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Der Beltrag behandelt das gemischte I\ontaktproblenl der lsotropen elastlschen Ebene mit
‘einem einfach zusammenhingenden clastischen’ EinschluB aus anderem Material im Rahmen
der Elastostatik. Die Kontaktkurve L ist zerlegt in 9 paarweise disjunkte Kurvensysteme, auf, .
denen 9 verschiedene Kontaktbedingungen vorgeschrieben sind. Es werden verschiedene Re-
gularititskonzeptionen eingefiihrt (sogenannte *-Regularitit,.e*- Regularitit und s-Regulari-
tdt), aus denen sich Forderungen an die Kontaktdaten.ergeben, unter anderem gewisse Kom-
patibilitatsbedingungen. Unter Verwendung von Greenschen Formeln wird das Eindeutigkeits-
problem untersucht .und in einigen Fallen Losbarkeitsbedingungen nngegeben Mit Hilfe des
clastischen Einfachschichtpotentials wird ein' Integralgleichungssystem aufgestellt, in dessen
rechte’ Seite zwei willkiirliche Konstanten eingehen. Die gesuchte Lésung @ des Integral-
‘gleichungssystems ist einer integralen Zusatzbedingung unterworfen. Durch Anwendung einess
geeignetcn Differentialoperators £, wird ein singulires I’nbcgralglci(,hungssystem mit’ stiick-
_ weise stetngen Koeffizienten erhalten. Die Dimension des linearen Raumes ker &2, wird er-
mittelt. In‘einem weiteren Beitrag dieser Zeitschrift soll das'Studium des formulierten Kontakt-
problems durch die vollstindige Untersuchung des smgularen Integralglelchungssystems kom-
plettlert werden. .

PaccwanunaeTcn KOHTAKTHAA NPOGIEMA YNPYroii MIOCKOCTH C OAHHM OAHOCBASHBIM BKJIIO-
yeyneM M3 APYToro ynpyroro MatepHaja B PaMKax dNIaCTOCTATHKH M3OTPONHHEX cpen. Hon-
TaKTHAA KPUBAA ABNAETCA OOLEMHEHIHeM 9 HETMEPEeceRaOWMXCA CHCTeM' KPUBBIX, BIOJIb
KOTOPHIX -33/IAI0TCA § PABAMUHBIX KOHTAKTHAIX |y CHOBIH. OnpenensloTcA HEKOTOPHIE NTOHATHA
" PEryJIAPHOCTH (TAK® HA3HIBACMAH *-PeryjiApPHOCTb, e*-PEryApHOCTL M  &-PEryAAPHOCTD),
Incne;xcmue KOTOPHIX KOHTAKTHBIE JAHHHE J1OJKHb YROBJICTBOPATH HEKOTOPHIM TpeGOBaHUAN,
B TOM UilCJIe H HEKOTOPHM YCIOBHAM COBMeCTIMOCTH. MeTomom dopmyn Ppuna usyuaerca
‘npo6JaemMa eMHCTBEHHOCTH, 3 B HEKOTOPHIX YACTHHX CIY4YasiX TAKMC BHIBOLATCA HEOOX OMMMEIE
'yeaosus paspeuiiMocTi. G NOMOUBI0 YNPYroro MOTEHUMAAA NMPOCTOrO, CJOA KOHTAKTHAS
3aa4a MPHBOUNTCH K CHCTEME MHTErpalbHLIX ypaBHeHuif, B npanoif HacTH KOTOpPo# comep-
JHUTCA [BE NPOUBBOJLHHIX MOCTOAHHLIX. Pellenne 9TON CHCTEMBEI HHTEIPANIbHEIX Y paBHEHNMIT
TIORUMUACTCA HOMONHHTEABHOMY HHTerpasbHomy ycnosuio. llocpeacrnom nipdepenunansuoro
Omeparopa £2,, MoIy4AeTCA CUCTEMA CHHIYIAPHEIX HHTErPAILHEX YPABHEHUI C PA3PHIBHEIMU
Koe(bq)mmema_sm OnpegensieTcA pasMepHOCTb auueftiioro mpocrpauctba ker £2,. 3akalo-
YHTeAbHOE N3yYeHHe KOHTAKTHOIT NpoGJIeMbl MOAYYEHHON CUCTEMB ‘CHHIYIIAPHBIX mn*erpam,-
HBIX ypannenmt Gyner npoBejeno B nociuenymouwett pa6o're onyﬁnuhyemoﬁ B OTOM e yp-
HaJe.

""The paper is concerned with the contact problem of the 'isotropic elastic plane with a simply
connected clastic inclusion of different material in the frame of elastostatics. The contact curve
is dissected into 9 pairwise disjoint curveé systems, at which 9.different contact conditions are
prescribed. Some regularity concepts are defined (so-called *_regularity, e*-regularity and
e-regularity); which imply certain restrictions for the contact data, for instance certain compa-
tibility conditions. Using Green formulas,. the problem of uniqueness is studiéd and, in certain

. cases, somé necessary conditions are given. By the aid of elastic potential of single layer, a '

system of integral equations is obtained, containing two arbitrary constants on the right-hand
side. The solution @ to be determined is sub]ected to an additional integral relation. By appli-
. cation of a sulmble differential operator £2,, a system, of singular mtegral equations with dlS-
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contmuous coefflclents is obtained. The dimension of the linear space ker'£2, is calculated. In a
. following note in this journal, the investigation of the contact problem will be continued by de-
tailed study of the singular intégral equation system.

§1 Introduct-ion

The present paper is concerned with a class of plane mixed boundary value problems
_in linear elastostatics for bodies with inclusions of other elasfic materials. On the
common bonndary curves of the inclusions and the environmental media, the dis-
“placement vector and the stresses must fulfil suitable relations, which depend on the
actual physical kind of contact. In our paper, thesc relations are briefly referred to as
contact conditions, in accordance with usual terminologies [9, 28, 17]. .
The considerations have been confined to the study of linear contact conditions in
- consequence of the singular integral equation method being used. However, we con-
sider the case of mixed contact conditions, which as far as we know has not )ct been,
stadied in other papers, at least for general domains. i
Problenis of such kind have importance for some topics in mechamcs For instance,
some problems of fracture mechanics can be mtcrpret,(,d as mixed contact prob]ems
The fundamental dlfferentnal equations of plane clasmub) in terms of displacements
‘are glven b)

< A*u=uhu+ (/‘.—{—,u.)gmddivu='—F,‘ ‘ oy

u= (ul, Uy) =,(u,(x,, %), Ua(Zy, z._,)) — displacement vector field, 2, g — Lam¢é mod-
ules, xz,, z, — Cartesian coordinates of the point X in the plane R?; ¥ — vector field
of volume forces. The modules 7," u are supposed to be piecewise constant in the
considered domains. Furthermore, we make the natural assumptions 7, u > 0.
_ Using the elastic volume potential [29, 17], a particular solution of equation (1.1)
can be obtained by quadrature. Consequent]y \Vlthout loss of generality,. we will
assume F = 0 in the sequel.
In some papers of L.JENTSCH on contact problems-of elastn(,lt,y and thermo-
elasticity [6, 7, 10], the useful concept of contacv fundamental solution (gekoppelte
_ Grnndlosungsmatnx) ‘was established. This concept allows to solve in two steps a
general boundary value problem for bodies with inclusions. First, a pure contact
- problem (i.e. a problem in the whole plane having inclusions but not having cavities)
is considered, in order to construct, the so-called contact fundamental solution.
Secondly, this contact fundamental solution permits to study problems with boundary
condmons at cdvities in complete analogy to the elastic homogeneous case. In addition,

 that idea also leads itself to the treatment of problems with inclusions havmg in-
(,lusnons and cavities themselves [25, 7]. -

Taking into account these results, the present paper deals with the pure contact
problem only. For ease of exposition, we consider the elastic plane R? with one -
inclusion of in general different material; the considerations might immediately
be genera]ized to the case of n inclusions. . - .

- Let D be a given simply connected bounded domain of R? and Dy = R2\ D,.
Let, L = 4Dy = 0D, and L € C?f (0 < f§ < 1). Suppose that D, and D, are occupxed
by two elastic bodles in their natural conflgurablon Let 79, 1o a.nd 74, 4y be the values
of 2, u in the domains D, and D,, respectively.: :

Let I be dissected into m palrmse disjoint non-émpty smgle open curves Sy, ...; Sy,
(m = 2), which are arranged in counter-clockwise sense on L, and let L = 8, u S,

.U, Inthe following, the common end points a,, a,, ..., 8, of the curves S,,.and
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81, 8,and S, ..., 8,_, and §,, will be called nodes. At times, we will make use of
~ the notations §, = (a,, a;), Sy = (ay, 23), ..., S; = (&, 8ps;) = (2, 2,) (the nodes
a;, &;;, do not belong to §,). :
- Furthermore, let the set of the curves S, ..., S, be divided into 9 pairwise disjoint
curve systems L,, L,, ..., L. Let

m, my 9 ’
L=y S.,“: U(a“y’ 3,.#,'.1), Zm,:m, m, =0 (‘l’: 1,2,...,9).
u=1 u=1 v=1
' (1.2)
Then we have L = LJ Si= U L,. Let, in addition, each of the nodes 3 (v=1, )

i=1 v=1
be an encountering point of two dlfferem, curve systems L,and L, (v =+ ).

We consider the followmg contact problem to determine two displacement flelds
u* (k = 0, 1) belonging to the classes C2(Dy) n C°(D,,) (k = 0, 1), respectively, which
solve the equations (1.1) ' .

A*ut =0 (k=01 : (1.3)
. : k
“in .the domains Dy, D,, respectively. The first partial derivatives 6_u_ (7=1,2)

Zj
are required to be continuous in the points of L with exception of the nodes a;

(v =1, ..., m). Furthermore, the displacements u* and the stresses.7 (n) u* are sup-
posed to satusfy the followmg contact conditions on L:

ul(z) — u%(z) = {(z), J(n)ul(z) — 7 (n) u%(z) = g(z) for z¢€ L,;

o (1.4a)
s-J(n)ukz) = k(z) (k=0,1), n - (ul(z) — u(z)) = (z), (i.4b)
n-(J(n)uY(z) — I (n)uz)) = g(z) for ze€ L,; :
s-uk(z) = L(z) (k=0,1), n - (ul(z) — u%z)) = f(z), (1i0)
n- (7 (n)u(z) — 7 (n)uz)) = g(z) for z€ Ly; .
n-ut(z) = L(z) (k=0,1), s-(ul(z) — u%z)) = f(z), ‘(i.4d)' :
s (Z(n) u(z) — T (n)u%z)) = g(z) for z ¢ L;
n-J(n)ukz) = k(z) (k=0,1), s-(ufz)— u°(z>) = /( ) " 49;
s- (7 (n)ul(z) — T(n)uYz)) = g(z) for z e L;

uk(z) =f(2) (k=0,1) for z¢€ IL,; (1.4f):
T (n)ukz) = g(z) (k=0,1) for z¢ L 4 ’ ' - (l.4g)

s-uk(z) = fi(z), n-TM)ukz) =g(z) (k=0,1) for z¢€Ls (l4ah)

n-ukz) = fi(z), s-T()ukz) =gz) (k=0,1) for z¢L,. (1.4i

In this formulas n, s mean the unit vectors of the (outward) normal and tangent of L,
respectlve]y Z (n) is the operator of stresses given by

f(n)u=2pa—+ﬁndivu+/m><rotu (1.5)

Of course, the stresses 7 (n) u® and 7 (n) u! in the expressions (1. 4a)—(1 41) must

be calculated with the Lamé modules g, o and 4,, u;, respectively. The quantities

14 Analysis Bd. 2, Heft 3 (1983)
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‘

50, /% frs 85 915 8ir Gier b, I (K = 0, 1) denote certain vector fields orfunctions, defined
on corresponding parts of L and satisfying suitable proputms of smoothness dis-
cussed later.

In consequence of the continuity of the displacements one gets immediately some
compatlblllty conditions for the data I/, & fi and 4.

Indeed, in the nodes a; of the type L, — L the equation

lim n(z) - f(z) = lim f(z) ' (i.eil)

,Bz—na L,Bz—»a.

is neccssa.ry Further the follomng relationships must be takcn into account:

for a; of the type L,—L,: lim f(z) = lim {(1(2) — 14(2)) s(z) + f(z) n(z)}. (1.6b)
L37—a¢ Lsdz—aq - :
of the type L,—L,: lim I(z) = lim {/(z) s(z) + (l,(z) — ly(2)) n(2)}, ; (1.6¢)
. L3z—a4 L,3z—a )
of the type L,—Ly: lim s(z) - f(z) = lim f(z), . . (1.6d)
v Lydz—aq , Ls372—a4 . . ’ ’
of the type L,— Lg: lim 1(z) = lim (1,(z) — I,(z)), o (1.6e)
LyJz—a LeJZ—2¢ . X
of the type Ly—Lg: lim s(z) - 1(z) = lim (f,(z) — fo(2)), (1.61)
L,3z—at Lg3z—>ay .
of the t,ype LI—L9 lim n(z) - 1(z) = lim (f,(z) — fo(2)), (1.6g)
L3z—as Lydz>ad : .
of the type Ly,—L,: lim f(z) = lim f(z), : (1.6 h)”
Led2—a¢ Ladz—ay ‘
of the type L,—Ly: lim f(z) = lim (l,(z) — ly(z)), (1.61)
. Lydz—a¢ - Ly3z—ag
of the type L,—Lg: lim f(z) = lim n(z) - (,(2) — fy(z)), . (1.63)
N Lydz—ay Le¢dz—a s
of the type L,—ILy: lim f(z) = lim (f,(z) — f,(z)), ' (1.6k) .

Lsdz—ay Lydz—a¢
“of the type Ly—L,: V ) . ,
lim {(4(z) —14(2)) 8(2) + /() (@)} = lim {{(z) 8(2) + (L(z) = () n(z)}, (1.61)
Ls3z—ai . LOz~aq -

of the type Ly—L;: lim (I,(2) — ly(z)) = lim f(z), A . (L.6m)y
Lsdz—as . dadz—ay .

:of thé type Ly— Lg: . :
lim [(z) = lim s(z) - f(z) (6 =0,1) and lim f(z) = lim n(z)- (f,(z) — fo(z)), (1.6n)

Lydz—as Ledz—aq . Ly3z—aq Ldz—ai
of the type L;—Ly: lim li(z) = lim fi(z) (k=0,1), : (1.60)
Lydz—a¢ Ledz—a¢ ) ) ! o
of the type Ly;—Ly: lim f(z) = lim (fy(z) — fyo(2)), S (1.6 p)
. L33z—ay . Ledz—as ) )
of the type Ly—L;:. lim f(z) = lim f(z), (1.6q)
. L3784 " LsJz—>ay

of the type L, —
lim [(z) = lim n(z)-f(z) (k=0,1) and lim f(z) = lim s(z)- (f,(z —.f (z)) (1.6r)
L>z—a Ledz—a © Lidz—a L¢3z

of the type Ly—L,: lim f(z (@) = lim (1(2) — fo(2), (1.68)

1,328 Ly32—a
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of the type Ly—Ly: lim L(z) = lim fy(z) (k=0,1), (1.6t)
. . L3z—ay Ledz—a, > .
of the type Ly—Ls: lim f(z) = ‘lim s(z) - (1,(z) — 1,(z)), . , ~ (1.8u)-
. . Lg3z—2ay Ledz—a . R
of the type L,—Ly: lim f(z) = lim (f,(z) — fo(z)), (1.6v)
. Ls32—>3, L3238 )
of the type Ly— L;: lim $(z) - T (z) = lim fi(z) (k=0,1), ™ T (1.6\\')4'..
L¢dZ—a, Lgdz—a¢ .
of the type Ly—Ly: lim n(z) - f(z) = lim f(z) (k= 0, 1). C(1.6x) - -
. Le3z—ar - Ly3Z—a

Some of the contact conditions (1.4a)—(1.4i) have an obvious mechanical meaning.

For instance, condition (1.4a) expresses for f = g = 0 that the materials are welded
‘along L;. (1.4a) with f & 0, g = 0 describes the welding of the two parts D, and

D, in the frame of linear theory if, in the natural configuration, the two boundaries
diverge a little from the curve L. (1.4a) with f = 0, g == 0 can be interpreted as weld-
ing of the materials with initial stresses (e.g. thermal stresses). .

The meaning of (1.4f)—(1.41) is evident. Such boundary conditions at inner curves
of elastic bodies are of importance in crack problems.

The conditions (1.4b)—(1.4¢) are also interesting. (1.4b) impliesfork, = f = g = 0
the frictionless sliding of the homogencous parts without gap along L,. In principle,
inhomogeneities of the data can be explained as initial stresses or as divergence of the

houndary of D, D, in the natural configuration.

"The mathematical treatment of (1.4b) was suggested by JeNTscH [5]. In the non-
mixed plane case the conditions (1.4b)—(1.4¢) have been completely studied in the
-author’s book [29] by the method of potential of single layer. The corresponding
spatial problem (1.4b) has been treated by BEckerT and JENTSCH in [1] and [8],
respectively, with variational methods. The integral equation approach was estab-
“lished by JexTscu for (1.4b) [9] and for other relationships also in the spatial.case
(see [9—11]). The connection of (1.4b) with a more general problem of Signorini type
isdiscussed in [9]. Further non-mixed contact problems in the plane have been studied
in [29]. - : : S '
Two special mixed contact.problems with the conditions (1.4a) and (1.4b) and, on
the other hand, (1.4a) and (1.4h) have been investigated in the dissertation B [30] of
the author. The present paper is based on the considerations in [26—30]. . - ’

It should still be remarked that similarly general boundary value problems of ther- - -

moelasticity and micropolar elasticity (homogeneous media) are treated in 28).

In the following considerations a further notation is necessary. Let 4,, (», p
= 1,...,9) be the number of nodes of the type L,—L, (it does not characterize the
order of L, and L,). Then we have o

| . o
4,=0, 4,,=4, and } A4, =2m, v=1,...,9. « (@17
T ou=1 C

/
§ 2 Rigorous statement of the contact problem. Integral theorems

In this paper the points x, y, z, ... of the plane R2? are sometimes identified with com-
plex numbers ¢, 7, ... In general we apply the notations of singular integral equation
theory for functions defined on smooth curves [35, 38]. )

For instance, a Hélder-continuous complex function ¢ on L (L smooth curve) with Holder
exponent «, 0 < & =< 1, is called a function of the class H (also H,(L) or C0.2(L)). The Hélder

14>
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condition can refer to the variable point of L or to the arc length of L. Both points of view
are equivalent. The class of n times Hélder-continuously differentiable (with respect to the
arc length s) functions is denoted by C#.e(L).

In addition, we make use of some function classes on L which are defined one-valued on the
curves 8,, ..., S, but not, in general, in the nodes a,, ..., a,,. Such a function ¢ belongs to the
class Hy, if ¢ € H,(S;) (i = 1,..., m) with a suitable constant « > 0. Then the one-sided limits
of ¢ in the nodes a; exist. If the function g satisfies a Holder condition only on every olosed
subcurve [a;", ;"] of (a;, 8;,,) and, moreover, a formula

Polt)

q_)(t) =,(t — a;)”’

@ € Hy, . O< Rey <1l (t=1,...,m) 2.1

is valid in a neighbourhood of each node a;, the function g belongs to the class 7/*. Tf, additional-
ly, a representation (2.1) holds with a constant v having an arbitrarily small real part Rey
= 6 > 0, then the functlon @ belongs to the class H,.

Now'let again L € C2# (0 < # < 1) and let D be the bounded domain with 8D = L.
We consider a displacement field u(x) = (u,(x), 1t2(X)) defined for x € D. The displace-
ment field-u is called regular if C

u; € C¥D) nCYD) (i=1,2). 4 (2.2)
In connection with mixed problems, having in the sensé of § 1 certain nodes a,,...,4n
further reguldrlty conceptnom are necessary. Lev D, = D\ U K (a;) with K (a;)

= {t € C| |t — a;| < ¢}. The displacement field u is called *-regular if:

“w; € C¥D) n CD) n CYD,) : ‘ (2.3)
for sufficiently small ¢ > 0 and if the in nelghbourhood of the nodes a, the estimates

ou; _

| = — O(lx — ) _ | (2.4)

are valid for a fixed 6, 0 <6 < 1,and 7,k =1, 2.

©uis called e-regular if u is *-regular and the estimates (2.4) hold for every 6 > 0.
u is called e*-regular if uis *-regular and satisfies the estimate (2.4) with every § >0
- for certain (but in general not for all) nodes a;.

" To define suitable regularity conceptions for the case of the unbounded domain D
with @D = L (L is located in a boundad part of R? and has the above-mentioned
properties), additional conditions for large |x| must be required. We demand

8u,r

. |u;(x)|"=‘0(l) 'and

o(x|*-n, >0 - ’ - (2.5)

for large-|x|. Now a solution u of the homogeneous equation (1.1) is called regular,
*.regular, e-regular or e*-regular if u, hesides the above-mentioned properties,

satisfies condition (2.5).

, The just defined regularity conceptions allow Lhe rigorous statement of the general

contact problem of § 1. By the problems C*, C, and C;* we agree to understand the

problem (1.2), (1.4a)—(1.4i), (1.6a)—(1.6x) stated in § 1) in the class of *-regular,

-e-regular and e*-regular dlsplaccment fields, respectlvely Of course, for e-*regular

vectors the set of nodes a; must be specificd, in the neighbourhood of which the esti-

mates (2.4) hold with arbjtrary é > 0.

* The given data are assumed to satisfy the fo]lowmg additional restrictions:

a) f, / fk,/k, U € H on the correspondmg curves Si,

d
s s 8r G . (k=01
b) ds /: dS fk’ /d&/k, dé‘lk’g 9> k> G th ( O )
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The necessity of these assumptions fo]]ows from the mbegral equation method being
implemented.

Now let D be bounded or unbounded with 8D € C, ua regular solubion'of A*u=0
and v an arbitrary regular vector field. Then we have the following well-known inte-
gral theorem

fhll \)d‘(_fv 7(n)uds,

(
.

(2.6)

1

where n is the outward normal, and

e oy 2 (Ou; & Ou; ovi | Oy . 331 i,%
o=t £ (8B ) (28 oo

=1 \9%; ox; i=1 0%; ox;

E(u, v) is a symmetric bilinear form. The positiveness of the corresponding quadratic

form is evxdent Obviously, the formula (2.6) remains valid for *-regular vectors u, v.
For proof one can apply formula (2.6) in the domain .D,. In virtue of (2 4) the pro-
position is.obtained for ¢ — 0. The symnietric relation

fiu-A*v — v.A*u)dx = [{u-T(n)v—v-T(n)u}ds (2.8)
D R 2D . /
holds for arbitrary *-regular displacement vector fields, provided that A*u and A*v_
are summable in D. ) :

Iet D be a bounded domain and u a given regular (*-regular) vector field. Then
from E(u, u) = 0 in D we can conclude by simple arguments that u belongs to the
linear space generated by the three vectors ' '

el = (1 0), ez =(0,1), €S = (—z,, 1,). (2.9)

Under the same assumptions the vector uin an unbounded domain must be a Imcar

.combmatlon of ¢! and e¢2.

§3 Un'iqueness theorem

The uniqueness of the considered contact problems C*, C, and C.* is determined by
the corresponding homogeneous contact problems C*, C, and C.* allowing nontrivial
solutions, or not. Therefore in the sequel we are concerned with the homogeneous
contact problems only. First we deal with the homogeneous problem C*.

The considerations turn out by the following general pattern. Let u®, u! be *-regular
solutions of the homogeneous problem C*. Substltut,mg u=v=ut(k=0,1)into
formula (2.6) we obtain :

fb (u°, u® dx = fu" (n) u®ds, V o (%)

fE (u', ul) dx = fu‘ -7 (n) u! ds. - . ©(x%)
' L .

n in (%) is the inside normal with respect to L, but n in (**) is the outward normal. By
replacing n by nin (%), the sign of the lineintegral is altered. Summing (x) and (x*) we
get i _ .
[E@% u%dx + [E(@,u)dx = [[u'- T (n)u' —u®- T (n)u)ds. (3.1)
Dy D, L . .
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On account of the homogeneous contact conditions it is not difficult to sce that the
expression in the square brackets vanishes on each of the curve systems L, ..., Lq.
Therefore we have

fE(u“, u%) dx + fE(ul, u)ds = 0.

In consequence of the positiveness of £(u, u) it follows that E(u°, u® = E(ul, u!) = 0.
Bearing in mind § 2, one can deduce
we Blel, e,  ul € Lle!, ¢ ed); . . (3.2) -
: the svmbol 2{ .} marks the linear space generat-ed'b\ the vectors in brackets.

We have still to check, which of the vectors (3.2) satisfy the homogeneous contact
conditions of the problem C*. For that reason we first discuss each of the contact
conditions (1.4a), ..., (1.4i) as independent of the other ones. For this purpose we
make use of the relatlon -

J(n)e =0 forevery nand for ¢ € gfel, ¢, ¢3),

“which is easily verified. Thus, the homogenecous contact condition (1.4a) allows only'
- :the solutions , ¢

w ="ut = ¢ ¢ Qfcl, c2}. . ' ~ (3.3a)

'Thc vectors (3.3a) also satisfy the conditions (1.4b) Additionally, if L consists only
‘of such single curves which are located on circles with fixed centre y = (y,, 1), then
the vectors

wW =0, u'cc?, , © (3.3b)
where - | .

X)) = (=23 + Yo, 1 — Y1), (3.4)
fulfil the homogeneous conditions (1.4b).

- A) Solutions that are indepéndent of geometrical shape:

contact condition solutions of homogenecous cont. conditions -

(1.4a) | wW=ul=c¢c¢ 2[61, c?}
(1.4b) , S u® =ul = ¢ € el e
" (14c) uw=u =0
(1.4d) wW=u=0
(1.4¢€) " u = u! = ¢ € gfe!, e?
(1.41) S ou®=u! =0
(L.4g) u® ¢ Qet, e?),  u'e Lfet, ¢ ed
(L4h) u=ul =0

(1.4i) w0 =u'=0
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In a similar' way, we can also consider the contact conditions (1.4c)—(1.41). Doing
this, one gets both such solutions which are independent of the geometrical shape of
the correspondmg curve system L; (e.g. the vectors (3.3a)), and other ones, which are
" only met for special geometncal shape of L, (e.g. the vectors (3.3b)). For lucidity of
exposition, the possible solutions are listed in the tables A) and B).

- B) Additional solutions for special geometrical shape of L;:

Ba) L; consists of parts of circles with a common cent-.reAy = (Y1, ¥2)

contact condition additional solutions
(1.'45) uw = 0, ut € Lfe,d)
(1.41) " : wW=0, ulc Qe

Bb) L; consists of parts of straight lines with one and the same direction
¢, = cos we! 4- sin we?. (3.5)
. Moreover, we define

¢, = —sin we! - cos we?. v (3.6)

contact condition additional solutions

(1.41b) ' w0 =0, u¢ e,
’ (1.4¢) u = u! =e¢€ e, 1t}
(1.4d) w = u! = ¢ € c,)
(l.de) : u =0, ul € e, !}
(1.4h) u® = ¢ € 8e,t}, u! =d € Qfe, !}
(1.4i) u® = ¢ € gle,, - u! =d € e}

Be) L, consists of straight lines, which intersect in the finite point v = (w1, vg)

contact condition additional solutions

(1.4e) ) u =90, u! = ¢ € 2¢,?}

(1.4h) u =0, ul! = ¢ € 2e3 -

For a given real situation, the solutions of the homogencous problem C* are easy
to determine. For this purpose, the intersection of vectors satisfying the homogeneous
contact condition at the L; (v = 1, 9) (see the above stated uablcs) has to be de-
fined. Because of the multiplicity of possxblc cases we do not try to give a complete
specification of the last ones. Instead of that, only a few interesting examples shall be
considered. 2
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- For instance, the homogeneous problem C* allows only the trivial solution, if.one of the
following assumptions holds: : '

1. L; is not empty.
2. Ly u L, u Ly is not empty and does not consist of parts of straight lines with one and the same

direction. .

Thedimension of the linear space of solutions of the homogeneous contact problem C* is equal
to one if for example L = L, u L, u L, holds, provided that L, consists of parts of straight
lines with direction ¢,. The general solution of the homogeneous problem C* in that case is
u” = n'€ Le,} (see fig. 1). )

Fig. 1

A further interesting example of dimension one is L = L, u L, v L, with the solution u® = 0,
ul = ¢ € L{ey?), provided that the shape of L, and L, e.g., is that of figure 2 (L, are circular
arcs with the centre in y and L, are parts of straight lines intersecting in y)

Fig. 2

The homogeneous problem C* has exactly the two linear independent solutions u” = u! = c
€ 8et,e?) if L =L, uL,u L, and L, are not empty. Another example for dimension two is
L =L,uL,u L if L, and Lg have, e.g., the shape of figure 3. (L, are circular arcs with the
centre in y). Here the solutionsare u® = u' = ¢ € 2{¢,t} and u® = 0, u' ¢ Q{cy®} wherey is
the centre of the circular arcs of L,.

Fig. 3

The dimension is three, for instance, in the case where L = L, u L,, provided that L, has,
e.g. one of the two configurations of figure 4 (L, are circular arcs with the centre in y or parts
of straight lines, respectively). Here the solutions are u® = u' = ¢ € £{¢!, ¢} and, additionally,
u® =0, u! =4 € {cy® in the first case, but u® = 0, u! = e € €{c,} in the other one.
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05

Fig. 4

: ] . .

An example for dimension four is L = L; u L, in the following geometrical configuration

(see fig. 5). Solutions here are u® = u! = ¢ € g{¢!, ¢? and, additionally, u* =0, u' = d € 2{c,}
and u®.= 0, u' = e € L{¢y*}.

The considerations show that the set of solutions of the homogeneous problem C*is
a subset of the regular vectors (3.2). Consequently, the results for the investigation
of the homogeneous problems C, and C,* are the same as for C*. In part II of our
paper the existence of *-regular solutions of the inhomogeneous problem C* will be
proved, provided that the homogeneous problem C* has no nontrivial solutions. If
the homogeneous problem C* has nontrivial solutions, then the inhomogeneous one
.has solvability conditions. The latter ones can be found, in usual manner, by the aid
of (2.8). In the next, they are, derived for the above-mentioned situations with non-
tnvml solutlons

Let u° u‘ be the solutlons of the mhomogeneous problems to consider. Setting in (2.8)
v=u’ u=¢,, D= D, and v =ut, u = ¢,, D = D,, respectively, we obtain for the first.
considered case of one nontrivial solution the following relations

O—-f(',,, ](n)u“ds-f-f[n L)( n)u")+(s-cw)(s‘f(ﬂ)u")]ds—fcw.~gods
L, L,
and

-0 = fcw-fgll)u‘ds+f[(n~cw) (n - J(n)u?) +(s-c;‘,)(s-](n)u’)]ds+fcw~g,ds.
L © Le L
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- Because of n- ¢, = 0 the terms contammg n- _T(n) u? (i = 1, 0) vanish. By summmg we get
~‘the SOqubllltV condltlon
0=fe,- gds—f(s e)gds + [e,- —go)ds, ’ : (3.7)
L, L, '

which is, of course, necessary for the e“stence of a *-.regular solution of C* in the considered
special case. In the second example of dimension one we obtain by setting v = u', u = ¢,? the
solvability -condition .

0=/(s- &%) by ds + [ (n-ey) by ds+fcy glds , (3.8)

'lhe fll‘St e\ample of dlmensxon two leads us to the conditions

f("gds+f ¢i(k, —h)n——gs]d’s—}-f(‘ [(hy — ho)s + gn]lds = 0 (i-= 1, 2), (3.9)
L "L

‘

but in the ot-her one we get the conditions

J s et (b — ko) 4+ (e, t)glds + [ et - (g — go)ds + [(n-c,t) (g, = go)ds =0
Ly . L, . Le

. S ’ ) - (3.10)
"+ and - .
f (s-ey®) hyds + f ¢y’ - g ds 4 f (n-cy?)g, ds =0. (3.11)
Ly . L, Ly .
In both cases of dimension three we have
NEGE [ng (b —h)slds+ [ ¢ (8, —g)ds =0  (i=1,2), (3.12)
Ln . L, “
and either S Rk
J s e R da—Lf('y gyds =0 ' : (3.13)
Ly . . ‘
or . .
f(s ) by d?—{—fl,w g ds = 0. " (3.14)
T/ . Ly ‘ ) '
. Finally, in the example of figure 5 one obtains the conditions N
[ ¢ [k — o) + gs)ds +fet (@ —g)ds =0 (i=1,2), . (3.15)
Ly ) L . ) . ‘ : )
f(n o) by ds + [t g ds =0 ' (3.16)
. 117
and . . S .
f(n +e+°) byds + fcv} -gds = 0. - : (3.17)
Ly

The physical meaning of the solvabnllty conditions derived in such a way thh the
solutions of the corresponding homogeneous problem by the aid of formula (2.8) is the
equilibrium of surface forces and their moments. In the sequel it is proved. that these
“physical conditions with respect to the boundary data are sufficient for the existence
of a *-regular solution. Moreover, the problems will he studied in the sinaller classes
of e-regular and e*-regular vectors. In these cases the existence of some additional
conditions for solvability is proved. However, the latter ones cannot be derived
explicitly by the aid of* known physical principles, as it might be expected because of

_ the more quantitative than qualitative difference between *-regularlty and e- or
e*- regulant,\ :

_L; - L . o . . S e e
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§ 4 Fundamental solution and the potential of single layer

The Kelvin-Somigliana matrix

(i — yi) (z; — ?/i)] .
=12

k
P(x —y) = [Tiyx — y =[a-ln——6,~-+b ALL & 4.1
( ;(A ’)] l\ _ yl i [\ _ y[_A (‘ )
where
4+ 3u i u
= o, =5——5~, k>0
- 2u(% + 2p) - 2u(7 + 2u)

is a fundamental solution of (1.1). Let L be a curve of the class C'. Then we have
4yl =letm st Rix—y) for xyeL (42
ds, Y Vl= ads, x—y %) Fy(x —y) for X,y (4.2)

with a matrix R,(x — ¥) of the order O(|x — y|~'+7) (y > 0 (see [29]). Moreover, the
representatlon

. V[0 —11 d 1 , u
VA rx —y) = — In ——— + Ry(x — ¥ = ,

T T'(x — y) °[1 0] I ey TR -, o=
‘x,y¢€lL, ' ‘ : (4.3)

holds (Here, the operator .7 ,(n) acts columnwise with respect tox; n = n(x) is the
normalat x € L). The matrix R,(Xx — ) is of the order O(|x — y|~1+7) (9; > 0) (see [29]).

By more sophisticated considerations it can be proved, that the components r{ :
(=1, 2) of matrices B;(x — y) allow a representation :

7)(](\ ))

[ — ¥ (bij=1,2)

l](\ - )) -
with pi; € o8- 2L x L)for every 0 < 9 < f. On the assumption that L € C2# we
addltlonall) obtain r,,(\ —y)€ H. The elements of I'(x — y) are of the order

([ln x — y||) for x —y and also for |x] = oo, but their first partlal derivatives
O(]x — y|71). We still remark the formulas ({29])

.

)+ — f T TP ey ds, =0 (=1,2,3). (44)
N d

Here .the operator .77 (n) also acts columnwise with n = n(y) with respect to the
variable y. '

Now let D be a bounded or unbounded domain with 6D = I, € C"#. Let us consider
the potential of smgle layer :

1
V(x; ¢) f I'(x — ¥) @(y) ds, ' . (4:5)
o L
with a given vector field ¢ = (¢, ;). From the results in [17, 29] we can deduce

Theorem 1: Letp € CO(L)y(0 <« < B = 1). Then the /6llowi7zg proposttions hold:

1. If D s a bounded domarn, then V(X; ) is « regular solution of the equation (1.1) vn D.
2. Let D be unbounded. Then V(X'; @) ts regular 1f und only of the relution

cJy)ds, =0 : ‘ (4.6)

L
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s satisfied. If (4.6) ts fulfilled, then

lim V(x, ¢) = 0, : ' . 4Ty

[x]—>00

but tn the opposue case V(x; @) vs unbounded for [x] — oo.
3. For ¢ € C%(L) and (4.6) there exzsts a constant C wath

AV (X5 @)lcrapy = C iplico.acsy- (4.8)
The constant C dependé only on the domam D..

In gencraluatlon we prove

Theorem 2: Let D be bounded or unbounded with L = aD ¢ C" b€ H*. In the
case of an unbounded domain D assume that (4.6) is fulfilled.
“Then

1. V(x; ¢) is a *-reqular solution of (1.1).

2. If @p € H,, then V(x; ¢p) ts &- regular

3. If ¢ belongs to H* and to H, only in the nezg}zbourhood of certain nodes, lken V(x; ) s
a e*-regular solution of (1.1). '

First we remark that most of the propositions of Theorem 2 follow by simple con- .
siderations from Theorem 1. We have to prove only the estimates (2 4) for the first
partial derivatives. For proof of (2.4) we can suppose that the point x is located within
a standard circle K,(a;) with centre a; (see [35]). We set 2y = |x — a;| (27) < 9) and
split the components of the density vector ¢ = (¢;, @,) as follows

(Y = 9"y + "(Y) (G=12).
Here y;7(y) is defined by

iy) for y€L\K(~) .
¥y = ly : . - (4.9
o) + I_W (<p, () — oy for yeLnK,ap.
/
In this formula.y! and y2 mean the two points of interscction of the curve L with
0K (a;). z;"(y)is completely defined by y;(y) = ¢;(y) — v;/(y). A simple consequence
is x;7(y) = O for every y § L n K,(a;). Because the singularity hehaviour of the first
partlal derivatives of V(X; ) near the node a; is determined only by the values of ¢
in the neighbourhood of a;, one can assume wnthom loss of generahty that a; is'the
only node at L.
In virtue of ¢ € H* there exist constants 4,, 4, for which the estimates

A e ,
syl < ly——’al" (=12, 6=Rey (4.10)
!
hold. That, implies
A; _ : -
"N = 7,’ : . B (4.11y
and )
24;
"W = -ly—_—;—lj,- (4.12)
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Now we set

'P; (¥)
I3

It will be shown that the C%¥~%-norm of the vector family {{;7(y)} with parameter 7
is bounded. For this purpose, first the maximum norm of %,7(y) isproved to be bounded."
That follows immediately from (4.11). Secondly, we have to prove that the vectors
;"(y) satisfy a Hélder condition with Hélder exponent 8’ — dand a uniformly bounded
Holder coefficient. Additionally, we assume the constant ¢’ chosen in such a way .
that 6’ — d is not greater than the Holder exponent of the denominator of ¢,(y) corre-
sponding to the representation (2.1). Therefore, the uniformity of the Hélder coeffi-
cient on the part L\ K,(a;) is evident. Now let y’ - y”’ € K (a;). Then we have
. N ’

v (y) = with a suitable 6': 6 < §' < 1. \

B — 80" S 0% lpfy) — v = 0¥ —:;]—2‘:—31: li"(y®%) — (¥

< 2478 ly — vy

1
ly? — ¥l :
< KA’_,}—(l—é‘+d) |y —y l(l — & +6)+(6 —9) < .KA l) y'rlé'—é
with a constant K > 0 independént of a; and 7. Consequently, the uniform bounded-
ness of the family {$,7(y)} with respecn to the C%¥—%.norm is proved. There exists a
fixed constant C, with _
NBlcor— < €y ' ’ (4.13)
for every n:0 < 2y <op. ' ’
Now we verify the estimate (2.4). Let — V(x ®); be the partial derivative of the
j-component of V(x; ¢) with rcspect, to t:he varmb]e 2. Let ;7, %;7, ;7 be the above

defined functions and 7, t.p’l %" the corresponding vectors. Then we'have for the
point X, |X — a;] = 2 '

2.
l'——a,;l V(x; tp);’ (X — y)w(y)ds|

lf I‘(x—y>*/"(y>ds

1

- 6

1 0 )
- fa—lpi(x—Y))’.”())ds .

rix — y) $(y) +

o
LnK,,(a,)

Here the j-th row of I(x — y) is denoted by Ii(x — )) Using (4.8) and (4. 1“3),'the
first mtcgra] on the rlght -hand side can be cstlma.t,ed by CC,. Because the flrst deri-

V’lblVCS 6—6— 1‘(( — y) are of the order X — y|™1, we get

R cc, f 1 - ds, _CC  C [ar
ZV(x; )| = 52 Yoy & [ ar
.3351‘()‘-’(’))”_ UM +6 Ix —yl ly —a* = ¥ + 7 ré
nK,,(a.) o =n
CC 2 , . .
— + 71_—5 N = O~ £ 290, Ix — ay|~¥.

This estimate completes the proof of proposition 1.
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If the vector ¢ belongs to-the class H, in the nenghhdurhood of a;, then the estimate
can be derived for every 6" > 0. That implies the propositions 2 and 3. The theorem
is proved 1

Both the following theorems are known for densities of the class H (see, e.g., [29]).

Their validity for ¢p € H* at the ordinary pomts of L (except the nodes) is immediately
clear. .

Theorelp 3: Let the ussumptions of Theorem 2 be satvsfied. n let be the outward nor-
~mal of L. Let z € L be un ordinary point of L. Then

7(11‘) V(z; @)= = lim J(n,) % f I'(x — y) @(y) ds = -¢(z)

X L
1 ,
+ = fﬁ‘z(n) Iz —y) gly) ds,. (4.14)
L .

The sign +- is taken for « bounded domain D, the — for an unbounded one. The vntegral
on the right-hund side exists in the sense of Cauchy y principal value.

Theorem 4: Let the assumption of Theorem 3 be satisfied. Then the tangentiul
dervvatives of V(X; @) on L exvst in the ordinary points; further they can be calculated by
differentiation under the ntegral.

Let D be a bounded domain. In [29] the following properties of the single layer
potential ¥(x, ¢) were proved; the relations V(x, ¢) = 0 for every x € D and ¢ € H
involve ¢(z) = 0 for every z € L, provided that the constant & in (4.1) does not
coincide with an exceptional value. Moreover, there are two exceptional values, at
most. The proofs of these properties are based on certain facts with respect to homo-
geneous singular integral equation system of the second boundary valuc problem. .
KraVEDELIDZE has proved [14] that every L,-solution of a homogeneous regular-type
integral equation system with coeffxcnentsof theclass H belongs to the class H. Using
this well-known result, the validity of the above-mentioned proposition can be proved
also for @ € H*: The relations V(x; ¢) = 0 for every x € D and ¢ €:H* involve
¢(z) = 0 for cvery ordinary point z € L. In the sequel, that property will be called
equivalence. Unless stated otherwise, the potential V(x; ¢) is always assumed to be
equivalent, i.e: k does not coincide with an cxceptlonal value.

For the unbounded domain the following result [29: p. 68 Hilfssatz 15.2] is im-
portant: -

The integral equation system

1 f’F(z —¥Y) ¢(y) dsy = A;e' 4- A,e?; z € L, A,, 4, arbitrary constants, (4.15)
24 . i .
L

has only the trivial solution in the class of densities belonging to H* and satisfying
the additional condition

[ oy)ds,=0. - ‘ ' (4.16)
L

Here the constant k > 0 in the matrix I'(z — y) is arbitrary; especially it can be
chosen k£ = 1.
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§ 5 Integral equations for the problem C*, C, and C.*

The customary setup for treating nonmixed plane contact problems [29] is .

u(x) = Vo(x; ¢9) 4 Ayet + A,e? = l f IYx —y) ¢y) ds, + A,e! + A,e?,

C (5.1)
ul(x) = Vi(x; (p fl’l (x —y) pNy)ds, ‘

© (the upper indices by I'f and V¥ refer to the modules 2;, ;) with the additional con-
- dition B

Jowds, =0 - (2
(We remark that in [29] the term A,¢! + A,e? is added to the potentla] V'(x (pl)
but this difference is not essential with regard to the results on the first boundary value

" problem obtained also in [29]).
It will be convenient to agree upon the followmg denotations

o 0 0 VO({y .+ ¢n0
:l)=[(p:|= P2 ;V(x;(l)):{v(x’(p) for x €D, (5.3)

P! Vix; ¢! for x¢D,’

For bre‘ating the considered problems C*, C,, C* we also start from (5.1), (5. 2). The -
vector ¢ ¢! € H* as well as the constants 4,, 4, have to be defined in order to oh-
" tain a *-regular (e-regular or e*-regular) solution of C* (C. or C.*).

"On application of Theorem 4.3, the contact conditions (1.4a)—(1.41) give rise to
an integral equation system abbrcvxated by the symbolic notation

AD = A,w, + A,w, + w. ; (5.4)

The contact dataf, f, &, ..., gi, b are represented by w, whereas w,, W, are the contact B
-data of the vectors u® = ¢!, u! = 0 and u® = ¢2, u! = 0, respectively. Let

d = dim £fw,, w,}; ' ) (5.5)

then 1 < d < 2 is a simple consequence of our assuniptions. Both cases d — 1 and
d = 2 are possible.
Now let us define the linear manifolds .

.

= (P € H* | 4D = A,w, + 4,w, for any constants 4,, 4,}, (5.6)

|

The following lemma ho]ds true.

oY) dsy=0}. ‘ TR

" Lemma 1: Let h be the number of linearly mdependent solutions of the homogeneous '
problem C*. Then
dlm‘ZISk—{—d and dm Py < h +d — 2. . (08)

Indeed, the linearity of C* implies that the problem C* with contact data in the
linear manifold £{w,, w,} has exactly % + d linearly independent solutions, i.e. the
dimension of the linear manifold £ of *-regular solutions with contact data in’ -
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L{w,, W,} is equal to & -+ d. Especially, Q contains the two vectors u® = ¢!, ul = 0
and u® = ¢%, u! = 0. For proof of the first proposition assume that dim % = b+ d + 1.
Let @, ..., Py 444, be linearly independent vectors of %. Obviously one can assume
without loss of generality that the vectors @, ..., P, 4_, belong to %,. Consequently,
the k + d — 1 potentials V(x; ®;) (? = 1, ..., A + d — 1) belong to the manifold £.
Besides, these potentials are linearly independent, which follows from the equivalence
- of V}(x;¢!) and from the considerations on V°(x; ¢ in connection with (4.13).
Taking into account Theorem 4.1 (esp. (4.7)), one gets the linear independence of the
h+d+1vectorsV(x;P)(7=1,...,h+d —1)and u® = ¢!, u! = 0 and u® = ¢?,
~u! = 0. But this contradicts dim £ = & + d. Consequently, the first inequality of the
lemma is proved. The second one is an immediate consequence of the first one B

The explicit form of the linear integral operator A is not interesting. It is easnlv
. seen that (5.4) consists of equations of alternative kind. A given equation of (5.4) at a
fixed arc’S; is either a singular integral equation of the second kind or a Fredholm .
equat;on of the first kind with kernel having logarithmic singularity. The first alter-
native is given in equations expressing a condition for stresses, butv the second one,
for displacements.

In order to get a singular integral equablon of a type well known in literature, the
“ Fredholm equations of the first kind are submitted to the operator

(5 + p), =_'con§t. + 0. ' (5.9)_’
The resulting system is symbolically denoted by

B2p AD = A, 2,w, + A 82,W, + L2,w. (5.10)

Later, in part IT of this paper, it will be proved that (5.10) is a singular integral
equation system with coefficients of the class H,. Moreover, (5.10) is of regular type
in the sense of [35, 38]. The index of (5.10) will also be calculated in part 11. -
The operator £, canalso beconsideredas a linear operator. Its action is to implement
the operator (5.9) on some equations of (5.4) at several arcs S;, while the remaining
" equation stay unaltered.
The integral operator £2,4 of system (5. 10) has the followmg cxphcxb form

L2,4D ="A('Z) P(z) + ;f [(K(z —y) + pR(z — N P(y) dsy, (5.11)
‘ o ,

\;vhere o v ' : o .

" d 0 R

—_ — — 'z — ,
L=y 7 TE—=y (wely),

| —T (n) Mz —y) T (n) rz —y)

T(m) Mz —y) | (5192
0

Ka—y) =0 0
s-7(n) I'z. — y)

s -

0

d : d
—ﬁ'(" - Iz —y)) d—( Tz — y))
n-7(n) I'(z —y)

(Z € L?)y

| —n - I (n) I'%z — )
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| 0 0 s I“(7~3))
. d I
, 7 (8- % — ) 0 0 (2 € Ly),
_ d
— o= (n- Iz —y)) 7 (n- Iz —y))

| —n- T —y) 0T e —y) |

— ' d . T
Q 0 d_ (ll 1 1(7 - y))

d : '
h (n-Toz — y)) 0 0 (z € Ly),
d d '
—HE T —y) (T —y)
=8 T (M) Iz —y)  s-F(n)z—y)
o 0 . n-J()I'(z —y)
n- 7(") FO(Z —Yy) ‘ 0 0
\ ; 4 L),
. —2 (s I - v) g8z —y) (e f)
| —s- Tz —y) s-T(n)lz—y)
d 0 0
Kz — y) =\ Fd_s Pe=y . \
. . T € L , 5.12
o o 4 (3 € Ly (512

_0 0 ‘ ds ),)_

- 0 0
T (n) I'(z — y) 0 0
0 0 ' (z € Ly)

’ o (n) M'(z — y)

.—d . T
Z(-Te—y) o . 0
n-7mIYz—y) 0 0
0 0 i (S .Mz *l )) e

. ds ‘ y
0 - 0 n-7(n) 'z —y)
. [ d ]
ds ( Iz — y)) 0 0 .
) Iz — 0
s+ T (n) [z —y) o _9 (z € Ly).
0 0 geru—y) |
0 0 §:7(n) Mz —y) |

© 15 Analysis Heft 3, Bd. 2 (1983)
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R(z —y)

[ n
0
0

K

—n -

0
0

0
0

0
0

0
0"

.0
0

0
(U

- Pz —y)

- Iz —y)

I'(z —y)

- I'(z — )
Iz —y) n- 'z —y)

- 'z —y)

™z —y)

‘8. '(z —y)
-0

—I%z —y) 'z —Y)
0
0

0 (z € Ly),

0

0 0

0

2 €L ,

n- Mz —y) (z 2)

0...0.
s- 'z —Yy)
0 0
(z € Lj),
0 0 ’
n- Iz —y)
0 0

. z € L),
s- 'z —y) ( )

' (5.13)
(Z € L.‘:)’

- 'z —y)

(z € Ly), (z € Ly),

oo o o
co o o
oo o o
oo o o

0
0

0
0

(Z € Lﬁ)y

0
0 0
0 0
n-I'l(z —y)
0 o -

(z €L9)-

In the formulas (5.12), (3.13) the vectors n = (n;, ;) and § = (—n,, 7,) mean the
- outward normal and the tangent, respectively, and refer to the point z € L. 7 (n) acts

in' columr}s wit\h rgspgcb to the variable z, as does the operator Pl Ak The ma-

trix A(z) in.(5.11) is given by LI

Am) R (5.14)
0000 0 0 —n, n, 0 00 O

fennfuen [0 e 208 Sfuem
0101 ny My My My Ny Mg My My
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- 00, 0 0 T o 0 = n,} 0000 .
.00 00 —n; —ny, 0 O ‘ 10000
v € L), z € Ly), L

00 0.0 [PH o o 00 %] g000|®ED
| —np 0y —np 7, —ny, Ny —n, M, 0000
—1 00.0 . 0 0 00 T 00

0—-100 _ —ny; —n, 0 O , Ny —m 0 0

€ L. , 1 2 2 € L, , e ‘,l
0 010 g o g0 (B G 5T o o
0 O 0 1 0 O ny Ny . O 0 —MNny, M,

.(Z € L9)r

§ 6 The kernel of the operator 2,

In order to study the connection between the equations (5.4) and (5.10), the linear
space ker £2, has to be determined, whereby the domain of the operator £2, is given
by the restrictions of § 2 on the contact data. _ -

. Obviously, (5.10) has the same solutions as the equation

AP = W+ AW, + AW, + h (6.1)

with arbitrary h € ker £2,. Because the action of the operator ((;is —}—,p) to a function
l B

v = u(s) given on the arc (a;, a;,,) is (;—8 + p) ¥(s) = v'(s) ¥ pu(s), the equation

(‘% + p) v(s) =0 implies ’ :

v(s) = Ce™?5, C — arbitrary constant. ' . (6.2)

This remark permits us to establish the gcnera:I vector of ker ..Q,,. Indeed, for
~he€ ker £, we have ' R '

my

4 .

h(s) = h(z(s)) = PO l_zl‘ Covie?. a ~ (6:3)

r=1 p=] [E—T l - . . . '
Here the C;, are arbitrary real constants, and the vectors v, are given by the for'm—u],a,

o

. : [}

Vi(2) = 0,u0um 6'2 for z¢(a,, a,, 1) : (6.4)

12 . ,

014

The fesfriction_ { € T'in (6.3) means that the addition should only be extended over
such numbers [ = 1, 2, 3, 4 which correspond to those equations of systems (5.10)

to which the operator (dis + p) was applied. Thus, for » = 1 the symbol! € T means

l=l,2,forv=2:l=3,forv=3:'l:1,2,3etc.. _
- Obviously, the vectors v/, are linearly indépendent. Therefore the linear space
generated by the vectors (6.3) is of dimension

7= 2m; + my + 3my + 3my + my + dmg +-2mg + Omy. . (6.5)

15*
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- However, a more sophisticated consideration shows that the gencral element b of

ker 2, can be determined more exactly. Indeed, the assumption @ € H* implies the
continuity of the potential V(x; %). Hence the constants €9, in (6.3) must satisfy
certain linear relations, which can be obtained in the same way as the compatibility

' conditions (1.62)—(1.6x).

Let s; be the arc length at node a; (i =1,..., m). We agree to start the numeration
from the point a,. Accordingly, the point 8, has the arc parameter s,* =0, if the section
S, = (a,, 8,) is considered. However, in consideration of (&, 8;) the node a; has the arc para-

N

meter s, = L (L — arc length of L). Clearly, for the remaining nodes we have s;t = §;~ = §;

=2, 3, ..., m).

) In order to formulate f,he above-mentioned linear relations, let us assume that the considered
node a; is & common end point of the two curve systems L, and I, (v < x). Let a; belong to the
se-th (m-th) arc S,p(Sxm) of L,(L,). Then the following relations are necessary:

forv=1,x =2: ~

(Gl + 75C}) ePuE = Chy e’ ; (6~63)

{orv:l,z=3:

{—(Ch1 — C:r,n‘.;) ny + Chaml e"”t;,

Che e P = {(Chy — Cho)my + Chiga) e ¥ . - (6.6D)

cl, errt

forv:l,xz;i:

—ps, = . . _pg, T
C:Al ePs= = {(Chy — Cha) 1y — Changt €777,

Clo c-P5eE = {(Chy — Cia) mz + Cham} 677 5 (6.6¢)
forv=1,»2=5:
(—naCly + mClhe) ePUE = Cg P87 - (6.6d)
fory =1, % = 6:
Ol P9E ‘= (Chy — Cl) 6T, Cho e = (Chy — Che)e ™73 (6.6e)

forv=1,x = 8:
(—0;1;1”2' + C;“'znx) ernd = (Chms — Cm) e-pe T 5 (6.61)
forv=1,%=9: ’ ' :

(Clyny -+ Clamg) eP8E = (Chy — Chy) €717 5 » (6.68)
forv=2,x=3:

O3y o P8 = Chg o (6.6h)
f'oxj_v_=2,x‘=',4: N T
Oy e PUE = (Chy — Cha) &P ; . : " (6.61)

for'v=2,x=6':

02y ¢ PE = {(Chy — ) M + (Chay — Cino) o) ers®; (6.6])

forv=2,%=09:

Cly a9 = (Cho — Cln) €777 5 (6.6K)
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forv=3,x=4:

{023”'1 - (031 - CZ'.') 7.} Pt — {(Chy — Chua) my — Chaana) epat ’

) (6.61)
{Cfta”z + (C;::l - CZ?) n} epst — {(Chy — Chia) ma + Chsty} e7P8T 5
ior,v =3,%=5:
(C — C3) ePst = O35, 0P8 ¥ ’ _ (6.6m) -

fory = 3, x = 6:
- Che ePuE — (0%, + n,C5,) e 8T C3, et — (—n,Ch; + n,C%,) e-Pe™ |
Cla €% = {(Chy — Cl) my o (Chy — Chaa) ) 69075 . (66m)
forv=3,'z':= 8: ’ :
Coepsit = 8 e pe¥ 03 epaE = 03 epn T, ‘ (6.60)
forv = 3,% = 9: ' '
Co e P = (Chy — Chy) 98T o " (66p)
i"orv;.4;z=5.: ' ) v
Cha €P%E = Chgempu™; : ' . (6.69)

forv =4, x = 6:

C:'l et = (1,Chhz + 2,Ch4) e_i’s‘; ’ C;‘Az ePs = (7, Cit + 72Chya) A (6 6r)
0;3 et = {Chy — Cha) my — (Chz — Chy) mg) e_w‘;; )
.forv,=4, % =8:

Clia ePsE = (Cha — Chaye?a®; : . . (6.65s)
forv=4,x=9:

C:n e PE = Cha epa® s C,‘,': et = Cn C_m‘;i ‘ (6.6 t)
forv =5, x = 6:

Cf,g e_m‘:t = {_(0313 - Cfnl) ny + (Cfna - .C?n'_») 7,} e-ps‘;; . - _(6.6u)
forv =35,% = 8: .

Coy e P™ = (Chyy — Chy) e P07 (6.6v)

fdl‘v:(},x=8:

(—n,Cly + n,Cha) eP8= = €3, e P84T, (—nChy + myC8y) e-p8E = €8 e-ps, T

(6.6w)
forv =6,x=9:
° It
(n,Chy -+ n2Cpn) P F = C3 epa T (n,Ch5 + n,Chy) e-pst C2q e—psT.
B ) ‘ (6.6x)

The equations (6.62)—(6.6x) form a homogeneous system of linear equations for some con-

stant C¥ of (6.3).
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Using the definition of the numbers A,, from § 1 (see (1.7)), one can easily see that
the above-mentioned linear system consists of exactly ¢ equations, where

g = [Ap + Ay + Aig + Ayg + Aoy + Agy + Agg + Apy + Ay + Agy + Aug
+ Aus + Ao + Asgl + 20415 + Ay + Are + Azs + Az + Agg + Ao + Ao
+ 3[A3s + Au6]- i v (6.7)
The considered linear system is written in matrix form as follows:

KC =0, - - K — coefficient matrix -
(6.8)

C — vector with elements C},,.

In the sequel, it will be proved that (6.8) has the rank g, at least for most values of
the constant p.

For proof, some remarks and preparations are necessary.

1. The nodes a; are divided into two groups. In this respect, a considered node a; is called of
first kind if no compatibility condition belongs to the passage from §;_, to §;. Obviously, a; is of
first kind if and only if a; has one of the following type: L; — L, (j = 1,2,....6,8,9), L, — L,
L, — Lg, L,— Ly, Ly— L. The remaining nodes are called of second kind. )

2. Suppose that there exist exactly ¢, nodes of first kind and ¢ of second kind (¢, + ¢ = m).
Then the system (6.8) is arranged in exactly ¢ groups of linear equations expressing the equa-
tions (6.6a)—(6.6x) at the ¢t nodes a; of second kind. Each such group consists of exactly k;
linear homogeneous equations (k; = 1, 2 or 3). It is not difficult to see that every constant Cu
of system (6.8) is met in at most two such groups. -

3. The formulas (6.6a)— (6.6 x) show that the equation group at the fixed node a; (consisting
of k; equations) contains at least k; different constants C},; connected with the arc §; = (a;, 8,41).
Above them, with those constants C? (belonging to the mentioncd group and connected with
the arc §;) one can always form a nonsingular (k;. k;)-block with non-vanishing coefficient
determinant. Obviously, the coefficient matrix of such a (k;, k;)-block contains the factor
e-P% and is representable in the form ¢=P% A% with a non-singular (k;, k;)-matrix AKJ.

Now, a preliminary result is o

Lemma l:_Suppose there exists at least one node of first kind. Then the sys!e}n (6.8) has the
rank q. . ’

Let-us assume that there exists at least. one node of second kind (else the proof is superfluous).
With the above remarks it is easily seen that the coefficient matrix K contains a (q. q)-sub-
matrix of the form

=PI ALY 0
e—PEByi, i) c—PEaAkD
A= te : (6.9)
' T c—sz-u\(kQ)
0 : e~ PEBi, %, ) e—PE ALY

Herein, B(f, z,,) are suitable matrices of the fo!'mat‘(l-c,, k_y), Which_are uniquely determined by
fixed chosen A% and Atki-), (We remark that the counting-of k,, ..., k¢ and &, ..., 8 does
not coincide with the above defined &, ..., k,, and s,, ..., s, respectively, because here we are
concerned only with nodes of second kind. The actual counting in (6.9) starts from such a node
" of second kind the left neighbour of which is of first kind. Of course, the matrix Ak is cqual to
the matrix A®) of remark 3 with a suitable § = j()). Now. the Laplace theorem implies

P P t -
det A = ¢ PEFF I T qop A £ 0.
=1
The lemma is proved B )
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We remark that Lemma 1 remains valid for 2 = 0. In case of absence of nodes of first kind,
the following a little weaker result is proved.

Lemma 2: The system (6.8) has the rank q, provided that P is not equal to at most three excep-
. tional values. N )

Indeed, one can form a (g, g)-submatrix A of K as follows:

e—psiA k) ’ e—p(s1+ DIBKukn) |
e—pa.B(k"k‘) e—P3s A\ (ks) 0
A= . . (6.10)
. e—PSm1Alkmo1)
o e~ Bl ke PSmAlm

(In this formula the constants k; are defined in accordance with remark 3.) In order to count
det A, the factor e—Pku is taken from the first k, rows of det A. the factor e—Pk from the next
k, rows, and so on. Using the Laplace theorem with respect to the first &, rows of the remain-
.ing determinant, one gets i

det A = e_p(slkl+"‘+3mkm){ao +a,e-pL L ... L n‘.(e—pl.)k} : ()

with ~
m
ay = J] det Atk + 0, L <k = min (k, k,,) < 3.
=1 .

(#) is a polynomial of the variable (e~?L) with maximal degree 3. In virtue of a4 = 0, this poly-
nomial does not vanish identically. Hence we have det A = 0 with exception of at most three
values for p. Thus, the lemma is proved 8

The jemmata 1 and 2 lead us to the following theorem.

Theorem 1: Suppose that p has no exceptional value of Lemma 2. Then the linear
space ker £2,, vs of dimension :

7 —.q = 2m, + my + 3m; + 3m4'+ my + 4mg + 2mg - 2my
U (A Ay A A+ Ay Ay + Ay - Ay + Agg + Ay,
F Ay + Aus + Age + Agy) o
— Ay + Aro + Aig + gy + Ag + A + Ay + Au) — 3(Aso + A4o)

1 . ‘
= E {41 + 43 + 4y, + Ay + Az + Ase + Age + Az + Ay (6.11)

+ Ay + Agq + Agg) + 2(Ay6 + Ay7 + A+ Ay + Ay + Ayy + Ay
+ Ass + Agy + Ay + Agg + Agy + Ay + Az) »
+ 3(Ags + Aog + Asy + Ay + Ay + Ay “}' Ase + Asg) + 4(Ag: + Ag)}-

The first equality follows immediately from (6.5) and (6.7) with consideration of
the lemmata 1 and 2. The second equality is a consequence of formula (1.7) 1

For illustration we consider the linear system (6.8) in two particular cases.

Example 1: Let L = L, u L; and L consists of two arcs S,. S,. Here system (6.8) is of the
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form )
e—ps.C}l + ,e_p(3‘+L)C‘1;1 — e—pis+ L)C;'.,‘ =0
e—paCl, + e P+ LICE, — e—pa+DC8, =
e—PuCY, +  e—puCY Z | e—paCy, =0
e=P%CY, - e~PsCY, - e~ puCE, = 0.

A submatrix with maximal rank is

e—ps e—pP&+L)
P e LO .e—Ph 0. .. . .e—pPlaitl) o - ‘e e
A= e~Ps: O e P4 0
0. - e 0 ) e~ Pa

One gets det A = e—2l;‘81+~’:)(e—ﬂlf — 1)2, Hence we have det A = 0 only for.p = 0.

Example 2: Tet L=S8,u8uSul, and S,uS; = L,, S,uS, =L, Here, system

.(6.8) describes relations between the constants C3;,'C3;, Clq, Cla, Chy, Cl,. The coefficient matrix

of (6.8) is

”1“) e—PS: "vz(” e—pS 0 0 0. . —e—p(+1L)
. n® e—Ph  my) e-ph  —e—Psm 0 0 0
o 0 —e~ s n,(8 e=p%s 5,08 e—ps 0
0 0 0 ‘n, W e—psi 18 P —e—p%

It is not difficult to see that the rank of K is equal to 4, if one of the pairs of normal vectors
n), n®) and n®), n®) is linearly independent. ' .

Consider the case where n{!) = n( and n®® = L n() Here, a submatrix of maximal rank
is of the form ’ )

N

ne— P 0 0 ._e—p(8|+l,)j
ne P —e= P2 0 0
A= . , .
0 —e~PSs fie— P8 0
0. 0 + fie—PSe —e— PN

with n, %% = 0. We have

1 ’ 0 .0 —e—pL . N | '
1 —1 0 0 ’
det A = e~ 2P +Sing = ni e~ 200 +8{) Fe-pLy. !
0 —1 1 0 ~
0 0 +1 -1
This implies det A == 0 for every p € R in the case n® = —n®). For n® = n®) we have

det A = 0 if and only if p = 0.
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