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Es wird ein aus zwei Gleichungen bcst;ehendcs, quasilineares parabollsches Reaktions-Diffu-
sionsgleichungssystem behandelt, avobei nur in ciner der beiden Gleichungen ein Diffusions-
term auftritt und Dirichletsche Randbedingungen vorgeschrieben werden: Untersucht wird die

‘Bifurkation mchtnegatner stationdrer Losungen, ihr asymptotlscher Stabilititscharakter
: und ihre h\bhunglgl\ub von der Raumvariablen.

PaC(‘\ldTplleeTCH peakTuBHo-TuipysHOHHAA CHCTEMA /JIBYN KBABILTHHEHHBIX napaﬁom-
HeCKHX M epeHUIANBHRIX Y PABHEHUIT, TOJBKO B OZHOM H3 KOTOPHIX HMeeTcA nuddy3i0HH bl
“JEH 1t OCTABJIENO KPAEBOC yCaoBUe Iupuxne. Uecaenyworea GudypKauitd NoA0HUTEIbHEX,
CTAIIHOHAPHBIX pelueHi; XapaKkTep ux ACHMIITOTHYECKOT \'CTOﬂ‘lllBOCTlI X samlcu\iocn‘ '
or upO(‘TpaH(‘TBumon ncpe\leuuoﬁ :

A quasilinear parabolic system of two equd.tlons is considered. only one of which includes the
diffusion term. The bifurcation of nonnegative stationary solutions is studied together with

their stability character and their dependence on the “space variables.

. T . -~
- . . 5

l_. Intfdductio'n

Quasnlmear pqmbohc systems arise in scveral biological and (,hemlcal models and
are used to understand propagntlon phenomena, oscillations or stmblluatlon towards ¢ a
stationary state. While concerning the existence of stationary solutions — subject to
rathcr general boundary conditions — quite general results are available [1, 6, 7, 18],
convugcncc towards such distinguished solutions and their._ stability character pre- -
sent more difficult mathematical problems, and the results so far obtained do not yeb
claim to a comparab]e level of generality (for an extensive review, see [4]). In fact, in
a number of prima facie naive and very snnple models, the problem of asymptotic
stability of (non-trivial) stationary solutions is still open — this is especially true if
the system are supplemeénted ‘with homiogeneous houndary conditions which are
not pur(,]v of Neumann type: in such case the search for non-trivial stationary so-
lutions leads to quantities which are space-dependent [5], which makes their stability
analysis considerably more dlfflulltl) These are, to our l\nowlcdge not very many

_results in this sense [3, 9, 17]: our aim here is to present a contribution in this direc-

tion, concerning a competition model for two species, only one of which is subject to
diffusion‘(and to Dirichlet homogenecous boundary condition). In spite of the appa-
rent simplicity of the model, the resulting equations are not deprived of interest
— they involve, by the way, a'free boundary problem of non-variational type — and
in fact, we shall display in"a quite complctc way nontrivial bifurcation and stablhty

.

1) Pure Neumann homogeneous boundary conditions allow, in case of constant coefficients, to -

- look for constant stationary solutions, whose stability can be investigated i ina relatwely casy

way: sce [4] for a survey of results.
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properties of (non-negative) stationary solutions. In addition, ianrlﬁati(:)nS on the
space structure.of these solutions will be obtained. ] . . ;
~ Specifically, we shall be dealing with the following initial boundary value problem:

R O = a',A'u‘ + w(by — ¢yu — dv) . in (0, 4o00) X a,
o _ C9p = v(by — v —.dyu) - e ’ . .
=0 : - in- (0, +oo)x 2@, (LD

. v o0 "

uU= Uy,. ¥ ="Tp! o in {0} x Q. 4
Here 2 < R" isan open boungded set with smooth boundary 82, a;, b;, ¢;,;d; (7 = 1, 2)
are positive constants and g, ¥, dre given nonnegative functions.

We are going to investigate existence, uniqueness and asyniptotic stability prdp-\ '
-erties of stationary solutions to-(1.1), namely-of solutions of the following ‘elliptic

" problem: . S . L
' d,Au +u(by, — c,u — dyv) =-0 ~ - .
vlby — v — dyu) =O = . in 2, S A . (1.2) '_
u=0 . R : in 0Q. '

* Of special interest will be the compa-risorvl'w‘ith ‘the propertics of the ordinary differ: X

ential system (the so-called space-clamp syste;
the diffusion term in the first equation in (1.1).

ystem) .we formally obtain by dropping

" Throughout this paper we shall assume the fO]lowing'inequé-lit-y\ to hold: -

(Go) C1C2 gidlde- . o e

In terms of the same s‘pace‘-c]alﬁ'p' syst;em,l'assumpt.ion (Co) implies the slope of the
v-cline to be not steeper than that of the u-cline, thus ensuring the asymptotic,
stability of the solution (if any) having both components positive. 1f, in addition, we
assume. . .- - . ' oo T ‘
. b b .
(l)lcl>d2’ . = - ,

the only nontrivial stationary solutions of the space-clamp system are known to be
~.(by/c;, 0) (which is stable and attracts the first open orthant) and (0, by/c,) (which is
unstable). Coexistence of both species at equilibrium is therefore impossible.

The main purpose of the present paper is to prove that the ahbove picture can be ~ )

destroyed if arbitrarily small diffusion isintroduced. As we shall see, if the diffusion -
- coefficient a, is (nonzero but) small in a suitable sense, stationary solutions of (1.1)
describing coexistence of both species arise, which have no_counterpart in ‘the ordi-
nary differential case; moreover, one of these solutions enjoys attractiiity\and stabi-
lity properties (with respect to solutions of (1.1)) in a sense to be made precise in the
following. Such stable stationary.solution exhibits space segregation (see.[10, 19]) as
a consequence of the assumed homogencous Dirichlet-boundary conditions: as a
matter of fact, the non-diffusing species is allowed to survive near the boundary. 02,
namely where the size of the competing population is controlled because of the con-
dition 4 = 0 on 8Q2. i Co T ' ' '

; 1t will alsc be proved that diffusion de-sta.biliies the (unique) solution of (1.1) such /‘

that « > 0, v = 0 in 2, whenever it exists; on the other hand, if a, is increased be-

yond a critical value (and the boundary 2Q is connected), coexistence of both specics - -

is no longer possible and the stationary solution (0, by/c,) of (1:1) becomes asymptoti-
cally stable in the uniform norm. In this respect, the situation just described can be
viewed as a typical bifurcation phenomenon (for the de-stabilizung effect of ‘dif-
fusion see, for instance, [11, 14)). - R L

AN
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Statement of Results

' Let O — R" be an open bounded set with smooth boundary o92; defme Q:=Quan.
We shall work basically with the Banach spaces of continuous functions C(Q) and
Co(R):={ue C(© 2). | » = 0 on 09}, endowed with the supremum norm; the natural
ordering in C(Q), Le. u < b(u ve C(Q )) if u(x) < v(z) for any z € O, will be: used:
We shall also be dealing with the Banach space CY(Q) of contmuously dlfferentlable
funhctions on 9, with the Holder spaces C* "(!2) (k mtcger « € (0, 1)) and, w1th the
Sobolev spaces W2P(Q) (p > 1); - A N

‘We shall denote by —w, < 0 the prmcnpa] elgenvalue of the Laplacian sub;ect to
Dirichlet homogeneaus boundary conditions and by ¢, the corresponding’ (norma]ucd) '
eigenfuhction: Ad)o + v = 0, d)o > 0in @, 4’0 = 0 on 22, fd)o (2)dz.=1.- .~

. Concerning . so]utxons of the initial boundary value problem (1.1), the followmé re-

", /sult can be easily proved.

T heorcm 0: 'For any nomzegatne uy € CO(Q) v € C(Q tkere exisls o umque non-
-negatne, global classical solution o/ (1.1) : u(t; -y e C* “(Q) n Cy(D), v(t, ) € C(!) /or
any t>0.M oreover, : .

max u(t, 55) < max {b;/c,', max uo(x)} (=20,
rER. , €3 ) )

max u(¢, x) = max {bz/cg, max vo(x)}/ . (tl> 0)
2€D S €68

2A. Stationary Solutions: Existence and Uniqueness Results L

) . , , .
By a regular solutwn (u, v) of. system (1.2) we mean any solut,lon such that u, = 0,
v = 0in'Qand u € C**(D) n Cy(Q), v € C(2). Solutions of (1. 2) will be also referred to
as stattonary solutions associated with problem (1.1). Stationary solutions having both
coniponents (resp. one component) non 1dentlcal]y vanishing in 2 will be termed °
coexistence (non-coexistence, respectlve]y) statzonary solutions.

Regular non-coexistence colutions of problem (1.2) are immediately seen to exist:
beside (0, by/c,), the solution (u 0) (= denomng the unique strictly positive solution of
.. .the problem: a, A @ + @by — ¢ty = 0in 2, 4 = 0 on 9Q) exists if ayy, < b,. As for
B . coexistence statlonary solution, the followmg theorcm will be proved.

Theorem Al: Assume (C ) and
b
(CHN al”o < b, — dl =
. . 62
- Then: '
a) there .exists a regular coexzstence solutwn (u*, v*) of (1. 2 Moreover, (u*, v*) is
unique amony reqular statzonan/ solutions (u, 1,) o/ (1.1)with w £ 0, u}nch satisfy the

~ following condition: - , ,
‘(' ) Cw(w) 2 by/d, forany z€ Q= {xeN | v(x) =0}; .

o b) if In addition the boundmy s, connected (u*, v*) 7s the unique regular coexzstencc :
. ‘solution, of (1.2). Moreover, v* vanishes in a closed non- empl'z/ subset of 2 and 18 equal to o
bylc, on 80, promded vy zs small enougk . '

.13
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It is worthwhlle pomtmg out that under the a%sumpblons (Sy), (Cy), regular co-:
existence solutions of (1.2) exist when 90 is not connected, whxch do not satisfy
assumption (P). This can be proved in the one-dimensional case by a dlrect calculation
using phase -energy mcthods as the followmg example shows.

Example Let Q = (0 1), ¢; =d; (= 1,2) and b, — ¢,by/c, > @,n% Then there
exist o € (0, 1) and a regular coexistence solutlon (u, v) of (1.2) such that: u(z) > 0
~ for any € (0, 1); v(O) = by/c, v(z) = 0 for any z € («, 1}.

Besides, we,ak solutions of (1:2). whose v- component is not continuous; which do
-+-not satisfy assumption (P); can be easily exhibited in the one- dlmensnonal case.

T~h_eor,e~m A2: Assume( 1) and o -
(02) b /Cl < b2/dq . . o s

Then there exists a unique reqular coexzslence soiutzon @, T [ 1.2); moreowr >0
q q .
n R,5>0in Q. .

If the diffusion coefficient @, is mcreascd thc following smmbwn prevalls

TheorcmA?) Assume - \

(S5) @y > by — diby/c,.

Then the only reqular solution o/ (1. 2) such that v > 0 Q 78 (0 bz/cz) .
A more refined, though less genera] result of the same kind is glven in the followmg A
proposmon ’

: Theorem Ad: Assume (S,), (C and the: cmmectedness o/ o0 Then (0, by/cs) s the
unique regular solution of (1.2) such that v=0,7% $ 0 in 0. ' : S

2 B Sta,tlonary Solutlons Attractmt) and Stablhty Results

[N
’

Con(,(,rnmg asymptotic proportion of the above, referred stationary’ solutxons thc

. following theorem will be proved. | vy

Theorem B1: Assume (S)). Then: - : : - e
a) of (Cl) holds, for.any a, € (0, al) (6, > 0) and any 02 > 1 the set

o

v‘f(o'n 03) = {(u, v) € Co )@ C( :) | o19% § u < Uzu*,. ) .l !
o 1 o, '
R Z [b2 — dyopu*], <0 < — [bq — dzaltpo]

1s snvariant with respect to the ewlulwn de/zned bz/ system (1.1). Moreover, any solution -
of (1.1) with tnitial data (u,, 1,0) € M(al, 02 ) approaches (u*, z,*) wn the CO(Q @ C(.O
norm as ¢ drverges; .

b) if (Cy) holds, the same result holds for (12 i)wzth respect to the zmarmnt set (01 € (0 )
8,), & > 0; Gy > l) : : \ 4 B
o o) 1= {(m v) € 00(!‘?) X)) Im% < u < o,

BN

| =1 |
= 1b, — dyorti), S v = —[b, — d2‘-71q70]+}'
Cy . , Co
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‘

.Let us observe that the lower bound P (8, — diou*], < v is satisfied for any

1
nonnegative v 2 v*; on the othcr hand, the upper ‘constraint v < c_ [by —.dyo10)

is in a way not very severe, as the v- component of any normegatlve solution of (1.1)- - -

satisfies the inequality u(f) < by/c, + & for any & > 0, provlded ¢ is large enough.
If conditions (S,) and (Cy) hold (which imply the unique regular coexistence so-

lution to-have a strictly posxtwe v- component inQ), a dlfferent atbractnvnty result:

can be proved

Theorem B2: Assume. (S,) and.(Cy). Then (i, ©) attracts in the C’o o)} G—) o0 7:&77;
. am/ solution of (1.1) with mitialdata (uo, ) Such tlzat ug € Co(¢ )), 'uo = 0 (=S 0 m Q;
€ CYQ), v >0in Q.

Rema’rk © A'related result for predator-prey systems is contained in ['15]

) Thco rem B3: Assume (S,). ’j’ken (0, by/c,) 2s aaz/mptotwalh/ stable and attracts (n

the Co(2) @D C(Q )-norm) any solution of (1 1) with tmtial data (uo 'uo) such that:
T E Co(2), g = 0 1m0 2; vy € C(2), v > 0O mn 0.

A% already remarked, regular coexistence solutions not satlsfymg assumptlon (P)
‘may exist; however the following theorem shows that they are unstable. In fact,
instability will be-proved for solutions of (1.2) violating (P) and having possibly
.discontinuous v-components — in which case the first equation in (1.2) must be mter—
preted in a weak sense, anappropriate function space heing (W"’ P(02) n Co( O))(—D L°°

(p>1)

Theor(,m B4: Let (@, 9) € (W“(Q n Co() )@L‘”(Q (p 1) be a solution o/ .

(1.2) such that @ = 0, 4 == 0 and T = 0 almost ewryu,kere in Q. Assume that
. (ﬁ The set @, = {x € Q] o( = 0, and a(x) < by/d,} has positive méasure.
Then (@, 7) 7s unstable in the Co(2) @ L= (Q)-norm. '

%
.

Asa consequence of Theorem B,, the non-coexistence solution (a, 0) ukose counterpart

m lke space -clamp case zs the solution (b,/c,, 0) — 18, always unstable.

The situation outlined in the above theorems can be %ummar:zed as fo]lows
(1) (Cl) holds. Then in the absence of dlffusmn (i.e., if a, = 0 there exists a unique

asymptotlcally stable stationary solution, namely (b, /c,, 0) If ayvy € (0 b, — d, i’z) .

(i.c., if “small” dlffusxon is mtroduced), the coexistence stationary solution (u*, v*)
arises (which has no space-clamp analogous); such solution enjoys the uniqueness and
attractivity properties stated in Theorems A1, B1 a).-In particular, if 02 is connccted
it-is uniquely deterniined among the regular coexistence stationary solutions, and. in

that case it exhibits a marked space structure (see Theorem A] b)). Yet even without

assuming the connectedness of 942, (u*, v¥) plays a unique role, since, according to-

“Theorem B4, anyother coexistence stamonary solution of (1.1) is unstable. 1f diffusion
by

is.increased (i.c., if ‘a;vy > b, —d‘, ,—), (u*, v*) ceases to exist and (0,'—) ~is
Co

Co

: asymptoucally stable and attractive as asserted in Theorem B3 (see Fig. 1, where -

- «stable stationary solutions are dcplcted in the case 2 = [0, 1], »(0) = y(1).

(i) (Cy) holds: in partlcu]ar let us discuss the significant case where in addition,

b,
¢y > d d2 and b — (l, = > 0 (observe that the last inequality is nnphed by (S
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- u
‘ . v
/~ ' - --7--—‘—
) V.o ' u .-
0 L 1x 0 S x 0 1 x
(Cl) - . (b). . < ey . . N _

R Fig. 1. Stable. statxonary regular solutlons for Q.= (0 1), v(O) = v(l) under hypothesns (C )
(a) no diffusion: a,y, = 0; :
o : ' y - be (0" aw\ =0 .
(b) small diffusion ay, € (0, by — d, ?2-) : .
: 2

) aw, =~ b, —.b—?' d,.
o - ey . )

.(c) large diffusit‘)n ::-aln;o > b, — d,bz/c;. -

'
~

b,

whllc it is compatlble with (S,) the case b, — d, c_ <O0is not.very interesting, smce
2

it makes (Sz) trlvmlly satisfied: with respect to the space-clamp situation, no new

feature is introduced by diffusion). Then, if diffusion is absent (a; = 0), a umque,
asympbotxcally stable coéxistence stationary solution exists. Such situation is pre-

served if ¢ small”dlffusmn is introuced | a,», € (0 b, = d, lc) )) in fact, the coexist-
2

ence statlonary solution (i, #) arises, which enjoys the uniqueness and attractivity
' propertxes stated in Theorems A2, B1b), B2. No other coexistence stationary solution

" exists. If strong dlffllSlOn is present (a,vo > by —d, -I-)c;), (u v) dlsappears and the

' sntuatnon 1s much thc same as that descnbed under (i) above (see an 2).

~ . - '
e

. u . v
) PN NS GIND G Gb GED GNP NS
N --------
. S N U
0 I x -0 1 x
N (<) R ‘ ‘ (c) L
Fig. 2. The same under hypothesis (C,). . '

It can be said that introducing d1ffusnon allows branches of attractive coemstence
stationary solutions to exist, which connect a,symptotlcally stable stationary solutions

- of the problem without diffusion: as a matter of fact, (n*, v¥*) converges to (b,/c,, 0)

(umformly on the compact subsets of ) as ay —> 0 [12] and converges to (0, bz/cz) as

1 b,
a, approaches from the left a* = = b, — dl p (bhls can be provcd by general
. 0 N 2 )
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bifurcation results and checked by a , direct calculablon [13]) sumlar results hold true -

for (@, 0) and (&, 9) . Consequently, the overall 51tuatlon can bé viewed as a typnca.l.
- bifurcation phenomen thh respect to the paramieter a, (see Figs. 3 4).

Vi

Fig. 3 Blfurcutlon.dmgmm of regular. statlonar) solumons in case of conncoted
boundary, 'inder hypothesis (C )s al = (b — d, )'; a,’ = ﬁ

Yo

’ an 4 The same under hypo-
. 'thesm (Cz) .

N . N . . . . . .
\ . . - - - N ,.

2C. Stationary *S()lutions: a Singular-l’ei‘tdbation Result - - -

Tt is an open prob]em whether a situation smular to the above prevalls when also the' -
z-component undergoes small d1ffus1on to discuss thlS point amounbs to mvestlgatmg
the elliptic problem

. ' . P ' 14

~,'_' a,Au—{—u(b,—c,c—d,v)—O . o o
elAu—i-v( 2—-czv—d2u)'=0 ’ in 2, - K A (2.1I),

, u=v=0 on o9, . ' ‘ :

where 0 <& < a, (the case where ¢/a, is not small and c, = d (1 =1, 2) was studled
‘in. [17] However, the fo]]owmg theorem can be proved.

Theorem C: Let (u,, z,,) denote any classical solution of (2 1) such that u. =0,
v, =0in Q. Then the set {(2t,, t/,)} 28 relatneh/ compact in the topology de/med by the C‘(.Q) ‘
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(respectnely, L2(Q) weak) convergence of the first (respectively, 66607ld) cmnponenl uny.
lLomating pornt of {(u., v.)} tn such topology us a reqular solution-of (1.2) satisfying con-
. dition (P). In partzcular of ( S 1) cmd (Cy) (resp (Cy)) hold, the only lmntwg points are

(0 I:—) and (u*, v*) ((0 %) (md (@, 9), respectnelq) if (S2 holds, (u., E) converges to

2 2

(0, by/cy) tn the above topology as ¢ goes to zero.

Let us remark that the above theorem makes no statements about-the actual
existence of nor’megabive solutions of (2.1); singulal perturbation methods such as

© those developped in [3] seem not applicable in the present context. In.the case (S;)
~ and (C,) hold, however, it hlghlxghts further the distinguished role of (u*, v*): from
Theorem Bl a) we already know about the attractivity property of such stationary =~ ™
. solution, any other nonnegative (in particular; coexistence) solution of (1.2) being

unstable; from Theorein C we learn that (u*, v*) is the only coexistence smtlonarv
solution to which solublom of (2.1) (1f any) can converge as & goes to zero.

.

{

- 3. Proof of Existence and Uniqueness Results

- Letus flrst observe that the statlonary system (1.2) mvolve sa frce boundary problem,
the free boundary being thé interface between the two regions where either factor of
the second’ equation vamshcs namely Q, = {x € Q}%(z) = 0} and -Q,:= {z € 2|
by, — cov(z) — dou(x) = 0}. However, bécause of the non-variational -nature " of
system (1.2), the usual mathematical tools for dealing.with free bonnd'm problems
cannot be used; therefore we shall procecd in a direct way.

To start wxbh let. us observe-that a/class of regular cocxlsten(,e solutions of (1.1) is
given by couples (u, v) such that u is a nonnegative c]assncal solution of the following
problem - -

'aAu ‘:—u b —cu——'\b _—,tl.u+)=0 m 0, : T
Bk o e 2o —dal) <0 in 51
=0 on 08Q

and v := — [b2 — d,,u]+ As s immediately seen, an e(]uiva]cnt “"ay of character-

izing such solublons among all (regular).solutions of (1 2) is to say that they satisfy
assumptlon . .

‘Lemma 3.1:.a) Iy 7 (Sy) holds, there is a umque nonnegative nontrivial solutzon u* of
(‘3 1). b) If (S,) holds, no nonnegativé nontrivial solution of (‘3 1) exusts. ‘

Proof Observe thab problem (3.1) is of the form: a; A u + wyp(u) = 0inQ,u = 0
on 0Q, where ¢ : [0, 4 c0) — 'Ris (i) Lipschitz continuous on bounded subsets, (ii) non-

.increasing, (iii) negative for « > b,/c,, (iv) differentiable for u > by/d,, with negative
- derivative. As a consequence; we can apply to (3.1) the results of.[12] relating the
“-existence of a (unique) nontrivial nonnegativé so]ution of (3.1) to the sign of (ip(O) —

a,vo) As lp(O) =b — all ) the result fo]lows l

’

In the following lemmas, the space structure of regu]ar coexlstence statlonary
so]utlons is investigated. = : ,

Lcm ma 3.2: Assume (C)). ’I’hen /or any chular coexzslence solunon (u, v) of (1. 2), '
Au =0 Q In partzculm‘ w> 0 Q. _ " .
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Lemma 3.3: Let (u, v) be a regular solution of (1':2)."1’hen:
A 02=0,00, Qu2nd0=¢
b) v is constant on any connecled component o/ 00.

Proof: a) is obvious. b) follows from Lhc assumed _continuity of v, v being zero or

- equal to by/c, on 22 11

Lemma 3.4: Assume (Cy); let moreover (u; v) be a regular coexistence solution of (1.
and 092 consist of a. smgle connected camponent Then 3.(2 < Q, (namely, v = l’>2/c2 on
the whole of 0. . , . o L

Proof: Assume the contrar) .then, according to Lemma 3.3b), theré exists

P € 092 such that v(P) = 0, hence (leu(P) “+ ¢u(P) = b,. Let A denote a neighbour-

hood of P in @ such that dott 4 v = by in A (such aneighbourhood exists$, due to .

the assumcd regularity of (u, v); thusz = 0in A7, ile. & <= Q). Jet & denotc the

connected component of P in {x € 2| dyu(z) + cov(x) &by} D A, and set- 8F = I,

ul,, where I := 6.9’ noR, Iy:=08% n. It is ecasily scen that: I'y == ¢ (by

construction), I, 2= ¢ (otherwise- Q = Q and {u, v) is not a coexistence stationary

solution). By the very definition of &; u = by/d, on T}, hence-on I'y, follows; then

*T'yuTl, = ¢ and the assumed conncctcdnc%s of 02 implies I; = 9(2N\.¥). Due to
- . Lemma 3.2 and the maximum principle, it follows « = b,/d,, hence v = 0 on 2\.&; as

‘a-consequence, v = 0 on the whole of 2 and (u, v) cannot bea coexnstence stablon‘lr\

solution. The' contradiction proves the result L R

L.emma ‘3 5: Assume (C, ) (md let 002 consist o/ « single connected component T/zen

every regular coextstence solution of (1.2) satisfies’ condition (P)

Proof: By Lemma 3.4, v = b,/c, on the whole of 92 under the present dssumptnons

’ let ¢ denote the connected component of 3Q2in {x € 2| v(z) > 0} and set I' := € n- 2,
06 = dQ u T thus, if I'=¢, 2, = ¢ and condition (P) is trivially satlsfled If
I" = ¢, u = by/d, on I' by the very definition of €, so that u = by/c, on 2\ € by

Lemma 3.2 and the maximum pnncnp]c then v = 0 on 2\ € and the result fol-

lows I

‘Proofof Theorem A.1: We gather claim a) from Lemma 3.1 a), ‘claim b) from
Lémma 3.2 a) and Lemma 3.5. The last claim follows because, as a,vy— 0, max u——> b,/
¢, > by/d, (see [12: Thm 1.3) 0 < .

Proof of Theorem A. 2 Due to assumptlon (Cg) and the maximum prmclp]e by
- which « <'b)/c,, the.v- component -of any regular coe\lstencc solution of (1.2) satis-

Proof It sufflces to observe thab due to assumptlon (Cl), —cqu —dv =0

fies bh(, mequa])by v = by — d2 >0i in £0,, which nnp]lcs !2 =¢and v > 0 in Q..

N

Then regular coexistence. solutlons of (1 2) are in one-to-one correspondence with

nontrivial nonnegative solublons of the problun

b,

C2

a,Au—{— u {(bl —d,
u=0 in 802

Pl . ‘
—_ — —d,d =0 1 0, .
) T (c1€2 A. 1d2) '“'}—. . .m (3.2)

\

“ whence the result follows by zissumption (S)) 8

e

..
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‘ )

Proofof Theorem A.3: Looking for regular solutlons of(l 2) such that v > 0 in
amounts agdin to lookmg for nonnegative solutions of (3.2), the v-componerit beéing
consequently determined; under: -assumption (S,) no such’ solutlons of (3.2) exist but
the trivial one, which proves the claim 1 ) [

" . Proof of Theorem A.4: According to Lemma 3. 5 assumptlon (C,) and the
connectedness of 82 ensure regular coexistence solutions of (1.2) to be in one-to-one
, correspondencc with nonnegative (classical) solutions of (3.1); according to Lemma
- 3.1b), the'unique solutlon of this kind is‘the trivial one in the. present case, whence the

claim follows @ o

4. Proo'f of Attractivity and Stability Results

Let, us first prove, Theorem B1: Since system (1.2) is quaSI -monotone [16]
us look for upper-lower and lower-upper solutions. .
-1t is'well known (and easy to verlfy) that, whenever g.> 1, u° 1= o‘u* is'an- upper

N

solutlon to . A ~

Au—{-u(b, —C]u——[bg—dgu]+)_0 in Q,

e ad
"w=0 in 89Q; T ) i N :

defining v, : = — [b2 — dyw’],, it is mlmedlately seen that
o . C, . .

Au + u"(bl — e’ — d,v‘,) < 0 in" Q,
z° =0 in 60
' é;{,(b. — ¥y — d2u°) =0,
0. that (d" v,) is an upper-lower s'olilt,ion to (1. 2).'Similariv‘ since a(f)o isa lower so-

lution to (4.1) for >0, 0 small enough, settmg U = oo, v° 1=" c_ (b, Adzu‘,];,

(u,, v%) is a lower-upper solutxon to(1.2), provnded o > 0 is small enough. ,
.+ To complete the proof we have to adapt to the present case well-known monotone'; :
methods. Smce the lower-upper solution (., v°) satisfies u, = 0, u, $ 0,7, =0, we
-know [16] | that’ the so]utlon of (1.1) with Cauchy data uy = u,, vy = ¢° has the follow-}

mg properties:’’

1. (u(t)) (=) increases in ¢, for any z € 2 due to the pnon bound of Theorem 0,
u(t) — % pointwise as t — co; % > 0 in Q ' .
12, llkew1se (v l)) () decreases in ¢ for any z € 2 and 'l/(l) -7 pomtw13e as ¢t — oo,
7=0in 0.
" - Using the regularizing propertles of the’ equatlon for u(- ), it 15 eaﬁll\ seen that
u(f) —.% in the supremum norm, thus u E CO(Q)
On the other hand, since

'um=uMm—wm—@@+/) (6> 0)

,where () 2= dow(t) (u — u(t) ) -0 for {— o0, an easy argument shows that v(-)
. behaves, for large t’s, as the solution u( ) of the equatlon :

AN

duw(t)y = w(t) [by — cowlt) — doum] (‘t >0).. - 4 | - !
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Hence we get ‘ '
. 5-’1[b' 'Vd‘] N
c\2 ; 2%+ . ‘ .
‘which proves v € C’(Q) (and ’o(t) > % in the supremum norm as ¢ - oo by Dmls'
theorem). As a .consequence, (4, 7) is'a regular stationary solution, satisfying (P)
Since @ = u, > 0 in £, Theorem A:1 applies, yielding (4, 7) = (u*, v¥).

A similar argument holds for the upper-lower ‘solution (u?, z,v), which satlsfles -

U = u*, vy = 0, v, == 0in 2; this completes the proof. B

- Let us now turn to the proof of Theorem B2 “to this end, we prenub a technlcal
Jemma. -

* Lemma 4.1:'Let (u, v) be an arbztran/ classwal solutwn o/ (1.1) such that 'u(t) > 0,
u(t)- 2.0 for any t = 0. ~ | .
a) Au (E ) ))
A b) Let (C,) hold; moreover, asszmle up € Co(2), 1o =20, up == 0; vy € CYD), ;;o'> 0.
on Q. Then, for,any & > O the trajectory o S s

Ty={(ue(0) e =8} o

s well de/'med as a continuous /unétimi on 0, /07 any t > "O.'

Au( ) )
u(d, )

change of coordlnates we can suppose 2 to be the hyperplane z, = 0; then.
u(¢, x) has a Taylor expansion near 9£: '

Proof a) We have to check that

is we]l behaved near a.Q By a local

ult, x) =-¢,(t, xg ....‘x,,) qc, 4+ R(¢; ¥ (t = QQ-?E-:i (2, 5 ... %) € 9).
Because of Hopf’s.ma.xinunn principle eylt, T .. ) + 0, so that

atu(}’ x) = alél(t’ Loy o °‘° 33,,) + a R(t: Z)

: ‘whence u(i . )) is -well defmed (and in facb a smoobh functlon) on 90. Dsmg now
“the equation, it is: nnmedl&bely seen that the claim follows., 5 ' :

To prove b) observe that, because of the assumptions, v(¢ ) (!5), v(t) > 0 on’ Q.
N ]t isa st,a,ndard matter to find an « priord estimate for [Syult, x)| t =46>0,z¢Q[2)

To find a parallel estimate for: 2w, observe that, sirice 0<u = b e v = v(b2 cv
— 112 b—) and becausé of (C,), v 1s bounded below above zero: u(t, ) = /4 > 0. Con-
c :

1
sequently, w =:log v is well dcfmed and satisfies 9, = b2 — ¢e® — dyu; this z, =:d;w

fulfils- 9,(z;). = (—cov) 2; — d,0;u. Now, —c,v = —0ou and, as noted above, '|dul is -
.. uniformly bounded for ¢ = 6 > Oand z € Q. Then it is easy tosec that |z | is uniformly .
*  boundes, too, whence the claim follows 1§ . '

We shall also neéd the followmg resul_b.A

- ,,Lem ma 4.2: Assume (S,) and (Cy). Thenthe qudntz’ty

V::ifﬂ{u—{c—'ﬁlog%—-{-Z—:(v—ﬁ‘logv)}dz
. & 3 . i . ! ) N

’



has the /ollowmg properties:
TV Co( Q)@ C(2) — R is well defined and contmuous for any (u, v) (: CO(Q)

’ (—BOQ) such that »/@ > 0, v&> 0in 3;
.b) the map ¢t — V(u(t) z/(l)) (where (i (t) v(t)) is any solntnon of (1.1) in Co(2) @ C(£2.
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with Cauchy data « = 0, » > 0in Q)is nonincreasing; in fact, it is differentiable
along such tra]ect,oncs of (1.1), and .

-
éV(u(t), W) = — f

2

grad @ — grad u(¢) T)

dx — ‘ @ [c,(zl;(l) — ?2)2
' .r)] - :

L 2d,(u(t) — 'e‘L) (1/ () — 6) + % Cz(b(l) — b) ] dx. (4.2)°

7

Proof: Claim a) is strmghtforward "Proceeding as in. Lemma 4.1 a), we sce that
u/% > 0 in Q on the trajectories, so that V(u(t), v(t) ) is well defined for t = 6 > 0,

_ as well as its time derivative (sec again Lemma 4.1 a)). Morcover, due to (Cp), the

integrand of the second term in, the right-hand side of (4.2) is’a semidefinite positive
quadratic form (it, is definite positive if strict inequality holds in (Co)) Then claim b)
follows by a direct calculation Nl

Remark: The definition of ¥ was suggested b) [8] whert, a dnscrete model was
corisidered ; see as we]l [15].

Proof of Theorem B2: Due to the well known La Salle’s invariance argument
and Lemma 4.1 b), the result will follow from the mvestxgahon of the critical set of V
Let us dlstmgmsh two cases:

(i) Strong inequality holds in (Co) Thcn the critical set of Vis easily seen to shr’ink
to the unique point {(u 7)}.

(ii) Equality holds in (Co) “Then the second term on the ng,hn hand side of (4.2)
vanishes if and only if c,u(t) + d,o(t) = ¢,@ -+ dy(?) (¢ = 0). As for the first term, it
vanishes if and only if u(¢) = y(t)& for.some smooth positive function y(-) (¢ = 6 > 0).

As a conscquence, the'largest subset of the critical set of ¥V .which is invariant with -

respect-to (1.1) consxst,s of {(#, ©)}. This completes the proof 1§

The proof of Theorcm B3 is similar and will be omitted. Finally, let us prove the
instability result asserted in Theorem B4.

<

‘ Proofof Thcorem B4: Pick a stationary solution (=, v) satisfying the hypothesis.

1f (u( -, vl )) is a so]utlon of (1.1), the deviations h(-) = u(-) — a,k(:) := v(- ) =¥

satlsfy the system o S <. -
o = Ak + kb, — 2,0 — d,7 ) + dyuk — h{c,h —,— d,k)
Ok = k(b, — 2¢,7 —~ dyu) — dﬁh — k(ck + doh),

(plus Dirichlet homogeneous boundary conditions for k). Note first that, as.a conse-

quence of the maximum principle, if 2(0) < 0, £(0) = 0, then k(¢) < 0, k(¢) = O for all -

t = 0. Pick now A(0) =0, k(0) =.0g, where ¢ is a non negative non zero function with
supp g = Q,, and ¢ is a positive number. Since for any z € supp g, ¥(z) = 0 and
b — dyu(z) > O the component k solves, for any such z, t,he problcm .

- O = k¢, x) {by — dzu(x) — dzh({ :1:)} — cgk (¢, z),
(0, 2) = 'oq(x) ’

\-

7
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A

Since b, — dou(x) — doh(t, z) = b2 — dyu(z) > 0 it follows that k(z, )does not remain, . '
for all =0, in an arbltranly fixed C(Q) neighbourhood of 0, however small ¢ is
. chosen: thus (@, 7) is unstable LI : R

LI o . ’

’

5. Small Diffusion on the »-Component

>

‘Our aim in'this section is to prove Theorem C: For this purpose let us
. proceed stepwise, dcnotmg by (u., v) a solution of (2.1) such that u, =0, v = 0in .Q
- (i) Because of the maximum principle there exists & > 0 such that

. \ .
. max{ma-x lu(x)], max llv,'(x)|} = k. S o .

z€ENQ zE.Q
-. Then from system (2. 1) we. get with a iunabl(, k! > 0;max |Au[(x)| =k. Asacon- =

z€82
sequence, {u.} is relatwel\ compact in C{(Q): similarly for {v.},.{v.2} in the L) weak _
topology, so that we have, along suitable sequences (we shall labe,l by the same index ¢
_ for notational simplicity),.

- o> in CYQ); Ve = U, ‘,1/ —w in . L?-(!)

(i) Obscrve, that w = v? almost everywhere in Q; this follows easxly from the
. ostnnaﬁe (which holds for almost every z € Q)

U2 (x) 2 vi(z) -+ 2v(2) (v,(x) — v(x )) ‘as v, — v : in ' "L(0).

(iii) As_v, is the, prmcxpa] elgcnfunctlon of the elliptic operator & A+ ( — czv;
— dyu,), the mequalltv

Jole &b+ (by — e, — )] de <0
2. . ) ; . .

.hOldé for any ¢ € HoH(2). As ¢ — 0 we get
[ ¥, — e — dqu) dz £ 0,
a S A

. which implies . ! _ .
C v + d2u = b . . = . (5.1)

almost, everywhere in Q, due to the arbitrariness of ¢.
L (iv) Let us prove that in fact w = 12 (almost everwhere in Q) Taking the lnmt in,

- the sense of distributions as e — 0 of the second cquation in (2.1); we get byv — c2u,
— dyuv = 0 almost everywhere in 2; this in turn implies, due to (5.1), w < ¢* in
" the same sense. Then the claim follows from step (ii).
(v) If follows from (i), (iv) above that the limiting: point (u, ). Satlsfu,s’t,he first
> equation of (1.2) in the,weak sense, the second almost evcrywhere in 2. On the other

hand, mequallt-) (o.l) entails v = — [b2 — dgu]+, thus » € C(Q) and (u, v) is a regu-

lar solution”of (1.2) which satisfics condltlon (P). Then the remammg claims fo]low
by Theorem A1—A3, thus completmg the proof # :
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