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Taylor's Expansion in a Distribution Algebra	 - 

L. BERG	 - 

• ' Für eine gewisse Distributionenalgebra wird gezeigt, daB jedes Element der Algebra ejnen 
Wert besitzt sowie durch seine Taylorentwickltsng dargestelit wird. AuBerdem wird die Struk-
tur der Teilalgebra der .\Verte untersucht.	 - 
Jl.ma . neIoTopofi UlcTpIt6yIIto1IIsoü a.nreiphl IioFa3b1BaeTcls, 'ITO Na,+c1h1ü zl3eMeI1T anre6phi 
uMeeT mia , iemic n npecauu paiociiei Tefliopa. hpoMe Toro uccJ1 eiyeTcn CTpyiTypa 
noaaJlreGpbr 3Ha'IeHllci.	 -• 

- For a certain distribution algebra it is shown that every element of the algebra possesses a 
value and is representable by its Taylor's expansion. Moreover there is investigated the struc-
tue of the siibalgebra of values. 

By definition, a distribution algebra is an associative, but noncommutative differ-
ential algebra with at least one element h satisfying 

h2—/i.	 0	 -	 ---	

•	
( 1) 

and _h' = 0. A good survey on some classes of distribution algebras with additional 
properties was given by MA KYTIN MYINT [3]. Here we go back to the more general 
distribution algebãs of [1].	 0 

The aittiof this paper is to show that every element of-the latter distribution al-
gebras is representable by its Taylor's expansion, using the notion of values of such 
elements introduced in [2]. As a consequence we areable . to determine the structure 
of the setof-these values. 

Preliminaries  

In [1] there was considered the distribution algebra D1 with unit element 1 generated 
by two elements t, h with the properties 

• t' = I ,	th'	0	•	 •	 ( 2) 
and, of course, (I). The ring of scalars of this algebra is assumed to contain the rational 
numbers. According. to Dirac the derivative h' is denoted by 6,. the more as this ele-
ment shall, be interpreted as a Schwaitz distribution. As a consequence of (2), in D 
there are valid, the well known relations	0	 - 

(n)	-,	
0	 -	 0 -	 -	 •	

( •3) 

for all integers m, n	0 with () = 0 for in<n. As a consequence of (1), in D1
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there are valid the relations -, 

-	(mh(fl)h(m_n)	 :	(4) 

too, where the produJs on the right-hand side are no Schwartz distributions for 
m>1. 

In [1] there was also constructed the extension D2 of D 1 as the distribution algebra 
of the elements	 0 

=E (ant' + bt"h	 (5) 

where a, b are polynomials in 5(Ic) (k = 0, 1, 2, ...), which are determined unique1-
by / and can be prescribed arbitrarily. With the elements (5) all operations in D2 are 
to be carried out terinwise. In D2 two elements f, g are defined to be equal if and only 

•	if 
•	 (f_g)o(m)=o  

for m = 0, 1,' 2, ... According to this definition a sequence / is defined to converge 
•	to' the limit] E D2 , if for every fixed rn L, 0 there is 

/) 5(m) = 0  
for suitable large n. With these definitions 'e.g. the equations 

tihtk= ti+kh + k '	 / .	 5(j-i)i+k+	'	( 6) 
(i+k+j)(j.— 1)!	, 

are valid in D0.  

Series  

In what follows we need series with more general cciefficients". than in (5). For this 
ease we consider the'  

Theore m  1: For an arbitrary sequence- .1k of elements from D2 the series 

- 

is always converging to an element from D 2 .	 -' -

Proof: According to (5) all elements fk possess .repreenttion's of the form' 

fk = E (ak,t' + bk,tth) 

Hence in view of (6) we have
 

/ktk	 (ak	+ki (tikh + kE +	

( _ J)i-1	

1)! 

Summing over k and substituting i ± k = n'arid I ± k + j = n, respectively; we 
find that the element / from (7) possesses also the form (5) with	 0 

•	 •	"• 	(n	j - ) (	1)i'	 0 

a. = '(;i",,,.+ '	 /	(i—i)) and b = ' 
1=0 	 (i + j ) n(j - I).	/
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i.e. (7) is an element from D2. All foregoing alculatioris with infinite series are pos-
sible in view, of the definition of convergence, because all series terniinateaftér thulti-
plication by 6( m) , so that in fact no convergence problems arise I 

•	Values  

Tn [2] there were considered the series  

li t	 ..	.	 ' '	(8) 

for some elements / of D. Since by Taylor's theorem for holomorphic fimctiohs /(t) 
and small numbers t the series (8) is equal.to the value 1(0), the element fo frOm (8) 
is named. the (generalized) value of / (at the point t = 0). In [2] there. was already 
proved that t0 = 0 and (t°h)0 = 0 for all natural nuthbers'n,	..-

h02 = h0 ,	ht =.th0 ,	6t = t60 ,	 •	 ( 9) 
00(-)t - to,(-) = 1(m—I)	 (10) 

for m >j as well as 

6(0)6(m)	'' (	1)i ' ) 60(n+i)0(m-,  

(o(n)6(m)) = •	
(M)
 60(006(m_0	 (12) 

or m, n 0 and 

(f) =0	 (P3) 

for 	h('), n	0.	..	-	 . 
Theorem 2: The value (8) exists/or every'elementf € Dandhasalthaysthepropertj 

(i3) The value-operator is linear, i.e. it satisfies	,	 •. 

(af + g) 0 = a/ + 90	 (14) 
in the case a'	" = 0. Further relations for arbitrary /, g € D2 are •	 • / 

(fg)0	 1 j(lC)g k	•	•	 '	- -	.	 ( ' 15) 
k=0	-,	 \	•	'	 •.	.	' . 

(ft) 0 = 0	(/h)0 = /0h 0	(16)o' = /060	 (16) 

PrOof: Since the series in (8) possesses the form (7, Theorem 1 implies thefirst 
assertion. The-equations (13) and (14) are easily,vcrified from (8). The equation 

,o (_l)i 	Ii' 
(loo = z: ., (/g))

	(	 - •	•	i0'	 j=	. • k=0\-/  
00	CO	

(1)'	 '	 00 ()k  
•	 =-'' 

k=0 i=k	.
	 1(k).' 

h. .(i - L).	 k=O k •	,	.	 ' 
with j = i - k shows in view of (8) with g instead of / that (15), is valid, too; Pon) (15). 
and t0 =0 as well as (9) it follows (16). Hence Theorem 2 is proved I	-



268	L. BERG 

•

	

	 Of course, both scalar multiples of the iiniteleient 1 and the values themselves are 
their' own values. These statements andthe equations (13) and (14) show that the 

- values (8) behave like ordinary constants in calculus.-Equation (12) is a special appli-
cation of (14) to equation (11). Note that formula (14) is, generally speaking, not valid 
in the case' that the constants are standing at the right of the elements. A general 
• consequence of (15) is the quation (19)0 = (/9o)o.. 

Taylor's expansion	 - - - 
• 

Now ie coiiie to another property which-underlines the right of terming the elements 
(8)- values. 

Theorem 3': All elements /E D2 are respresentable by Taylor's expansion 
•	 -	l	 -	 - 

/ =	' -- /0()t,	 (17) •	 '	n=ofl.  

•	-	and. they satisfy for arbitrary -inteers in	0 the equation 

•	 /ô) =	(	I )fl (m) /0(n)ô(m17)..	 '	 -	 ( 18) 
fl 

- Proof: Muitiplyi'ng (17) by 6(m) and considering (3) it follows (18). Hence, in view of 
the definition of equality mD2 it suffices to prove (18). Applying (8) to /(ti) instead off 
we obtain 

-	-	0O(I)I( 
•	- - -	-	

k=0	k!	
/(n-k)tk ,	 - 

hence, in view of (3)  

=

	(in	n /(n+k)(m-n-k)	, (rn_n) 

-	with j= n + k and therefore	•	 - 

E (iY

 

(,in
)
 /(n)6(m_n) =E	1)11 

(M ) 
(v::) /(1)ô(m-1) 

1rn\Irn—n\ Im\/j\	 - According to ( II	= I	II I and	 - \n /\)—n/	\)/\n/	 •	-	- 

-	 (l)flf')\Jl for	=0,	•	•.	 - 
\n/	0 for j>O,	--	 - 

the foregoing sum is equal to 16(m) and Theorem 3 is proved I	- -	• -	- 
•	- For hblomorphic functions / equaiion (18) is well known in the theory of Schwartz 

distributions. Equation (11) is a special case of (18) with /	Equation (18) 
reads for m = 0 •	-	 -	- 

•	/b=/ô.	 .•	 -	 (19) 

• Conversely, if	:	-	-	-•	• 
-	 -	•	(20) 

/	-
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with c' = 0, then it follows c = /, because (19) and (20) imply (t - c) 0 and 
therefore (f - c) 5' = 0 for every n 0, so that we obtain the assertion f = C. 
Differentiating equation (19) n-times and considering the value of the result we 
obtain	-	 ,	 S 

f0o") = (/a) 0(). 	 (21) 
This equation implies inductively'/	.	 . . 

/o(rn)o( tI) = (.(/o)(rn))0(n),	.	 -	 . 
/ô(k)ô(rn)b(n)	(((/a)(L) 5 )(m) )(n)	 (22) 

It should be possible to use Taylor's expansion alsp to, define values of elements 
of D2 in a point differeiit from t = 0, howe.er, up to now this is not worked out-. 

Anisoniorpliisin 

The following theorem clarifies the structure-of the set of values.  
Theorm 4: The values (8) form a subalgebra A of D2 , which is generated by the 

special values 1 and h0(tl) (n 0), and which is isomorphic to the subalgebra D 0 generated  
by the elements 1 and-h(" ) (n 0). The isomorphism, D0 - A is generated by the map'piig - 

'1	i	n!h0.  

• Proof: From (5), (16) and to 	0 we find  

/0 ' = a00 + b00	 . '.	. 

- (the first zero is the index n = 0 from (5), the second zero indicates the value opera-
tion). Since (14) and (18) imply	 '	.• 

=	H (m) f(n)o(rn-s)  
n=0	fl,	 . 

and a0, 60 are polynomials' in ô(k), the values a00 and b00 'are polynomials in 6 0(k)• 
Hence, (24) implies that all values /o are contained in the algebra A generated by h0'; 

Next we derive from (4)	 - 
•	 m-i/m\	. h0(m) = (hh(rn))0 +	(. .) (OW—) )o	(h(")h) 0 .	.-	'	..	( 25) 

n=i \fl/ 

Considering 6 '= h', equation (12) can be written in the form	 - 
rn—i	1211	 . S	 S (h(n)h(rn))0 = ,	1) ( .	) /1(n+i)h(rn-i)	 •	• . 

with m, n 1, so that with j = n + i-we have 
-	rn—i 	 'rn-i rn—n—I m	m - n - 1	 0 - 

,' (M)  (
/)/(_) )0 = ,' ,-'

	fl 

	

(. ) (._. 
1)i
	) 

/,(n+i)/,(rn-n-i) 
nI	 ni3O  

	

rn — i rn—i,

	 (
n),(mnh0(i)h(-i). 

n=i j=n '  	7 " '-	/ 0
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•	According to  

E(1)i(:)(m n1) 	—1)	 1, 

this implies	 S 

() (h()h(-)) =: (i - (m . 1) _ 1)7) 

and from (18) with/ = h, 0 = h',.(16) and (25) we obtain equation 

	

= ' h0( n )h0(m- n )	 (26) 
•	

•'

 

Obviously, the mapping (23) transfers equation (4) into equation (26). Since D0 is 
nothing else than the free algebra generated by h0 ", which is endowed with the re-
lations (4) (cf. [11); and sitice the corresponding relations (26) under the mapping (23) 
are also valid, D0 has at leasta homomorphic image in A. The fact that all elements 
of D0 possess the normal form a + bh with'polynornials a, b in 0(k) implies that all 
elements of A possess by the mapping (23) the normal form c + dh0 with polynomials 
c, d in 00(k) The equations (22) show that these polynomials are always values of 
polynomials a0, b0 in	Hence, every element of A is a value of an element Of D0. 

It remains to show that the homomorphism generated by (23) is one-to-one. Assume 
that this is not the case, i.e. that for an element a + Ph == 0 in D0 the image c + 4h0 
in A is vani	 '' shing. Let c = a00, d =b00 as before. hen accdrding toO = hO + Oh, (19) 

•	and (16) we have	 S 

0 = (a00 +b00h0)'O = 000 + b000 =	± b0) 6 — b00/j, 

and this implies b0 = a0 = O. The polynomial c has the form' 

C =	/mO	OO(km) ... 6 0( kmn.) ,	 S 

so that according to (22) 

a0	E	(O6)m . ... 0)(k) = 0.	 (27) 

Considering in this sum the addends with maximal .n,, front these once more the 
addends 'with maximal km . *. , from these the addends with maximal kmim_i etc., we 
find an addend, from which the term  

Ym6" )O(k,,)	6(kmn) 

appearing after evaluating the brackets in ( '27) cannot be canceled against anther 
term in the sum. Hence, this special Ym must vanish, and therefore all y,,, must vanish. 
This means that c is the zero-polynomial and so must be a. Analogously, d is the zero-
polynomial and b, too, but this contradicts the assumption a + Ph + 0. So Theorem 4 
is proved I	 S ••	•	- 

•

	

	The algebra D0 is a distribution algebra, but the'algebra A not, though it is-in view
of (13) a trivial differential algebra. The isomorphism (23) allows to transfer alire- 

• lations from D0 into relations in A. For example from h62 = 02h, hOh = 0 we mime- - 
diately obtain h0002 = 002h0, h000h0 = 0.	 •• '	•"' ' -
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