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(Prof. Dr. F. A. AVillers zu seinenl 100. Geburtstag gewidmet) 

Es werden die Kelloggsche Methode, (lie Birgerschc Methode und die modifizierte Birgersche 
Prozedur zur Bestininiung von Eigcnwerten und Eigenvektoren für lineare nichtne'gative 
seibstadju ngierte Operatoren in Hilbertschen Räu men untersueht. 
B cTare paccMaTpneaioTcl! MeTOM l-ejuiorra it Buprepa is MoIwhMInpoBauhIb!fi MOTOJ 
J3uprepa tiii-i onpejieieuu c06cTiienHbix aHa'ienIlfi it coScTneIliIbIx yuiuustl iiiiiieniiix 
caMoconpHel(HbixonepaTopos It npocpaucnax FiiJlh6epTa. 
The Kellogg method, Birger's method and its modified Birger procedure for determination of 
eigcnvalues and eigcnvectors of linear nonnegative and self-adjoint operators are investigated. 

The Kellogg method, Birger's method and the modified Birger procedure for deter-
mination of eigenaliies and eigenvectors of linear nonnegative and self-adjoint ope-
artors are investigated. 

1. Introduction 

In this note we show that the methods mentioned above converge even in the case, 
when the starting approximation is only different froni zero. We also give the estimate 
for the distance of eigenvalues of two different operators. Moreover, some conditions 
for the starting approximation equivalent to that of Theorem 1 are established. 

Let us recall that BIRGER [21 has proposed his method without any mathematical 
justification. However, he has found (on engineering problems) that his method has 
some advantages in comparison with the other ones, see also MARCHUK [15], where a 
similar observation has been done on the ground of physical ideas. The convergence 
proofs of the Birger and the modified Birger methods for compact syninietrizable 
operators were given in [7, 81 under the condition that the starting approximation is 
not orthogonal to annihilator of the certain eigenspace. 'Later BUCKNER [3] inde-
pendently proposed the same method as Birger and proved its convergence for the 
class of linear and nonlinear compact operators having sonic decomposition properties. 
Further results in these topics have been obtained under various hypotheses by 
MAREK [14], PETRYSHYN [16] and the author [9-12]. We refer the reader also for 
instance to [1,4, 13, 16] for sonic further and related methods. Let us note that the 
Birger method and the B(YCKNER [l] results have been applied for instance by BIRGEP. 
[2], MARCHUK [15], CONWAY and THOMAs [5] and THOMAS [181. 
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2. Convergence theorems 

Let X he a real Hubert space with the scalar product (., •), A : X - X a linear non-
negative and self-udjoint operator defined on X. By saying that A is non-negative 
we mean that (Au, u) ^E! 0 for each u E X. Since A is self-adjoint and is defined on all 
of X, 4 is bounded 1)

'
 v the closed graph theorem. The spectrum a(A) of A lies in the 

segment [m, 2 k ], wher in = inf {(Au, it : h u ll = 1), in 0, and Slip {(Au, u) : I jull 
= I). The s ymbol {/} stands for the spectral resolution of identity corresponding to 
The self-adjoint operator A. 

- Under the assumptions stated above the following approximate methods for deter-
mination of the eigenvalties and eigcnvectors will' he considered: 
(I) the Kellogg method: 

= JjAuhb ,	u,,1 = cç 1 Au	(n = 0, I, 2,  

where the starting approximation it0 E X is such that it0 ker A, hhohh = 1. According 
to our assumptions a,, > 0 and llu hl = 1 for each it; 
(ii) the modified Birqer method: 

= (Av., v,2) . v- 2 ,	v, +1 + tç 1 Av,	 (2)
iani 

where the initial approximation v0 E X satisfies the conditions v0 ker A, Ilvohi = I; 
(iii) the Birger mel/ax!: 

= (Aye, y) . ll Ay lL 2 ,	y,,+1 = 

where the starting approximation Yo E X is such that Yo ker A, h yohi = 1. 

.1 e into a I : Let A X - X be a linear non-negative and self-ridloint operator, u0 , v0, 
Yo E X the starting approximatums of the methods (1)—(), respectively, such that it0 = v0 
= Yo, ?o 0 ker A, lluohl	I. Then:	 V 

(i) u,>0, q>0, v==0, y,==O;

nf (ii)

1?1+1 
v,..1 = ( [f (,u1') ) u+ 

In-I-i	\ 
(iv)	Y..'. = ( JJc.q1} 

for each n > 1.	 - 

Proof: Since A is non-negative and self-adjolnt, (Au, v)2 < (Au, u) (Av, v) for 
each i, v E X. According to our assumption it0 4, ker A we obtain 

0 <	== IAuo114 = (Auo, Auo)2 <_ (Au0, it0) (A2u0, Auo) = /2 1 (A 2u0 , .4u1). 

Hence Ui > 0 and v 1 == 1z 1 'Av0 = 1t 1 'Au0 =  iii- ui 0. Now assume that 
IUk > 0, Vk	0 for eachk (k = 1, 2, ... it). We are going to show that	> 0 and 
v 1	0. From 

0 < at., j = (Aug, Au,)2	/tflf1 (A 2u,, Au,)
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we get that /;i > 0. Moreover, u,, = v II v II and 

v,, 1 = 1 Av = /c1Ilv !I A 
(iiii) =	

tvnii Au	a+1ic41 Hv !I •u+1 

(n+1 

= an+i/ iCnPn' 1V. J1 Un+i =	= /7 (-)) it fl +	 0. 
kl	 I 

The prpofs of the equalit y (iv) and the facts that q,, > 0, y, 4 0 ate quite similar. 

(ii)	= (Av_ 1 , v_ 1 v 1 II •-2 = (Au,,, uni	IIAu_, 11 Itu_1 = II Au_ i II = 

q,, 1	(Ay_,; Yn_i)' II Ay _1I 2 = IIAu ,;1II (Au-n-1, u_1)-' = 

Furthermore, according tot-he generalized Schwarz inequality	 - 

= (Au, 1 , u 1) IH u -M	(A 2u, Au 1 . IiAu1- 4. MAu-1I12 

-	 = (A 2u,,_, Au -1 ) ! Au_ 1 IL 2	(Au, u) = 
This completes the proof Lemma 1 I 

Ltiiiiut 1 enables a slight extension of the corresponding result of [II, 121 for 
-	non-negative operators. 

Theorem 1: Let A : X - X be a linear non-negative self-ad joint operator, it0, 

Yo E X the starting approximation of the methods (1) (3), respectively, such that 

U0 = V0 = I/o,	it0 € ker A ,	II0II == I. 

Then the following conclusions are valid: 
(i) If 71 0 is such that E 1 u0 4 u0 for each 2 < 2., then the sequences (a,,),	, (q,1) 

are monotone iflCreasiflrj and converge to 2.	 - 
(ii) If 2 (not necessarily (in. isolated point of a(A) with finite multiplicity) is an 

elgenvalue of A and it 0 is such that uo . q ker (A - 2J) 1, them (a s), (-t), (q n ') / 2 as 
n -	 - 

iii) If 2 is an isolated point of o-(A) and u0 ker (A - A /)1, them each of the follow-
ing sequences (u n ), (v,,), (y,,) converge to one of the eiqenvectors of A corresponding to L. 

Under the additional hypothesis that A is compact the shall prove that the methods (I) to 
(3) are convergent even in the case when the starting approximations it 0 , V0, Yo are only 
different front zero. 

We shall use the following 

Le in ma 2: Under the ssumptions of Lemma I the sequences (I v M), ( y II,,) arc mono-
tone increasing and (lecreasznq, respectively, and convergent. 

Prof: it relies on Lemma 1 and the arguments of the proof of Lemma 2 [9] and 
[81, wlthre the assumption of positivity of A is superfluous I 

Theorem 2: Let A X - X he a linear non-negative aml self ad joint operator such 
that	is compact for some positiveinteger n 0 . Assume that the starting approximations 
no, v0, Yo tire such that 21 0	V0 = Yo and IuoM = I. 

Then there is valid: 
(i) 'I'lie sequences (a,,); (ii,,), (q n ') are monotone increasing and converge to .sonie posi-

tive eigenvalue 2* of A. 
(ii) The sequences (u,,), (v,,), (y,,) converge to one of the eigenvectors corresponding 

to 2".	 -
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Proof: According to Lenitna I we have that (a,,), (i) (q,,1) 2* as it — 00 and 
0 < 2* < 2 = MAlI. From (2) it follows that 

II v ,,+1 — v ,,11 2 = llp . 1 Av,, —	= II v +1 11 2 — ilv ,,11 2	 (4) 

for each n. Put Zn = v,,, 1 for each n 1. By Lemma 2 the sequence (Zn —.v,,) con-
verges to 0 as n —> co. Moreover, the sequence (Z n) is. bounded and our hypotheses 
imply that A is compact [20: eh. 12]. Hence (Zn) contains a convergent subsequence 
( Z flk ) . Denote v = urn z,,. In view of (4) we conclude that v,,, - v. Since (IIv ) is 

k- co

 increasing and V0 4 0 we get that v* 4 0. But continuity of A implies that-
Av* = 2*v* and /2,, i' 2* (Au*, u*) lIu*I1_ 2. Front (4) it follows that (v,,) is a 
Cauchy sequence. Since it contains a converging subsequence (vn k), the whole Sc-
qticncc (v,,) converges to v. 

By Lemma 1 

V.	((a /i)) a,,, V. 
= (Ini (aii) 11	 ) Un = (H(YiNil)) 

Since lint JVj = sup IIv ,,II = ff(atui') is finite and positive, there exist tim u,, = u, 
n = 1.2...	i 1 

hut y,, = y and 
fl-4.c,3

Li (/2_1) u'1' = v',	[7 (-1q,) u = y* 

Hence u E ker (A — )*!), y* E ker (A — ).*1) and u 4 0, y* 4 0. Theorem 2 is 
proved I 

Using arguments similar to that of [8], one can extend the result of Theorem 2 to 
symnietrizable compact operators. 

Let B: X — X, C : X --> X be linear self-adjoint. operators, ;,o an cigenvalue of B 
such that 2 (C), 2* an cigenvaluc of C. We shall say that 2* is nearest to )'o from 
the both sides if there exists a positive number e such that 2* E J = 0- — e, 2 + e) 
and 2 E a(C), 2 4 2* imply that 2 j J, where a(C) denotes the point spectrum of C. 

The following result is an extension of Theorem 4 of [12]. 

Theorem 3: Let B : X -. X, C: X —> X be linear self -ad joint operators. Suppose 
that ;.o is an ciqenvalue of B, e0 E ker (B — 1I), II eoII = I and that 2 a(C). Let 2* be 
an eujenvulue of C such that 1* is nearest to ;.o from the both sides. If e0 ker (C — ).*1)1, 
then

— 2I ^ II( C — 11) u ,,II	II(C — 11) -u II	II B - C, 

where 
.

(u,,) is defined by the Kelloqq method (1) with A = aj— (C — ). 1) 2 , no	Co and€
a is an arbitrary constant such that a > [(C — 201)211. 

Proof: The operators B, C are both hounded by the closed-graph theorem. Put 
A =	— (C — ).01) 2 , where a > II( C — )1)2 I 1 Then A is self-adjoint hounded and 
positive definite with the greatest isolated point A of (A), where 2 = a — (2*	2)2.

Put C 1 = C — 2I, 1 = 2* — 2, C2 = C — 2*1. We show that ker (C1 221) 

ker C2. Suppose that u E ker C2 ; this condition is equivalent to C1 u = 2 . u. 
Then C 1 2u = C1 (),u) = 22u. Hence it E ker ( C 1 2 — ). 2I) and we get that ker (A - ),I) 

ker (C — ).*1) . Therefore ker (A — ).1)	ker (C — ).*1) 1 and hence u0 a ker (A 
According to Theorem 3 of [II] ftni = KA?t,,, U,,)? ) = a — (2*
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Hence ((C - ),I) u,, u,1) N (2* - 2o)2 as m —* co. This conclusion implies that 
2* — 2.0I	((C — )1)2 u,, u)1I2 = I(C - 21) u,j	((C — )1)2  

= II(C — ),I) u_ l1	II(C - 2I) eoU = II( C — B) coil	II C - BlI, 

because e0 E ker (B - 2I), lIeoII = 1 and 5u = e0 , which concludes the proof I 
We shall consider the condition concerning the starting approximations of the 

methods (l)—() which occurs in Theorem 1. 

Theorem 4: Let A : X --> X be a linear non-negative self-ad joint operator, u 0 E X. 
Then the following assertions are equivalent: 

(i) E1u0 = no /or each 2 

(ii) IjA'u0Il'I 	as n — oo; 

çA'u0, u0)1/' — 2 as n —* oo. 

Proof: We prove that (I)	(ii)	(iii)	(I). 
(I) (ii): Assume that u0 E X is such that E2 u0+ u0 for each A < A. Let c he an 

arbitrary number such that 0 < e <2, where 2 denotes the lower upper bound of 
a(A). Since hA!! = 2, the spectral theorem implies that

11	- 

lu0!! 2	I! A 1I 2 hIuoH 2	lIAuo!l 2 L> (A 21 u0 , 7t0) = f 22'd hIEu0I12 

	

)2nj II1u01I 2	(2 — e) 2" IIuo — EeUoh!2. 

Hence	 - 
- e ^ lini inf IIAuo!!" ^ lini ''1 hI AuolI'	2 

Therefore lim ll AuolI" = 2.	 S 

(ii)	(iii): Assume that liin hI Auo' = A. We have that (A"uo, u)'I' 

X Ibu hI'I. On the other hand, the Reid inequality [171 implies that 
II4 o Ih 2	JJA'2 (A"uo, u0) ^ I IA II (Auo, n0) ^ 2 1 '3 (A"no, u0). 

Therefore (A '2u0 ,	L> 2- 1 lA"u0 II 2I . Now our conclusion follows at once from the 

above inequalities. 

(iii) (I): Assume that ilium (A"n0 , u0)uI? = 2 for some n0 E X, v 0	0. We prove 
that E2 u0	u0 for each A<A. Suppose conversely, then there exists Ao such that 
20 < 2 

l
and B1n0 = o- Then we have E2% = E2E1 0u0 = E,7t0 = u0 for each	2.


Therefore

0 :s-^ (A fly0, n0) = fA"d 111,12%112^ 2o fd hBnoII 2 =	111,72.q,0112 = 2" 110112.


Hence
0 ^-, (A'uto, -u0)'/ :!E^ ).o 1In0II21' 

and
linu (A"uo, u0)h/ = 	2 < 2, 

a contradiction. Hence KA yo	7t 0 for Cach A < 2. This finishes the proof I
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• Remark 1: The assertion (i)' (ii) of Theorem 4 is stated in [13: chapt. 21. We 
gave the proof of this result here only for the sake of completeness. Let us note that 
the conclusion (ii) of Lemma I was observed firstly by l)AE [6]. But our proof 
relies on quite another and much more simpler argiinents than in [61. 

Pro p o  it ion I : Under the assumption-s of Theorem 4 suppose that ker (A - z I) 

(0) 
for SOnIC /L E (0 1 ).) and that v 0 =1=0. 

Then-u0 ker (A'- pi) if and only if there exist constants 20 2', A ^! ,U, 2. < I t 
such that iju0	710 and K.(v 0 )	0. 

Proof:- It is sufficient to prove the converse assertion: u 0 E ker (A - 1ul) if and 
•	onl y if E1u0 = u0 for each .	and Ru0 = 0 for each 2. <. 

Assume that Ru0 = u0 for each 2. ^ and E 2u0 = 0 for all A < . Let s be such 
that 0 < e < Min (u, - ). Then 

II( A	ui) loll2 = f(2 - )2 (1, 
II B AvoI1 2 = Iiiii f(A - 11 ) 2 (1 lEu(12 

-	
0	 O 0 

+ urn f(A - i) d IE 2 11o11 2 ± lirn f(A - /L) 2 d llE1no2	0. 
. CIO  

-: Ienc u0 E ker (A - iiI). Assume now that u0 E ker (A - iii). Then 

0 = (A - i) ?10112 = 12. - 

+ f(2.	/2)2 d ll / '2 u011 2 + f(A - /2)2 (1. l!Euoll2. 

From this equality it follows that E A uO is constant on the intervals (0, a - el, [ ± e, 
2.) for each s > 0. The properties of the spectral family {EA } imply that Eu0 = lini / 

- X no = 0 for each 2.
 

E . [9, t) and E A uO lini E A uO = u0 for each 2€ l y, M.  as desired I 
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