)	• 

It  € Lip (a; r; C5),. a € (0, r], then the bound in (5.3) reads 

2d r 1-'/Ur I + E[IX*l) E[N2_.oTI2]}IT.'	 (5.4). 

Proof: The r.v. X is p-decomposable for each n  N into n independent, nor-
many distributed r.vs. Z 1 , 1	i	n, namely Z, = a 1 X*. Moreover, one can ensure
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as in the p'roof of Theorem 1 that the Z, i 6 N, N 1 , ,.	as well as the siib-a-al-




gebras 3,i, i 6 N, are all independent. So X* can be decomposed according to (1.6). 

(
±a j with q(n) :=	 2)	 Since E[Z 1 i] = E[a 17X*iJ = a 1lE[X*i] for i 6 N,assump-

i=i	I	- 

tion (3.2) is satisfied on account of (5.l) So Theorem 1 may be applied since the 
moments bf (4.1) exist here, too , I 

Concerning the previous literature in the matter, the only paper known to the 
authors is- that by BASU [4], who'in the classical case of non-random summation 
deduced the estimate	 - 

S.	

IE[t(SIn")] - E[f(X*)]I = (n_2)	(n 

provided that 
(Xi)IEN defines a MDSof stationary r.vs. satisfying the assumptions of - 

Theorem 3 b) in the particular case r = 3 and / 6 Lip (cx; 3; C8), a € (2, 31. Comparing 
this estimate with ours, (5.4) for r = 3 and non-random summation gives the order 

a E (2, 3],seven in the case of non-stationary sequences (Xj)IEN. 
•	As an application of Theorem 2 to X we have: 

Theorem 4: a) Under the assumptions of Theorem 3 one has -

sup

 

•	

-	 N) If(r+1) 
INl/"N	- Fxs(t)I ^5' M {E [AE (, -4- a.1E[tX*l)]} 

h) If the rms. X i are identically distributed, and (5.1) holds for d i	1, i E N, then 

S 

sup , FsN)I .Nl1 I I (t) -. F1. (t) = O((P[T(2__T)I2])1/(r+I))  
l e ft '	 -	 S 

If r = 3, and E[N 1 1 12] = 6(A l2), . -- oo, then the latter estimate is of order (_1/8). 

Remark 3:.In his dissertation [44] STROBEL obtaihs under additional assumptions

as a corollary of results in a more general setting the estimate	 S 

sup, 

	

n/-(t) - F1.(t)1 = 0(n_118 + P({v > n}))	(n ---> oo) 
ICR  

for a sequence of independent, identically 'distributed, normalized r.vs. ( X1)es, and 
a' sequence of stopping rules (Vfl)flEN for a,,:=2{({X1..... 

6. The Random - Sum WLLN for MDS with Rates	 - 

The final application of Theorcin 1 will be the WLLN of the title with &-error estiiia-
- 	tes, a result that does not seem to have been ccnsidered before. When examining the 

WLLN in connection with r.vs. TN1 defined in (1.5), one normally th inks of stochastic 
convergence of TN) towards zero, namely	 .	0	 • - 

lint P({Ty 	s}) = 0 (8> 0).-	 (61) 
S • 

Tnstead,.we consider.a formulation of the random WLLN which can be shown to be 
equivalent to (6.1), just as in the classical situation (see e.g. [5: p. 220]), namely 

lint E(/(TN))] - f(0)I =0	(I ECB -) -	 -	" (6.2)
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for any r E N. Version (6.2) has the advantagd that Theorem 1 can be applied direct-
ly; one just needs to choose the limiting rv. Z as the degenerate r.v. X0 defined in 
Section 1. In this frame the random WLLN for MDS with 0-rates reads	- 

Theorem 5: Let (Xi, NiEP , be a MDS such that EX) < 00, i E N. 
a) It  E. Lip . (o.;2;CB ), then--	 S	

IN,, 

- /(9)I 5 2C2;rL) JE [ (9,(N,))2E. E[lX!2}]} 

b) Under the assumption	 S 

Na E E[1X112] = (((N1 )) -2) a.s. 	oo),	 (6.3)

i=1 

one has	 - 

lin P ({J TN)I 2^ e}) = 0	( e > 0). 

In pa;ticular, if 97(N1 ) = N1 in (6.3), then SNaIN2 - 0 in probability for 2 —^ o, 
i.e., (XI)IEN satisfies the random WLLN. 

Prof: First note that E[/ (X0)] = f f(x)dPx,(x) = /(0). The distribution P- can 
co R  

be decomposed as Px = ' p,P	with Pz = Px. ,for all i E N. Since 
0=1	r'(n)EZ 

f }xdP,(x) = O for any s >0, condition (3.2) of Theorem 1 issatisfied. Then assump-
B. 
tion (3.3) follows immediately from (1.3) and the distribution of the r.vs. Z. 

Part b) follows from a), noting the equivalence of (6.1) and (6.2) U 

The authors would like to thank Dr. L. HAIIN, for-kindly supervising the early 
stages of the work of the second named author, as well as Prof. M. Csöaoö, Ottawa, 
Canada, for his generous help in connection with the literature.	 S 
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