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Die vorliegende Arbeit beschiftigt sich mit groB-0 Fehlerabschatzungen fiir die Konvergenz in’
Verteilung von zufilligen Summen nicht notwendig unabhiingiger Zufallsvariablen. Als An-
wendungen einés allgemeinen Satzes werden sowohl Versionen. des zentralen Grenzwertsatzes
als auch des schwachen Gesetzes der.groBen Zahlen fir Martlngaldlfferenzenfolgen im Falle der -
zufa.lhgen Summation durch spezielle Wahl der Grenzzufallsvariablen hergelcntct Beide Sitze’
werden mit @-Konvergenzraten versehen

Paﬁora nocr_mmena 0-0UCHKAM TIOTPEIHOCTH JUIA CXORMMOCTIL B pacipene eIt CayYatiHbxX
cyMM 13 CIyuyaliHEIX BeJHYKH, KOTODHeE He 00A3aTelbHO He3aBHCHMEI. Ilpumerennem Heko-
Topoft 0dieit TeopeMsl BRIBOIATCA BAPMAHTH L@HTPANILHOM fIpefesibHOIl TeopeMbl 1 caaboro
3aKoHa GOMbIINX, YNCeN AIA PABHOCTHOrO PALA MAPTHHIAIOB B CJYNAae Cy4aiiHOro CyMMHpO- -

" BAHWA MOCPEJCTBOM 4YaCTHOrO BuIOOpa mMpepesbHoil cayyaiHol nepeueuuon B obenx Teo-

pema\ nawoTtca 0- OHEHKH AJIAA CKOPOCTH CXOTMUMOCTH.

This paper is concerned with large-(D error estlmates for convergence in distribution of random
sums of not necessarily independent random variables. As applications of a general theorem one
obtains the' random-sum versions of the central limit theorem and of the weak law of large
numbers for martingale difference sequences by speclahzmg the llmmng random variable.
.Both theorems are equipped wnth O-rates.

Dedicated to the memory of WoLrcaxc RICHTER (1932— 1972), a scholar of the
_ theory of randomly indexed random variables.

'

1. Introduction and History -

The central limat fheofem (CLT), perhaps the most important limit theorem of prob-

a.blhty theory, may be formula,ted as follows: Let (X)iex (N ={1,2,...,}) be age- *

quence of real, independent, square mtegrable random variables (r.vs.) deflned on a

: proba.blhty space (.Q A P), let S; := 2 X; denote its mth partlal sum, E[S,] the'\
i=1

expectation, and Var [S,] the variance of S,. Then (X; i)ien is said to satlsfy the CLT

provided the sequence Pz, of distributions of the normalized sums |

= (S, — E[S,])/(Var [Sa]2
converges weakly to the standard normal distribution, i.e.,

lim BT = BN (/€ Ca), o SRS

n—00

1} The research of the second named author was supported by DFG grant Bu 166/37.
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98 PAU'L L. Burzer and D. ScHuLZ '

“where X* is the standard: normally distributed r.v., and Cg = Cp(R) the class of
all bounded, uniformly continuous, real-valued functlons f defmed on the axis R ‘
endowed with norm |flic, 1= sup.er |f(2)|.

In 1948 H. RoBBINs [37] gave suffncnent conditions for the validity of the random-
sum CLT. He generalized the classical CLT in the sense that he replaced the index
“n” of 8, by apositive, N-valued r.v. N, dependmg on a parameter 2 € R*, the family
(N,)AGR. being defined on the same probability spacé (£2, %, P) as the sequence (X;);¢n-
Relation (1.1) m the case of the CLT for randomly indexed sequences of r.vs. reads

A

llm E[/(I"v;)] = E[I(X*)] (l €Cp), . AT (1 2)

. , [
where’l Ny = (SM1 — L[SNA] /(Var [Sy, )12, Sy, := ' X;.

i=1
Whereas H. Roseixs [37] assumed the r.vs. "Ny, 2 € R+ ‘to be 1ndependent of the
X;, 1 € N, F. J. ANscoMBE [2] was the first to consider condltlons for the validity of
the random CLT without this restriction. These two classical ‘papers'were followed
up by a series of papers on limit theorems for randomly indexed sequences of r.vs.,
such as A. RExvr [34], J. R. BLum, D. L. Hawsox, J. ROSENBLATT [7], W. RICETER
[36], S. H. SIRAiDI\IOV G. Orazov [43], Z. RyvcHLIk [39] and D. J. ALpous [1]. An
excellent survey on limit theorems in this connectlon is to be-found in the Habili-
. tation — thesis of RICHTER [35]. .
Anotherpossibility togeneralize (1.1) consists in droppmg the lndependency assump-
tion upon the r.vs. X;, ¢ € N. Since it is generally difficult to find sufficient conditions
for the convergence of.arbitrary dependent r.vs., one usually restricts oneself to .
particular types of dependency. In this respect martingale differerice sequences (MDS) |
and martmgale difference arrays have been examined to an especially great-extent.
The pioneering papers and books here are those of P. LEvy [29, 30, 31: p. 242] and
J. L. Doos [18: p. 383], which were followed up by [6, 25, 19,9, 42, 28, 21], for-
example. By a MDS is meant the following: Let (X;);cn be a'sequence of real r.vs. de-
- fined on (2, %, P), and let (F ),Ep (P := N u {0}) be an increasing sequence of sub-o-
algebras of A such that X; is'F;- measurable for ea,ch 1 € N. Then (X,, 0- Yieps Xo:=0
is called a MDS if : .

CEX |G =0 as.  (GEN). v (1:&3) ,

For the martingale random CLT the reader is referred to [16, 32, 17, 40). :

" The paper by M. Cs6ra0 [16] cited is, according to the best of our knowledge, the
first ever concerned with. the CLT for martingales in the case of randomly indexed

" r:vs. The first result dealing with rates of convergence for the CLT for martingales is

' apparently due to I. A. IBracIMOV (see [25]). The latter paper is the forerunner of a
series of results in this field (see e.g. (24, 22,3,44, 15: p. 314, 26, 8, 4, 38, 2‘3 Sect. 3.6,
14}, the-rates in (4] being estabhshed for R”-valued r.vs., and in (38, 14] for Banach-
space valued r.vs.).

The purpose of this paper-is to study rates of convergence for martmgales in the
instance of random]y indexed sequences of r.vs., a topic that hasso far been consid-
ered on]y by B.L.S. Prakasa Rao [33] and. J. STROBEL in his dissertation [44].

~ More concretely, the aim is to deduce the random CLT as well as the random weak law

of large numbers (WLLN), both taken with rates, as “applications of one general =}

theorem. To carry out this unified approach, condltlons are glven whlch lead to large-
O estimates for the dlfference ) )
s/ S

|E[f(TNA)}—E[f(é)]| T (e
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for all f€ Cy, 3(R). Here . A

Twi= @M Spys . - (L),
(X,),ep are the first components of the MDS (X,, i} Jier, : N> R* is a positive,
normalizing function, and Z is a limiting r.v. that is a,ssumed to be @-decomposable.
Thismeans that for each n € N there exist mdependent r.vs. 2, Z; & Z, ml St < n,
such that the distribution Pz of Z can be represented as

P, =P . . ' 1.6)"
z smiz , N . _(- )

'Furthermore, for r €P we have set C° %(R) = CB(R),

CB(R’) = fE Ca(R): fD € Cy(R), 1=j=r}. (L.7)

For details concernmg the relationship between the concepts of q)-dccomposabxlxty

s

.and infinite divisibility see [14).

In the sequel it will always be assumed that the r.vs. N, 1€ R, and Y,, 1€ 1\ , are )
independent, and that -N; — oo in probability for 2 — cc.

Since the limiting r.v. Z can be chosen rather generally, in pa.rtlcular as'the Gaussran
r.v. X* and the degenerate r.v. Xy (which takes on the value 0 with probability 1),
respectively, both being ¢-decomposable, the random — sum CLT and WLLN with

- rates will be deduced as particular cases. The latter does not seem to have been con-
sidered at all in this frame.

Inspite of our general approach for MDS; our convergence rates are even better
than those for sums of independent r.vs. due' to'Z. RycnLik and D: Szy~aL [41]on
account-of our use of K-functional methods. They are indeed just as sharp as those of
P. L. Burzer and L. Hanx {11, 12] in ‘the case of non-random ‘'summation of .inde-
pendent r.vs. Returning to, the proofs again; our main theorem is based upon a mod-
ification of the Trotter operator -theoretic method to the situation of not necessarily
independent r.vs. as already applied in {3, 14]. This time it is tailored to the situation
of randonily indexed r.vs. X; which are independent of the index variable N,, 2 € R*.

* As an illustration of our results let us formulate a partlcular case of our, random

' CLT with O-rates:

- Let (X, Fidier be a. MDS, and let 0 < o S 3 If fe Llp o ‘3 C,,) (see (2 3)) and-

CEIXPY <o GEN), L L8
as_,wellr_{s o s ‘ Lo e .
BIX/|Bi] = BLX¥) s (1SiS2ieN), - ey

then | B [

|F[f8m/l/— )]—E[f(X*)]I |
sof{ [Nu“’ZZ(F[IX.P]+F[IX*1"])]} " s, (L10)

i=1

In partxcu]ar, if the r.vs, X; are 1dent1cally dlstrlbuted then the order of approx-
imation in (1.10) is ¢( F[N;'llz]}“la)

- In the case of mdependent identically distributed r.vs. X, ¢ E 7 RYCHLIK' :
and D. Szy~aL [41] deduced the rate O(E[N;~ /2]) with 0 < ﬂ <1 under correspond-
ing assumptions upon the moments of X;.

By applying a result of V. M. ZoLoTAREV [47] on. the Kolmogorov dxstance between
the distribution functions Fx and FY of two rvs. Xand Y (see (4.2) below), the follow-

7#
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ing estimate conccrmng the strong convergence of dlStl‘lbuthDS can be derived from
(1.10):

If (X,, Fi ),Ep is a-MDS and'f ¢ Lip (3; 3; Cp), then one has under the assumptions
(L.8), (1.9) , '

. sup|Fs /},—(t)*“Fx°(ll<M{pj[Nl:a/2 ﬁ’wuxim+E[|X*|3])]}‘“

and in the case of identically distributed r.vs. (X ),Ep this estlmate is of order 0O(’ "”3) ‘

/. — 0o, provided E[N,;~%/2] = 0(2~/2).
The best possible convergence rate reached by D. LANDERS and L. RoGGE [27] in

the case of independent, identically distributed r.vs., namely 0(2~ 12) " cannot be !

achieved by our methods This is due to the ZOLOTAREV estimate (see [47, 48]) used
(see also Sec. 4).

“ Section 2 is concerned with questions of notation, the K-functional, moduli of: /

continuity and Lipschitz classes. Section 3 is devoted to our general theorém on the
convergerice in distribution of the r.vs. 7'y, towards a @-decomposable r.v. Z. In
Section 4 this theorem is applied to the strong convergence in distribution, and in
Sections 5 and 6 to the random CLT and WLLN, respectively. -

© 2. Nofations and Preliminaries

The K-funktional and modulus of continuity, defined in terms of the spaces CB and
Cy',r € N (cf. (1.1)and (1. 7)), need to be recalled. For anyj € Cyandt = O the former'
is defined by

. K(t;f; Cp, Cy) = iencf ‘{llf — glic, + ¢ lglc,,r}, o (2-1)
' . gECs . _ » . .
|-| being the semi-norm on Cy', given by |g|c,r := ||9(')|ch, and the rth modulus of

continuity by
r

21y (’) fu+ kh)ﬂ

w,(t f; Cg) := sup
: N st

For each f € Cgand each t =.0 the K-functional is eqmvalent to this modulus (see
[10: pp. 492, 258)), i.e., there are positive constants ¢,,, and c,,,, independent of f and
t = 0, such that ' . ’

61007 15 Cp) < K(t; [, Cs, C5") S 0, 000,(t17; f; C). ‘ (2.2)
This enabies one to define a Lipschitz class of inde;: r € Nand ordell o‘,'O <<, By
Lip (73 Cg) 1= ([ € Ca 0,633 Oo) S L, t > 0}, | (2.3)

L, being the Lipschitz constant.
The concept of gp-decomposability, defined in (1.6), can be extended to randomly

indexed r.vs. since the range of the index variable N, is'a subset of N. In fact, if Z is a
¢p-decomposable r.v., then (1. 6) 1mplles : :

Pz = Pyuvy .Z Z;  (AERY). : . o (2.4)
. =1 . ,
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If p, = = pa(4) denotes the probabrlrty with which the index varra.ble N, takes on the
value 7 € N; then 2 Pn = 1, and so (2 4) ylelds that s ¢

n=1

PZ_'an w(n)ZZ

provided the r.vs. Z,, 7 € N, are independent of N, for each 4 € R*. Likewise one has
for the expectations E[(Z] and E[Ty,] of Z and Ty, (recall (1. 5)), respectrve]y,

/7

-

E[Z]=§lpm[q>(n>§l‘z;], e )
Bry)=Epmr). L (26)

3 General Convergence Theorem for MDS with I{ates : L

This section is concerned with the general limit theorem with rates descrlbed in the
introduction. The proof is based upon the Trotter operator approach, first applied-to
the CLT in [45). However, it has to be generallzed so as to be applicable to MDS in.
the case of random summation instead of just sequences of independent r.vs. Although
the proof may appear rather long and techinical, it is nevertheless elementary. Tt
uses Taylor series expansions, the operational rules for conditional oxpcctatlons and -
standard K-functional arguments of approumatlon theory.

"Theorem 1: Let (X;, §)ice be a MDS and Z be a q)decomposable .. wzth '
.E[Z) = O such that - . ’

Cosi= BIXJT < oo, =B < GeN) | (31382
) /orsomerE),r%Z as well as . ' - \ _ i
B(X/| 5] = ElZd) as. G e/N, i=isr—n. . . .33)
a) Under these hypotheees one has for f€ Cy . _ ' . |
BT ) — BN S s ([ ooy 2o+ 50|} 515 03),
- . Lo o s O (34).
Co.r being the constant of (2.2). In particular, if f € Lip («x; r; Cg), x € (0, 7], then

afr

BT )] = B 7)) = 2c2.;L,{E [(w(Nn)'f(c,.mus;;)]} . 38)

b) If the r.vs. X;, 1 € N, as well as the decomposrtwn components Z;, 1 € N, are identi-
cally distributed, then

\ -

|EIH(Tx)] — b[/ 2| < 26, ,w,({(c, v &) EllgVa) NP £ Ca).
. (3.6)
1/ f€ Lip(x;7; Cy), 0 < & <7, then the le/t side of (3.6) has the bound )

- 25,0 Ly {(Crl + &) b[(?’ Nx)) Nyjjer. S . - (3.7) o
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Proof: a) Let / € Cs, g € Cg5” be -arbitrary. Making ‘use of the. fact that
IF[f @) = ”ﬂlcn, for all f € Cp and any r.v. Z, . . 1

N (R B[] ,
< |E[f(T'x)).— Elg(Tx))l + 1Elg(Tx)] — Elg(Z 1| + 1E{g(7 ]~ E[f(7)]l
Z20f— gl + 1Blg(Tw)] — Elg(2)). : - (38)

In order to.estimate the scond term, if ( -)-EN is the sequence of mdependent r.vs.
of (1.6), not only can the, (Z.).eh be chosen to be independent of the r.vs. Ny, 1 € R+
by a proper choice of the underlying probability space (c.f. [20: p. 79/80] but also
the o- algebras generated by the Z; can be ‘assumed to be mdependent of the sub-g-
algebras i},, 1€ N/ : .

Settmg R, ;= 2 X, + 2 Z, 1 S. k<mn,neN, a double appllcatxon of

k=i+1

Taylor’s formula for g € Oy yields

9T — g (<p<n> z zi) |

f

s T

{9lp(n) R ; + p(n) X, i) — glo(n) Bai + q)(n) Z )}

1 {g(,)( (n) R, )(17_), _ ?(i)(?(n)'Rp.s).M} A

it

'$

Il
"
i

-
1l

-
~,
[

-

. \ . 1

'é: r— 2), f(l — ty =2 {gr=(p(n) ]?".'i 1 toln) X,) :

.+_

~9""’(¢(n ) Ra.)} (p(m) X1 dt ' .

1
2" ,_2), f ( =ty {gr- ”(w(n)Rn.+ttp(n) )

=

g(r l)(,p R” l)}( n)Z)’ ldt v .
Smceg € CB one has g\ -1 € Lip (1; 1; Cp) Wlth L, := {lg"]], and so for 0 < ¢ < 1, -

[{g"~(p(n) Ro.; + tp(n) X)) — g~ ”(tp (n) B,.i)} (@(n) X;)"‘l
< llg| (w(n) X" a.s.,
.and analogously for the r.vs. Z;. In view of (2 5) and (2. 6) this leads to

Big() — B [g (w(n) z Z)]

[g(’)((p(n n 1) ( '9’(" )

_ 9‘”(<P(n) R,.;) M]l |

. . . . . :

!E[Q(T\'m)_] — Elg D) = Z=' P

s)f“{

i=1j=

S g S S :
P + (T+ll)'_((p(n))'£ (Cri + f_rfi)}- (3.9) .
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Let us now show that -
E[Xa"g""(q)(n) Rn,i)] - . :
= E[ZigD(p(n) R,,;)| 1<i<mn e N;1£j<7). . (3.10)

" . Setting U;,, 1= 91(5,-, VN Zisy, - -- ,,)) -A(€) and A(X) being the o- algebras gen-‘
erated by € and X, respectively, where € R(£2), one has by standard arguments
for the conditional expectation of real r.vs;,

E[X jg9(g(r) R,..)| — E[Z/gP(¢(n) By,i)}
= E[g(,)((p(n) Rn x) {E[X 1 l SX: n] - F[Zz | 2Iﬂ]}]

_since g(”(tp(n) ) is measurable with respect to A, .- Since moreover A(Z;sy, - - o5 Zs)
is mdependent of ‘2[(%._, uA(X; )) one has (cf. [5: p. 295)) E[ X | U;..) = E[X{] 0,_,]
a.s. As A(Z,) is indépendent of A; ,, one finally has E[Z# | U; ] = E[Z; 7] a.s.,"and so0

"E[XJ| U] = E(Z7] U;,,]) a.s.’on account of assumption (3.3). This estabhshes the
valldlty of (3.10). Since the double sum in (3. 9). vamshes, (3.8) ylelds ,

Y 2

EIN(Tx,)) — ELH2))

|
s2— g+ B |(eva & +e .)]
‘on account of (2.5) and (2.6). But-the left side of this mequahtv is mdependent ofg,
so that taking the infimum over all g € Cp' yields by (2.1) - .

BT — EUD) - o
s2K({ [(m) 2(¢,.+5,.)} } f; Ca,oe)

The first assertion, namely (3.4), of part a) now follows unmedlately by @. 2), and '
the second, namely (3.3),-by (2.3). Part b) is a particular case ofa) i ’

" Remark 1: Note that Theorem 1 covers the s1tuatlon that the r.vs. X; are inde-
pendent (since such r.vs. with E[X] =.0 form a MDS). In this instance condition
(3 3) réduces to E[X] = E[Z/},1€N,1 < S r —1,an assumptlon already used

.in [12], for example. o

'

Remark 2: The estimate in (3.4) is on]y of practlcal mterest provxded the modulus
Wy tends to zero for 4 — oo, that is, if . .

E [(qn(m))' 5 i + Enz;m)]

tends t6 0 for 4 = co. If the r.vs. X;,¢ € N, and Z;, ¢ € N, are in particular identically
distributed, and one sets g(N,).= N,”"/2, 7 = 3 (see Theorem 3b)), then the specual
bounds in (3.6) and (3.7) tend to zero 'since b[N;“'—'”"] = 0 for 2 — oo in view of the
hy pothesns that Nl — oo in, probablhty , L

\

4. Appro“matlon Theorem for Dlstnbutlon Functlons with Rates

In this sectlon we shall examine the rate of approximation for the strong convergence

. “in distribution of the r.vs. Ty, towards Z. For this purpose, it suffices to apply the
. ‘followmg result of V. M. ZOLOTAREYV, contained nnphutly in [47]; it permlts one to
pass from weak convergence to strong convergence in “distribution. :

\

t ~
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Lemm'a: Let Y be a real.r.v. with distribution function Fy for which there exists a
constant M, = M, > 0 such that - ’ ' '

o) — Fy)| S My ft —s| (st Rs<t), - @

and let r € N. For eack rv. X and each constant M, > O there exisls a constant M
= M(M,, M,) > 0 such that the so-called Kolmogorov distance between the distribution
functions Fy and Fy, namely ) -

sup IFs() = Pyl = M fsup 1E1() myernf @)
the functib:n class D = D(M,, r) being def'ined b'y _

Di=(feCy N o0 Lipy, (1,1 Ca, - @3
the Lipschitz constant Lyoy being uniformly boinded by M, o~ y

* Asanimmediate consequence of Theorem 1and (4.2) we have the follow,ing theorem.’

Theo 4re_m‘ 2: Lel the assumptions of Theorem 1 be satisfied, and let (4.1) hold Jor the
limiting r.v. Z. Then ; ' ‘ ' _

.
a) fé’;? |Fry,(t) — Fa)] < M {L [(rp(N;))r,g:(;,.a + 5,.5)}}

b)-If the rws. X; and Z;, v € N, are additionally identically distributed, and
@(N)) := N,;712 then N : :

), . . 2—r\Vir+1) .
sup | Fry (t) — Fp0) = 0((E [N1 2 ]) ) (4 ~>00).
teR ‘ .

r+1)

The order. of approximation deduced for the weak convergence can in general not
-be transferred to the associated strong convergence in distribution although-it is - -
" known that both types of convergence are equivalent when considering convergence
per se (without rates). (Further details to this and to other assertions equivalent to the °
convergence in distribution without as well as with rates may be found in BUTZER-
Hagrx [13)). - . ' o o , ,

Since the supremum of the right side of (4.2) over all f € D is smaller than the
.same supremum taken over all f € Cy"(R), it is to be expected that the power 1/(r 4-1)
cannot be dropped in estimates of type (4.2) for general r.vs. Y that need not satisfy
condition (4.1). This will now be shown by means of a simple example taken from
[46]. . , .
If one considers the distribution function Fy, of the degenerate r.v. X, (cf. Sec-
tion 1), and if Fy, is a furthér distribution function of the form Fr(t)=(1 —¢)
X Fy,(t) + eFy,(t — &), t € R, for some ¢ € (0, 1), then one has.immediately

sup |Fy,(t) — Fx,(t)] = «. : o : (4.4) -
ER. : .

Now with the help of the metric », defined in.[46]v by . -
0ol X, Yy = [ Bty — Fy(®ldt - (s = 1)
. R ’

for any real r.vs. X, Y, Zolotarev established the inequality

.

- - 1 -
p |E —E S 75 %X, Y, . 5
sup |El/(X)] [I(Y)]‘I = P(r)x(X Y) ‘(4 )

’ where r € N is taken as in the definition of the class D of (4.3).

N
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In the case of our example, the r.vs. X, and XO are.at a dlstance #(X, Xo)
= (r/(r 4+ 1)) &+1 apart. So one has by (4:4) :

sup [Fx(t) — Fx,(0)] < {25 %o, X r+n ,(r eN). (4.6)

A comparison of (4.5) with (4.6) theréfore shows tha.t when passing from the distance
supgp |E[f(Xo)]. — E[f(Xo)]] to the Kolmogorov-metric supgr |Fx,(t) — Fx°(t)[
~ the rate of convergence becomes poorer, at least for those r.vs. Z which do not ne- .
cessarily satisfy a Lipschitz condition of type (4.1). Indeed, the r.v. X, does not ~
satisfy (4.1). However, whether the estimate (4.2) ‘and so the convergence rate in
Theorem 2 could possibly. be improved (ih the sense that the power 1/(r + 1) in the
~ estimate of Theorem 2 could be dropped or increased) for those Imntmg r.vs. Z satis-
fying (4.1) is a fact that is unknown to the authors.

5. The Random — Sum CI;’I‘ for MDS with Rates

Let us apply our two theorems to a concrete lmntmg r.v. Z, namely to the Gaussnan
" distributed r.v. X* with mean zero and variance 1.-Theorem 1 ylc]ds the followmg
random CLT with large-@ rates for martingales. L.

Theorem 3: Let (X;, & ),Ep be a MDS, r € N and (a,),EN any sequence of posztwe
real numbers. Assume that (3.1) kolds, i.e., . .

~ &= F'[|X,|’] <o . (t € N),
as well as o : )
C BEIXJ|§n)i=adBXM] as. GENIZiZ -1, " ()

a) Undeér tkqse\hypotheses one has for f € Cy, ‘ | .

|E[1 (45}8x,)] — EU(X#)| __

§2c2,,w,({E[A:;;(c,.+a.'F[1X*|'])]} i;CB),\ X )
| ) .

. ' 1/2 IR ‘
Co,r being the constant of (2.2), and Ay, := (2 a; ) . I'n particular, if f € Lip («;7;,Cg):-
*€ (0, r], then the bound in (3.2) takes on the form '

, . ’ .
. 202,7141{E [A:: Z (&ri + ai'E“X*V])]}- : o ‘
=1 v .
b) 11, in addition, the r.vs. X;, i €N, are identically distributed, and (5.1) holds for
‘a;=1,1¢ \ then
IF[f( M N — ""[/ X))

1]

"= 20,02, + BOXA) EIN2-DER)S £5Cy). NG
I/ fe Llp («;7; Cp), o € (0, 7], then the bound in (5.3) reads ‘ _
285 LA(Lrs + BIX*) BN @=nR)er (5.4).

Proof The r.v. X* is g-decomposable for each n € N into n independent, por-’
ma]]y dlstnbuted rvs. Z;, 1 =1 S n, namely Z; = a;X*. Moreover, one can ensure
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as in the proof of Theorem 1 that the Z;,i¢ N, N,, 2 ¢ R+, as well as the sub-g-al-

gcbr&s Fi» 2 € N, are all independent. So X* can be decomposed according to (1.6).
n —1/2

with @(n) 1= (Z . Since E[Z i] = E[a; i X*] = a; 7F[X*'] for t €N, assump-

tion (3.2) is satisfied on account of (o 1) So Theorem 1 may be apphed since the

~ moments of (4:1) exist here, too i :

Concernmg the previous literature in the matter the only paper known to the
authors is. that by Basvu [4], who'in the classwal case of non- random summatlon
deduced the estimate . ; . e

BHS.n)] — BUEA]| = 020 1 (u ooi' -

provnded that.(X;);en defines a MDS of stationary r.vs. satlsfymg the assumptlons of
~ Theorem 3b) in the particular case r = 3 and f € Lip (x; 3; C3), « € (2, 3). Comparing
- this estimate with ours, (5.4) for » = 3 and non:random summation gives the order
O(n—21%), x € (2, 3], even in the case of non-stationary sequences (Xidien-
As an application of Theorem 2 to X* we have: .

Theo rem 4: a) Under the assu_mphon,s o/ Theorem 3 one has

‘ - fr+1) -
cup [Pyt — Purtd] = 0 {457 St + a'FnX*m)]}

b) I f the r.vs. X; are identically dzstnbuted and (5.1) kolds fora,=1,7€N, then
sup IFSN /Nllll(t) — Fxo t)l = O (F[N(2—7)12] l/(r+1)) (; — OO)

A

If r =3, and, F[N,—1/2] (9(1 12), ) — oo, then the latter estimate is of order 0() 18,

. Remark 3:In his dlssertatlon [44] STROBEL obtains under additional assumptlons
asa corollar) of results in a more general setting the estnnate

sup |F5 R — Frelt) | = O(n _”f’ + P({v. > 71})) ' ,(n > o)
teR .
for a sequence of independent, 1dent1cally dlstnbuted normalized r.vs. (X; ),E\, and
" a sequence of stoppmg rules (vn)aen for PRES QI({X,, e X ])

6. The'Ran'dom — Sum WLLN for MDS with Rates

The final application of Theorem 1 will be the WLLN of the title with @-error estima- .
tes, a result that does not seem to have been considered before. When examining the
WLLN in connection with r.vs. Ty, defined in (1.5), one normally thinksof stochastic
couvergence of Ty, towards zero, namely -

\

l:mP({|TM|>e})—O (e > 0).- o (6.1) -

A—>o0
4

Instead,.we consider.a formulation of the random WLLN which can be sgoivn to be
equivalent to (6.1), just as in the classical situation (see e.g. [5: p 2201), namely

;lim BT X)) — [O].=0 (feCs - o (6.2)
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for any r € N. Version (6.2) has the 'advantage that Theorem 1 can be Epplied direct-
ly; one just needs to choose the limiting r:v. Z as the degenerate r.v. X, defined in
Sectlon 1.'In this frame the random WLLN for MDS with @-rates reads -

Theorem 5. Let (X,, Fi ).ep be a MDS such that F(|X,| ) < oo, € N.
a) If fe L|p (o525 C'B), tken

' g I Ny T af2
\EI{(Tx)) — O = 20e rL/{ [(<P(N1 )? éNf E[IX&I?]]}

b) Under the assumption

' é: E[|Xi|*] = v((?’(Nz))'2) “a.s. - (4 - o0), ' e ’ '(6.3)
one has . ' :

qMPuTM:nn=0' @>0y

In partwular, if p(N;) = N, lin (6 3), then SM/NA —01in probabzluy for 2 — oo,
v e, (Xiien satisfies the random VVLLN

Proof Firstnote that E[I(Xo)] = f/(:v) dPXo(a:) = /( The distribution P,\-. can
be decomposed as Py, = Z PP a 32 with Pz = P x ,for all i € N. Since

1

f]a:|’dPx°(x) 0for any8>0 condltlon (3.2) ofTheoremllssatlsfled Thenassump-"

t10n (3.3) follows immediately from (l 3) and the distribution of the r.vs. Z.
Pa,rt b) follows from a), notmg the equlvalence of (6.1) and (6. 2y )
The authors would like to thank Dr. L. HAmN for- kindly supervising the early

stages of the work of the second named author, as well as Prof. M. Cs6Ra0, Ottawa

Canada for his generous help in connection with the literature.
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