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One-dimensional Schrodinger Operators with Ergodic Potential 

H. ENGLISCII 

lm ersten Tell der Arbeit werden die Ergebnisse von Luttinger und Dworin zu folgender Po-
blemstellung von Saxon/Hutner verailgenleinert: Unter w-elehen Bedingungen gehort. eine 
Energie E zitr Resolventenmenge eines Mischkristallhamiltonians, vorausgesetzt, sie gehort zur 
Resolventenulenge der Hamiltonian oiler reinen Komponenten. Symmetrische Potentiale 
spielen dabei elne besondere Rolle. Im dritten'reil wird die Grundzustandsenergie inAbhängig 
keit vom ergodischen Potential V untersucht. Zum Vergleich werden Beispiele mit fastperiodi-
seheni Potentia! V angegeben. So vird Gordons Resultat zu Eigenwerten bei fastperodischem 
Potential im zweiten Toil veraligemeinort. 

B iiepitofl '1OCT11 CTaThu oGo6IuaioTcn peayJIbTamI Jlyrruui'epa ii Jiiopniia x ciejyiowefl 
iipo6iene Caacoua it XyTIlepa: lipil itaunx YCJIOBIiR.X aepriin E flllHaJIH11T pe30jlbueIIT-
14OM NIIIO;-KeCTBy raMlIjibToilnaHa KpucraJ!JIa CIlH, ecJlu npeLnoJ1araeTcH, '[TO OHa flpuHa-
Jrel+tHT peao.nlBelITlIoMy MHOHCTR 1ICCX IHCTblX KOMIIOIIeIIT? Ilpii -)TOM duMMeTpI4'lecK11e 
IloTeHullajl!A ulpaloT oco6yio poii,. 13 TpeThefi '-lacTH ucciejyeco ociioiiiioe COCTOIIII}le e 
3aBHcHMocTn or apro y Iiecioro noTeuluaJla V. )ijrn cpaBileIiHa paccMaTpl-luaioTdn upuMephi 
C noTH-nep1lojll 11ecKlrMH noTeH[14aJ1aMIt. Ilpu OTOM 110 itTOpofi '-iacru 0606uaercn pe3yJlb-
Tar I'OpJ(OHa 0 CO6CTIICHH1,IX .3uaqeHllnx ripii lIo'ITll-rIepltou'IecxoM noTelllHaJ1e. 

In the first part of the paper the results of Luttinger and Dworin concerning the following 
problem of Saxon/Hutner are generalized: Which conditions guarantee that an energy value 
E lies in the resolvent set of the Hamiltonian for an alloy, presupposing that E lies in the re-
solvent set of the Hamiltonians of all pure components. Symmetric potentials play an partic-
ular role in this. Iii the third part the ground state energy is investigated for different types 
of the ergodie potential V. For comparison, examples with almost periodic potentials are given. 
E.g. Cordon's result concerning eigenvalues for almost periodic potentials is generalized in the 
second part. 

1. naps in the' spectrum of substitutional alloys 

1.1. REED/SIMON [34: p. 3601 present the following one-electron model for a binary 
alloy in one dimension: Let V 1, be two potentials on [0; 1). Let co denote a two 
sided sequence {co,}, n E Z, of I and 2. Given w, let V"' he the function on It such that 
V"':= V 1 (x—n) on [n ; n + 1 ) if a,=1 and V"':= V2(z-71)on[n;n+I) if 

= 2. Define H" := — d2/dx2 + V"-'(x) as an operator on L2(It). Let p be the density 
of the second component in the alloy (with the potential V. On (1; 2)Z put the product 
measure with ({1}) = I - p, ({2}) = p on each factor. 

ENGLISCIT/KURSTEN [81 investigated the generalized model of an alloy with eountably 
many components in H", where the occupation of the lattice points by atoms 
need not be independent and the potential caused by one atom ranges over more than 
one basic cell:
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Def. 1.2. Let a 1 , ..., a,, be n independent vectors in R" (the physical case is n = 3) 
And V 1 , I E N real potentials in R such that 

{t} E- 11(Z n) VIE N Vt = ( t 1 , ..., t,,) E Z: (f  V i(x)I dx
/
' 1P	Si, 

*here  C i := {x E R" : x = E x;aj , t :s-^ x1 <t + 11 are the shifted basic cells and 
p=2 for n3,p>2 for n=4 and p=n/2 for n5.	 S 

•

	

	Further, [N, BZ", ) should be a measure space describing the random occupation 
of lattice points by different kinds of atoms. Let V-(x) := f V,(x - !'t1a), then 

• -	 S	 5	 S	 tZ" 
= -A + V0 is the Hamiltonian of the alloy with countably many components. 

In one dimension every type of atom, I, can possess a different lattice constant a1, 
I	t	\ 

i.e. V'°(x) := ' V, (x - E aw e ). The conditionconcerning the local LP-norms now 
reads	icZ	\	s-i 

( f I V 1 (x) dx\"2 ^ s . mm {1; 1/a1}. 
/ 

IDef. 1.3. The measure space [NZ, yJ possesses the occupation property if for every 
finite subset T Z" and every Co E NT and u - a.e. co € N"°', there is a vector to E Z" 

such that a, = 6t  for every t E T. 

Remark 1.4: This condition is fulfilled for example in the following cases: 
a) The atoms occupy the lattice points independently (cf. 1.1). 
b) For space dimension n = I the occupation'is described by a Markov chain in which 

for sufficiently small e > 0 and for all but finite transition matrices P(t), t E Z,all 
matrix elements fulfil p j	- 

c) There is a finite set T0 Zn and e> 0 such that for every t0 € Z" \ To and every 
finite set T	Z" with to T and every Co E ZT , the conditional probabilities fulfil 

= 1 I V  E 'I' : co t = 6 t I ^! r; i.e. one can describe crystal growth processes 
starting from a given configuration on T0. 

d) 1.3 is equivalent to the condition that for -a.e. co € NZ , the hull 

= w—cl 1613 t0 € Z" V  € Z:a) 1 = 

is NZ'; i.e. 1u-a.e. orbit (with respect to all shifts in Z") is dense in Nz". (w-el denotes 
the weak closure; the weak topology in' NZ" is given by the generating system of open 
sets

{a) €	I V t € T : co t =	T c: Z n finite, Co € NT}.) 

e) For measures It, ergodic with respect to the translations in Z, 1.3 is equivalent to 
the condition that every w-open set has a positive /t-mcasure. 

1.5. Let us denote by S the union of all spectra a(R-) of all operators H'" with 
periodic potentials V" (i.e. there are nindcpcndent vectors r 1 , ..., r,, € Z' with: 
V I E {l, ..., n} V t € Zn a)1 = by S we denote the closure of S in the ordinary 
topology of R. Then in [8] it was proved: 

Theorem 1.6: a) If an alloy satisfies the conditions of 1.2, then for each a) € NZ", 

a(Ii'")	S.	 - 
b) If the occupation property also holds"then for ,u-a.c. a) € N"-", a(Ii'") = 8. 

Remark 1.7: The SAXO-HUTNER conjecture 371 states that for every w (iI'") 
U a(I1), where JP := —A + Z V 1(x - ta) is the Hamiltonian of the periodic 
j	 IEZ" 

crystal formed only by J7 1 -potentials. Th. 1.6 shows that this conjecture cannot be
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true in general. The first counterexamples were given by JAMES/GrNZBARG [201 and 
KERNER [22]. 

KSCII/MART1NELLI [24] found independently of us a result where the statement and 
the proof is closely related to Th. 1.6. The statement a(H 0) Q y a(J1) is contained 
without rigorous proof in a paper of LIFSIUTZ 1281 and Hoi 1151, who announced it as 
a result of YOUNG/DWORTN.	 - 

In order to give a further characterization of 8, we recall the following results for 
Schrodinger operators with periodic potential from I; Th. 13.89, 13.97, 13.100]: 

Lem iiia 1.8: Let V be a periodic potential whose Fourier series is in I P with p < (n 
- 1)/(n —2) for n> 3 and p = 2forn:!E^ 3. ThenIl := — A + V has apureabsolute-
ly continuous spectrum- (we abbreviate it by a(11) = (Tac(i1)). (1(11) = U U E(H(0)), 

jEN 8€IO;2)' 
where 11(0) is the operator —A ± V restricted to the first basic cell with boundary con-
ditions

q(x + a,) = exp (i0) p(x),	e47(x + a)/ex = exp (i0) 992(X)1aX, 

0,E[0;2z),	jE{l,...,n} 

and E 1 denotes the ith eigenvalues. In one dimension we have 

a ( —d2/dx2 + 1) 
= J ([E21_j(I-i(0)); E2_1(11())} u [E21(I1(r)); L21(1I(0))}) iEN 

If V has the period a and Yo' y are the solutions f the differential equation (d2/d2 
+'V - .E) y = 0 with the initial conditions Yo( 0) = y i'(0) = 1, Yo'(0) y,(0) = 0, 
then the transition matrix C(E) is defined by 

C(L')	(c ii (E) c12 (E)\ 	(yo(a)	y1(a) 
c21 (E) c22 (E)/	 y0'(a) y j '(a)	 - 

Then E E a(Ii) is equivalent to T1 C(E)l	2; where Tr denotes the trace, and then 
Tr C(E) = 2 . cós 0(E). 

Let us define 
y i ,ir:= inf V(x) and V,, 1,(x) := sup V1(x) 

t	 i 
and

J:Jinf/sup = —A + .2:' V1ti (x - 2:' t,a,). 
LEN 

From Th. 1.6, Lemma 1.8 and the mm—max principle we get immediately 
Lemma 1.9: V a € N: 

cr(I1'')	U Iinf E1(I:J1't(0)); sup Ei(HS1P(0))j. 
I	 8 

The applicability of the min—iiiax principle to the gap problem in alloys has already 
been seen by TAYLOR [42]; l(rRscH/MARTINELLI [24] have also used it. 

Remark 1.10: If 17inf and Vsup are contained in {V1} (without loss of generality we 
assume V 1 = V 1 and V2 = V5 ) then one may conjecture that for -a.e. co 

a(R-) =	['? E,(IJ(0)); sup E(I12(0))]. 

The conjecture is based on the following interpolation argument (we take for simpli- 
city the dimension of the space n = 1): By V'm we denote the periodic potential with
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period n + m consisting of n potentials V 1 and m potentials V2 ; let fiIm := —d2/dx2 
+ vn ,m. The mm — wax principle yields 

•	
I(I-l'(o))	PJl(,,L,fl)(I1n4n.0(0)) 

E9i(fl±,n)(J:1n-1m1(0)) 

(for odd eigenvalues an analogous statement holds, beginning with E2+.1(111(0)) 
= E2i(fl+,fl)+I(i1+m.0(0)).) For (n + m) -* oc the eigenvalues seem to fill the interval 

•	[Eo,(Ii1(0)); J! 21(11 2 (0))]. But from IE(H'(0)); E 1 (11 2 (0))]	o(JI°) would follow 
•	 [inf E(II'(0)); Sup B(H(0))1 

since
• [inf E(H1(0)); PJ.(Jil(o))] and [J'(fJ2(0)); sup E,(112(0))] 

lie in a(I1'°) for -a.e. w, if the occupation property holds. 'But in general the eigenvalues 
Blj(n+rn) (Jjn.m(Q)) do not lie dense in the interval [E2(I1'(0)); E2 j(H 2 (0))1, as the follow-
ing generalization of a result by Luttinger (cf. Remark 1.13) shows: 

Theorem 1.11: Let H" be ilamiltonians built up by potentials V 1 E L2 [0; 11. 
a) If the occupation property holds and 

aa) there is an I € N, such that ITr CB)l	2 or 
ab) there is ac € II, such that for all e> 0 there is an i € N, such that V 1 (x) c and 

ITr C(E)I :< 2 + E, 
then B € (j(H-) for 1u-a.e. co . 

b) If there is an e > 0, such that for all E' € [I'] - e; E + e] there is a regular (2x 2)- 
matrix X, such that/or all i E N 4(E') 2 (E') > I and for all i, j E N 4 1 (E') c12(E) 

X. 1 (E') 2(E') >0, where41 arethe matrix elements of C 1 := X'C1X, then for every a) 

Proof: as) is a direct conclusion of Th. 1.6 and.Lemma 1.8. 
ab) Now assume lTr Cd = 2 + s with e < 1. Then the absolute values of both eigen-
values v of C 1, given by Iv i = (2 + )/2 + 17(2 + )2/4 - 1, are smaller than 
1 + 2e h / 2 . But this means Iyg(x)I K (1 ± 2e'/2)I for an arbitrary solution of the 
differential equation (M t - K) y5 = 0, where K depends on the initial conditions. 
Due to SNOL [11: § 541 this yields a(Hi) n [E - co& 12 ; B + c0eh/2) + 0 (c depends 
only on c) and by Th. 1.6 B € a(HI) for fi-a.e. (o. 

b) Define 1%E') := sign 1 (E') . Y- 1 C 1 (E') V with Y(E') 	(	if	B') 
/1 0\	 -	\0	1/ ) 

x 0 (E') <0 and Y(B') := (	) elsewhere. Then C 1 (E') has only positive matrix 
k_	\01/ 

elements. Thus also HC1,(E') has for arbitrary k € N, ij € N only positive matrix 
j= 1 

elements. Since det HC15 (E') = det[f C,(E') = I this implies 2 < TrjJ C1,(E') 
j=l

= Ti [1 C 1,(E')l. Lemma 1.8 ensures that every B' € (E - B + e) lies in the re- 
solvent set of every periodic Hamiltonian built, up by V i -potentials. Now we can 
apply Th. 1.61 

Corollary 1.12: Let il be Hamiltonians built up by symmetric potentials V1, 
I € 1, ..., k} with supports [0;a 1 1 and symmetry axes aà/2. If for every i K 4 or(Ii i ) and 

for every i, j € {l, ..., k} e4 1 c 2c' ic 2 > 0, than B	a(Ii). 

Proof: The symmetry of V 1 yields c 1 = c22 [19], i.e. ITr Cd > 2 induces e 1 c 0 > 11
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Remark 1.13: For k = 2 this corollaryis implicitly contained in a paper by 
LUTTTNGER [29]. His requirement 

sign (2 1 22) := sign (c0c0/((1 ± c 1 ) ( I -I-- c 1 ))) = 1 

is equivalent to c 1 c 2c 1 c 2 > 0 because of c 1 > I. The condition V(x) c in 
Th. 1.11 ab) can be weakened, sinceSmIoN [41]sharpened Snol's result. The statement 
and proof of Th. 1.11 h) is related to a paper by FURSTENBERG/KESTEN [10], who also 
regarded random products of matrices with positive elements. 

Now we give a counterexample for the conjecture in 1.10: Take V symmetric' with 
respect to the axis 1/2, supp V	[0; 11, such that —d2/dx2 ± ' V(x - t) has a least 2 

EZ open gaps, e.g. the 1 St and the 2' gap. Then there are at least 2 indices i,j € (1, 2, 31 
with I < j and c 11 (E) c 1 0(E) c11 (E1 ) c12 (B) > 0, where E 1 < E1 (0) < B2 < E2(0) < B3 
< 1 3 (0) is choosen in such a way that B2, E3 lie iii a gap. Take V 1 := V and V2 := V 
± E - E. Then Ej does not lie in a(11'') for any Hamiltonian describing an alloy with 
components V and V2, though B5 € [Bj_ 1 (0); B_ 1 (0)]. For. simplicity let us assume 
i = 1, j = 2. The last statement can be somewhat sharpened: (E ll (); nun (E21(), 
E 1 2 (0))) n a(I'l'°) = 0. This is proved in the next lemma. 

Lemma 1.14: If E, K lie in the same gip of the operator —d 2/dx2 + V with V peri-
odic and symmetric, then sign (c11 (E) c 12 (E)) = sign (c11 (E') c12(1i]')). 

Proof: if B, K lie in the same gap, then for every B" € [B; F] 1c1 1(E")I > 1 and 
e12(E") + 0. The continuit y of c11 (E") and c12 (B") yields sign c11 (F) = sign c11(E') 
and sign c 12 (E)	sign c 12 (E') I 

Remark 1.15: Though it is not obvious, Th. 1.11 b) is equivalent to thecriteria of 
LEHMANN [26] and HORT/MTSUDA [16]. 

Cor. 1.12 is further equivalent to the criterium of TONG/TONG [44]. In order to 
demonstrate the equivalence, we begin with an explaination 'of the idea of Hori/ 
Matsuda: They considered the action of the transition niatrix.0 on the projective 
real line it (i.e. —oo is identified with 00 ) x/y € It L4 (c 11x + c12y)/(c21x ± c22y) € II. 

• An interval of R (which is +11, bitt which can contain the point oc) is called a trap-
ping region if all transition matrices map the interval into itself. The Hori-datsuda-
criterion states that the existence of trapping regions for all F' € [F - e; F + e], 
E > 0 implies that F lies in a gap of the spectrum. (The original formulation [16] 
contained an unimportant oversight: The authors die! not notice that the spectrum is 
a closed set: thus they allowed, for example, parabolic transformations.) With the 
help of Th.-1.6 and Lemma 1.8 it is easy to see that the criterion is correct: The tran- 
sition matrix for an arbitrary periodic potential, formed by the given potentials, 
maps the trapping region - a compact set - into itself, i.e. this transformation 
possesses at letst one fixed point. This implies that the absolute value of the trace 
of the uniniodutlar transition matrix is not less than two. 

As the next step we reformulate the J-lori-Matstuda-criterion: A trapping.region can 
only exist for F' € [F - e; B + e], if each transition matrix has two real eigenvalues. 
The eigenvalue with modulus greater (less) than I corresponds to a stable (unstable) 
fixed point ("sink" ("source") in the notation of [16]). A trapping region obviously 
exists if one can divide the projective line It into two intervals; one containing all 
stable fixed points, the-other all unstable [16: Th. 2]. This last statement is the start-
irig point for Lehinann and Tong/Tong: Both reformulated this condition in terms of 
some parameters of the transition matrix. For the case of symmetric potentials their 
conditions' coincide with the Hori-Matsuda-criterion, for asymmetric only LEHMANN 

-
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[26: (7)] found an equivalent condition. Since Tong/Tong assume a particular division 
of R, they got a weaker result than Hori/Matsuda or Lehmann. Though the articles 
[16, 261 are closely connected, LEHILANN [26; § 51 did not realize it. 

The equivalence of the Ilori-Matsuda-condition and ours can be seen in the follow-
ing way. If all stable, but not unstable fixed points of the transition matrices C1 lie 
in an open interval J, then take that X which transforms 1U into J. The stable fixed 
points of C 1 lie in W, the unstable in R. An explicit calculation shows that for all i 
the matrix elements of C, have the same sign; i.e. 1.11 b) is fulfilled. 

Conservely, if all matrix elements of C 1 are positive then the Frobenius-Perron 
theorem [34: p. 3501 (or an inversion of the above mentioned explicit calculation) 
yields that all stable fixed points lie in 1t, all unstable fixed points in R-. Thus the 
fixed points of C1 lie in J : = X 11+, the unstable in It \ J. For practical use Th. 1.11b) 
is only convenient for the case where X is the unit matrix I. If the potentials are 
symmetric this choice yields a criterion (cf. 1.12) equivalent to the Hori-Matsuda 
criterion; but for asymmetric potentials Th. J.11b) with X = I is equivalent to the 
criterion by ToNG/ToNG [44], i.e. it is more restrictive than the Hori-Matsuda cri-
terion. 

Now we want to extend the Hori-Matsuda concept of a trapping region. But for 
practical calculations this concept is not so elegant as the original one: If for some 
E > 0 and all E' E [E - s; F + e] there are k proper (i.e. rl=R) intervals J1 of the 

k 
projective line R such that every C 1 maps U J1 into one of these intervals, then F 

1=1 
lies in a gap of the spectrum. The proof can be carried out in the same way as we 
sketched the proof for the original Hori-Matsuda criterion. 

Corollary 1.16: Let V0 := a (x - 1/2), where ô denotes the 6-distribution, a € [k; 
cl u [—c; k-] with k < 0, k > 0. If F q ((H k+ ) u u(H)) and 
a)E0 or 
b) E <0, E 4 a(R) and c' 1c> 0, 
then F] J a(Ii) for any H'' built up by V0-potentials. 

Proof: These potentials do not satisfy the condition V € L2(R), but they are 

form-bounded with respect to —d2/dx2 (cf. [81). The condition IaI c ensures the 
form-boundedness of V°; thus .H° is self-adjoint. We explicitly calculate (cf. [6: (31)]) 

= cos E112 + a(4E) 12 sin F112 for F 0 and c 1 = eh(—E) 1 / 2 + a(-4E)_1'2 

Xsh (---E)1I2 for F <0. Obviously the condition Ic fl > 1,  > 1 and F 0 or 
c > 1 and ccj > 0 yields 1,a,l > 1 for every a € [k; co) u (—c; k-]. LUTTrNGER 

[29] proved that c,&2 has a sign independent of a if c,I > 1. Thus we can apply 
1.11b), though the set of allowed a is uncountable: Approximate Vi" by random 
potentials formed by a countable set of V0-potentials. 

Remark 1.17: If all a are positive or negative then a shorter proof is possible 
with the help of 1.9 (cf. [24: Prop. 4.4]). 

Corollary 1.18: Let V0 := k . ô(x) be potentials on the interval [0; a] (cf. 1.2) 
witha€[a';a'+b].If 
a) F 2,- 0,1<0, 3n € N: n —2 . arctan(k(4E)- 2) <a'E'12 <nr - bEl li or 
b) F ^ 0, k 0, 3n € N: ni <a'EtIi <n + 2 . arctan (k(4E)-1/2) - bE1/2 or 
c)E<0,k0 or 
d) F < 0, k <0, a'(—E)"2 > 2Arth (_k(_4E12) for k (-4E) - ' 12 > —1 or 

a'(—E) '12 > 2Arcth (_k(_4E)-h/2) for k(-4E)' 2 < —1 

then F 1(H0) for any JJo built up by V0-potentials.
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Proof: The inequalities express that for a E [a'; a' + b] Ic 1 I > I. BORLAND [3] 
has already proved that the conditions a) and b) are sufficient, and so we will only 
show it for d) in the case —k(-4E)- 112 > 1 (the other calculations are similar). 
ch (a'(_E)h/2) + k(_4B) -1 12 sh (a'(— B)112) < — 1 is equivalent to (c2  
Xch (a'(_E)1/2) ± c(c2 - l)112 S4 (a'(_E)112) < —(c2 - l)h12, where we have ab-
breviated c := k(-4E)-1/2. Arsh ((c2 	a'(_._E)h12) < - Arsh (0  
i.e. a'(—B)'/2 > 2 . Arsh (c2 - 1)- h 12 = 2 . Arcth - c. Choose X = 1. The transition 
matrix C for a k . 6-potential, surrounded symmetrically by two regions of length 
a'/2 of zero potential consists only of negative elements. Since an arbitrary random 
chain can be cut into pieces of k . 5-potential surrounded by zero potential of length 
a'/2 and of pure zero potential of arbitrar y length, the condition of 1.11b)is fulfilled: 
For negative energy the transiton matrix for a zero potential of arbitrary length 
consists only of positive matrix eleuents I 

Remark 1.19: Since the method of l-foRI/MATsuDA[I6lisnothing other than Bor-
land's method [3] applied to general potentials, it is obvious that LEHrNN [26] must', 
reproduce 'Borland's conditions for the potential of cor. 1.18; It seems that the ex- 
plicit condition 1.18d) for B < 0 is new, but the qualitative behaviour (no condition 
for an tipper limit of a) has been already given in LEnu.&xN [26]).  

Remark 1.20: FRIScH/LI.oy D [9] investigated the same model, where a E 1t is 
Poisson-distributed. Since for It - a.e. co there are arbitrarily long intervals J It 
with V"'j, = 0, II"' has no'gaps for B 0. For E < 0 there are also no gaps: A set of 
random potentials generated by a poisson distribution possesses- 'the occupation 
property. The ground state energis !1' 0 (0) depend continuousl y on (t; i.e. for k < 0 
supp B1a(0) = (—; 0 1 . Thus 1.6 yields (—; 01	a(H-) for u-a.e. cv and k <0. 
For k	0 V" is positive; i.e. B 4 oH") for B <0. 

Now we want to derive a conclusion from L12 for the ground state energy.  
Corollary 1.21: Let V i by symmetric sernibounded potentials with support [0; 1].  

Then /or every cv inf a(110) inf inf a(/'I). The equality holds for u-a.e. cv if the 
occupation property holds. 

Proof: 1.6 yields that for n.e. co irifa(H'°)	inf ml a(Ii'), if the occupation prop
erty hol(s. Now assume E <ml inf a(11 1). Choose E <inf VA). if y is the solu-
tion of (Iii - B) Yi 0, y(0) = 0, y'(0) = I, then y j(x) > 0 for all sufficiently 
small x > 0. But then y 1 "(x) = (V - B) y1 (x) > 0; i.e. Yi' is increasing and this 
ensures c 1 0(E) = y 1 (J) > 0. 1.14 ensures c12 (E) > 0. Front c ji (inf u(1i')) = 1 follows 
c11 (E) > 0. With the help of 1.12 we get ml a(H-)	inS inf a(1i) for every to I 

Remark 1.22: For asymmetric potentials 1.21 does not 1101± Take for example a 
poitive function y  C2[0; 1] with y'(0) = y'(l) = 0 and y(0 ) + y(l). Define vj(x)

y"(x)/y(x) and V2 (x) : = V 1(1 —'a); thus a(I11) = (J/2). w1(x) : = E (y(1)/ 
iEZ y(0)) y(x - 1) is an everywhere positive, expnential1y increasing or decreasing 

solution of i/ 1 w 1 = 0; i.e. 0 < inf a(fl') by Sturmn's oscillation theorem [4]and 1.8. 
Take 1J12 := —d2/dx2 + E (Vi(x - 21) + V2 (x - 21— 1)). Then w(x) := Z (y(x 

iEZ 
- 21) + y(—x - 21)) is periodic, everywhere positive solution of i'P2w = 0, i.e. 
0 = inf a(R 12) inS u(II) for u-a.e. cv (cf. 1.8). This example with inf ci(J-I' 2) < 
ml a(Hi) seems to be connected with Luttinger's theorem on syn i metric rearrangement 
(cf. [39: Th. 13.12]): Take y := I + 3x2/2 - . Then y' (0) = y'(l)	0; V1 = y"/y 

27 Analysts Bit. 2, Heft 5 (1983)
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is decreasing on [0; 11 and y > 0 on the same interval. V 12(x) := V 1 (x) + V2(x - I) 
with V2(x) := V 1 (1 - x) is the symmetrically rearranged potential of V 11 (x) := V1(x) 
+ 17 1 (x - 1) on L2 [0; 21 with ml c(—d2/dx2 ± V 12 ) < inf a(—d2/dx2 + V 11 ), where 
the operators are taken with respect to periodic boundary conditions. 

D\voaIN [6] and MATSUDA [30] (cf. also MATSUDA/OKADA [31]) gave a condition 
for E q c(i1"), which cannot be derived from 1.11. Dworin's condition is not exact. 
We present it in a more general form which is compatible with the closedness of the 
spectrum. 

Theorem 1.23: V, should satisfy the conditions of 1.2 If there is an s > 0, such 
that for all. E' E I  - e; E + e] there is a regular (2 x 2)-matrix X, such that for all 
i,jEN

1 (E') + c22 (E) ë2(E')/2(E')I ^ 2 
and

I2(E) •-	(E')	2(E')/2(E')j ^ 2, 

where 4, are the matrix elements of C i	X- 1 C 1 X, then for every w E a(H-) 

Proof: Dworin showed that for large x these conditions imply the independence - of 
the ratio y'(x)Iy(x) from the initial conditions in x = 0, where y(x) is a solution of 
1-I'°y = E'y. (Dworin's remark that y(m)/y(rn - 1) converges is wrong.) If a periodic 
potential has a transition matrix C(E') with Tr C(E')! < 2, then (H'" - K) y = 0 
has two independent solutions, y+ and y, fulfilling some 0-boundary condition 
(of. 1.8) and y'(x)/y(x) = (cy,' + c_y_')/(cy, + c_y_) also depends asymptotically 
on the initial conditions, i.e. on But if for all K € [E - e; is' ± e] all periodic 
1-lamiltonians H" have 'Fr C(E')I > 2, then the analyticity and nonconstancy of 
Tr C(E') yields jTr C(E')I > 2 for K € (l - c; E + e) and one can apply 1.6 and 
1.81 

It we put X := I the resulting conditions of 1.23 are not symmetric. Thus one can 
formulate another simple set of sufficient conditions which are not equivalent to the 
above set for X I. in contrast, the conditions of i.11b) are syninietricfor X = I, 
even when they do not seem to be symmetric: If c 1 c 2 > 1, then tine independence of 
ct1c2 from iwith respect to the sign is equivalent to the independence of sign (c141), 
because c 0 c 1 > 0. 

Corollary 1.24: If/or everyi, j € N and every E' E [E - e; E ± v] for some e > 0, 

c 1 (E') + c?,(i) c 1 (E')1c 1 (E')j > 2 
(110(1

Ic22(i') + c 1 (E') c1(E')/41(E')I	2,

then E a(H-) for very w. 

Proof: Put	:= (
	) 

• 
Remark 1.25: With the help of [30: 3.27] it is easy to verify that Matsuda's 

conditidn [30: 6.91 is equivalent to l)worin's condition [6: 281. In MATSUDA/OKADA 
[31] this condition was derived once more now they used a convergence theorem for 
continued fractions as Dworin did. 

The original formulation [6, 301 corresponds to the choice X = I. Our formulation
2 3) is indeed less restrictive, as the following example demonstrates: C1 :	and
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:= (+ 5	) fulfil the conditions of cor 1.24, but not those of 1.23 with \-1 ±0  
X = I. 1)worin obtained Luttinger's result [29: cf. 1.161, but a weaker result than 
BORLAND [3: cf. 1.18]. Also our generalized version 1.23 of the 1)worin-Matsuda cri-
terion leads sometimes to more restricted results than Theorem l.11b): Choose 

(sh
chasha\C0 :=	,' > a > e. These matrices fulfil the conditions of l.11b). ucha/ 

But	= (x1 - x 2 ) (sh a)/det X and the invariance of the trace yields 
= ch. a ± tsh a, 2 = ch a - t . sh a withtdependingonX. Wefind + 22/ 

c 12 1 = cli a + ch b . sh a/sh bI =: A Ob. Since lim A O. b = 1 there is certainly a pair 
(a, b) such that ( CO3 C) does not fulfil 1.23, if r > 0 is sufficiently small. 

Neither can 1.23 be derived from 1.11b): The above matrices, C1 , C2 fulfil the 
conditions of 1.23, but not those of l.lIb): The stable fixed point. 3112 of the trans-
formation associated with C 1 lies between the unstable fixed point 241/2 of C2 and the 
unstable fixed point _31/2 of C2. 

From Lehniarin's paper [26: explanation to fig. 21 one gets the impression that his 
criteria are necessary for the oecurence of gaps. The above example shows that this is 
wrong. Further he wrote: "In jèderhezuglich derZusainniensetzung uind der Anord-
nung der l'otentiale heliebigen .Legierung sind die Enérgiebereiche verboten; die 
auch in jecler aus den Koruiponenten dieser Legierung aufbaubaren hinären Legierung 
verboten sind." ("In every arbitrary - with respect to the order of the potentials 
alloy those energy regions are forbidden which are also forbidden in ever y binary 
alloy consisting of any two components of this alloy.") This statement is also in-
correct, but one can modif y it in order to get a correct statement: 

An energy region is forbidden for artm-ary alloy, if for every two transition matrices 
the condition 1.11b) is satisfied. The proof is siuiuple if we take the equivalent formu-
lation of HORI/MATSUDA [16]: If for every two matrices the two stable fixed points can 
be separated from the unstable, then this is also possible for the set of all fixed points. 
That Léhunann's statement quoted above is wrong we can see from the following 

(1/3  l\	/6 + 2	1 \ '	/2	1 counterexaniple: A :=	6)' 13, :=	+ 2c/2 1/3)' C,	—9 - 2r 4 
Then for sufficiently small e > 0 any, two arbitrary transition matrices belong to an 
energy gap of the coresponding binary alloy since (A, 13,) fulfils the conditions of 
1.11 b)  and both (A, C,) and (B,, C,) fulfil those of 1.23 (with X = I) But for = 0 
Tr (A13000) = 0, the continuity yields that for sufficiently small e JTr (A B,C,)I < 2; 
i.e. the alloy consisting of components with transition matrices A, 13, and C, has for 
the sauuie energy no gap. 

KIOMSKII [23] showed that using Hadanuard's theorem for the determinant of 
matrices one can sometimes get statements on gaps. He was able to reproduce the 
results of Luttinger and Borland (cf. 1.16 and 1.18). His method seems to he not as 
general as those used in 1.11 h) or 1.23, since a difference equation must be derived 
from the the differential equation, and' it is not obvious how to do this for other cases 
than the one mentioned; the calculations in [23: § 7 +8] use the special nature of the 
potential. On the other hand , his method works for some discretisi zed models (e.g. 
tight-binding model) in 3 dimensions, where the methods based on the transition 
matrix break down, there being no useful analogy to the transition matrix for more 
than one dimension. 

The papers of ToNG/TONG [441 and LEIEMANN [26] contain conjectures concerning 
those energies which occur in a gap of at least one ordered alloy. A solution of this 
probleuui will be presented in a forthcoming paper [7]. 

07*
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2. Eigenvalues in the spectrum 

2.1 While for potentials generated by diffusion processes a.e. solution of (ll - E) y 
0 increases or decreases exponentially [32], one cail give explicit countcrexarnplcs 

for an exponential behaviour in the model of an alloy: If for a fixed energy 
!J E (fl a(ll)) and an unimodular (2 x 2)-matrix Cancl every I E N there is anexpo-

nent p(i) E It with lTr Cj < 2, C1 (E) = CPW (C 1 is the transition matrix for the tI1 

component, cf. 1.8), thenfor every to (110 - E) y = 0 has only bounded solutions with 
litn sup ly(x)l = 0. ToNG [43] proved for a model with constant potential and random 

iuterpace between them that for a countable number of energies all transition ma-
trices commute and thus not all solutions of the differential equation increase or 
decrease exponentially. A weaker 'result was rediscovered by J)NBIGH/R. rvTER [51, 
though they.mention the review paper by TSHH [17], where Tong's result occurs. For 
an occupation of the lattice points given by an ergodic Markov process, a result of 
ROvER I 5], VJRTSER [45] and GulvAndil [14] yields that the spectrum has no abso-
lutely continuous part. 

2.. The type of spectrum of /i' does not onl y depend on the type of process giving the 
potentials, it also depends on the dimension of the space. For example, GOLDSHADE 
e.a. [121 proved for the one-dimensional Sch.rodinger equation with a particular 
random potential that a(I11) = o - the point spectrum - for a.e. w, whereas one 
expects in higher dimensions that the absolutely continuous spectrum aae is non-
void. All known examples (cf. [81) do not contradict the following conjecture: If the 
potential is given by a weakly mixing process (for definitions cf. [181) then in 1 di- 
mension a(H) = o, for a.e. to. Let us consider the mixing properties of the model for 
an alloy: The occupation given by an ergodic (with respect to Z') Markov process is 
isomorphic to a Bernoulli shift (for definition cf. [331), but the ergodic (with respect 
to It") potentials of the alloy given by {w, } E Nz" x [0; 1)"	Vc0(x) := V(x 
-	a) are not weakly mixing with respect to all translations in it". 

The reverse of the above conjecture is certainly not true: SARNAX [36] has given 
examples of non-selfadjoint operators with almost periodic potential such that 
a(1i) - a. SCI-IARF [38: p. 5951 has given a special class of examples of limit periodic 
potentials such that the Schrodinger operator has at least one eigcnvalue. JoaNsoN/ 
MOSER [21] have constructed a special class of quasiperiodic potentials with the 
same property. GORDON [13] showed in an existency proof that for given frequencies 
there is a quasiperiodic potential possessing these frequencies and a(—d21(J.x2 
± V) 0. We will prove Gordon's statement for arbitrary dimensions in a con- 
struct ive way. We found the examples independently of [13, 21, 381, but the example 
is very similar to that of [21]. 

Theorem 2.3: Let C 1 be arbitrary dense subgroups of R. Then there is an almost 
periodic function V in C(IV'), having G x	x 0,, as frequency module, such that 
-	± V has at least one eigenvalue. (For definitions cf. [401.) 

Proof: Because of the density of 0 1 we can pick out a generating set {Yk.j E G; 

k € N} with l y —k < 1/2. Let us inverstigate / 1 (x1) :=	1n 2 k(_1 ± eos 
Yk.i))	0. For lxi > 8we estimate	 k2 

IIzfl 
/(x) <' ln k(_1 + eos (X/Y,. i)) 

k=[IzI/21
Lirli 

<(-1 + cos (10/(4 - 1/2))) E 11-12 k < —c lxi . 1n 2 lxi, 
LIx/2)
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where [x] denotes the entire part of x. Thus exp (
	

/ 1 (x 1 )) is an -eigenfiinction for

the operator — A ± _T V + f"(x)). But V := f'(x)2 + f"(x) is an almost 

periodic potential, because f' =	- sin (x/ynj)/(yn j in2 n) has an absolutely con-
Co 

vergent Fourier c1ecompositior, since E 7 1	2 71 < c - In 7Th. /" also has an

absolutely convergent Fourier decomposition I 
Remark 2.4: There is a conjecture, much stronger than 2.3: For soiiie Hamil-

tonian H' with almost periodic potential a(H-) = cr, for a.e. (1) [40]! Perhaps, in our 
example for V, the set of w with a1 (—A + V'°) + 0 (V°' is from the hull of V; for 
definition cf. 1.4d) with C, 10 E R) has measure 0. 

On the other hand Molèanov and Pastur (private communication) emphasize 
that for the model of an alloy the singular continuous spectrum a(fI) (for definition 
cf. [40]) may be nonvoid for a.e. w. If this happens this would be interesting in 
connection with the intuitive idea: "The greater the disorder, the greater the ten -
dency to localization". Some random alloys seem to be less disordered than some 
almost periodic structures! 

3. The dependence of the ground state energy on the coupling constant 

3.1. in 2.2 we discussed the possibility to determine the type of the spectrum from from 
the mixing properties of the process defining the potential. K0TANI [25] poses another 
problem: to find a connection between mixing properties and the behaviour of the 
density of states N(E) (for definition cf. 251). I-Ic conjectures that strong mixing 
properties imply a strong increase of N(E) near ess ml J7 (x). He illustrates his conjec- 
ture with two examples: the periodic potential and potentials generated by , ,-t Poisson 
process. Further, he investigates 3 different types of potentials generated by a Poisson 
process, each with a different behaviour of N(E) near ess inf V(x), but it is not clear 
in which sense these 3 types- have different mixing properties. 

We wish to investigate the ground state energy in dependence on the mixing prop-
erties of the ergodic potential. The ground state energy is related to the density of 
states by inf a(—A + AV) = inf supp N(E; — A + 2V). More precisely, we investi- 

E	 B 
gate the limits lim ml a(—A + 2V) and lim ml a(—A + ). V). The last expression 

gives no differentiation of the processes with different mixing properties; such a 
general result also holds for liñi N(E) 125, Th. 51. 

Theorem 3.2: Let V € Lr0( It ) (uniformly!) with p = 2 for n ^ 3, p > 2 for 
n = 4 and p = n/2 for n ^ 5. Then lim 2' inf a(—A + ).V) = ess inf V(x). 

A-o	B	 x	- 

Proof: We denote Al, := J.TJ 11(y) ^S ess inf V(x) + E i.e. t(M) > 0, where z is 

the Lebesgue measure in R". Let its choose a set .B6, , depending on some 6 with 
a) (M, A B,) < (5. (The symbol A denotes the symmetric, difference of sets.) 
b) Ba., is an element of the algebra (not a-algebra!) generated by the sets 17 [a 1 ; b1] 
with arbitrary a 1 , b 1 € R.	 - 
Because V lies uniformly locally in some L, V lies uniformly in L 00 , i.e. If VBb,\Mffl 
< ', where E ' depends on 6. Now take a bounded function 1P. € dom ( — A) with
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supp V. c	IIe!2 = I and III!e < (, (Bo)_.a)_h'2. Then 

ess inf. V inf a( — A/). + V) (, (—A ± 2V) ip)/. 

= (, —Av)IA + , Vtp) 
< c/2 + (1 - e) (essinf V + s) -1- I1'L IIVJBa\fI[j 

cj2 + (1 - s) (ess inf ± s) + ( (B1.) - 

-- with an s-dependent constant c. Choose ô and thus e' so small that (u(B6,) -	1 - - - HXe<eI	-	 - 
Remark 3.3.: Let us give the following generalization for the notion of the ii" 

eigenvalue E 1 of an operator H [34: § 131: E j	inf max (, Hp), where., 

denotes an arbitrary i-dimensional subspace of the Hubert space 0• Then the con-
ditions of .3.2 imply a stronger conclusion: urn A'E(—A + V) = ess inf V(x). 

X 

The proof of 3.2 has to be changed only slightly: Divide B6 , into i sets !,, 
j E {1, . .., i}, lying in the algebra generated by [f [a t ; h) and having equal measure. 
Take	E dorn ( —A) with supp d E B',, 11,p i ll2 = 1,lly, i ll. < (1u(B',) 
and define .	as the linear span of	

V 

The proof of 3.2 is the joint work of the author and K.-D. KUrsten, the next theo-
rem is the work of the author and M. Endrullis:	

V 

Theorem 3.4: Let V be a periodic potential in L( W') with p as in 3.2 Let us assume 
that V is normalized, 'i.e.f V(x) (l ax = 0 (Co is the basic cell, cf. 1.2), and V	0. '['hen

ca 
o > lirn inf a(—A + v)/2 > 

A-4) E 

Proof: The key of the proof is to show that perturbation theory is applicable. 
Ordinary perturbation theory works with isolated eigenvalues, but —A on t2(R) 

does not have any eigenvalues. The infimum of the spectrum of ( —A + AV) regar-
ded as an operator onL2(R") is equal to the infiniuni of the spectrum of (—A +.V) 
regarded as an operator on L2 (C0) with periodic boundary conditions. For n = 1 
this result is contained in 1.8, for n > 1 it was mentioned in 2]. One can prove the. 
case n > I analogously to that of n = 1, because the ground state of —zl on L2(C0) 
with periodic boundary conditions is a single eigenvalue (0) with strictly positive 
eigenvectOr (the constant), as an explicit calculation shows. Thus this operator gen-
erates a positivity improving semi-group 134: Th. 13.44]. Now —A has on t2 (R) a 
discrete spectrum and V is. (-4)-hounded, i.e. perturbation theory is directly appli-
cable. The infiniuni of o(—A + )V) is thus an analytic function L' 1 (A) of .: 

E(0) + a). ± a222 ±	with E 1 (0) = inf (-4) = 0. The normalization of V
yields a 1 = 0. Further a2 = — E JKV,, V )1 2/(E 1 - E0), where (} is an orthonormal 

basis of eigenvcctors of —A regarded as an operator on L2 (C0) and K1 denotes the 
eigenvalue associated with . Since Vo is a constant,	Vpt) is proportional to V, 
the Fourier coefficients of V with respect to {v,}. 17	0 yields that at least one coeffi-



cient is not zero. Since V is normalized, this coefficient is not the coefficient V0. Thus 
a2 =,—c	IV,121(E1—E0)<0 I 

For almost periodic potentials the situation is more complicated.. First we stati 
the simple part, which holds for all ergodic potentials.
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1 e iii III a 3.5: Let J1°' be and erqodic potential (for del. cf . [181) uniformly in L( R) 

with p as in .3.! 2 Let nsassume that a.e. V- is normalized, i.e. M(V) := iim(2T)-f... 

— V"(x) dx = 0. Then/or every 2	coand a.e. inf a(—A + 2 V) 0. 
T 

	- 

Remark 3.6. If V is not normalized, then pitt (inf a(—A + ).V) — ;.M(V)) in-
stead of (ml a(—A + 21/)) in 3.4 and 3.5. 

Proof of 3.5: For arbitrary large R we choose a function tpR E dotit ( — A) by 
191)	 IxR 

(l x i

	

	I?) for R < lxi <.R + 1, where (x) E C2(R) is a function with 
lxIR+I 

(x) = 1 for x 0, q(x) = 0 for x ^ 1 and (x) > 0 elsewhere. Then ml a(—A 
+ AV0)	tiIII (V-'R, ( —A + )V°) 1pR)I(,uR, R) = 0 because of the normalization of 

(y'R, — A pR) increasing as R1, and (V-'R, PR increasing as .R' U 

Theorem 3.7: a) Let V i be periodic potentials uniformly in L(R') with j as in - 
3.2, normalized (cf. 3.4) and not necesserily with the same periods. Then the almost peri -

(xic potential V :=Z V i satisfies Jim mi a(—A ± 2Va J) )/22 > —oo. 
h) There is for arbitrary,- > 0 a normalized almost periodic potential V with 

hut ml a(—d2/dx2 + V)/(A i log Al E ) < 0. 
A—>O 

Proof: a) The inequalit y inf a(A + B)	inf a(A) + ml a(R) yields inf (—A
+ !'2V) Einfa(—A/m ± W,). Now we can apply 3.4. 

h) Take J7 :=	— n' cos (x/2'). rEh we havefor VR 6f 3.5 and A > 0 mi a(IJA) 
n	 S 

(R, lI R)I(R, R) !C^ C, — 2f En' cos (x/2n )) (211 ± e) 1 < (c T 2). E2n1' 
X sin (R/2'))/(21? ± c). We put: R = 2Th , where in E N and 2 2 <I? 22. We 
finds 2n '' sin (2m/211) = 0 and 

00	 00 

2n' sin (I?/2)> 2/i f Rn' > c2Rm' > c3 log Alt/A2. 
n=m+I	 nrn+1 

The c i denote some --dependent constants and HA denotes —d2/dx2 ± AVE. Finally 
ml (HA ) < (c - 2Ac3 log ). V)/( 4/A2 + c)	c4(—A) I log Al l ) I	- 

Remark 3.8: Because of 3.5 inf (HA ) is nonanalytic in 2 = 0, i.e. we have a new 
behaviour ih comparison with the periodic potential. It is easy to construct examples 
in more-dimensional spaces in the same manner. 

Now we want to compare 3.7h) with the potential generated by Markov processes 
(cf. [121): For these latter potentials it holds that irif a(H A -) = mi ().V1(x)) for a.e. 
V". Obviousl y, in this case also inS a(i-I;) is nonanalvtic in . = 0, but it is analytic 
elsewhere .. Finally we get the behoviour of ml a(H a-) for the alloy (for del. cf.. 1.2 and 
1.3) from 1.21 and 3.4. 

Leni uiia 3.9: a) Let V i be/initely many symmetric normalized potentials in L2[0; 11, 
which are bounded below, or, 
b) Let V, be countably manuj potentials in L(R), satisfying 1.2. V 1 should be normalized 
(cf. 3.5) and for every x E U! and every i € N V 1 (x)	i7(x).
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Then for a.e. w and processes possessing the occupation property it holds that 

0 > urn mi a(—A + )J"°)/? 2 > 
Proof: b) It is a conclusion of 1.6b), 1.9 and 3.4. 

Remark 3.10: For processes without the occupation property the inequality 
•	urn inf a(—A + 2 V)/22 > — 00 remains true. The function inf o1I) is analytic 

for real 2 with the possible exception of the following set of points {2 I (i, j) : I 
- .•- inf (H2 ) = ml a(1I i)} (for definition of Hi cf. 1.7), which has not Pointsof áeOii-

inulation. In case b) the ground state energy is analytic for every 2> 0. The state-
ment of 3.9a) may be surprising because, it says that for some special alloys Where the 

S .. potential of each constituent is normalized have a behaviour of the ground state 
energy which seems to he typical for ordered (periodic) systems; whereas some almost 
periodic potentials show a behaviour which is typical for random systems (cf. 3.8). In 
the general case, where only the hole potential of the alloy is normalized, but not 

• - each single Potential of the constituents, one has the behaviour of inf (HA'') near 
2 = 0 lik&in a random system. Because it is difficult to say in which sense an alloy 
where all single potentials are normalized is less random than an almost periodic 
potential, the following conjecture which is similar to Kotani's (3.1) or that of 2.3, 
does not make much sense: Strong mixing properties imply a strong decrease of 

-	inf oJ11 1) for 2 near 0. 

Remark to 2.4: BELLISSARD e.a. [46] proved the conjecture quoted at the begin-
-ning of 2.4. 
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