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Pseudo differential operators in Hardy-Triebel spaces-

L. PAIVARINTA

Es wird bewiesen, daB Pseudodifferentialoperatoren der Klasse L‘, so0=1und0 < d<1,in
den Triebelschen Riumen F7 , stetig sind. .

B cratbe nokasano, uto mpu o =1n10<d< 1 ncen;lonnd)d)epemumru,uue onepaTopu
wnacca LY, HENpepLIBHb B MPOCTPAHCTRAX Tpubeas Fy,,

Pseudo-differential operators of class L ,, 0 =1 and 0 = 6 < 1, are proved to be continuous
in Triebel spaces F,

0. Introduection

Several results concerning the boundedness of speudo differential operators in func-
tion spaces are known: From the results of HORMANDER [5, 6], CALDERON 'and VAIL-
LANCOURT [2], and Crixg [3] it follows that operators of class LY ; (cf. Chapter 1) are
hounded in L, if and only if 0 <6 <o < 1 and (0, 0) == (g, 8) == (1, 1). ILLNER [T7]
proved the boundedness of operators of class L], 0 < d < 1,in L,, 1 < p < oo.

In this paper we consider the Triebel spaces 3 in R" For the definition see
Chapter 2. These spaces contain many classical spaces as special cases: For 1 < p <oo
we have F', = H* the Bessel- potentla] spaces. If s ¢ N = {1, 2, ...} these are the
usual Sobolev spaces. For 0 < p < 1 we'obtain the local Hardy spaces &, = F9, of
GOLDBERG [4]. This was proved by Bur Huy Qur in [1}.

Pseudo differential operators in Triebel spaces have previously been considered
in [1] and [8]. The first result in this direction was due to GoLDBERG [4] who proved
that the operators in LI, are bounded in A, (cf. also [9]). Bui Huy Qui extended this
to F$ .. Recently N1Lssox [8] proved that also operators of class L$,, 0 < 6 < 1, are
bounded in %,. Via interpolation he also succeeded to generalize this to F;,. How-
ever, his result contains some unnatural restrictions on the parameters p and g. The ~
aim of this paper is to remove these restrictions and thus prove the following: Let
T eLlHh0=<d<1, —o0o<m< co. Thenforall0 < p,g < 00, —c0 < 8 < ©

T:F5,—Fy "

From this we get the above mentioned results of Illner, Goldberg, Bui Huy Qui and
Nilsson as special cases. For further generalizations see Remark 3.7 in Chapter 3.

1. Definition of a pseudo differential operator

“Let 7 be a polynomially bounded measurable complex valued function in R® X R®. The
pseudo differential operator r(z, D) with symbol 7 is defined by the formula

r(z, D) f(x) = [e=n(x, &) f(5)dE, =z€R", feS, (1.1)
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where § denotes the Schwartz space in R" and { is the Fourier t,ransformof/ (integrals
without any integration limits are taken over all R*). We say that 7 belongs to the

class 87, m € R, 0 < ¢, 6 < 1 if for cach multi-index & and g there is a constant c, »
such that

]DgD ﬁr(x, &) < ca,p(1 + |&])m+218I—elal
holds for all z and & in R" If r € 87 then the corresponding pseudo differential

operator 7{(z, D) is said to be in cla,ss L . If (z, D)y € L, then, clearly, it maps §
continuously into itself. Hence we may extend ittoa contmuous operator from §’ into

o S’ _by the formula

(2, D) f, @) =, ¥

where ¢ € S and $(&) = fe"'r(:z: &) p(x) dz. By S’ we mean, of. course the space of
tempcred distributions in R", the dual of -S.

2. Function spaces : /
To define the Triebel spaces 3, ; and the Besov spaces B, we choose a sequence of

test functions (g;)3, with the properties:

supp @ = (£ ] 18] < 21,
supp @,  {& | 281 < £ g 2641} k€N,

2 o8 =1, forevery &€ R7,
k=0

and for any multi-index « there is a constant ¢, such that
D) < a2k, ,

For0 < p, ¢ < coand —oo < s < oo we define F%, , to be the space of all f € S” such
that

"l/'|p' = [[(2%@u(D) N)iZol| 2, < 0. : (2.1

Notice that accordmg to our notatlon (1.1) gD f = F Ygf), where F stands for
Fourier transform in 8’ and f = F/. By -the norm |- 1,0 We mean

I /k)HL,,u.,) = (f (2, [fx() |q)”/q dz)l/l’ : .

If we change the roles of ||- ||, and Illz, in the right hand side of (2.1) we get the
Besov spaces B, consisting of ‘those f € S’ for which

178, := 1(2%@u(D) FiZollizn < co.

Remark 2.1: For the properties of F?, and Bs see [10, 14, 15]. We only mention -
that different choices of the sequence (q;,,)k 0 lead to equivalent (quasi) norms. For
snmphcnty we also assume that (pk(§) = p(2-k+1¢ ) k€N, where (p = ¢, IS an appro-

priate function and that Z (p‘ = 1.
k=0
Remark 2.2: Below we shall need another sequence of test functions (wk)k_(, with

wi(&) = 9(27%), k € N, where y is chosen so that
p(§) =1, for &esuppe, and suppy,  {§] 202 < | < 2842
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~

(with ‘natural modification for & =0). It is not hard to see that the use of this
sequence instead of ()i, in the definition of F%, and B3, leads to thesame spaces -
and equivalent (quasi) norms (cf. [15: Chapter 2 l]

Remark 2.3: We recall the followmg interpolation theorem
(sz: F;’.-z)e.q’ s=(1—0)sy+ 0s;, - soF 5.
For phis rcsu]t see [14: p. 72].

3. Fpq — estimates for pseudo differential operators

We start with the following result.

Theorem 3.1: Letr € 8%,,0 £ 6 < lLand T = r(z, D) be the corréspondz'ﬁg pseudo
differentral operator. Suppose additionally that r(x, &) has compact support tn x. Then

T:F,, > F;, for 0<p, ¢q<oo. . (3.’1)'
More precisely, for f € S

ITflrse < ¢ Mfilrse - . , (3.2)
where ¢ only depends on p, g, n, 8, s and on the Lebesgue measure of supp, r(z, &).

Proof: For simplicity we suppose tha,t, s = 0. The general case¢ follows similarly.
We recall the Lubnlz rule

[ )
#AD) 7(z, D) ~ I 2 ria(z, D) g, A(D). 63

Here rg)(z, &) = (D) r(z, &), ;P(£) = (¢D;)? p;(£) and ~ means that the operators
coincide modulo a smoothmg operator (cf. [13]). .
Let f € S. In the spirit of (3.3) we start with the expression

7z, D (P](ﬂ)(D) f(z). . ' (3.4)

‘ Since y;(¢§) = 1 in supp @; this is equal to r(m(x D) (D) (p’(ﬂ)( ) f(x). By denoting
(D) f by f; we obtain

reolees D) 9D) f(2) = [ Kbl ) 1) dy
where ' _ . .
Ky, y) = [ e==virg(z, £ g0) dé. . (3.5)
In the following lemma we estimate the kernel K j(z, y). ‘4
Lemma 3.2: F9r all 3 > 0 there exists a constant ¢ = Ci,p suciz that

gin

i
Kz y)l = ¢ (1 —2 |z —y[)} "

(3.6)

Proof: Let first j > 0. Integrating (3.5) by partsone obtainsfor cvéry multi-index «

Mz — 9)* Kz, )| = |[ 50D e(rp(a, &) ¢ 0(8)] df]. -
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Hence by using the Leibniz rule we obtam
| @ = 9 K@ )] S 0 [ 5 1@ &) De g (B dt
' < c“'ﬁé f a+ |§|)—1}|+6lﬂ1 2—fla+ﬂ—vl(])€a+ﬂ—7¢,) (2-7&) d&
raa .
< c,_ﬁ2""(l + 21’)6|ﬂ| 2—jlatbl < ¢, 42in2-ilal,

Consequently we have forall4 > 0

N = I IR Gy y) = e, 027277 : ' : S C 0 R

On the other hand it is clear that
|K(§,,(x y)| < 2", . (3.8)
Thus we ha.ve proved the lemma for j > 0. Ev1dently the claim holds also forj = 0 §

We turn back to the proof of the theorcm From Lemma 3.2 we get the following
estimate for (3.4)

|r(3)(x D) (p,(ﬂ)(D) /(2; | < Cf (1 + 2, Ix |)l f,(y) dy.

By introducing the Fefferman-Stein mazimal function f£, .

n

fit@) = sup I (1 + 2le — g™, w > T

we obtam
Ireay(x, D) ¢;P(D) f(z)] < c/;"'(33)-

Here we have taken 2 > u 4+ n.
Next we search for @;(D) r(x, D) an cxpression smn]a.r to (3.3) and write

|
@i(D) 7'(?37' D) f(z) := ZN %" gz, D) %(‘”(D) f(x) + R¥(z) := gio(x) + g;'(=).

For the sequence (g, oo We get ,
| (g7°()) j-o”L,(lq) < cf|(F*@)Roll 00 < || (F1@)20 | 2,00 -

The last inequality follows from a maximal inequality of Fefferman and Stein (cf. [11] °
or [15: p. 47). Consequently

l{g:2=) 20l zo00 < ¢ I/lFo,

It remains to show the correspondmg estimate for the remainder R f. Clearly, we
may write

R¥f(z) = [e=n+d) (&) p¥(n, §) dé dn
where

. ' 718l ' :
P (1, &) = #(n, £) (%’(77 + &) — ¢2 v BT @1 (8) ﬂ”) - (3.9
and #(z; 5) is the Founer transform of 7(x, E) w1th respect to-z. Inorder to write (3 9)

in a more convenient form we recall that 2 @, (&) = 1 and that (&) =1 if &1 is in
v=0
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the support of ¢,. This provides us with the formula

R¥ fla) = ): J 8 ¢ (2, ) ly) dy dE S (310)
where fr = w(D)f and ¢;%(z, £ fe“"’p,”(n, &) dn. In the fo]lowmg lemma we
estimate the symbol ¢;¥(z, &).

Lemma 3 3: For each multi-index x and L >0 tlwre exist N ¢ N und a constant
¢ = C,  such that

IDg (2, &) < o271 + [E))°E. 4 ‘ _ ' (341)"

_Prc;of: According to Leibniz’s rule we have

S
(°-7)(7? _i' SC) - 24 | (p
i<y B!

By using the Lagrange remainder term in Taylor’s formula we . obtain

IDepi¥(n, )] < ¢ 3 |Di(a, §)) | 2 @ilerO(E 4 0,m) A,
ysea. 1BI=N

(ﬂ 7+ﬂ)( )nﬁ

IDe pi¥m &l ey 2 [Dyi(, £)]

where 0 > 0, < 1, y < «. But because 7(z, &) has compact support in z it can easily
" be seen (cf. [5: Lemma 2.3]) that for each & > 0

|Der#(n, &) < Cag(1 + &)~ 7184 (1 + [n])~M. (3.12)
Thus we can estimate as follows '
| Depi¥(n, &) = CZ [Deri(n, §)] 271N Ha=y ¥
= CM O (1 [E))y=PIF+8M (1 |y|)=MHN =N +la—s (3.13)
T 7Sa

We assume from now on that j > 0. The case j = 0 follows in the same manner. We
also consider the two cases |£| > 2 |5| and |£] < 2 7] separatc]y Let us first assume
that |£| > 2 |5|. In this case we have ‘

5 lfl < |+ 0n < 2)¢ : - ‘ (3.14)
for every 0 <.6 < 1. By taking into account thls and the fact that 2/~ S 1€ + 6,7
< 2i*1 we see that |£| ~ 2/. Thus we get from (3.13)
[Dep (i, )| S e(1 4 [§])=EHn 27H(1 - [l LM =N (1 - [p])¥ M,
’ (3.15)
By taking first M large (e.g. (1 — 6) M > L + n - 1) and afterwards N we see that -
(1 + |§|)" |a|+L+6M N+1 (1 + i’?l)N—M < c(l + [70)~ lal+ L4+1+(6—-1)M <ec
and hence we obtain : :
" IDepfm, 6] S o1+ [E)~ b 27, . (3.16)
On the other hand if [§] < 2 |n| we get from (3.13)
[Depi(m, €)] < e(1 + &) 2 (1 + I’?l)f“"”“*‘_" 27 (3.17)
S o1+ [ED)7F (1 + [nly=tntD 277

for M large enough. -
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To end up the proof of the lemma we conclude fromn (3.16) and (3.17) that
[ 1Dep¥(m, &) dn + f [Dapi¥ (7, &) dn

e ' izylel
(ST DT 2T (1 )2 7f<1+1m>-" Ly
S o1 + [y~ 277
which is the'desired estimate I . .

" To compléte the proof of the theorem we write (3.10) as follows

0
BT =)\ X [ #/D) f(y) KJJ(=z, y) dy
where |
Ki(z, y) = [ ete=viq,%(z, &) pi(&) de.
. By takmg L=/ 4+ 1in Lemma 3.3 we obtain for all > 0 that

2-12m2-

Kz, < .
@S T e =gy

Thus we have the estimate
[R¥f(x)] < 277 3 277f¥(x).
y=0
Obviously for 0 < g1 ‘
’ o oo 1/q
PEMACEL: ( b) I/-*(x)l") - (3.18)

For 1 < g < o0, (3.18) follows from Hélder’s inequality. Hence for any 0 < ¢ << o0
(R F)5zolle < e %)zl |

“and finally the Fefferman-Stein maximal inequality yields (take 4 largé enough) -
(R F@))Roll Lot < € Wllgo, -
_This gives (3.2) and consequently the proof is complete ]
In the following theorem-we are going toabandon the restriction made onsupp, 7.

. Theorem 3.4: Let T = r(z, D) be in L3, s 0=sd<1. Tlcen./or all 0 < p,g < oo
and s sufficiently large T' : k%, , — F5, , '

~ Proof: Let ¢ be a C°-function supported in |z| < 1. Furthermore, let y be another

C>function with y(z) = 1 in lz| £ 2 and supp p < {z] [z] =< 4). We put g(z)
= @(z — g;) and y(z) = p(z — ¢x) whereg,, k= 1,2, ..., goes through all the lattice
points in RP. We also assume that 3 ¢, = 1. Because of the known local represen-
tation of F%, -spaces [16] we have

lleellEs  ~ ‘kZ lpeulles  ~ %‘ Il (3.20)

for s large enough.
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Now we break up 7" into two part,s [' = ]’ 4+ 1, where To Z tpﬂ V- By usmg ) .
-3.20) we obtain. .
' IToully; < 62. ||‘P:Tou”p' = CZ ||Z %%kau“pn

' and hence by Theorem 3.1

- , IIToull”' RPN Ilw,ull"-q ~c llullp' o
. , 7
- Toestimate T, write y, = 1 —y,and 7'y = Z %T/k Let K(z, - ) denote the Fourier
transform of r(z, 5)\w1t,h respect to £.-We get

T () = [ Koz — @@ d. - s (a2

v

f ¢p,‘(x) T(zeu) (x) = 0 we must have |z — 2| = 1in (3 21). Thus we may assume that
K(z, z) = O for |2| < 1/2. Note that this also means a modification to 7(z, &). But for
|y| sufficiently large !z’D #DK(z, z)| < c.s, and hence’ we obtain for all ¥ €'N

|DAD 2K (z, 2)| = c,gy(l |z])~¥.
Consequent]y, we also have . -
ID PDer(z, &) < CaﬁN(l + 1§h”

for (,a(,h and therefore r(z, D) € Ligcand T, € L,—(;“ Thus T, : ¥3, — F3, which~
" proves the t;heorem 1 : -

Havmg now done all the hard work we may prove the followmg assertlon

A Theorem ‘3 5: Let T = 7(x, D) be a pseudo differential operator of class Ll 59 — 0
. < m < 0o, 0£6<1’1’hen/orallO<p,q<oound —co <8< ® .-
Ky > o8 o

_ Proof: The claim follows readmg from the following bhasic facts: If g IS the"
"pseudo differential operator (1 — A)*2 then 0, € L3 ,. Moreover, a,: Fy, — Fy.0.
~Finally, if § € L], and 7' € L7, then ST ¢ L’"*"‘ (cf.-[13"'p 225]) 1 :
‘ Corollary 8.6: If T s as in Tkeorem 35 tlzen 1:Bj, B""’ /or aEé —o0 < s, '
'm<ooand0<p,q<oo . S

Proof. Use Theorem 3.5 z}nd Remark 2.3 1

" Reiark 3.7: The question arises whether the result in Theorem 3.5 can be ex-
tended for the values 0 < p <1 as in L,. The answer is negative because there are -
symbols in 80y, 0 <o < 1 independent of  which are not Fourier multipliers.in
Lp, p :%: 2. This can be seen, as noted by P. Nilsson, in the fo]lowmg way. Let ||-|]
denote the mulmpller norm in L, and assume that

il < ¢sup TIma()I/(1 + €)7ol L

' To obhtain a contradlcmon replace m by m(- /e) and observe that the left hand snde does
not depend on e.

16. Analysis Bd. 2, Heft 3 (1983)
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