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Taylor’s Expansion in a Distributidn Algehra '

L. Berc

" Fr eine gewisse sttnbutlonenalacbra wn‘d gezeigt, dafl jedes Element der Algebm einen
Wert besitzt sowie durch séine l‘aylorentwmklung dargestellt wird. ‘\uBerdem wird die Struk-
tur der Teilalgebra der Werte untersucht. .

dan ueHo'ropoﬁ ANCTPHOYLIHOHHOI anredpu nomausaem‘ca YTO KaMKihlii a1euem asreGphl
HMeeT 3HAUCHHE I NIPEJICTABUM PABIOHKCHHEM Tennopa hpowc TOTO HCCJEAYETCA mpymypa
'nonanrerbl 3HAYeHMIl, N .

- For a certain distribution algebra it is shown that every elcment of the algebra possesses a
value and is representable by its Taylor’s expansion. Moreover there is investigated the struc-
ture of the subalgebra of values. : -

By defmltlon a distribution algebra is an associative, but noncommutatlve dlffer-
: entla] aigebra with at lcast one element A satlsfymg

h =k . ' L ()

and &' =% 0. A good survey on some classes of distribution algebras with addltlonal
" properties was given by MA Kymy MyYINT [‘3] Here we go back to the more general
distribution algebras of [1].

The aim of this paper is to show that évery clement: of ‘the la.ttcr dlstrlbutlon al-
" gebras is representable by its Taylor’s expansion, using the notion of values of such
elements introduced in |2]. As a conscquence we are.able. to determine the structure
of theset of -these values.

Pr'e]iminaries ’ . LT
Tn [1] there was cons1dcrcd the dlStl‘lbllthl’l algebra D, with unit e]cment 1 generated
by two'elements ¢, & witk the properties .

=1, th=0 ' : (2)
and, of course, (1). The ring of scalars of thls algebra is assumed to contain the rational
- numbers. According.to Dirac the derivative &’ is denoted by 4,.the more as this ele-.

ment shall be interpreted as a Schwartz dlstrlbutlon As a consequence of (2),in D.
. there are valid. the well known relations

\

) - ’ m . - ’ , s
(m) — (—1)% ! (m—n) -+ . S
o A( !) n (n)é o | R (3)

for all integers m,n = 0 with (1:) =0 for m < n. As a consequen-ce of (1), in D,
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. vthere are val:d the relatlons ’

- pm) —~ Z‘( )h(n) him—= n) ! ! K N . (4)
n=0\"7/ ) ' : ' : :
too, where . the products on the rlght -hand sxde are no Schwartz distributions for
m>1. .
In {1] there was also constructed the extension D, of Dl as the dxstrlbutlon algebra '
of the elements . . .
/—Z(a,,c"+bt"h), L )
where a,, b; are polynomlals in 6(") (k=0,1,2,...), which are determined uniquel}"r- )
by f.and can be prescribed arbitrarily. With the elements (3) all operations in D, are

to be carrled out ter mwise. In D, two elements f, g are defined to be equal if and only
- if : .

</—g>«s<m> =0 . -
for m - 0, 1,2, ... According to this definition a sequence /,, is defined to converge .
to’ the limit- / € D2, if for every fixed m = 0 there is o
| (/= [ o™ =0 " SR
for smtable large n. With these defmltlons e.g. the equations -

(= 1y
(z+7)(z+l»+7)(7— 1)

- htt = ¢i+5h 4 k Z ot~ wwkw ‘ _ (6)

are valid in D,. -

/

_ |-
-Series .

In what follows we need series with more general coefflclents than in (5). For this

\
case we consider the S . . _

Theorem 1: For an arbztrary sequence /k of elements /mm D2 the serzes
=g T (7)
k=0 : , . . .

s always converging to an element from D,.

Proof: According to (5) all elements f« possess.representations of the for_m"
/

fi =:§) (@it* + bki“”)\*

Hence in view of (6) we have - E _ o Lo
Y I (=1 )
otk = a itrrk b t|+kh k 6(1 l)tl-rk+7

& ,‘i:o(" +k( i Z(z+7(%+kn-7)(7—l) : .

o Summing over k and substituting 7 Fr=mnand i +k+ j=mn, respectlvely, we

find that the element f from (7) possesses also the form (3) with

_ (s '.:.<n—r—7>(—1>"'<~~n) A by
Qg f'izz(‘)(a‘n—i.i‘+j£ bn-x—:.‘u @+ Dnj— 1! 601 A&nd, b, —,'é:)bn_"“
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\

i.c. (7) is an element from D,. All foregomg calculations w1th infinite series are pos-

~sible in view of the definition of convergenee, because all series terminate aftér multi-
phcatlon by 6("'), 80 that in fact no convergencc problems arise 1

Values

In [2] there wére considered the series '

_'k\ [ ‘ ' Y . \ . . .
=2 S s ®

k=0

for some elements f of 1)2 Smce by Taylor s theorem for holomorphlc functions /(t
_and small numbers ¢ the series (8) is equal to the value f(0), the element f, from (8)
is named the (generalized) value of f (at the point ¢ = 0). In [2] there. was already
proved that £, = 0 and (t"h)y = 0 for all natural numbers =, .

hE=hy, ht =thy,  Sg=1t8, . ©
Mt = megm ()

for m > 1 as well as _ . T '
"‘"’5""’—2(—'0‘( )M’***)&(m oo C Ty
. 0 SR ' i A .' =
(6(71)6(":) Z"'» (_]).( )60(""’60<'" o L -

or(n,nEOénd _ B ' " _ o

“(f) =0 . . .“ '“ B (13)
for/—k(") nzo ' g y v‘ S o “ .

Theorem 2: The value (8) exists for every element f € D, and has always thepropertyv‘ o

(13) The value operator 28 lmear 2.e. U satwfbes

w+mwwwwo - ‘7‘*9fﬂj ﬂ»l
in the case o= f"=0. Further relatzons /or arbumry f, g € D, are | !

,Um;g"/mw“..' ,_~,"j‘e_55,qm

De=0, (k= foho, - wrwo', )

Proof Smce thc series in (8) possesses the form (7), Theorem 1 nnplles the first U

assertion. The equations (1‘3) and (14) are easily, verified f;om (8). The equation

. . OO . o0 _1 % H '.' - .
ot = SV g i 5 SV 5 (7) poutomes
e F= ,.7 =0t WS _
:Ef _'i[(k)gu g _-fv( /(k)' Z .g(’)t”"
K=o i=k k7 —K)! ¥=0

'w1lh7 =1 — k shows in view of (8) wnth g instead of f that (15) is valld too: Iﬁ'on) (15
and t, =0 as well as (9) |t follows (16). Hence Theorem 2 is proved 1 . .

~

’

Lo
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Of course, both scalar multiples of the unit element 1 and the values themselves are
‘their own values. These statements and the equations (13) and (14) show that the
values (8) behave like ordinary constants in'calculus. ‘Equation (12) is a special appli-
cation of (14) to equation (11). Note that formula (14) is, generally speaking, not valid
in the case that the constants are standing at the right of the elements. A general
“consequence of (13) is the equation: (f9)e = (fgo)o-
.t A

\

T: 1ylor S expanslon

'\Tow we come to anothel property Whl(.h underlines the rlght of terming the elements

(8)- values. . .
Theorem 3" All elements f-€ D, are réspresentable by Taylor’s expansion

1 ' .

and. they Y sutzs/z/ for arburary wntegers m = 0 the equation

fom — Z(_*] n( )/0(7')6(773--"),. i o . (18

Proof: Multiplying (17) by 8 and considering (3) it follows (18). Hence, in view of
the definition of equality in D, it suffices to prove (18). App]ymg (8) to /™ instead of f
we obtain

; S(=D* .

!o(”) :ké} — /‘(n':k).tk’

' .henee, in view of (3)

Jmemem 5" (m . )/(n+k)¢5(m nek) — f (m )/<;)5<m )

k=0 ]—n

with j = n+ k'axilld therefore

.fm—Jw(Z)AWMWﬂ“:afbiw—Jw(m)(m ) .
n=0 - g . ] i

. ' A\ j=0 n=0 7""’ o
' . ' / “—A . . N . . . .
According to Km) (m ‘ nﬁ)=(7r.b)(7)and Cc : .
, mINT TIAR el
| f_.‘j_1~for7'=0,_ -
§( 1)”(7@)_{0 for j > 0, o -

the foregomg sum is equal to f6™ and Theorem 3 is proved l / .

For holomorphic functions / equatlon (18) is 'well known in the theory of Schwart/,
distributions. Equation (11) is a specnal case of (18) with f = &, Equation (18)
reads form =0 : ‘

B=to. R a9
' Conversely, if ) ’ ' : '

fo=cd B | SR R .(20)'
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with ¢’ = 0, then it follows ¢ = f,, because (19) and (20) imply (fo — ¢)é = 0 and’

therefore (fo — c) 6 = 0 for every n = 0, so that we.obtain the assertion f, = c.
Differentiating equatlon (19) n-times and considering the value of the result w\e
obtam .

foBol™ = (/5)0(',)_ o _ ) - (1)
3 ’J.‘his equation implies inductively 7 v -
foéo(m?ao(") = ((/5)(7»)5)0@)’ ] . . )

! © fodoFI3Mey ™ = (((f8)8) 8)m §)g(m, L ‘ ' v(22)

It should be possible ‘to use Taylor’s expansnon ‘also to.define values of elements
of D, in a point different from ¢ = 0, howeVer, up to now this is not worked out.

‘

An isomorphism , : o ' !

The following theorem clarifies the structure of the set of values.

Theorem 4: The values (8) form a subulgebm A of Dy, which is genei'd‘ted by the
. special values 1 und hy'™ (n = 0), and which is isomorphic to the subalgebra D, generated
- by J the elements 1 and-h™ (n 2 0). The zsomorphzsm D0 — A 1s generated by the mappmg

1—>1 ' R — n g™, . . R (2‘3

Proof: From (3), (16) and ¢, = 0.we fmd

i

/o—aoo‘f‘booho : T _' T B (2'4)‘ ‘

(the flrst zero is the index » = 0 from (3), the sccond Zero mdlcates the value opera-
tion). Since (14) and (18) imply S : .

(s, = 5 (—'1)"( )fo<">ao<m-"‘) -

and a, b0 are polynomials in 6, the values ag and boo are polynomials in §,9,
Hence, (24) implies that all values f, are contained in the algebra A generated by ho(")
\Yext we derive from (4)

o™ = (kh""’) + 2 ( )(h""h"" "))0—+—(k("')h) SR L (25).

n=1
Considering 5= K, equatlon (12) can be written m the form
(h(")h('")) =Y =1y ("f - 1) hlm+ R m=i)
S 7 4 .

with m, n = ], so that with j = n + 7-we have

n=1

n=1 j=n n ]—n

3

zmz—'; mz_‘l (— 1yn+i (m') (m - "= 1)‘];)(7')}10('»—7'). .

m—1 m—1 m—n—1 ' _ _ 1 '
Z ( ) (/L(”)h("' n)) — Z Z‘ (7:) (—l)"<m :1 1) /Lo(,"“)ho(m_"?i.)-
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Accordmg to

AR ) e

this implies

m_t m=1 Cm—1 . . o
Z ( ) (h(")h("' n))0 =)y (.1 — ( j ' ) (_1)7) ho(i)ko(m—l),
. . on=1 i=0 .
and f_rom (18) with f = &, 6 = &/, (16) and (25) ‘we obtain equa,tlon

' }L (m) = Zho(")ho(m ", . . ' . (26)
. . . n=0 B : ’ .
ObVIous]y, the mappmg (23) transfers equatnon (4) into cquatlon (26). Since I)D is
.nothing else than the free algebra generated by k"), which is endowed with the re-
* lations (4) (cf. [1]), and sirice the corresponding relations (26) under the mapping (23)
are also valid, D, has at least. a homomorphic image in 4. The fact that all elements
. of D, possess' the normal form a + bk with polynomials ¢, b in 6¥) implies that all
elements of A possess by the mapping (23) the hormal form ¢ + dh, with polynomials -
¢, d in 8,0, The equations (22) show that these polynomials are always values of
polynommls tg, bo in 8¥. Hence, every element of 4 is a value of an element of D,. -

- Tt remains to show that the homomorphism generated by (23) is one-to-one. Assume
that this is not the case, i.c. that for an element a + bk = 0 in D, the image ¢ + dh,
in A4 is vamshmg Tetc = ag, d= b00 as before 'lhen accordmg tod = hé + 6h (19)
“and (16) we have . ,

0 = (agy - Dogho) & = tod + baohd = (o -+ b) 6 — bodh,

_ and thls lmplles by'= ay = 0. The polynomxal ¢ has the form

\
c= 2 yméo(k”")(so(km’) we e 60(1‘”'""‘)) '

so that according to (22) : . _ :
G =5 Vul--- (5(1:,,.)5)&.;.) . )(kmnn) -0, S (é’i) :

Considering in this sum the addends withi maximal 7, from theése once more the
" addends ‘with maximal k,, , from these the addends with max1ma1 Kp, nr1 ete.,
fmd an a.ddend from which the term ;

YOt §(kmns)

a.ppearmg after evaluating the brackets in (27) cannot be canceled agamst another
- term in the sum: Hence, this specxal ¥m Must vanish, and therefore all ¥, must vanish.’
This means that c is the zero-polynomial and so must be a. Analogously, d is the zero-
po]ynomlal and b, too, but this contradlcts the assumption @ +- bk <= 0. So Theorem 4
;- is proved 1

The algebra Dyis a dlstrlbutlon algebra, but the algebra 4 not, though it is'in view
of (13) a trivial differential algebra, The isomorphism (23) allows to transfer all re-
lations from D, into relations in 4. For example from ko = 6%h, hoh = 0 we 1mme-
dlately obtam koéo .— 60 Pos hoéoho =0.
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