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One-dimensional Schrédinger Operators with Ergodic Potential

H. ExcLiscH

I'm ersten Teil der Arbeit werden die Ergebnisse von Luttinger und Dworin zu folgender Pro-
blemstellung von Saxon/Hutner verallgemeinert: Unter welchen Bedingungen gehért. eine
Energie E zur Resolventenmenge cines Mischkristallhamiltonians, vorausgesetzt, sie gehort zur
Resolventenmenge der Hamiltonian aller reinecn Komponenten. Symmetrische Potentiale
spielen dabei eine besondere Rolle. Im dritten Teil wird dic Grundzustandsenergic in Abhéngig-
keit vom ergodischen Potential ¥ untersucht. Zum Vergleich werden Beispiele mit fastperiodi-
schem Potential ¥ angegeben. So wird Gordons Resultat zu Eigenwerten bei fastperodischem
Potential im zweiten Teil verallgemeinert. ’ '

B nepsoft wactn cratbn 0GoSmanTes pesynbTatt JlyrTunrepa n JBopHHA K caejyoweil
npoGaeme Caxcona n Xytuepa: IIpy Kaknx yCaoBHAX dHEpriA E NPHHAIIEHHUT PE30TbREHT-
HOMY MHOECTBY IaMUJIbTOHMAHA KPHUCTAIJIA CMECH, €CJIH MPEANnoNaragTcH, YTO OHA NIPIHALL-
JEHHT PEIONLBCHTHOMY MHOMECTBY BCEX UMCTHIX Kommnonent? [Ipu sToM cHmMeTpuyeckne
HOTeHLUMANB HUrpaioT ocobyo poan. B TpeTbefi 4acTH HCCICAYETCS OCHOBHOE COCTOAHUC B
' 3aBHCHMOCTH OT 2PrOJIYECKOro MoTeHnuana V. JINA cpasHenns paccMaTpHBAIOTCA npuMeps
€ NOYTH-NEpUOjIMYCCKIIMI noTeHuuanamu. IIpu oTom Bo BTOpOIt YacTH 0GobGwaeTca pesynn-

Tar I'oploHa 0 COGCTBCHHBIX 3HAYEHMAX TIPIH MOUTH-NEPHOAMUECKOM TOTEHI(MAE. o

In the first part of the paper the results of Luttinger and Dworin concerning the following
problem of Saxon/Hutner are generalized: Which conditions guarantee that an energy value
E lies in the resolvent set of the Hamiltonian for an alloy, presupposing that E lies in the re-
solvent set of the Hamiltonians of all pure components. Symmetric potentials play an partic-
ular role in this. In the third part the ground state energy is investigated for different types
of the ergodic potential V. For comparison, examples with almost periodic potentials are given.
E.g..Gordon’s result concerning eigenvalues for almost periodic potentials is gencralized in the
second part.

1. Gaps in the'spectrum of substitutional alloys

1.1. REED/SiMOXN [34: p. 360] present the following one-elcctron model for a binary
alloy in one dimension: Let V,, V, be two potentials on [0; 1). Let w denote a two
sided sequence {w,}, n € Z, of 1 and 2. Given w, let V¢ be the function on R such that
Vei=Vyx —mn) on [n;n+1) if w,=1 and Ve:= Vy(x —n) on [n;n + 1) if
w, = 2. Define H := —d?/da® + V*(z) as an operator on L¥R). Let p be the density
of the second component in the alloy (with the potential ¥,). On {1; 2}% put the product
measure with u({1}) = 1 — p, ({2}) = p on each factor.

Excriscn/KUrsTEN [8] investigated the generalized model of an alloy with countably
many components in R", where the occupation of the lattice points by atoms
need not be independent and the potential caused by one atom ranges over more than
one basic cell: :
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Def. 1.2. Teta,, ..., a, ben ind;apendent vectors in R® (the physical case is n = 3)
and V,, 1 € N, real potentmls in R” such that
Jlsid € l‘(Z")\/ 7€ NVt=(ty ..., ty) € 2" (f |V )P d"x)llﬂ < s,

swhere C,:= {x € R" cx = Y xjay t; < x; < t; + 1} are the shifted basic cells and

p=2forn <3, p>2forn——4andp—-n/2forn25
Further, [ NZ", BZ", u) should be a measure space describing the random occupation
of lattice pomts by different kinds of atoms. Let Ve(x) := Z Vol — 2t a,,), then

He = —A + Ve + is the Hamiltonian of the alloy with countably many components

In one dimension every type of atom, 7, can possess a different lattice consta,nt s

I. c Vo) := 3 Va,‘( Z‘ aw,) The condition concerning the local LP-norms now
reads teZ .

( J Vi) d:v)”" < s, - min {1; 1/a;}.
(L5t+1)

Def. 1.3. The measure space [.\\z , 1] possesses the occupation property if for every
finite subset 7' — 4" and every @ € NT and u — a.e. w € N%", therc is a vector ¢ € Z"
such that w,_,, = @, for every ¢ € 7.

Remark 1.4: This condition is fulfilled for example in the following cases:

a) The atoms occupy the lattice points independently (cf. 1.1). :

b) For space dimensionn = 1 the occupation’is described by a Markov chain in which
for sufficiently small ¢; > 0 and for all but finite transition matnces P(t), t € Z,.all
matrix elements fulfil p;; = s;.

¢) There is a finite set 7'y — Z" and ¢; > 0 such that for every ¢ € Z" \ T and every
finite set 7' — Z* with t, ¢ 7 and every @ € Z7, the conditional probabilities fulfil
wlog=1|Vte€T 0= &} = ¢&; e one can describe crystal growth processes
starting from a given configuration on 1.

d) 1.3 is equivalent to the condition that for u-a.e. w € N"‘ ‘the hull

(a)) —w—cl(wHtoEZ"VtéL ¢ = Oy,

is NZ"; i. e. u-a.e. orbit (with respect to all shifts in Z") is dense in N*". (w-cl denotes
the weak closure ; the weak topology in’ N2" is given by the generating system of open
sets’

" AUga = lw e NV e T o =) | T < 7" finite, & € N7}.)

e) For measures yu, ergodic with respect to the translations in Z*, 1.3 is equivalent to
the condition that every w-open set has a positive pg-measure.

1.5. Let us denote by S the union of all spectra o(H“) of all operators H with
perxodlc potentials V* (i.e. there are n_independent vectors 7y, ..., 7, € Z™ with:
ViE, . ..,nVteL w = wpr), by S we denote the closure of S m the ordmary
topo]ogv of R. Then in (8] it was proved:

Theorem 1.6: a) If an alloy sutisfies the ‘conditions of 1.2, then /or each w € VZ
o(H") S 8.
b) If f the occupation property also holds, then for p-a.c. w € N*", o(H*) = S.
Remark 1.7: The SaxoN-HUTNER conjecture [37] states that for every w o(H®)
c U U o(H%), where H := —/\ + Z Vix — X tiw;) is the Hamiltonian of the periodic

crystal formed only by ¥V .-potentlals Th 1.6 shows that this conjecture cannot be

[
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true in general. The first counterexamples were given' by JaMEs/GINzBARG [20] and

KErxNER [22]. . o
Kmscn/MarTINeELLI [24] found independently of us a result where the statement and

the proof is closely related to Th. 1.6. The statement o(H*) 2 U o(H’) is contained

- . ;
without rigorous proof in a paper of Lirsxi1z [28] and Horr {15], who announced it as
a result of Youxc/DwoRIN. : _ ‘

In order to give a further characterization of S, we recall the following results for
Schrodinger operators with periodic potential from [34; Th. 13.89, 13.97, 13.100]:

. Lemma 1.8: Let Vbea periodic potential whose Fourier series is in IP with p < (n
— D)/(n —2) forn>3andp = 2forn < 3. Then H := —/\ + V has a pure absolute- -
ly continuous spectrum-(we abbreviate it by o(H) = o,.(H)). o(H) = U U Ei(H (0)),

o - . ieN 6€[0;2a)7
where H(0) us the operator —/\ + V restricted to the first basic cell with boundary con-

ditions : :

P(x + a;) = exp (1)) p(), op(x + a;)/0x; = exp (10;) op(x)/0x;,
0; € [0; 2n), je{t, ..., n '
und E; denotes the i*" eigenvalues. In one dimension we have

o(=ddz* + V) = U ([Bar(HO): Byies(H)] v [Eul H): B0

If V has the }3eriod a and y,, ¥, are the solutions of the differential equation (—d?/dz?
+V — E)y = 0 with the initial conditions y,(0) = y,(0) = 1, Yo' (0) = y,(0) = 0O,
then the transition matrix C(E) is defined by )

OB — en(k) Clz(E)) i (yo(“) ?/1(“)).
) (cu(-m eo®) = W@ ww)

Then E € o(H) is equivalent to |Tr C(E)| < 2; where Tr denotes the trace, and then
Tr C(E) = 2 - cos O(E). N
Let us define : '

v

Viat 1= inf Vi) and Vglz) := sup Vi(z) -

and

vHinfls‘,’p = —A + ZI‘ Vinflsun(x — 2 t’»ai),
e

From Th. 1.6, Lemma 1.8 and the min—max principle we get immediately
Lemma 1.9: V w € N%":
o) S | [inf E(H"™(0)); sup Ei(HS“D(O))].
i Lo 0
The applicability of the min—max principle to thegap problcfn in alloys has zi-lready
been seen by TAYLOR [42]; KikscH/MARTINELLT [24] have also used it. ,

Remark 1.10: If Vinr and Vg, are contained in {¥,} (without loss of generality we
assume V) = Vinr and V, = V,y;) then one may conjecture that for u-a.e. w
 eHv) = U [inf E(H'0)); sup E,»(mw))].
i [4 0

The conjecture is based on the following interpolation argument (we take for simpli-
city the dimension of the space n = 1): By V"™ we denote the periodic potential with



414 H. ExcLiscH

period 2 4 m consisting of n potentials ¥, and m potentials V,; let ™™ := —d?[dx?
+ V=m The nin—max principle yields

421(” ( )) = Eg;(,,_!_,,,)(lf”'*""'0(0)) é E?i(n-{-m)(H""n(O))
< Bunem(H27410)) = Fo H20))

(for odd eigenvalues an analogous statement holds, beginning with ]92,,,([1 (0))
=E, (,, 4 ,,,,+,(I]"+'"°(O)) ) For (n + m) — co the eigenvalues seem to fill the interval
[J_( ); .J2|(I.I2 0))] But from Ib,(Hl )) (]12 )] < o(H*) would follow

' [inf B{H(0); sup EJH-(O))] < o(H*),
]

since
» [mf E; (Hl(O)) (H‘(O))] and [E,»(Hz(())); sup E; (11 (0))]

liein o(H®) for u-a.c. w, if the occupation property holds. But in general the cigenvalues
- Baigatm (f1™™(0)) do not lie dense in the interval [B2i( HY(0)); Eoi(H¥0))), as the follow-
ing generalization of a result by Luttinger (cf. Remark 1.13) shows:

Theorem 1.11: Let H* be Hamaltonians built up by potentials V; € L¥}[0; 1].
a) If the occupation property holds and
aa) there is an © € N, such that |Tr Ci(K)| = 2 or
ab) there is ac € R, such that for all £ > 0 thereisan 1€ N, such that V(x) = c and
l'[‘rC(b|S2+s, C
then E € o(H®) for p-a.c. w.
b) If there is un & > 0, such that for all E' € [ — &; E + €] there is a reqular (2 X 2)-
matriz X, such that for all © € N ¢, (E") thy(E’') > 1 and for all i, j € Nci(E") c,z(F')
Xc“(F ) c,o(E } > 0, where ¢ are the matria elements of C;:= X"2C X, then for every w
E ¢ o(H). :
~ Proof: aa) is a direct conclusion of Th. 1.6 and. Lomma 1.8.
ab) Now assume |Tr C;| = 2 4 e with e < 1. Then the absolute values of both eigen-
~values v+ of C, given by [v;*| = (2 +-¢ )2 + V(Z + ¢)%/4 — 1, are smaller than
1 + 212, But this means |yg(z)| = k (1 -+ 2et2)lzl for an arbitrary solution of the
differential equation (H — EYyyp = 0, where K depends on the initial conditions.
Due to S~xoL {11: § 54] this yields o(H) n [E — coe'?; E + coet'?) &= O (¢, depends
only on ¢) and by Th. 1.6 E € o(H*) for p-a.e. . 1 0
b) Define C(E’) := sign ¢i,(E')- YIC(E') Y with Y(E') 0 _1) if €,(E")
X €i(E') < 0 and Y( )= 01 elsewhere. Then C;(E') has only positive matrix

elements. Thus also ]70 (E') has for arbitrary k € N, 7; € N only positive matrix

clements. Smcc det ]'[C,! "y =det [ Ci(E") =1 thns implies 2 < 'Fr[[ C,,

i=

= Tr {J] Ci,(E". Lemma 1.8 ensures that every I" €(E —¢&; E +¢) liesin thc re-
solvent set of every pOI’lOdlC Hamiltonian built up by Vi-potentials. Now we can.
apply Th. 1.6°1

Corollary 1.12: Let He be Hamiltonians bmlt up by symmetnc potentmls Vi
1€ {1, ..., k} with support.s [0 a,] and symmetry axes ai2. If for every 7 E § o(H*) and

for every 1, § € { . k) eliciychicls > 0, than E ¢ o(H*).
Proof: The symmetry of V;yields ci, = ¢, [19), i.e. [Tr C;| > 2induces cici, > 11

-
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Remark 1.13: For k = 2 this corollary ‘is implicitly contained in a paper by
LurTrxcEr [29]. His requirement

sign (212,) 1= sign (cloela/((1 + ¢ly) (1 + 8))) = 1

is equivalent to ¢} cl,c}yc3, > 0 because of |ei,| > 1. The condition Vi(z) = ¢ in
Th. 1.11ab) can be weakened, since SmMoN {41]sharpened Snol’s result. The statement
and proof of Th. 1.11b) is related to a paper by FURSTENBERG/KESTEN [10], who also
regarded random products of matrices with positive elements.

Now we give a counterexample for the conjecture in 1.10: Take V. symmetric with

respect to the axis 1/2, supp V S [0; 13, such that —d?/da® + Y V(z — ¢) has a least2
: tez

‘open gaps, e.g. the istand the 2nd gap. Then there are-at least 2 indices ¢,7 € {1,2, 3}

with 7 < jand ¢\ (E}) ¢io(E:) en(E;) cio(E;) > 0, where B, < E\(0) < E, < E,y(0) < By

<< E5(0) is choosen in such a way that &,, E; lie in a gap. Take V,:= Vand ¥V, := V

+ K; — E;. Then E; does not lie in o(H*) for any Hamiltonian describing an alloy with

components V, and V,, though E; € [E;_,(O)_: E?_I(O)]. For. simplicity let us assume

1 =1, j = 2. The last statement can be somewhat sharpened: (Ell(n);'min (F(n),
Elz(O))) no(H") = @. This is proved in the next lemma.

Lemma 1.14: If E,. E' lie in the same gap of the operator —d?/da® + V with V per-
odic and symmetric, then sign (c,(E) cy5(£)) = sign (e1a(E") exn(E)).

Proof:If E, E’ lie in the same gap, then for every K € [K; E'] |c,,(E")] > 1 and
- ¢1o(E"") %= 0. The continuity of ¢,y ') and ¢jo(E"") yields sign ¢,,(E) = sign ¢y, (£’)
. and sign ¢,,(E) = sign cy,(E’) B ‘

Remark 1.15: Though it is not obvious, Th. 1.11b) is equivalent to the criteria of
Lenmaxy [26] and Hori/MaTsupa [16]. :

"Cor. 1.12 is further equivalent to the criterium of Toxeg/Toxg [44]. Tn order to
demonstrate the equivalence, we begin with ‘an explaination ‘of the idea of Hori/
Matsuda: They considered the action of the transition matrix.C on the projective
real line R (i.e. —oois identified with co) aly € RES (en + cray)/(ca1x + caoy) € R.
" An interval of R (which is =R, but which can contain the point oo} is called a trap-
ping region if all transition matrices map the interval into itself. The Hori-Matsuda-
criterion states that the éxistence of trapping regions for all ' € (E — ¢; E + e,
¢ > 0 implies that ¥ lies in a gap of the spectrum. (The original formulation [16]
contained an unimportant oversight: The authors did not notice that the spectrum is
a closed set: thus they allowed, for example, parabolic transformations.) With the
help of Th."1.6 and L.emma 1.8 it is easy to see that the criterion is correct: The tran-
sition matrix for an arbitrary periodic potential, formed by the given potentials,
maps the trapping region — a compact set — into itself, i.e. this transformation
possesses at least onc fixed point. This implies that the absolute value of the trace
of the unimodular transition matrix is not less than two. .

As the next step we reformulate the Hori-Matsuda-criterion: A trapping.region can
only exist for &' € [E — &; K + €], if each transition matrix has two rea) eigenvalues.
The eigenvalue with modulus greater (less) than 1 corresponds to a stable (unstable)
fixed point (“sink’ (“source”) in the notation of [16]). A trapping region obviously

. exists if one can divide the projective line R into two intervals; one containing all

stable fixed points, the-other all unstable [16: Th. 2]. This last statement is the start-
‘ing point for Lehmann and Tong/Tong: Both reformulated this condition in terms of
some parameters of the transition matrix. For the casc of symmetric potentials their
conditions' coincide with the Hori-Matsuda-criterion, for asymmetric only LEHMANN
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[26: (7)] found an equivalent condition. Since Tong/Tong assume a particular division
_ of R, they got a weaker result than Hori/Matsuda or Lehmann. Though the articles
[16, 26) are closely connected, LEHMANYN [26; § 5] did not realize it. .

The equivalence of the Hori-Matsuda-condition and ours can be seen in the follow- -
ing way. If all stable, but not unstable fixed points of the transition matrices C; lie
in an open interval J, then take that X which transforms R* into J. The stable fixed -
points of C; lie in R+, the unstable in R~. An explicit calculation shows that for all ©
the matrix elements of C; have the same sign; i.e. 1.11b) is fulfilled.

Conservely, if all matrix elements of C: are positive then the Frobenius-Perron
theorem [34: p. 350] (or an inversion of the above mentioned explicit calculation)_
yields that all stable fixed points lie in R*, all unstable fixed points in R™. Thus the
fixed points of C;lieinJ := X R*, the gnstable in R \\ J. For practical use Th. 1.11b)
is only convenient for the case where X is the unit matrix I. If the potentials are
symmetric this choice yields a criterion (cf. 1.12) equivalent to the Hori-Matsuda
~ criterion; but for asymmetric potentials Th. 1.11b) with X = [ is equivalent to the
criterion by Toxe/ToNG [44], i.e. it is more restrictive than the Hori-Matsuda cri-
terion. . !

Now we want to extend the Hori-Matsuda concept of a trapping region. But for
practical calculations this concept is not so elegant as the original onc: If for some
e > 0 and all E' € [E — ¢; E + ¢] there are k proper (i.e. +R) intervals J; of the

: i .

prdjective line R such that every C; maps U J; into one of these intervals, then E
i=1

lies in a gap of the spectrum. The proof can be carried out in the same way as we

sketched the proof for the original Hori-Matsuda criterion.

Corollary 1.16: Let Vy:=a - 6(z — 1/2), where & denotes the 5-distribution, « € [k*;
cJu—c; k- Ywith k- <0,k* > 0.If E ¢ (a(H“’) u U(H"")) and .
a) E=0 or : :

b) E <0, E ¢4 o(H™°) and cfi¢if > 0,

then E & o(H*) for any H® built up by V-potentials.

Proof: These potentials do not satisfy the condition V € I2(R), but they are
form-bounded with respect to —d?/da? (cf. [8]). The condition |a| = ¢ ensures the
form-boundedness of ¥ ; thus He is self-adjoint. We explicitly calculate (cf. [6: (31)])
8, = cos EV? 4 a(4E)"V2 sin EV*for E =20 and ¢} = ch(—E)? 4- a(—4E)"1?
xsh (=-E)2 for E < 0. Obviously the condition |cfy| > 1, lefy| > 1 and E =0 or
leiét > 1and cf ey > 0 yields |cf,| > 1forevery « € [k*; o0) u (—c; k7). LUTTINGER
[29] proved that ¢%c3, has a sign independent of a if |cf;| > 1. Thus we can apply
1.11b), though the set of allowed a is uncountable: Approximate V¢ by random
potentials formed by a countable set of Vs-potentials.

"Remark 1.17: Tf all @ are positive or negative then a shorter proof is poésible
with the help of 1.9 (cf. [24: Prop. 4.4]). ’

Corollary 1.18: Let Vg:=k- 6(x) be potentials on the interval [0; a] (cf. 1.2)
with a € [a'; a’ + b). If :

a) E=20,l <0,3n € N:nrn — 2. arctan (lc(LLE)’m) < @BV < ma — bEM? or

b) E=0,k=0,Im¢€ N:nn < a'EY?* < nn 4 2-arctan (k(4E)'”2) — bEY2 or

) E<0,k=0 or ‘ '

d) E<0, k<0, o'(—E)"2 > 2Arth (—k(—z\LE)'llz) for k(—4E)Y:> —1 " or
a'(—E)Y? > 2 Arcth (—k(——ALE)‘”Z) for K(—4E) 12 < —1 '
then E ¢ o(H®) for any H® built up by V,-potentials.
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Proof: The inequalities express that for « € [«'; &' + b] |c&| > 1. BorLAND [3]
has alrcady proved that the conditions a) and b) are sufficient, and so we will only
show it for d) in the case —Ak(—4FE)~!/2 > 1 (the other calculations are similar).
“ch (' (—E)V?) + k(—4E)"12 sh (@ (—E)P) < —1 is equivalent to (cz — 1)~V2
Xch (a’(—ly’)”z) +¢c(c? — 1)712 sh (a'(—E)'?) < —(c — 1)~12, where we have ab-
breviated ¢ := k(—4K)~12. Arsh ((c? — 1)1 — @ (—E)Y?) < — Arsh (¢? — 1)"12;
ie. a'(—E)"2 > 2. Arsh (¢ — 1)71/2 = 2. Arcth — ¢. Choose X = I. The transition
matrix Cg for a k - §-potential, surrounded syminetrically by two regions of length
@'[2 of .zero potential consists only of negative elements. Since an arbitrary random
-chain can be cut into pieces of & - §-potential surrounded by zero potential of length
«'/2 and of pure zero potential of arbitrary length, the condition of 1.11b)is fulfilled :

For negative energy the transiton matrix for a zero potential of arbitrary length -

consists only of positive matrix elements B*

Remark 1.19: Since the method of Hori/Martsupa [16]is nothing other than Bor-
land’s method [3] applied to general potentials, it is obvious that LEHMANN [26] must-
reproduce Borland’s conditions for the potential of cor. 1.18. It seems that the ex-
plicit condition 1.18d) for £ < 0 is new, but the qualitative behaviour (no condition
for an upper limit of a) has been already given in LEHMANN [26]). -

" Remark 1.20: Friscr/Lroyp [9] investigated the same model, where a € R* is
Poisson-distributed. Since for 4 — a.e. @ there are arbitrarily long intervals J = R
with Ve|; = 0, H* has no'gaps for E = 0. For E < 0 there are also no gaps: A set of
random potentials generated by a poisson distribution possesses- the occupation
.property. The ground state cnergics #,%(0) depend continuously on «; i.e. for & < 0
supp £,%0) = (—co0; 0]. Thus 1.6 yiclds (—o0; 0] & o(H«) for u-a.e. w and k < 0.
For k = 0 Ve is positive; i.e. E ¢ o(ll*) for E < 0. ‘

Now we want to derive a conclusion from 1.12 for the ground state cnergy.

Cor)oll'avry 1.21: Let V; by symmetric semibounded potentiuls with support {0; 1].
Then for every w inf a(H®) = infinf o(H'). The equality holds for u-a.e. w if the
occupution property holds. i '

Proof: 1.6 yields that for a.e. w inf o(/*) < inf inf o(H?), if the occupation prop-

erty holds. Now assume K < inf inf o(H?). Choose E; < inf V(z). If y, is the solu-

N z
tion of (H! — E;)y, =0, 4,(0) =0, y,'(0) = 1, then yi(x) > 0 for all sufficiently
small x > 0. But then y,"(x) = (V; — E;) yy(z) > 0; i.e. y," is increasing and this
ensures c;5(K;) = y,(1) > 0. 1.14 ensures c,5(K) > 0. From c”(inf a(lli)) = 1 follows
.en(E) > 0. With the help of 1.12 we get inf o(H*) = inf inf o(H*) for everyw 1

Remark 1.22: For asymmetric potentials 1.21 does not hold: Take for example a .

positive function y € C?[0; 1] with '(0) = %'(1) = 0 and y(O)' = y(1). Define v,(x)
=y "(@)fy(x) and Vy(x):= V(1 —«); thus o(H') = o(l?). cwy(x) = (y(l)/
i€Z

y(O))‘; ylx — 1) is an everywhere positive, exponentially increasing or decreasing

“solution of H'w; = 0; i.c. 0 < inf g(J{!) by Sturm’s oscillation theorem [4]-and 1.8.

Take H'2:= —d*/dz® 4+ (Vl(x — 21) + Vo — 20 — 1)). Then w(z) := } (y(:c
€7 134

— 2t) + y(—=x — 21,')) is periodic, everywhere positive solution of H2w = 0, i.c.

0 = inf o(H'?) = inf o(H*) for u-a.e. w (cf. 1.8). This example with inf o(HY?) <

_info(H?*) seems to be connected with Luttinger’s theorem on symmetric rearrangement

- (cf. [39: Th. 13.12]): Take y := 1 + 32?2 — 23 Then y' (0) = y'(1) = 0; V, = y'ly

27 Analysis Bd. 2, Heft 5 (1983)
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is decreasing on [0; 1] and y > 0 on the same interval. Viy(z) := V,(x) + Vo(x — 1)
with Vy(z) := V(1 — z) is the symmetrically rearranged potential of V,,(z) := V(%)
+ Vi(x — 1) on L?0; 2} with inf o(—d?/da? - V) < inf o(—d?*/dz* + V), where
the operators are taken with respect to periodic boundary conditions. .

DworTN [6] and MaTsopa [30] (cf. also MaTsupa/OxaDA [31]) gave a condition
for £ ¢ o(H*), which cannot be derived from 1.11. Dworin’s condition is not exact.
We present it in a more general form which is compatible with the closedness of the
spectrum.

‘Theéorem 1.23: V; should sutzs/y the conditions of 1.2 If there is an & > 0, such™ =~

that for all. k' € |E — ¢; E + €] there is a regular (2 X 2)-matriz X, such that for all ‘
,7€ N

e (K + ézz(E ) ElZ(E )/512(15 )N =2
and N

eiy(E') - 8], (K') Sa( B)E)(B)] 2 2,
where ¢, are the matrix elements of C; := X~1C,X, then for every w E ¢ o(H*).

Proof: Dworin showed that for large = these conditions imply the independence-of
the ratio '(2)/y(z) from the initial conditions in # = 0, where y(x) is a solution of
Hey = E’y. (Dworin’s remark that y(m)/y(m — 1) converges is wrong.) If a periodic
potential has a transition matrix C(£’) with |Ir C(E")] < 2, then (H* — K') y =
has two independent solutions, y, and y_, fulfilling some +0-boundary condition
(cf. 1.8) and y'(2)/y(x) = (c.ys’ + c_y-")(csy, + c_y_) also depends asymptotically
on the initial conditions, i.e. on c¢./c_. But if for all £ € |K — ¢; K + €] all periodic
Hamiltonians I{* have |Tr C(£")] = 2, then the analyticity and nonconstancy of
Tr C(E') vields |Tr C(E’)] > 2 for £’ € (K — &; E + ¢) and one can apply 1.6 and
1.8 B :

If we put X :== [ the resulting conditions of 1.23 are not symmetric. Thus one can
formulate another simple set of sufficient conditions which are not equivalent to the
above set for X = I. In contrast, the conditions of 1.11b) are symmetric for X = /,
cven when th(,y do not seem to be symmetric: If ¢i,ch, > 1, then the mdependen(,e of
c},ciy from @ with respect to the sign is equivalent to the independence of sign (ci,ct,),
because ci,ch, > 0.

Corollary 1.24: If foreveryi,7 € Nandevery K" € [E — ¢; I/ + &) for some & > 0,
(i (B + clo(E") chy(E ) ch(E) = 2
and ) _
lekol B') + chi(£) e (E")/ehy(E)] 2 2,
then E & o(H*) for very w.

01

P L P—
Proof: Put X := (1 0) § |
Remark 1.25: With the help of [30: 3.27] it is easy to verify that Matsuda’s
" condition [30: 6.9] is equivalent to Dworin’s condition [6: 28]. In MATSUDA/OkADA
(31] this condition was derived once more; now they used a convergence theorem for
continued fractions as Dworin did.

The original formulation [6, 30] corresponds to the choice X = I. Our formulation

is indeed less restrictive, as the following example demonstrates: 'C, = (? ;) and -
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5 —24 : ’
C,:= (+ fulfil the conditions of cor 1.24, but not those of 1.23 with

—1 +5 _
A = I. Dworin obtained Luttinger’s result [29: cf. 1.16], but a weaker result than
BorraxD (3: ¢f. 1.18]. Also our generalized version 1.23 of the Dworin-Matsuda cri-

“terion leads sometimes to more restricted results than Theorem 1.11b): Choose

ch ¢ sha)
C, = ,
(sh a cha A

But ¢}, = (2}, — 2%,) (sh «)/det X and the invariance of the trace yields

¢ = cha -+ tsha,t3, = cha — t-shawithtdepending on X. Wefind [6¢, + ¢5,¢%,/

€l = |ch @ + ch b - sh a/sh b| =: Ag,. Since lim A,, = 1 there is certainly a pair
a—0,b—0c0

" («, b) such that (C4, Cp) does not fulfil 1.23, if ¢ > 0 is sufficiently small. »

Neither. can 1.23 be derived from 1.11b): The above matrices, C,, C, fulfil the
conditions of 1.23, but not those of 1.11b): The stable fixed point 3!2 of the trans-
formation associated with C| lics between the unstable fixed point 2412 of C, and the
unstable fixed point —3V2 of C,. :

From Lehmann’s paper [26: explanation to fig. 2] one gets the impression that his
criteria arc necessary for the occurence of gaps. The above example shows that this is
wrong. Further he wrote: “In jeder beziiglich der Zusammensetzung und der Anord-
nung der Potentiale beliebigen lLegierung sind die Energicbereiche verboten, die
auch in jeder aus den Komponenten dieser Legierung aufbaubaren bindren Legierung
verboten sind. (“In every arbitrary — with respect to the order of the potentials —
alloy those energy regions are forbidden which are also forbidden in every binary
alloy consisting of any two components.of this alloy.”) This statement is also in-
correet, but one can modify it in order to get a correct statement: ,

An energy region is forbidden for an m-ary alloy, if for every two transition matrices
the condition 1.11b) is satisfied. The proof is simple if we take the equivalent formu-
lation of Hor1/MaTsuDA [16]: If for every two matrices the twostable fixed points can
be separated from the unstable, then this is also possible for the set of all fixed points.
That Léhmann’s statement quoted above is wrong we can see from the following

/3 1\ 6 2¢ 1\~ 2 1
counterexample: A := ( / ), B, = ( + 2 ), C,:= ( )

¢! > a > e These matrices fulfil the conditions of 1.11b).

1. 6 1+ 2¢/2 1/3 ~9 — 2 —4 — ¢
Then for sufficiently small ¢ > 0 any two arbitrary transition matrices belong to an
energy gap of the coresponding binary alloy since (A, B,) fulfils the conditions of
1.11b) and both (4, C;) and (B,, C,) fulfil those of 1.23 (with X = J) But for ¢ = 0
Ir (AByC,) = 0, the continuity yields that for sufficiently small ¢ |Tr (4B,C,)| < 2;
“i.e. the alloy consisting of components with transition matrices 4, B, and C, has for
the same energy no gap. '

Knomskir [23] showed that using Hadamard’s theorem for the determinant of
‘matrices one can sometimes get statements on gaps. He was able to reproduce the
results of Luttinger and Borland (cf. 1.16 and 1.18). His method seems to be not as
general as those used in 1.11b) or 1.23, since a difference equation must be derived
from the differential equation, and-it is not obvious how to do this for other cases
than the one mentioned; the calculations in [23: § 7 4-8] use the special nature of the
potential. On the other hand his method works for some discretisized models (e.g.
tight-binding model) in 3 dimensions, where the methods based on the transition
" matrix break down, there being no useful analogy to the transition matrix for more
than one dimension.- . :

The papers of Toxe/Toxg [44] and LEHMANN [26] contain conjectures concerning’
those energies which occurin a gap of at least one ordered alloy. A solution of this
problem will be presented in a forthcoming paper [7].

27%
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2. Eigenvalues in the speetrum

2.1 While for potentials generated by diffusion processes a.e. solutionof (H* — E)y -
0 increases or decreases exponentially [32], one can give explicit counterexamples

for an exponential behaviour in the model of an alloy: If for a fixed energy

Ee (N 6(1‘]‘)) and an unimodular (2 X 2)-matrix C'and every 7 € N there is an expo-

nent p(z) € R with |Tr Q] < 2, C{(E) = CP¥ (C; is the transition matrix for the it
component, ¢f. 1.8), thenfor every w ({[* — E) y = 0 has only bounded solutions with
lim sup |y(x)| = 0. Toxc [43] proved for a model with constant potential and random

lz|—00

interspace between them that for a countable number of energies all transition ma-
trices commute and thus not all solutions of the differential equation increase or
decrease cxponentially. A weaker result was rediscovered by DExsicH/R1viER (5],
though they.mention the review paper by Tsuir [17], where Tong’s result occurs. For
an occupation of the lattice points given by an ergodic Markov process, a result of
RoYER [35], VIRTSER [45] and GuivarcH [14] yields that the spectrum has no abso-
lutely continuous part. '

2.2, The type of spectrum of 4 does not only depend on the type of process giving the
potentials, it also depends on the dimension of the space. For example, GOLDSHADE
e.a. .[12] proved for the one-dimensional Schrédinger equation with a particular
random potential that o(FH*) = o0, — the point spectrum — for a.c. w, whereas one
expects in higher dimensions that the absolutely continuous spectrum o, is non-
void. All known examples (c¢f. |8]) do not contradict the following conjecture: If the
potential is given by a weakly mixing process (for definitions cf. [18]) then in 1 di-
mension o( H*) = o, for a.e. w. Let us consider the wixing properties of the model for
an alloy: The occupation given by an ergodic (with respect to Z") Markov process is
isomorphic to a Bernoulli shift (for definition cf. [33]), but the ergodic (with respect
to R") potentials of the alloy given by {w, @} € N%"x[0; 1)" — Ve*(z) := Ve(
— J w;a;) are not weakly mixing with respect to all translations in R".

The reverse of the above conjecture is certainly not true: SARNAK [36] has given
examples of non-selfadjoint operators with almost periodic potential such that -
o(H) = o,. ScHARY [38: p. 595] has given a special class of examples of limit periodic
potentials such that the Schrédinger operator has at least one cigenvalue. JoENsoN/
MosEer [21] have constructed a special class of quasiperiodic potentials with the
same property. Gorpox [13] showed in an existency proof that for given frequencies
there is a quasiperiodic potential possessing these frequencies and o,(—d?/dz*
+ V) =+ 8. We will prove Gordon’s statement for arbitrary dimensions-in a con-
structive way. We found the examples independently of [13, 21, 38], but the example
is very similar to that of [21]. :

Theorem 2.3: Let G; be arbitrary dense subgroups of R. Then there is an almost
periodic function V in C(R"), having G, X --- X G, as frequency module, such thut
— A + V has at least one eigenvalue. (For definitions cf. [40].)

Proof: Because of the density of G; we can pick out a generating set {y.; € Gy;

k € N} with |y, — k| < 1/2. Let us_inverstigate fi(z;):= Y In72 k(——l + cos (z;/
Yr.i)) = 0. For [2| > 8 we estimate k=2

lizh) \
filz) < X In72k(—1 + cos (2/yx.i))
k=(1zlj2)

NED)
< (=1 4 cos (10/(4 — 1/2))) J In"2k < —c 2] - In"% |a],
flzl/2)
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where {z] denotes the entire part of z. Thus exp ( 2 fil= ) is an -eigenfunction for
the operator —A\ -+ 2(1‘, ()2 +/,"(x )). But V: —/, )2 + fi(z;) is an almost
periodic >potential 'because i = ): — sin (a, iYs.)](ya,i In® n) has an absolutely con-
vergent Fourier decomposutnon, smce Z nlln?n <c-In"!m. /,‘ also Has an

absolutely convergent Fourier dccomposmon 1

Remark 2.4: There is a conjecture, much stronger than 2.3: For some Hamil-
tonian H* with almost periodic potential 6(1{“) = g, for a.e. w [40]! Perhaps, in our
example for V, the set of w with g (—/\ + V¢) ==& (V¢ is from' the hull of V; for
definition cf. 1.4d) with ¢, ¢, € R) has measure 0.

On_the other hand Moléanov and Pastur (private communication) emphasize

" that for the model of an alloy the singular continuous spectrumn a.(H) (for definition
¢f. [40]) may be nonvoid for a.e. w. If this happens this would be interesting in
connection with the intuitive idea: “The greater the disorder, the greater the ten-
dency to localization”. Some random alloys seem to be less disordered than some
almost periodic structures!

3. The dependence of the ground state energy on the coupling éonstunt

3.1. In 2.2 we discussed the possibility to determine the type of the spectrum from
the mixing properties of the process defining the potential. Korawx1 [25] poses another -

problem: to find a connection between mixing properties and the behaviour of the

density of states N(E) (for definition cf. {25]). He conjectures that strong mixing

properties imply a strong increase of N(FE) near ess inf V(2). He illustrates his conjec-

" ture with two examples: the periodic potential and potentials generated by a Poisson

" process. Further, he investigates 3 different types of potentials generated by a Poisson
process, each with a different behaviour of N(E) near ess inf V(x), but it is not clear
" in which sense these 3 types have different mixing properties. :
We wish to investigate the ground state energy in dependence on the mn{mg prop-
erties of the ergodic potential. The ground state energy is related to the density of -
states by inf 6(— A\ + 4V) = inf supp N(¥; — A\ + 4V). More precisely, we investi-

E E .
gate the limits lim inf o(— A + 2V) and lim inf a(—A + 7V). The last expression

i—0 A—o00
gives no differentiation of the processes with different mixing propcrtlcs such a
general result also holds for lim N(E) [25, Th. 5).

E—o
Theorem 3.2: Let V € LL(R™) (uniformly!) with p =2 for n <3, p > 2 for
n=4and p = n/2 for n = 5. Then lim 57! mf a(—A\ + 2V) = essinf V().
. !

A—o00

Proof: We denote M, := [T| V(T) < ess inf V(z) +- s}, ie. u(M,) > 0, where u is

z
the Lebesgue measure in R Let us choose a set B; . depending on some ¢ with
a) w(M, /\ Bs,) < 6. (The symbol A\ denotes the symmetric difference of sets.)
b) By, is an elunent of the algebra (not ¢-algebra!) generatcd by the sets ]7 [wi; bi]
with arbitrary «;, b; € R.
Becauso vV ll(,‘} uniformly locally in some L?, V lies umformly in L, i.e. V)35 m,lh
< ¢, where ¢ depends on §. Now take a bounded function w, € dom (—A\) with
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supp ye < Byo, [[pelle = 1 and [iylleo < (u(Bs.0) — 6)*%. Then
essinf V < info(—AS2 + V) £ (o (—A + AV) /2
= (Yoo —Ap)A + (Yo, Vi) S
. S cf/h + (1 —¢) (essinf V + &) -+ [[welloo [V85 00eclly
< i+ (1 —¢) (essinf V + &) + (u(Bs.) — )7

_w1th an - dependent constant c,. Choose 6 and thus e $0 small that ( (Bs..) — 6)‘1
H¥X &< s | B :

Remark 3.3.: Let us give the following generalization for the notion of the *"
cigenvalue E; of an operator H [34:§ 13]: E; := inf max (y, Hy), where #°; < o

Ve s
denotes an arbitrary ?-dimensional subspace of the Hilbert space 5#. Then the con-
ditions of 3.2 imply a stronger conclusion: lim A7 E;(—/\ 4 2V) = ess inf V(x).
A—o00 z .

The proof of 3.2 has to be changed only slightly: Divide Bs, into 7 sets B,
j € {1, ..., 7}, lying in the algebra generated by [] [a;; b;) and having equal measure.
Take /€ dom (—A) with supp w/ € B, [vil =1, lpdlo < (,u(B’,',’,) — )2
and define #; as the linear span of {y,f}.

The proof of 3.2 is the joint work of the author and K.-D. Kiirsten, the next theo-
rem is the work of the author and M. Endrullis: '

Theorem 3.4: Let V be a periodic potential in LY, (R™) with p asin 3.2 Let us assume .
that V is normalized, i.e. f V(2) d"x = 0 (C, 1s the busic cell, cf. 1.2), and V == 0. Then

0 > lim inf o(— A~—/I’ // >—oo
-0 E

Proof: The key of the proof is to show that perturbation theory is applicable.

- Ordinary perturbation theory works with isolated eigenvalucs, but —A on L*R")

does not have any eigenvalues. The infimum of the spectrum of (—A + AV) regar- -
ded as an operator on L R") is equal to the infimum of the spectrum of (—A +iV)
regarded as an operator on L?*C,) with periodic boundary conditions. ¥For n =1
_ this result is contained in 1.8, for n > 1'it was mentioned in [2]. One can prove.the,
" case n > 1 analogously to that of n = 1, because the ground state of —4 on L¥C,)
with periodic boundary conditions is a smgle eigenvalue (0) with strictly positive
eigenvector (the constant), as an explicit calculation shows. Thus this operator gen-
crates a positivity improving semi-group [34: Th. 13.44). Now —/ has on L*(R") a

. discrete spectrum and V is (—4)-bounded, i.c. perturbation theory is directly appli-
cable. The infimum of o(—A 4+ AV) is thus an analytic function E (1) of A: K,(2)

= E\(0) + a4 + ap)? + .- with E(0) = inf o(—4) == 0. The normalization of V.
Vlelds a, = 0. Further ¢, = —Z l(wo, Vy)|®/(E, — E,), where {y,} is an orthonorma)

ba-sxs of eigenvectors of — A\ rt,gardod as an operator on L*C,) and K, denotes thc'
eigenvalue associated with y,. Since y, is a constant, {y,, Vy,) is proportional to 7,
the Fourier coefficients of ¥ with respect to {,}. V 2= 0 yields that at least one coeffi-
cient js not zero. Since V is normalized, this coefficient is not the coefficient V. Thus
a=,—c }/ |Vl|2/(Et — FE) <01

teZ™\{0}

For almost p(,rlodu, potentials the sxtuatlon is more complicated.. First we state
the simple part, which holds for all ergodic potentials.
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Lemma 3.5: Let Ve be and ergodic potential (for def. cf. [18]) uniformly in Lip(R™) '
: T

with p asvn 3.2 Let us assume that a.e. V¢ is normalized, i.e. M(V*) := lim (27)™" f
T—00 ~T

fl/ z) d"z = 0. leen/orezerjiandae wmfa( A +AVe) <0

Rcmark 3. 6 1f V is not normalized, then put (mf o(—A\ + 2Vy — /M(V)) in-
stead of (inf of A + AV)) in 3.4 and 3.5. ,

Proof of 3.5: For arbltrary large R we choosc a function yg € dom (— AI) by
IzI=R
wr(x) 1= { (e — R) for R< |z| < R + 1 where o(x) € C¥R) is a function with
lel=R+1 .
o) =1for x <0, p(z) =0 for z = 1 and ¢(z) > 0 clsewhere. Then inf o(—A

+ AVe) < lim (g, (— A + 2V*) wa)/{pr, wr) = 0 becausé of the normalization of

R—oo

Ve, {yr, —A\wr) increasing as B"*"!, and (yz, wg) increasing as R* 1

Theorem 3.7: a) Let V; be periodic potentials uniformly in Liz(R?) with p as in -
3.2, normalized (cf. 3. 4) and not necesserily with the same periods. Then the almost peri-

odic potential Vi, := Z V; satisfies lim inf o(—/\ + 2V,,)/72 > —oo.
=0

b). There is for arbvtrurq & > 0 a normalized almost periodic potential V, wzth

lim inf o(—d?/d2? 4 V.)/(A {log A]) <
i—0 .
Proof: a) The inequality info(A + B) = inf o(4) + inf a(~B) yiel({s inf 6s(— A
+2).V)>Z'info —A\/m 4 2V,). Now we can apply 3.4. '
b) Take V := “’ — n“' £ cos ( x/2” Then we have for wR of 3.5and 2 > O inf o(II )

< (yr, Hayr)/(yr, wn> sle—4 f 2 n17e cos (x/2")) (2R 4 0)' < (o — 24 X 2mm e
X sin (R/2f'))/ (2R L+ ¢c). We put: R =277, where m € Nand 22 < R < 2:72. We

find } 2"n "1=¢sin (2™7/2") = 0 and
n=1

Z 9np-1-ct gin (R/2" ) > 2/n Z Rn717¢ > c,Rm™* > c; |log A|/22.

n=m-+1 n=m+1

The ¢; denote some e-dependent constants and H; denotes —d?/dz? + iV,. Finally
inf 6(H;) < (¢, — 2icy |log 2[9)/(4/72 + ¢) < cy(—7) |log 4lf) 1

Remark 3.8: Because of 3.5 inf o(1/;) is nonanalytic in 2 = 0, i.e. we have a new
hehaviour in comparison with the periodic potential. lt is easy to construct examples
in more-dimensional spaces in the same manner.

Now we want to compare 3.7b) with the potential generated by Markov processes
(cf. [12]): For these latter potentials it holds that inf ¢(H;*) = inf ().V‘”(x)) for a.e.

E z

Ve. Obviously, in this case also inf o(/,*) is nonanalyticin 7 = 0, but it is analytic
elsewhere. Fmally we get the behoviour of inf o(H,;) for the alloy (for def. cf. 1.2 and
1.3) from 1.21 and 3.4.

Lemma 3.9: a) Let V; be finitely many symmetric normalized potentials in L¥}0; 1],
which are bounded below, or-
b) Let V; be countably many potentials in LP(R"), satisfying 1.2. V, .should benormalized
(cf. 3.5) and for every x € R and every 1 € N V (z) £ Vi(2).
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Then for a.c. w and processes possessing the occupation property it holds that

0 > liminf o(— A\ + AVe)/22 > —co,

=0
Proof: b) Tt is a conclusion of 1.6b), 1.9 and 3.4.

“Remark 3.10: For processes ‘without the occupation property the inequality

liminf o(—/\ + 2V%)/)2 > —oo remains true. The function inf ¢(H,;*) is analytic
-0

for real 7 with the possible exception of the following set of points {/ | I, 4} 1 2 =4,

-inf o(H,%) = inf o(H;)} (for definition of H* cf. 1.7), which has not points of acéu-

mulation. In case b) the ground state energy is analytic for every 2 > 0. The state-
ment of 3.9a) may be surprising because, it says that for some special alloys where the
potential of each -constituent is normalized have a behaviour of the ground state
‘energy which seems to be typical for ordered (periodic) systems; whercas some almost
“ periodic potentials show a behaviour which is typical for random systems (cf. 3.8). In
the general case, where only the hole potential of the alloy is normalized, but not
each single potential of the constituents, one has the behaviour of inf o(//;*) near
= ( like'in a random system. Because it is difficult to say in which sense an alloy
where all single potentials are normalized is less random than an almost periodic
potential, the following conjecture which is similar to Kotani’s (3.1) or that of 2.3,
does not make much sense: Strong mixing properties imply a strong decrease of
mf o(H;#) for 7 near 0.

"Remark to 2.4: BELLISSARD e.a. [46] proved the conjecture quoted at the begin-
ning of 2.4. v
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