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Mixed Contact Problems in Plane Elasticity	L 

J MAUL 

Der Beitrag behandeit das genlischte Kontaktprobiem der isotropen elastcschen. Ebene mit - 
einem einfach zusaminenhäugenden elastischen EinschluB aus anderem Material im Rahmen 
der Elastostatik. Die KQntaktkurve L 1st zérlegt in 9 paarweise dijunkte Kurvensysteme, auf. 
denen 9 verschiedene Kontaktbedingungen vorgeschrieben sind. Es werden verschiedene R'e-
gularitatskonzeptionen eingefiihrt (sogenannte *Reguiaritat,* . Regularitat und e. Regulari-
tat), aus denen sich Forderungen an die Kontaktdaten.ergeben, unter anderem gewisse Korn-
patibilitatsbedingungen. Unter Verwendung von GreenschenFormeln wird das Eindeutigkeits. 
problem untersucht und in einigen Fallen Losbarkeit .sbedingungen angegeben. Mit Hhlfe des 
elastischen Eiñfachschiehtpotentials wird em Integralgleichungssystem tufgstellt, in dessen 
rechté' Seite zwei willkurliche Konstanten eingehen. Die gesuehte Losung CP des Integral-
gleichungssysteins jst elner integralen Zusatzb.edingung unterworfen. Durch Anwendung elnes' 
geeigneten Differentialoperators £2, wird cin singulares Integralglcichungssystem mit stuek. 
weise stetigen Koeffizienten erhaiten. Die Dimension des linearen R.aumes ker wird Cr-
mittclt. Ineinem weiteren Beit .rag dieser Zeitschrift soil dasStudiuni des formulierten Kontakt-
problems durch die vollständige Untersuchung des singularen Integralgleichungssystems kom-
plettiert werden.  

PaccMaTpu naecn KonTa1Tnan flpO6JleMa ynpyron flJOCX0CTII C 0H}IM 0HOC13H31ibIM BHJII0-
4eH4e1 In jpyroro ynpyroro NiaTepiiazia B paax 3JIaCTOCTaTIIHU I130TpoIIIIMx cpeg. 1-(o11-, 
TaITIIafl HpUBaH HBJTHeTCFI o61,eI1I1eIliie1I 9 JlenepeceJaIoIwtxccI cuc'reM ;(puBbTx, B).OJ1b 
xoTop hlx_ aaJiaIoTcH 9 pa3sI1'I1IIJx K0I1TaHTHSIx:yci1oBIIfl. OnpeJe31nIoTcn iieoopaie nOIIRTUB 
peryJIapilocTil (TaK HaabivaeMaH *peI.yJlHpHocTb,e*peryjlnpllocTb B e-peryJlapllocTb), 
BcJIecTBHe HOTObIX xoHTaFcTHbIe aHHMe AWIMHbl YAOBJIeTBOP,9Tb HelcoTopaiM Tpe6oBaIlHHM,	0 - 

B TOM 'iIJIO H HeIo'ropH1lyc31onhla1! coliMecTitMocTIl. MeTOOM ()opMyJi I'piina 113y'laeTcn 
npo6ileMa euIHcTaelIHocTu, a a H}OTOHX 'acTHiix c.nyiaax Taso+ce BbIBOHTCn 1Iéo6xonMue 

CJ10BIIH pa3peu111MocT1l. C flOMOUb1O ynpyroro noTeIuMaJIa npocToro . CJ10H HoIITaIcTHan 
3aJa'Ia flPHBOUITCH x ducreMe ituerpaiiiwx ypanHeIJuf, a npanofl 'iacTci KoTopo1 coep-
)JcHTCH &Be np0I13BoJiblILcx nocToniiiian. l'eiueiiiie DTOi.1 CHCTCMbI IIHTCI'paJlbHHx ypaBHeHc1i 
nO q HuLHeTCa gOflOJllIHTC.flbIlOMy HHTerpaJlbuoMy yCJ1OBHI0. flocpetcTROM I1iePCHW4aJIbHOI'O 
onepaopa !2 noiyiaeTcn caceacmiryaapiisxx uiiTerpaJmJIIIx ypaBHeHwft c pa3pini,ic 
}coe(IxIneHTaMM. OnpeeJIHeTca pa3mepHOCTI, Jm1IefIIoro npocTpancTna ker P.1,. 3aiuo-
411TeJIbHoe i43yeHue KO}ITaHTHOfi npO6J!eMbl nOJly4eHHoft cacTeMu cwlryJinpHHX IllirerpaJib-
HbIX ypanaelluft 6yjier npoBeeuo B nocJIeyIoEuefl pa6oTe, ony6mI1yeM6ft B DTOINI me yp-
HaJie.  

The paper is concerned with the contact problem of the isotropic elastic plane with a simply

connected elastic inclusion of different material in the frame of elastostatics. The contact curve

is dissected into 9 pairwise disjoint curve systems, at which 9.different contact conditions are

prescribed. Some regularity concepts are defined (so-called *regLllarity, e*regularity and

e-regularity), which imply certain restrictions for the contact data, for instance certain compa- 

tibility conditions. Using Green formulas,, the problem of uniqueness is studied and, in certain 


• - cases, some necessary conditions are given. By the aid of elastic potential of single layer, a 

system of integral equations is obtained, containing two arbitrary constants on the right-hand 

side. The solution 0 to be determined is subjected to an additional integral relation. By appli-




cation of a suitable differential operator !,, a system , of singular integral equations with dis-.
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continuous coefficients is obtained. The dimension of the linear space ker.^ is calculated. In 
following note in this journal, the investigation of the contact problem will be continued by de-
tailed study of the singular integral equation system. 

§ 1 Introduction	 - 

The present paper is concerned with a class of plane mixed boundary value problems 
in linear elastostatics for bodies with inclusions of other elasfic materials. On the 
common boundary curves of the inclusions and the environmental media, the dis-
placement vector and the stresses must fulfil suitable relations, which depend on the 
actual physical kind of contact. In our paper, these relations are' briefly referred to as 
contact conditions, in accordance with usual terminologies [9, 28, 171. 
• The considerations have been confined to the study of linear contact conditions in 
consequence 'of the singular integral equation method being used. However, we con- 
ider the case of mixed contact conditions, which as far as we know has not yet beenp 

sttidied in other papers, at least for general domains. 
Problems of such kind have importance for some topics in mechanics. For instance, 

some problems of fracture mechanics can he interpreted as niiced contact problems. 
The fundamental differential equations of plane elasticity in ternis of displacements 

are given by

uAu + (;. ± u) grad div U = —F,	 (1.1) 
a = (u1 , v2 ) = '(1t10711 x2 ), u2 (x 1 , x0)) - displacement vector field, 2, u — La m6 mod-
tiles, x11 x2 - Cartesian coordinates of the point x in the plane 112; F - vector field 
of volume forces. The modules 2, are supposed to he piecewise constant in the 
considered domains. Furthermore, we make the natural aSSuIIIptiOnS 1., /L >'O. 
• Using the elastic volume potential [29, 17], a particular solution of equation (1.1) 
can be obtained by quadrature. Consequently, without loss ofgenerality,.we will 
assume F = 0 in the sequel. 

In some papers of L. JENTSCH on contact problcnls\of elasticity and thermo-
elasticity [6, 7, 10], the useful concept of contact fundamcnal solution (gekoppelte 
Grundlösungsmatrix) was established. This concept allows to solve in two steps a 
general boundary value problem for bodies with inclusions. First, a pure contact 
problem (i.e. a problem in the whole plane having inclusions but not having cavities) 
is considered, in order to construct the so-called contact fundamental solution. 
Secondly, this contact fundamental solution permits to study problems with boundary 
conditionsat cavities in complete analogy to the elastic homogeneous case. In addition, 
that idea also leads itself to the tratnient of problems with inclusions having in-
clusions and cavities themselves [25, 7]. 

Taking into account these results, the present paper deals with the pure contact 
problem only. For ease of exposition, we consider the elastic plane 112 with one 
inclusion of in general differer!t material; the considerations might immediately 
be generalized td the ease of it inclusions. .	• 

• Let D, be a given simply connected bounded domain of 112 and D0 = 112 \ D, 
Let L = OD, = aD, and L E C2,0 (0 </9 1). Suppose that D0 and D 1 .re occupied 

• by two elastic bodies in their natural configuration. Let 2, io and 2,	be the values

• of 2, ,u in the domains D0 and D1 , respectively.; 

Let 1, be dissected into rn pair wise disjoint non-empty single open curves Si ,.. ' 
(m ^ 2), which are arranged in counter-clockwise sense on L, and let L =	u S2

U ... U Sm . In the following, the common endpoints a1,.a2,..., amof the cures Sm-and
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S ; S and S2 , ..., Sm_ i and S will be called nodes. At times, we will make use of 
the notations S = (a 1 , a2); S2 = (a21 a3), , 5m = (am , am+ j) = (am, a 1 ) ( the nodes 
a 1 , a, 1 do not belong to Si). 

Furthermore, let the set of the curves S,,•••, 5,,, be divided into 9 pairwise disjoint 
curve systems L 1 , L21 ...; L9 . Let 

M. 9 
= U vAA = U (a u , a, 	m, = in,	m,	0 (v = 1, 2, ..., 9). 

(1.2) 
In	9 

Then we have L = U S i = U L,. Let, in addition, each of the nodes a 1 (1= 1, ..., m) 
i1	,'=l 

be an encountering point of two different curve systems L, and L. (v + ;). 
We consider the following contact problem: to, determine two displacement fields 

U  (k = 0, 1) belonging to the classes C2(Dk) n C°(D k) ( Ic = 0, 1), respectively, which 
solve the equations '(l.l)  

*uk = 0	(Ic = 0, 1)	 (1.3) 
bu" in .the domains D0, D 1 , respectively. The first partial derivatives -s-- (j = 1,2) 

xi 
are required to he continuous in the points of L with exception of the nodes a1 
(1 = 1, ..., rn). Furthermore, the displacements uk and the stresses Y(n) 11k are sup-
posed to satisfy the following contact conditions on 

u'(z) - u°(z) = f(z),.9'(n) u 1 (z) - 9-(n) 0(z)" = g(z) for	z 6
(l.4a) 

s . Y(n) u"(z) = hk(z) (Ic = 0, 1),	n. (u'(z) - 110(Z)) = /(z), 

n	(-,;'-(n) u 1 (z) - Y(n) U0(Z)) = g(z)	for	z € L2;
4b ( 1.4b) 

S	u"(z) = 4c( Z ) (Ic = 0, 1),	ii . (u 1() - U0(Z)) = 

(Y(n) u'(z) - .Y(n) U0(Z)) = g(z)	for	z € L3,
(1.4c) 

u"(z) = 1k( Z ) (k = 0, 1),	s . (u'(z) - u0(z)) = /(z), 

s . (.9(n) u'(z) - .(n) 110(Z)) = g(z)	for	z E 1i4; 
3(n) uk(z) = hk(z)	(Ic = 0, 1),	s . (11 1 (z) - 110(Z)) = 

s . (5(n) u'(z) - Y(n) U0(Z)) = g(z)	for	z € £5;
(1.4e) 

u"(z) = fk( z )	(Ic =0,1) 	for	Z € i,; (1.4f)' 
.57 (n) u"(z) = g(z)	(Ic = 0, 1)	for	z € £ 7 ; (1.4g) 
s	uk(z) = /k(Z), n	Y(n) uk(z) = g(z)	(k = 0,1)	for z E £8;	(1.4h) 
n	uk(z) = tk( Z ), S . 5(n) uk(z) = g(z)	(Ic = 0, 1)	for z € £.	(1.4i) 

In this formulas n, S mean the unit vectors of the (outward) normal and tangent of L, 
respectively.	(n) is the operator of stresses given by 

Y(n) u = 2 + An div u + /Ln X rot u. (1.5)

Of course, the stresses Y(n) 110 and Y(n) iii in the expressions (1.4a)-(1.4i) must 
be calculated with the Lamé modules A 0, yo and A1 , p i , respectively. The quantities 

14 Analysis Ed. 2, Heft 3 (1083) 
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•	I' 1k, /k' g, g1, 9k, Ilk' hk , 1k (k = 0, 1) denote certain vector fields orfunctions, defined 
on corresponding parts of L and satisfying suitable properties of smoothness dis-
cussed later. 

In consequence of the continuity of the displacements one gets iiiiniecliatelv sonic 
compatibility conditions for the data 1, /, fk., /. and 1k• 

Indeed, in the nodes a i of the type L1 —L2 the equation 

Jim n(z) . 1(z) =	Jim	1(z) ( 1 .6a) 
L,3z-*a	

-S 

is necessary. Further the following relationships must be taken into account: 

for a i of the type L, - L.:	jim	1(z) =	lini	{(1 1 (z) - 10 (z)) s(z) ± /(z) n(z)}. (1.6b) 
•	 0	 Lz-a	L,-a 

of the type L,- L,:	Jim 1(z) =	Jim	{/(z) s(z) + (1 1 (z) - 10 (z)) n(z)}, (1.6 c) L,)z-a,	L3z-a, 

of the type Li—Ls:	Jim	s(z) . 1(z) =	Jim	/(z),	 •	 • (1.6d) 
•	 Lz-a, 

of the type L, - L.:	Jim 1(z) =	urn	(1 1 (z) - 10 (z)), (1.6e) 
L,3z-a, 

of the type L1 —L8 :	Jim	s(z) . 1(z) =	Jim	(/(z) - /0(z)), (1.6f) -	L,3z-a, 

of the type L1 —L9 :	Jim	n(z) . 1(z) =	lin	(/1(z) - /O (z)), (1.6g) 
•	L,3z-a,	-	L,9z-.-a, 

of the type L2 — L:	Jim f(s) =	urn f(z), I 

(1.6 J) 
L,z-a,	L,z-a 

of the type L2 —L4 :	Jim	f(z) =	Jim	(1 1 (z) - 10(z)),  

•	of the type L2 —L6 : Jim /(z) =	jim n(s)	(f(z) - 
t o W) (1.6j) 

L.Z-a, 

of the type L2 —L9 : Jim /(z) = Jim Q1 (z) - /0(z)), (1.6k) 
L,3z-a	L,3z-ag 

of the type L3—L4: 

Jim	{(1 1 (z)	lo(z)) s(z) + /(z) n(z)} =	Jim	{f(z) s(z) + (11 (z)	10 (z)) n(z)), (1.61) 
•	 L,Z-+a,	 L.z-*a, - 

•	of thetype L3 —L,:	Jim	(1 1 (z) - 10 (z)) = Jim /(z), (1.6m)-
•	 L,)z-ai	 - 
of the type L3—L6: 

Jim	1k( Z ) =	Jim s(z)	fk(z)	(k = 0, 1)	and	Jim 1(z) =	Jim	n(z) . (1 1 (z) - 10 (z)) , (1.6ii) 
L,z-*a,	L3z^a	 L,3z-*a,	L.?z-+a 
of the type L3 —L8 :	Jim 4(z) =	Jim /k(z)	(k = 0, 1), (1.6o) 

L3 3z-a	L3z-.a 
•	of the type L3 —L9 :	Jim	1(z) =	Jim	(/1 (z) - /0 (z)),	 -	•	

•
(1.6p) -	L,3z-a, 

•
	

of the . type L4 —L:- Jim	/(z) =	Jim	/(z), (1	q) 
•	 -	

•	L3z-.a	• L,z--a, 

of the type L4—L6: 
Jim 4(z) =	Jim	n(z)	lfr(Z)	(k = 0, 1)	and	Jim	/(z) =	Jim	s(z) . (f(z) —f0 (z)), (1.6 r) L,3z-+a	L.)z-a1	 - L.3z-*a	L,3z-.a 

of the type L,—L.:	Jim f(s) =	Jim	(/ 1 (z) - /0(z)),

- 

(l.6s) 
•	 L,Z-*a,



•	 Contact problems in plane elasticity	21 1 

of the type L 1 —L9 : urn 1k(Z) = urn fk(z) (k = 0, 1),	 (1.6t) 
L,z-+a	L,3z-.a 

of the type L,,—L.: urn 1(z) = 'urn s(z) (1 1 (z) - f0(z)),	 (1.6 ii) 
L3z-.a,	L.3z-*a4 

of the type L5 —Ls : urn /(z) = urn (/ 1 (z) - /0 (z)),	 (1.6v) 
L,z^a,	L3z-a 

of the type LG —L: lim s(z) . tk( Z ) = lim /k(Z) (k = 0, 1),	 (1.6w) 
L.3z- .a	 - 

of the type L6 —L9 : urn n(z) fk (z) = lim /k(Z) (k = 0, 1).	 (1.6x) 
L.3z-+a, 

Some of the contact conditions (1.4a)—(1.4i) have an obvious mechanical meaning. 
For instance, condition (1.4a) expresses for f = g = 0 that the materials are welded 

'along L1 . (1.4a) with f == 0, g = 0 describes the welding of the two parts D0 and 
D1 in the frame of linear theory if, in the natural configuration, the two boundaries 
diverge a little from the curve L. (1.4a) with I = 0, g + 0 can be interpreted as weld-
ing of the materials with initial stresses (e.g. thermal stresses).	 - 

The meaning of (1.4f)—(1.4i) is evident. Such boundary conditions at inner curves 
of elastic bodies are of importance in crack problems. 

The conditions (1.4h)—(1.4e) are also interesting. (i.4b) implies for hk = = g = 0 
the frictionless sliding of the honiogeneous parts without gap along L2 . In pri-nciple, 
inhomogeneities of the data can be explained as initial stresses or as divergence of the 
boundary of D0 , D1 in the natural configuration. 

The mathematical treatment of (1.4h) was suggested by JENTSCH [5]. in the non-
mixed plane case the conditions (1.4b)—(1.4e) have been completel y studied in the 
author's book [291 by the method of potential of single layer. The corresponding 
spatial problem (1.4b) has been treated by BECKERT and JENTSCH in [1] and [8], 
respectively, with variational methods. The integral equation approach was estab-
lished by JENTSCU for (1.4b) [9] and for other relationships also in the spatial case 
(see [9-111). The connection of (1.4b) with a more general problem of Signorini type 
is discussed in [9]. Further non-mixed contact problems in the plane have been studied 
in [29]. 

Two special mixed contact.prohlerns with the conditions (1.4a) and (1.4b) and, on 
the other hand, (1.4a) and (1.4h) have been investigated in the dissertation B [30] of 
the author. The present paper is based on the considerations in [26-30]. 

It should still he remarked that similarly general boundary value problems of thcr-
moelasticity and niicropolar elasticity (homogeneous media) are treated in [28). 

In the following considerations a further notation is necessary. Let A,,. (v, u 
= 1,..., 9) he the number of nodes of the type L,—L,. (it does not characterize the 
order of L, and L,.). Then we have	 . 

9 
= 0,.	A,,. = A 	ZA',,. = 2m,	(v = 1,..., 9).	(1.7) 

"=1 

§ 2 Rigorous statement of the contact problem. Integral theorems 

In this paper the points x, y, z, .. of the plane R2 are sometimes identified with corn-
plex numbers t, r, ... In general we apply the notations of singular integral equation 
theory for functions defined on smooth curves [35,'38]. 

For instance, a HOlder . continuous complex function 99 on L (L smoothcurve) with Holder 
exponent a, 0 < a	1, is called a function of the class ii (also i1,,(L) or C0.(L)). The Holder 
14*	 •
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condition can refer to the variable point of L or to the arc length of L. Both points of view 
are equivalent. The class of n times Holder-continuously differentiable (with respect to the 
arc length s) functions is denoted by C7L(L). 

In addition, we make use of some function classes on L which are defined one-valued on the 
curves S......S, but not, in general, in the nodes a 1 ,..., am. Such a function T belongs to the 
class H0 , if 97 E II(S) (i = 1 .... . m) with a suitable constant cc > 0. Then the one-sided limits 
of q in the nodes a 1 exist. If the function T satisfies a Milder condition only on every closed 
subciirve [a 1 ', a 1 ] of (a 1 , a 1+1 ) and, moreover, a formula 

=	q0(t) 
	

To E H0 ,	0< Rey < I (i = 1 .... . m)	 (2.1)
ai)y(1 - 

is valid in a neighbourhood of each node a 1 , the function qbelóngs to the class J(*• If, additional-
ly, a representation (2.1) holds with a constant  having an arbitrarily small real part Rey 
= ó > 0, then the function q belongs to the class H,. 

Now let again L E Q2.P (0 < 1) and let D be the hounded domain with C9D = L. 
We consider a displacemnv field u(x) = (u1 (x), 11 2(x)) defined for x € D. The displace-
ment field u is called regular if 

U1 E C2 (D) n C'(D) -(1 = 1, 2).	 (2.2) 
In connection with mixed problems, having in the'senséof § 1 certain node a1 ,..., am 

further regularity conceptions are necessary. Let D, = D \U K,(a 1) with K,(a1) 

= It E C I It - a11	ef. The displacement field u is called *regular if 
E C2 (D) n C°(D) n C'(D,)	 (2.3) 

for sufficiently small e > 0 and if the in neighbourhood of the nodes a 1 the estimates 

Ui=(I x - ail - ')	 (2.4) 

are valid for a fixed 6, 0 <6 < 1, and i, Ic = 1, 2. 
a is called c-regular if ti is *regular and the estimates (2.4) hold for every 6 > 0. 

u is called c*regular if a is *-regular and satisfies the estimate (2.4) with every 6> 0 
for certain (but in general not for all) nodes a1. 

To define suitable regularity conceptions for the ease of the unbounded domain D 
with OD = L (L is located in a houndad part of R  and has the above-mentioned 
properties), additional conditions for large I xl must be required. We demand 

aui 
1u 1(x)L= (1) and	

=aXk	
0XI-1-11)	27 > 0	'	(2.5) 

for largelxi. Now . a solution a of the homogeneous equation (1.1) is called regular, 
*regli lar, c-regular or e*rcgular if a, besides the above-mentioned properties, 
satisfies condition (2.5). 

The just defined regularity conceptions allow the rigorous statement of the general 
contact problem of § 1. By the problems C* , C, and C* we agree to understand the 
problem (1.2), (1.4a)—(1.4i), (1.6a)—(1.6x) stated in § 1) in the class of *regtilar, 
,--regular and c*regular displacement fields, respectively. Of course, for e*regular 
vectors the set of nodes a 1 mustbe specified, in the neighbourhood of which the esti-
mates (2.4) hold with arbitrary 6 > 0. 

The given data are assumed to . satisfy the following additional restrictions 
a) f, ! , Tk' Ik ' 1, € H on the corresponding curves 

b) f,	/,	'	1,,; g, g, g,, g, hk € 11, ( k = 0, 1).



	

Contact problems in plane elasticity	213 

The necessity of these assumptions follows from the integral equation method being 
implemented. 

Now let D be bounded or unbounded with 3D € C', u a regular solution of u = 0 
and v an arbitrary regular vector field. Then we have the following well-known inte-
gral theorem 

f E(u, v) dx = f v .(n) u ds,	 (2.6) 
D	 3D 

where n is the outward normal, and 
2 

Gxj
 .	3' /3..	3v	/ 2 3v / 2 

E(u,v)=- '	 +__ U_+__L)+;.( '__L}('_L)(2.7) 
2 ,, 	3x11 3x1	3x,,	,	exit \ . i exit 

,E(u, v) is a symmetric bilinear form. The positiveness of the corresponding quadratic 
form is evidertt. Obviously, the forniula (2.6) remains valid for *regular vectors u, v. 
For proof one can apply formula (2.6) in the domain Dr. In virtue of (2.4) the pro-
position is.obtained for e - 0. The symmetric relation 

'flu . L,*v_v . *u)dx=f{u . .9(n)v_v . 5(n)uds	(2.8) 

	

holds for arbitrary *-regular displacement vector fields, provided that	u and *v

are summable in D. 

Let D be a hounded domain and ii a given regular (*regular) vector field. Then 
from E(u, u) = 0 in D we can conclude by simple arguments that u belongs to the 
linear space generated by the three vectors 

..	
c' = (1 , 0),	c2 = (0, 1),	C3 = ( —x21 x0.	 ( 2.9) 

Under the same assumptions the vector it in an unbounded domain must be a linear 
combination of c' and c2. 

§ 3 Uniqueness theorem 

The uniqueness of the considered contact problems C, C. and C,* is determined by 
the corresponding homogeneous contact problems C* , C, and C,* allowing nontrivial 
solutions, or not. Therefore in the sequel we are concerned with the homogeneous 
contact problems only. First we deal with the homogeneous problem C*. 

The considerations turn out by the following general pattern. Let u°, ii' be *regular 
solutions of the homogeneous problem C*. Substituting u = V = Uk (k = 0, 1) into 
formula (2.6) we obtain 

E(u°, 110) dx = f it0 . 5( Il) 110 ds,	 (*) 

	

E(u', U') (!X 

=
f
 & . -17(n)  u' de.	 • (**) 

ñ in (*) is the inside normal with respect to L, but n in (**) is the outward normal. By 
replacing ñ by it in (*), the sign of the line integral is altered. Summing (*) and (**) we 
get

'°' U°) dx	E(u1, II') dx	 [Li' . .5(n) u' —u Y(n) 110] d8. (3.1) 
1. 
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On account of the homogeneous contact conditions it is not difficult to see that the 
expression in the square brackets vanishes on each of the curve systems L 1 , ..., L. 
Therefore we have 

E(u°, 110) dx +f E(u', ii') dx = 0.'	- 

In consequence of the positiveness of E(u, ii) it follows that E(u°, 11 0 ) = E(u 1 , U 1 ) = 0. 
Bearing in mind § 2, one can deduce 

- 110 E 2)c1 , c2 ),	111 é 210, c2, C31;
	 -	 ( 3.2) 

the sytubol) . ..J marks the linear space generated by the vectors in brackets. 
We have still to check, which of the vectors (3.2) satisfy the homogeneous contact 

conditions of the problem C k . For that reason we first discuss each of the contact 
conditions (1.4a), ..., (1.4i) as independent of the other ones. For this purpose we 
make use of the relation 

3(n) c = 0 for every n and for c € {c', c 2 , 0), 
which is easily verified. Thus, the homogeneous contact condition (1.4a) allows only 
the solutions 

110 = u' = c E £)c', C 2 1. -	 (3.3a) 

The vectors (3.3a) also satisfy the conditions (1.4b) Additionally, if L consists only 
of such single curves which are located on circles with fixed centre y = '( yi, 1/2)1 then 
the vectors	 - 

110 = 0,	U1	)c 3 ),	 (3.3b)

where

e 3(x) = (—x2 + 1/2' r1 - y i),	 (3.4)

fulfil the homogeneous conditions (1.4h). 

• A)	Solutions that are independent of geometrical shape: 

contact condition solutions of homogeneous cont. conditions 

(1.4a)	 U0 = 111 = c € 3)e', c2 1	 - 

(1.4h)	 no = Ut = c € 2)c1 , c2) 

(1.4c)	 u°=u'=O 

(1.4d)	 U°==U'=O 

-	 (1.4e)	 u° = u 1 = e € Plel, C21 

(1.4f)	 110 = u' = 0 

(1.4g)	 U° E £)e1, C21,	U' € 21e', e2 , C3) 

-	 (1.4h)	 u°=u'=O 

(1.4i)	 u° = u' = 0
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in a similar way, we can also consider the contact conditions (1.4c)—(1.4i). Doing 
this, one gets both such solutions which are independent of the geometrical shape of 
the corresponding curve system L (e.g. the vectors (3.3a)), and other ones, which are 
only met for special geometrical shape of L (e.g. the vectors (3.3b)). For lucidity of 
exposition, the possible solutions are listed in the tables A) and B). 

B) Additional solutions for special geometrical shape of L1: 

Ba) L, consists of parts of circles with a common centre.y = ( y ' Y2) 

contact condition	additional solutions 

(1.4h)	 110 = 0,	u' € 21c1 

(1.41)	. = 0,	u	€ 21c3} 

Bb)	L 1 consists of parts of straight lines with one and the same direction 

•	C0= Cos aC'+ sin oC2. 

Moreover, we define 

•	C1 = —sin (t) e l ± cos ('0 C2. 

contact condition additional solutions 

(1.4b) U0 = .0 '	U' € 31ej 

(1.4c) 110 = u' = c € 2c,') 

(1.4d) flO = u' = c € 21cj 

•	(1.4e) 110 = 0,	U' € 21 CO, 

(1.4h) 110 = e € 2c0, 1 I,	ul= d € £{e'

(1.41)	 u° = c € 2(c},	ill = d € 21Cj

(3.5) 

(3.6) 

Be) L• consists of straight lines, which intersect in the finite point v = (v1 , v,) 

•	- contact condition additional solutions 

•	(1.4e)	 0 = 0,	u' = c € 2{e3} 

(1.4h)	 110 = 0,	ii' = c € 21 C,31	 -: 

For a given real situation, the solutions of the homogeneous problem C* are easy 
to determine. For this purpose, the intersection of vectors satisfying the homogeneous 
contact condition at the t1 (i = 1,..., 9) (see the above stated tables) has to be de-
fined. Because of the multiplicity of possible cases we do not try to giveacomplete 
specification of the last ones. Instead of that, only a few interesting oamples shall be 
considered.	 I •	 - 
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For instance, the homogeneous problem C allows only the trivial solution, iLone of the 
following assumptions holds: 
1. L6 is not empty. 
2. L3 u L. u L5 is not empty and does not consist of parts of straight lines with one and the same 

direction. 
The dimension of the linear space of solutions of the homogeneous contact problem G is equal 

to one if for example L = L, u L4 u L7 holds, provided that L4 consists of parts of straight 
lines with direction c. The general solution of the homogeneous problem C* in that case is 
U° = iO E. 2{e} (see fig. 1). 

C72	D,	 Do 

L7  

	

L4	
04

 Fig.1 

A further interesting example of dimension one is L = L 2u L, u L 7 with the solution u° = 0, 
U' = C E 2{c 3}, provided that the shape of I and L5 , e.g., is that of figure 2 (L2 are circular 
arcs with the centre in y and L. are parts of straight lines intersecting in y). 

L	

L	
IL2 

7 
L7 

L5	L7 

>c 

	

00	y	Fig.2 

The homogeneous problem C* has exactly the two linearindependent solutions u° = u l = c 
E 2(c', c2 1 if L = L1 u L2 u L and L 1 are not empty. Another example for dimension two is 
L = L2 u L7 u L,, if L2 and L8 have, e.g., the shape of figure 3. 'L2 are circular arcs with the 
centre in y). Here the solutions are U° = u' = CE 2(C'} and no = 0, & E {Cy3} where y is 
the centre of the circular arcs of L2.

Fig. 3 

The dimension is three, for instance, in the case where L = L2 u L71 provided that L2 has, 
e.g. one of the two configurations of figure 4 (L2 are circular arcs with the centre in y or parts 
of straight lines, respectively). Here the solutions are u° = U' = c E 2{e', c2} and, additionally, 
110 = 0, U' = 4 E 21cy3 l in the first case, but u° = 0, u1 = e E 21e,,,1 in the other one.
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An example for dimension four is L = L5 u L7 in the following geometrical configuration 
(see fig. 5). Solutions here are 110 = U 1 = C E 210, c2} and, additionally, uo = 0, ii 1 = d € 21cj,, 
and u°.= 0, U = e E {Cv3}. 

The corsiderations show that the set of solutions of the homogeneous problem C* is 
a subset of the regular vectors (3.2). Consequently, the results for the investigation 
of the homogeneous problems C and C* are the same as for C*. in part II of our 
paper the existence of *-regular solutions of the inhotnogeneous problem C* will be 
proved, provided that the homogeneous problem C* has no nontrivial solutions. If 
the homogeneous problem C* has nontrivial solutions, then the inhoniogeneous one 
has solvability conditions. The latter ones can be found, in usual manner, by the aid 
of (2.8). In the next, they are, derived for the above-mentioned situations with non-
trivial solutions. 

Let uO , u' be the solutions of the inhomogeneous problems to consider. Setting in (2.8) 
v = 110, u = e,, D = D0 and v u', ii = c,, D = D1 , respectively, we obtain for the first. 
considered case of one nontrivial solution the following relations 

o =f c,, 7(ñ) ti ll ds +f [(n . e) (n . 7(ñ) U°) + (S . c) (s . 7(ñ) u°) I ds	 . go ds 
L,  

and 

o = f c0, . 7(n) n' ds + f [(n . e,,) (n . 7(n) &) + ( S c) (s . 7(n) u1 )] d8 + f c, . g1 ds. 
I,,	 ,
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•	Because of n e,	0 the terms containing n . f(n) u 1 (i = 1, 0) vanish. By summing we get 
the solvabilit y condition	 - 

'O fCgds±f(S . c)gds+fe . (g1_ go) ds,	 (3.7) 
2., 

which is, of course, necessary for the existence of a *-regular solution of CS in the considered 
-.	special case. In the second example of dimension one we obtain by setting v = u'. u 	c the 
• solvability -condition 

• 0=f(scy3)hids+f(n.cy3)hids+fcy3.g1ds.	 (3.8) 

The first example of dimension two leads us to the conditions 

fcgds -
 

c[(h 1 — h0 ) n ± gs]ds ±fc . [( h 1 - h0 ) S 1 gn] ds = 0 (i= 1, 2),	(3.9)

- Ls  

•	but in the other one we get the conditions 

f [(s.ei)(h1— h o ) + (n.c1)g]ds±fei.(gi _ go) ds±f(n.ci)(gj_ go) dso 
• L 2	 L,	 L1

(3.10) 
and 

•	 f (S . e 3 ) h 1 ds + f Cy3 . g 1 ds ± f (n c) g ds = 0.	 (3.11) 
L.  

In both cases of dimension three we have	 - 
•	 f.e . [ng	(h - ho ) s]ds	e (9 1 - g0 ) ds = 0	(i =1,2),	(3.12) 

•	and either 

,f (S c) h 1 d -I_f e 3 g ds = 0	 (3.13)


or
f(s.c)hids+fe,.g1ds=o.	 (3.14) 

L.	 L, 

Finally, in the example of figure 5 one obtains the conditions 

•	 •fct.[(hi_ ho) n±gs]ds±fei.(g1_ go) d,s=0	(i=1;2),	(3.15) 

-	 (n . cu ') h 1 ds +f c, 1 . g1 ds = 0	 (3.16) 

•	and 

•	 L,	
. c) h 1ds ±f	. g 1ds = 0.	 (3.17) 

• - The physical meaning of the solvability conditions derived in such a way with the 
solutions of the corresponding homogeneous problem by the aid of formula (2.8) is the 
equilibrium of surface forces and their moments. In the sequel it is proved that these 
.physical conditions with respect to the boundary data are sufficient for the existence 

•	of a *regular solution. Moreover, the problems will he studied in the smaller classes 
•	•	of E-regular and e*regular vectors. In these cases the existence of some additional 

•	conditions for solvabilit y is proved. However, the latter ones cannot he derived 
•	explicitly by the aid ofknOwn physical principles, as it might he expected because of 

•	the more quantitative than qualitative difference between *-regularity and a- or 
e*_regulari tv .	0	 •	 .



Contact problems in plane elasticity	219 

§ 4 Fundamental solution and the potential of single layer 

The Kelvin-Somigliana matrix 

r(x — Y) = [['(x -	= [a In 
Ix	

& + b	
;2 

Yi) j .	(4.1)


where
_ ;.±3fL	b—	 k>O 

is a fundamental solution of (1.1). Let  he a curve of the class C'. Then we have 

[_1ij(x_y)]=[a_ln11ij]+/?I(x_y) fo	x,yEL (4.2) 

With a matrix R1(x - y) of the order (Jx —y± ) ( > 0) (see [291). Moreover, the 
representation

10—lid	1 
Y(n) ['(x — y ) = k oJ — In - Yl + 

R2(x - •)' C = +
JU

 2u 
-	X, 3' E L,	 (4.3) 

holds (Here, the operator Y(n) acts doliiiiinwise with respect to x; it = n(x) is the 
normal at x EL). The matrix R2(x - y) is of the order (I x - y ') ( > 0) (see [291). 
By more sophisticated considerations it can be proved, that the components r 
(1 = 1 1 2) of matrices Rj(x — y) allow a representation	S 

r(x - y) =
	 (1, 1, / = 1, 2) 

with p E C°(L x L) for every 0 < ij < ft. On the assumption that L E C2 we 
additionally obtain r(x — 3') E H. The elements of T'(x - y) are of the order 

(I' fl Ix - y ll) for x -- ' and also for jxj -- >-oo, but their first, partial derivatives 
— yl) . We still remark the formulas ([29]) 

•	c'(z) ± 1 f[.(n) I'(z — y)]T c(y) ds = 0	(i = 1, 2, 3).	(44) 

OD 

Here the operator .9(n) also acts coluninwise with it = n(y) with respect to the 
variable y. 

Now let D he a bounded or unbounded domain with aD = L € C'#. Let us consider 
the potential of single layer	 S	 S 

Y(x; q) = -- 
f 

1'(x - y) p(y) ds	 (4.5) 

with a given vector field (j)	(, 92). From the results in 117, 291 we can deduce 

Theorem 1: Let (,p € C°(L) (0< a <	1). Then the following propositions hold 
1. 1/ D is a bounded domain, then T(x; (p) is a regular solution of the equation (1.1) in D. 
2. Let D be unbounded. Then Y(x; (p) is regular if and only if the relation 

f (,)(y) ds = 0	 S	 (4.6)
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is satisfied. 11(4.6) is fulfilled, then 

urn V(x, q)) = 0,	 (4.7) 
IxJ-* 

but in the opposite case V(x; 'p) is unbounded for jxj -	.

3. For p € C°(L) and (4.6) there exists a constant C with 

IIV(x; P)JJc'.(D) = C frPIIco, ( L) .	 ( 4.8) 

The constant C depends only on the domain D.

In generalization we prove	- 

Theorem 2: Let D be bounded or unbounded with L: = D E C, (p E 1i'. in the 
case of an unbounded domain D assume that (4.6) is fulfilled. 
Then 

1. V(x; q) is a *-regular solution, of (1.1). 
2. If p ( H,, then V(x; (p) is c-regular. 
3. If q belongs to 11* and to H, only in the neighbourhood of certain nodes, then V(x ; q) ir 
a 5*_regular solution of (1.1). 

First we remark that most of the propositions of Theorem 2 follow by simple con-
siderations from Theorem 1. We have to prove only the estimates (2.4) for the first 
partial derivatives. For proof of (2.4) we can suppose that the point x is located within 
a standard circle K((a,) with centre a, (see [35]). We set 27 = Ix - a i l (2i < ) and 
split the components of the density vector p = (, 992) as follows 

= ipfl(y) + x,'(y )	(j = 1, 2). 
Here f7(y) is defined by 

(y) for yEL\K(a1), 
= I -	 ( 4.9 

(y1 ) +	(q(y) - (y')) for y € L n K ( a 1) .ly2

In this formula.y' and y2 mean the two points of intersection of the curve L with 
bK(a 1 ). yin(y) is completely defined by X(Y) = q 1(y) /i(y). A simple consequence 
is x() = 0 for every y j L n Kr(a). Because the singularity behaviour of the first 
partial derivatives of V(x; (,p) near the node a 1 is determined only by the values of q 
in the neighbourhood of a 1 , one can assume without loss of generality that a, is the 
only node at L. 

In virtue of p € JJ* there exist constants A 1 , A 2 for which the estimates 

I,(y)I	y 
Al ajo	(j = 1, 2),	= Re y	 ( 4.10) 

hold. That implies	 S	 S

(4.11 
and	 - 

2A. 
Ix((y)I	

IY	
(4.12)
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Now we set

with a suitable 6': ô < ' < I. 

It will be shown that the C0.616-norm of the vector family {j'/1(y)) with parameter 
is bounded. For this purpose, first the maximum norm of ' 1(y) is proved to he bounded. 
That follows immediately from (4.11). Secondly, we have to prove that the vectors 

j(Y) satisfy a Holder condition with Holder exponent 6' - 6 and a uniformly bounded 
HOlder coefficient. Additionally, we assume the constant 6' chosen in such a way. 
that 6' - 6 is not greater than the HOlder expPnent of the denominator of (y) corre-
sponding to the representation (2.1). Therefore, the uniformity of theHOlder coeffi-
cient on the part L \ K,(a 1 ) is evident. Now let y' . y" E K(a 1 ). Then we have 

) o ,	-	 - 
V	

^ 2Ap16' 6	IY' - Y"I 

^ KA 1 -('' 6) l y' - 	 KA5 ly' - yjéâ 

with a constant K > 0 independent of a, and 77. Consequently, the uniform bounded-
ness of the family {'2(y)) with respect to the C° 6'_°-norm is proved. There exists a 
fixed constant C1 with 

g'- C1	 (4.13) 

for every 77 : 0 < 

	

Now we verify the estimate (2.4). Let - V(x;	be the partial derivative of the 

j-component of V(x; p) with respect to the variable x1 . Let '7, be the above 
defined functions and t4i 17 , tfr7, x' the corresponding ve'ctors. Then w&have for the 
point x, Ix - a 1 1 = 271: 

V(x q ) ^	f .- f',(x - y)i(y) ds +	P,(x - y) 'f(y ) ds 
ax,

.111

 

f '
	 -	I Ii fr(x--y)4fl(y)ds +1-  

71	7E 
L.	

I71 
LflK(a)

CDXJ 1  

Here the j-th row of F(x - y) is denoted by J'(x - y). Using (4.8) and (4.13), the 
first integral on the right-hand side can be estimated by CC,. Because the first den-

vattves -b---	- y) are of the order Ix - y L 1 , we get 

•	ay(x;(p)	
2+c2 r	1 •	 ds 

t9Xj •	 J IX - y l y - ad	i	i,, j r 
LflK,) (a,)	•	 V	 • _' 

+ 
C3	

2 77 1-6 72 ,	C46' ^ 26'C4 x - ae16'. 
12 

61

This estimate completes the proof of proposition 1.
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If the vector p belongs to-the class Ji in the neighbourhood of a 1 , then the estimate 
can be derived for ever y b' > 0. That implies the propositions 2 and 3. The theorem 
is proved I 

Both the following theorems are known for densities of the class Ii (see, e.g., [291). 
Their validity for p € H at the ordinary points of  (except the nodes) is immediately 
clear. 

The ore  iii 3: Let the assumptions of Theorem 2 be satisfied. ii let be the outward nor-
mal of L. Let Z E L be an ordinary point of L. Then 

.Y(n) \r(Z. ) = lini Y(n) I  1(x - y) (,p(y) ds = ±,p(z) 

xD?	 1, 

± -- f	(n) r(z - y) p(y) dsp .	 (4.14) 

L 

The sign + is taken for a bounded domain D, the - for an unbounded one. The integral 
on the right-hand side exists in the sense of Cauchy principal valve. 

T h e o r e m 4: Let the assumption of Theorem 3 be satisfied. Then the tangential 
derivatives of V(x; q) on L exist in the ordinary points; further they can be calculated by 
differentiation under the integral. 

Let D he a hounded domain. In [29] the following Jroperties of the single layer 
potential V(x, (p) were proved; the relations V(x, p) = 0 for every x € 1) and p € 11 
involve q(z) = 0 for every z E L, provided that the constant k in (4.1) does not 
coincide with an exceptional value. Moreover, there are two exceptional values, at 
most. The proofs of these properties are based on certain facts with respect to honio-
geneotis singular integral equation system of the second boundary value problem. 
K1IVEDELIDZE has proved [14] that every L,-solution of a homogeneous regular-type 
integral equation system with coefficientsof the classli belongs to the class H. Using 
this well-known result, the validity of the above-mentioned proposition can be proved 
also for q € 11*: The relations V(x; ) = 0 for every x E D and p €H* involve 

(z) = 0 for every ordinary point z E L. In the sequel, that property will he called 
equivalence. Unless stated otherwise, the potential V(x; ) is always assumed to be 
equivalent, i.e: k does not coincide with an exceptional value. 

For the unbounded domain the following result [29: p. 68 Hilfssatz 15.2] is im-
portant:	- 
The integral equation system 

F(z - y) (y) ds = A 1 c' + A 2c2 ; z € L, A 1 , A 2 arbitrary constants, (4.15) 

has only the trivial solution in the class of densities belonging to JJ* and satisfying 
the additional condition 

f p(y) ds = 0.	 (4.16) 

Here the constant k > 0 in the matrix F(z - y) is arbitrary; especially it can be 
chosen k = 1.
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§ 5 Integral equations for the problem C*, C, and C, 

The customary setup for treating nonmixed plane contact problems [29] is .

 
f 1-0(x 

u°(x) = V°(x; w°) + A 1c' + A2e 
=	- y) °(y) ds + A 1 c' + A2 C2, 

L	
(5.1). 

u 1 (x) = V'(x; p') 
=	

f1(x - y) '(y) ds 
L 

(the upper indices by r i and Vi refer to the modules )., z 1 ) ,with the additional con-
dition	 . 

f °(y) ds = 0	 (52), 

- (We remark that in [29] the terni A 1 c1 ± A 2 C 2 is added to the potential V'(x; 1); 
- but this difference is not essential with regard to the results on the first boundary value 

problem obtained also in [29]).	 .. 
It will be convenient to agree upon the following denotations 

ro 
I '

T2 
0 

[TO] =	
'	 IVI(x; 

= V°(x; p°) for x € D0	
(5 3) 

w' 	I	
' 	') for x € D1 

L922'	 - 
For treating the considered problems C* , C,, C, we also start from (5. 1), (5.2). The 
vector q°, q) 1 € R as well as the constants A 1 , A 2 have to he defined in order to oh-
tam a *-regular (c-regular or e*regular) solution of C* (C, or C€*). 

On application of Theorem 4.3, the contact conditions (1.4a)--(1.4i) give rise to 
an integral equation system abbreviated by the symbolic notation	. 

	

= A,w 1 + A 2 w2 ± w.	 (5.4) 
The contact data f, /, fk,	g, hk are represented by w, whereas w 1 ,w2 are the contact

data of the vectors u° = c', u' = 0 and u° = c2 , 111 = 0, respectively. Let 

d = dim 2 1 w1, W21;	 (5.5) 
then I :!E^ d :!-, 2 is a simple consequence of our assumptions. Both cases d = 1 and 
d = 2 are possible. 

Now Jet us define the linear manifolds 
= {q) E II I Atli, = A,w 1 + A 2 w2 for any constants A 1 , A 21	(5.6) 

€t	
}	

(5.7) 
L  

The following'lemma holds true.	 . 
L em ma 1: Let h be the number o/ linearly independent solutions o/ the homogeneous 

problem C*. Then 
dim	h±d and dim [0:!E^h+d-2.	 (5.8) 

Indeed, the linearity of C* implies that the problem C* with contact data in the 
linear manifold 2{w 1 , w2 } has exactly h + d linearl y independent solutions, i.e. the 
dimension of the linear manifold Z of *-regular solutions with contact data in -



224	J. MAUL 

31 w11 w2 1 is equal to h ± d. Especially, Q contains the two vectors u° = c', 11 1 = 0 
and u0 = c2 , u = 0. For proof of the first proposition assume that dim W h + d + I. 
Let !' .....,	be linearly independent vectors of 2{. Obviously one can assume 
without loss of generality that the vectors 41), . . h±d—i belong to WO . Consequently, 
the h + d - 1 potentials ,r(x; I') (1 = 1, ..., h ± d - 1) belong to the manifold Z. 
Besides, these potentials are linearly independent, which follows from the equivalence 
of V'(x; p') and from the considerations on V°(x; p0) in connection with (4.15). 
Taking into account Theorem 4.1 (esp. (4.7)), one gets the linear independence of the 
h + d + 1 vectors V(x; l) (1 = I, ..., h + d - 1) and u° = c1, fl1 = 0 and u° = c 2 , - 
U' = 0. But this contradicts dim Li = h + d. Consequently, the first inequality of the - 
lemma is proved. The second one is an immediate consequence of the first one I 

The explicit form of the linear integral operator 4 is not interesting. It is easily 
seen that (5.4) consists of equations of alternative kind. A given equation of (5.4) at a 
fixed arc'S 1 is either a singular integral equation of the second kind or a Fredholm 
equation of the first kind with kernel having logarithmic singularity. The firstalter-
native is given in equations expressing a condition for stresses, but the second one, 
for displacements. 

In order to get a singular integral equation of a type well known in literature, the 
- Fredhoiru equations of the first kind rare submitted to the operator 

( + 
p),	p = onst.	0.	 (5.9) 

The resulting system is symbolically denoted by 

= A 1 .2w1 + A 2S2w2 + S2,w.	 (5.10) 

Later, in part II of this paper, it will be proved that (5.10) is a singular integral 
equation system with coefficients of the class H0. Moreover, (5.10) is of regular type 
in the sense of [35, 38]. The index of (5.10) will also be calculated in part 11. 

The operator S, can also be considered as a linear operator. its action is to implement 
the operator (5.9) on some equations of (5.4) at several arcs S i , while the remaining 
equation' stay unaltered. 

The integral operator	of system (5.10) has the following explicit form 

A(z) '1'(z) +	f [K(z -	+ pR.(z - )I (y) dsp ,	(SAl) 

where

K(z - y) =

	

- y) •	r'	1 (7 € Ii) 

	

[_y(n) ro(z - y)	(n) r'(z - y)] 

0	S .	 JM(z - Y) -	(5.12) 

	

S 9(n) f°(z - y )	0	 0 

(n - F°(z - y))	- (n . F1(z - ))	
( z € L2), 

_—n 3(n) F0(z - y ) H •r(n) P'(z - y)
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0	0	.	(s. F'(z - y)) 

(s.	-y)	.0	0	
(z E. L3), 

-s- (n . FO(z- y))	(n. F'(z - 

—fl.-(n)F°(z--y)	n.y(n)rl(z —y) 

•	 0	0	.	(n . F'(z - y)) 

.-(n . ro(z -y))	0	0	
(z € L4), 

—y))	(s..P1(z —y)) 

— s 9(n) F°(z - y)	s . Y(n) V'(z - y) 

0	0	•	n . (n) V'(z - y ) . 
ii •Y(n) F°(z - y)	0	 0	. 

_ (s.	- y))	(s P'(z -	W- (z € £5),	 •

ds 
— s 9(n) T'°( z —, y) s . 9(n) .T'(z - y) 

rd	 •0	0 K(z - y)	 110(z	
•	

. -	 .	• 

I	 .	 ( z EL6 ),	.	( 5.12) 
10	0	d 

Lo	
-V1(z—y)

 
110(z - y)	 -	1 

0	0	 (z€L7), • 

0	0
Y(n) r'(z - Y)] .	. • 

(s. F0(z —y))	0	0 ds  
: .Y() F0(z - Y) 0	0	

(7 E Lq) 
o	 0 •	-(s. P, (z - y)) 

0 -	0	n . Y(n) T1(z - y) 

-- (n . r°(z - y))	0	. (is 
s . 3(n) I'°(z - y) 0	0	

L •	 d	 (zE	). 
0	0	- (ri !"(z - y))	. . 
0	0	s . Y(n) T(z - 

15 Analysis Heft 3, Bd. 2 (1983)
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F°(z—y). i'(z—y)1 
0	0	0	0	(zEL1), 

L o	0	00] 

[0	0	0	0 
I	0	0	0	0 
I	 (z€L2),• 
I —n	1'0(z - y)	n . r(Z - y) 

0	.0.	0	0. 
[	0	0	s.r'(z—y)] 

S	F°(z - y )	0	0	I	(z E L3) 

...

—n . F°(z - y)	ii . r'(z - y) 
[o	0	0	0 
[	0	0	n.Fl(z_y)1 

i'°(z - y)	0	0	I	(z E I4), 
I —s	- y)	S	.V'(z - y) 
[0	0	0	0 

R(z - Y) =	[0	0	0	0	1 (5.13) 

I	0	0,	0	0	I 
II

	(z E L, 
I —s . F0(z—y)	s.I'(z—y) 
[o	0	0	0 

1	 0000 0	
0I I F°(z—y)	0	0	 0000 (z EL6), (z EL7), 

o	0	 0 0	0 
I'(z 

[	

- ]

0 

0	0	 0000 

[s . f°(z_y)	0	0 

lo	0	0	0 
I	 (z€L8), 
1 0	0	s.r'(z—y) 
[0	o	0	0 

[n . P°(z—y)	0	0 
lo	0	.	0	0 
I	 .	 (zEL9). . 
1 0	0	.	n•.r'(z—y) 
[o.	'0	0	0 

In the formulas (5.12), (5.13) the vectors n = (n 1 , n2) and S = ( —n.., n. 1 ) mean the 
outward normal and the tangent, respectively, and refer to the point z E L. Y(n) acts 

in columns with respect to the variable z, as does the operator = ---. The ma-
trix A(z) in. (5.11) is given by 8 

A(z)	,	.	.	 -	.	. (5.14) 

[0 0 0 01	 [0	0 —n2 nj	.	[0 0 0	0 

I0000l	 In2 —'n. j	001	 0 
(zEL1),

00 0
(z€L3), 

1 0 1 01	 lo	0'	0	0	
1(ZEL2),	

0 0 0	0 

[o 1 0 1] -n,	n2	n1	'122]	 _fI n2	?2I	712
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[ 0 0	0	0] [ 0 0 211	2 1 f0 0 00 I	0 I
0	0	0 I	I I	(z EL4 ),	I

—n 1 _n2 0 0 I 
I	(z € L5 ), I 0 0 0 0 

I (z EL6), I	00 0 . 01 I 0 0 001 0000 
L -712 ni	fli] L-112 n1 —712 n 1j 0 0 0 0 
[-1 0 0.01 [ 0 0 0 0 1

-
[0 0 0 0 

0 —1 0 0
(z € L) - I - 2 0 I	(z € L5 ),	I 3 2	fli 0 0 

100101 0 0001 0	0 00 
[ 0 0 0 1] 0 0 n1 n2j 0	0	—n2 n1 

(zEL9).

§ 6 The kernel of the operator ° --p 

In order to study the connection between the equations (5.4) and (5.10), the linear 
space ker .2p has to be determined, whereby the domain of the operator.2 p is given 
by the restrictions of § 2 on the contact *data. 

Obviously, (5.10) has the same solutions as the equation	 - 

(6.1) 

with arbitrary h E ker iQp. Eecause the action of the operator (_ +) to a function 
v = v(s) given on the arc (a 1 , a 1+1 ) is (- + p ) v(s) = v'(s) ± pv(s), the equation 

US-
	\  
± p) v(s) = 0 implies 

v(s) = Ce_Ps, C - arbitrary constant..	 (6.2) 
This remark permits us to establish the general vector of ker	Indeed, for


hEkerQwehave

k h(s) = h(z(s)) = . 	' C1v1	 (63) = 1 i = 1 11 
1E7' 

Here the C are arbitrary real constants, and the vectors v are given by the fornula 

v;,(z) = &6,m

	

	J for z € (a,, a+ 1 ).	 (6.4)


L14J 
The restriction I € 2' in (6.3) means that the addition should only b extended over 
such numbers I = 1, 2, 3, 4 which correspond to those equations of systems (5.10) 
to which the operator ( + p) was applied. Thus, for v = 1 the symbol 1 € T means 
I= l,2, for v=2:1=3, for v3:l=1,23etc. 

Obviously, the vectors v, are linearly independent. Therefore the linear space 
generated by the vectors (6.3) is of dimension 

r = 2m1 + 7112 + 3m3 + 3m4 + m, + 4nz6 +-2m8 + 2m9 .	-	(6.5) 
15* 



228	J. MAUL 

However, a more sophisticated consideration shows that the general element h of 
ker Q can be determined more exactly. indeed, the assumption '1' E 11* implies the 
continuity of the potential Y(x; P). Hence the constants G in (6.3) must satisfy 
certain linear relations, which can he obtained in the same way as the compatibility 
conditions (1.6a)—(1.6x). 

Let si be the are length at node a 1 (i = 1, ..., in). We agree to start the numeration 
from the point a. Accordingly, the point a 1 has the are parameter = 0, if the section 
S I = (a1 , a2) is considered. However, in consideration of (am, a 1 ) the node a has the arc para- 
meter	= L (L — arc length of L). Clearly, for the remaining nodes we have s± 8( = 8, 

- (i
	2,3 	m).  In order to formulate the above-mentioned linear relations, let us assume that the considered 

node a 1 is a common end point of the two curve systems L, and L. (v x). Let a belong to the 
11-th (rn . th) arc S, (S,,) of L,(L). Then the following relations are necessary: 

•'-
 

for v=l,x2: 

•	 (n1C1 -- n2C2) e_P8l ± = C,, 3

	

CPS,' 	a) 

for v=1,,=3: 

e 8' = (— (C 1 — C,2) a 2 + C3 3n1 } e-", 

C, e1'3 i = {(C 1 — C,,)n1 -- C,3n2} e_Ps,;	•	 (6.6b) 

for v= 1,x=4: 
C i eP3' ± = ((C' 1 - C) - C3n2} 

•	
•	C, e_P8i± = ((C, 2 - C,,2 ) n2 + C,  3n1}	 (6.6 c)	- 

for v=1,x5: 

(—n2C 1 + n1 C 2) e-P	= C e-p;	-	 (6.6 d) 

for v = 1,x = 6: 

- 

	

C', eP	(C3 — C, 1 ) e-,	C0	= (C — O2)	 (6.6e) 

•	-

 

for v=l,x=S: 
(—C 1n + Cn1 ) C_p8l = (C - Cs1) e-Pi;'	 (6.6f)


for v = 1, =9: 

•	 (C1n1 + C, 2n2)	= (C, 3 — C 1 ) e_P8i;	
(6.6 g) 

	

for v=2,x=3:	
- 

	

C3 eP	= G ePZ;	 (6.6 h) 

	

for v=2,x4:	- 

	

C 3 eP	= (C 1 - 4C2) e_P8l;	-	 (6.6i) 

for v=2,O: 
• •	

-	 C:1	 = {(C., - C, 1 ) n + (C 4 - Cm 2 ) n0} eP	•	 (6.6j) 

for v=2,O: 

	

P	= (C,, 3 — C) ePi;	 (6.6k) 
C 3 e 
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for v = 3,	= 4: 5 - 

{C 3 71 1 -	- C) n2 }	= - C' 2 ) n 1 - 	C 3n2 } e_P8,
(6.61) 

{ C 3n2 + (C 1 - C) n1}	= 1(mi - C,) a 2 ± C 3n 1 ) e-PSIT 
for v= 3,;= 5: . 

(C 1 - G.,)	= C5 3 e P ; (6.6m) 
for v=3,x=6: S 

C,3, 
2	= (—n2C 1 + n 1 C2) e P ( M_ 3 CeP± = (—i0C 3 + n 1 C 4 ) e5_Pit, ' 

C 3 e-P	= {(C 3 - C, 1 ) n1 .	(C 4 - C2) n2 } eP8 ; (6.6n) 
for v=3,5=8: 

C2 e-P	= CS 1	C1 e-P C3 e P ; (6.60) 
for v=3,,==9: . 

CZ3	= (C 3 — C 1 ) eP; (66p) 
forv==4;x=,5:

S

S 

C 3 eP	= C 3 e P ;	. (6.6q) 
for v = 4, x = 6: 

C 1	= (n 1 C 3 ± 11 2
C m 4 ) e- 3', C	eP8	(n1C1 + n2C1) 0p3

(6.6r) 
G 3	= {(C 4 - C2) n 1 - (C 3 - In_ C) n 2} e8J 

.for v=4,2=8: - 

C 3 eP8	= (C3 - es1)eP; . (6.6s) 
for vr=4,,=9;  

C	eP81± = C 3 e-P8s,	C,, 2 C_P8± = C,, 1 eP8i'; (6.6t) 
for v=5,=6: 

C 3 ePi	= {—(C 3 - C1) 712 + (C 4 - C) n 1 } e-PI S	 - . (6.6u) 
for v = .5, x = 8: 

C 3 e-P2	= (C8 3 - C.91) e_P8i; (6.6v) 
for ' = 6, x = 8: . 

(— n 2 C 1 ± n 1 C) e 3	= C 1 e-Ps i :F (—nC 3 + "1 C 4 ) e_P81± = C 3 eP; 

(6.6w)	 5 
for v = 6. x  

( 71 1 C	-j- nC2)	= C 1	, 0i1C3 + nC 4 ) e_P8 ± = C 3 e—P-

(6.6x) 
The equations (6.6a)—(6.6x) form a homogeneous system of linear equations for some con-
stant C	of (6.3).
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Using the definition of the numbers A from § 1 (see (1.7)), one can easily see that 
the above-mentioned linear system consists of exactly q equations, where 

q = [A l2 + A 15 + A 18 +.A 19 + A 23 + A 24 ± A 26 + A 29 + A 35 + As + A45 

±A48+A56+A58I+2[A13+A4±A16+A34+A38+A4s±A6s±A69] 

+ 3[A 36 + A461.	 (6.7) 

The considered linear system is written in matrix form as follows: 

	

KC— 0, -	K - coefficient matrix	
( C - vector with elements C1. 

In the sequel, it will be proved that (6.8) has the rank q, at least for most values of 
the constant p. 

For proof, some remarks and preparations are necessary. 
1. The nodes ai are divided into two groups. In this respect, a considered node a 1 is called of 

first kind if no compatibility condition belongs to the passage from S i , to Si . Obviously, a 1 is of 
first kind if and only if a i has one of the following type: L1 - L7 (j = 1, 2.....6, 8, 9), L2 - 
L. — L, L,-,—L,, L 5 —L9 . The remaining nodes are called of second kind. 

2. Suppose that there exist exactly t nodes of first kind and t of second kind (t 1 + t = ni). 
Then the system-(6.8) is arranged in exactly t groups of linear equations expressing the equa- 
tions (6.6a)—(6.6x) at the t nodes a, of second kind. Each such group consists of exactly k1 
linear homogeneous equations (k1 = 1, 2 or 3). It is not difficult to see that every constant C71 
of system (6.8) is met in at most two such groups. 

3. The formulas (6.6a)—(6.6x) show that the equation group at the fixed node a 1 (consisting 
of k1 equations) contains at least k1 different constants C connected with the are Si = (a1, a11). 
Above them, with those constants C, (belonging to the mentioned group and connected with 
the are S) one can always form a nonsingular (k1 . k1 )-block with non-vanishing coefficient 
determinant. Obviously, the coefficient matrix of such a (k1 , k1 )-block contains the factor 
e- 8 ' and is representable in the form e_P ' A(0 with a non-singular (k1 , k1 )-matrix A(. 

Now, a preliminary result is 

Lemma 1: Suppose there exists at least one node of first kind. Then the system (68) has the 
rank q. 

Let us assume that there exists at least one node of second kind (else the proof is superfluous). 
With the above remarks it is easily seen that the coefficient matrix K contains a (q. q)-sub-
matrix of the form 

e-P'A 1	 0 
e-PB( ,, )	e-P8,A(L) 

	

0	 S	 e-PA'e 

Herein, B() are suitable matrices of the format (& , which are uniquely determined by 
fixed chosen A(kz) and A(k,_,). (We remark that the counting of k 1 ; .., kt and h,..., 9t does 
not coincide with the above defined k1 ,..., km and s , ..., 5m' respectively, because here we are 
concerned only with nodes of second kind. The actual counting in (6.9) starts from such a node 
of second kind the left neighbour of which is of first kind. Of course, the matrix A(k,) is equal to 
the matrix A(k,) of remark 3 dth a suitable j = j(i)). Now. the Laplace theorem implies 

	

det A = e	,k,.+sk1)11 det	0. 

The lemma is proved I
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We remark that Lemma 1 remains valid for p = 0. In case of absence of nodes of first kind, 
the following a little weaker result is proved. 

Lemma 2: The system (6.8) haè the rank q, provided that p is not equal to at most three excep-
tional values. 

Indeed, one can form a (q, q)-submatrix A of K as follows: 

e—P3A(k)	 e- ;(s, + 

e—P5.B(k,k)	e—PsA(k.)	0 
A 	(6.10) 

0	 e—P3o.B(k,k,,_)	e—P3,A(kn)	- 

(In this formula the constants k 1 are defined in accordance with remark 3.) In order to count 
det A, the factor ePk is taken from the first k1 rows of det A. the factor ePk8, from the next k2 rows, and so on. Using the Laplace theorem with respect to the first k1 rows of the remain-.ing determinant .. one gets 

det A = e — P( 3 k,+' ±3,,.k,,){a0 + a 1 ePL ± ... + ak(epL)k}	 (•) 
with -

ao = JJ detA(k:) +O,	l5,k=min(k1,lc,)^3. 

(*) is a polynomial of the variable (ePL) with maximal degree 3. In virtue of a9 + 0, this poly-nomial does not vanish identically. Hence we have det A r 0 with exception of at most three values for p. Thus, the lemma is proved I 

The lenimata 1 and 2 lead us to the following theorem. 

Theorem 1: Suppose that p has no exceptional valve of Lemma 2. Then the linear 
space ker L is of dimension 

7 - q = 2m1 + m2 + 3m 3 + 3m4 + m5 + 4m6 + 2m 8 ± 2m9 
—(A l2 + A 15 + A 1 8 - A 19 + A 23 ± A0 4 + A 26 ± A 29 ± A 35 + A39 
+ A 45 + A 48 ± A 56 + A55) 
- 2(A 13 + A 14 + A 16 + A 34 + A 38 + A 49 + A 65 -F A 69 ) - 3(A 36 + A46) 
1 

= --( A l2 + A 13 + A 14 ± A 15 + A + A,9 + A 36 J A 38 + A 46	(6.11) 

• A49 ± A 57 + A 58 ) + 2(A 16 + A 17 + A 18 + A 19 + A 23 + A 24 + A5 
+A34+A35+A45+A68+A69+A75+A79) 
+ 3(A 26 ± A 25 + A 37 + A 39 + A 47 ± A 45 ± A 56 + A 59 ) + 4(A 67 + A59)). 

The first equality follows immediately, from (6.5) and (6.7) with consideration of 
the lemmata 1 and 2. The second equality is a consequence of formula (1.7) I 

For illustration we consider the linear system (6.8) in two particular cases. 
Example 1: Let L =	u L5 and L consists of two arcs S, 1. 82 . Here system (6.8) is of the
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/

form

	

ePC1	±	e—P(3.+L)C1	-	e—P(81+L)C13 = 0 
e-P'C.	

+	e7P(2+L)C2	-	e—P(3+L)C4 = 0 

	

ePCI 1	+	e—P'C1	 eP8C3	 = 0 
C — PC	±	ePC0	-	e—P8C4	= 0. 

A submatrix with maximal rank is 

[e — Ps . ()	e-P(3+L) 0 

	

o	 0..	-	e- p s+L.	-	 --	- --	- --A=I 

	

-	 I e — ' 0	C P82	0 
-	-	 e—P3' o	e-P'	 -	- 

One gets det A = e- 2P(3± 8 )(e-P L - 1) 2 . Hence we have dct- A = 0 only forp = 0. 

Example 2: Let L=S 1 uS2 uS:3 u83 and 81 u83 = L1 , S uS4 '2 Here, system 
• (6.8) describes relations between the constants C 3 ,'C 3 , C 1 , C, C 1 , CL.. The coefficient matrix 
of (6.8) is 

•	
[nO) e - P8 n (I )eP3 ,	0	0	0 -	_e-P(3,+ 14 

I j) e — P8 fl2) e-P8	—e-P' 0	0	 0 

	

K=I-	- 
•	 - I o	0	—eP3'	n I M e -P8' 71., ) e - P8	- (.) 

•	Lo	0	 0	e-P3 n2 0) eP	—e-P3 

•	.	It is not difficult to see that the rank of K is equal to 4, if one of the pairs of normal vectors 
fl W, fl(2 ) and S(3 ), fl) 4 ) is linearly independent.	 - 

•	 Consider the case where n (l) = 11( 2 ) and fl (3) = ± n(4).'Here, a submatrix of maximal rank 
• -	is of-the form	 - 

- -	 [ne-Ph	0	0	7e-P(81+) 

I ne — P3  —e—PS2 0	0 
A=I •	

.	 0	-e-P	ñePS,	0 

L o	o	ne—p —e-P3' 

with a, it	0. We have

1	0	0	—e-P' 

	

det A = eP(8+52)nt 
1 —1	0	0= nñ e-2P(3±-')(1	e-PL} 
0-1	1	0 
o	0 ±• 1 •	—1 

This implies det A	0 for every p E R in the case fl( 3 )= ._fl( 4 ) • For n(3 ) = n(4 ) we have 
det A = . 0 if and only if p = 0.	 - 
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