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Modulation Spaces on the Euclidean n-Space

H. TRIEBEL

Die Arbeit beschiftigt sich mit dem Problem der Spuren von Funktionen aus \lodula,tlons-
riumen auf der Grundlage der Fourier- Analysns und der Ma\lmdlunglenchungen

B pafiore paceMaTpupaetcs 3afaua o caenax Gyurimii u3 npoc’rpaucm MOALY AL Ha octio- '
BaHuK anannsa MOy Pbe i MAKCHMAILHEIX HEPABCHCTS.

The paper deals with thc problem of the traces of functlons belongmg to moduldtlon spaces on
the basis of Fourier analysis and maximal inequalities. -

1. Introduction

Tet @(x) =0 be a compactly supported infinitely differentiable function on the. -
euclldean n-space R,. Let

Zo={k|k€Ry k= (ky..,k,), k; integers} ' (1)

and g, (z) = q)(x — k) with k € Z,. We assume that J g (x) = 1 in R, (smooth reso-
K€z,

lution of unity in R,). Let a = {a}iez, be a sequence of positive numbers. The paper

deals with the spaces B 5o Ra) and 9 o(Ra), which are charactermed_.by the quasi-

norms .

(& @ 1P 1oF /)| EyRale)e ' - o)
keZ, .

and

” Z'«k"l (FHpFf] (- I")"" Lp(R,) 3

keZ,

respectively. Here 0 < p, ¢ < oo (with » < oo in the case of the spaces FS(Ry). F
and F7! stand for the Fourier transform and its inverse, rcspectlvelv on thc S(,hwart/,
space S(R,). For our purpose it is sufficient to assume that f belongs to'S(R,) with-
supp Ff compact. By a suggestion of H. G. Feichtinger we denote By (R,)and F (R,)
as modulation spaces. The main aim of this paper is to study the tmce problem: What
can be sald about the trace opcrator R,

R flx) - f(2’,0), where z=(2,2,),

as a mapping from B} (R,) or F§ (R,) onto corresponding spaces on R,_,? Our main
results are formulated in the Thcorems 1 and 2, and in the Corollary Furthermore, -
Theorem 3 contains a continuous version of (2) and (3). We give detailed proofs as far
as the spaces B39 (R,) are concerned and outline the proofs for the (technically more
complicated but also more interesting) spaces F, o(Ra).
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The interest on the above spaces comes from two quite different sources. H. G.
FEICHTINGER introduced in [2] spaces of Wiencr type on locally compact abelian
groups, cf. also [3, 4]. It comes out that FBj (R,) (the Fourier image of B} (Ra))
with 1 < p, ¢ £ oo is a space of Wiéner type on R, in the sense of Feichtinger. So one
can try to look at spaces of type By with 1 = p,¢ = coon locally compact abelian
groups in the framework of the technique used there, cf. [5]. Our approach is restric-
ted to R,, but includes the spaces Fj (R,) and extends the range of p, ¢ to 0 < p,
g < oo (p < oo for F;‘,_q(R,,)). The other source is the spaces B;‘Q(R,,)' and F;.q(R,,),
where again 0 < p, ¢ < 0o and —oo < s < oco. These two scales include many well-
knowr spaces of functions and distributions, e.g. Holder-Zygmund spaces, Sobolev'
spaces, Besov spaces, Bessel-potential spaces, Hardy spaces and BMO. Let

Qk':{xlx:(xl)_-"’xn)enny |xj|§2k}y
Po=0Quy—Q if k=1,23.. and Py=Q,.

The corridors P, with k = 1, 2, ... can be divided in an obvious way in cubes with -
side-length 2*. One obtains a covering of R, by “dyadic” cubes instead of a covering

of R, by congruent cubes, which underlies (2) and (3). Roughly speaking, the quasi-
norms of the spaces B3 (R,) and F?, (R,) are defined in the same way as in (2) and

(3), respectively, where the covering of R, by congruent cubes is replaced by the
above dyadic covering and a, = 2%%. The theory of the spaces By (R,) and ¥ (R,)
from the just-described standpoint has been developed in the three books [13, 15, 16].
It seems to be natural to ask whether the covering of R, by dyadic cubes can be-
‘replaced by other coverings. The first question is for what coverings of R, (or locally
compact abelian groups etc.) definitions of type (2), (3) make sense. Considerations
what coverings are admissible can be found in {14: Chapter 2] and [1, 7], the latter
one in locally compact spaces. The second question is whether one can characterize
elements of corresponding B-spaces and/or F-spaces and their quasi-norms in other
terms, e.g. via differences and derivatives of functions, approximation procedures
or as traces of harmonic functions or temperatures (just as in the case of the spaces
B (R,) and F% (R,)). Some work in this direction has been done. Beside [14:
Chapter 2] we refer to the papers by M. L. Gor’pmax (8, 9], G. A. Karjasmy [11, 12]
and S. Jansox [10]. The feeling is that some regularity assumptions for the admissible
coverings of R, arc necessary in order to get substantial results (cf. the papers by
Kaljabin, Gol’dman and Janson). Probably the congruent.covering is a limiting case
for that purpose and of peculiar interest may be coverings which are “betwecn” the
congruent and the dyadic covering or coverings where thc cubes (or more general,
rectangles) grow even more rapid than in the dyadic case. In this sense this paper is
also a contribution to the study of the limiting case ‘‘congruent covering”. In particu-
Jar we wish to show what is different in comparison with the “dyadic covering”.

As far as the above spaces BS (R,) with 1 £ p £ oo (and 0 < ¢ < o0) are con-
cerned we refer to M. L. Gol'dman’s paper [9]. His approach covers thesc spaces as
a special case. Compare in particular Theorem 1 and the Corollary helow with
Theorem 7, remark 1 on p. 57, and Subsection 4.1 in [9].

Acknowledgement : The first draft of this paper has been written during a visit of the
author in November 1981 in Vienna. I take the opportunity to thank my colleagues
in Austria for their hospitality and Dr. H. G. Feichtinger and P. Grobner from the
University of Vienna for stimulating discussions about the subject of this paper. Asan
outgrowth we planned this paper and [5] (cf. also [6], which is a survey, including a
description of further rescarch). : : :
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2. Definitions and Preliminaries

’

As in the Introduction, R, stands, for the euclidean n-space and the lattice Z, is
given by (1). Let S(R,) be the Schwartz space of all complex-valued infinitely diffe-
rentiable rapidly decreasing functions on R,. The Fourier transform and its inverse -
on S(R,) are denoted by F and F-!, respectively. Let S¢(R,) be the collection of all
f € S(R,) such that Ff has a compact support. Tf 0 < p < oo then \

fif 1 LP(R’n)" = ( S 1f@)P dx)"”

and |[f | Lo(R,)|| = sup |f(2)]. Finally, let {@.(x)}icz, be cssentm]lv a smooth resolution
of umty rclated to the lattice Z,, i.e.:
(i) 9u(z) € S(Ro),  supp @ = {yly = (g - va) € Ry gy — Kl = 1}

where k= (ky, ..., k,)€Z
(if) for every multi-index y there exists a number ¢, such that

[D'pu(x) | < ¢, forall keZ,,
(iii) there exists a positive number ¢ such that '
c= Z ‘pk(x) forall =z¢ R,,.l) . (4)

kE,,

Tf 3 @i(z) = 1 then we have a smooth resolution of uriity; For technical reasons the
P
bit more general version (4) is convenient for us. {gu(®)}iez, With (i)—(iii) we call .

admassible systems.

Definition 1: Let a = {a;}xcz, be a sequence of positive numbers with
0<q§§§§%<w forall keZ, and keZ,
3 ‘

with |k — & =1, . ‘ . ' )
where ¢y and ¢, are two sultablc positive numbers, Let ¢ = {(p,,( %)} kez,, be an admissible

system in the above sense.
(i) Let 0 < p < o0 and 0 < ¢ < oo. Then S%(R,) equipped with the quasi-norm

I/ 1 B (Rl = (2 IF-Hpe /1| Ly(RlFYe ©®

is denoted as BS (R,) (usual modification if ¢ = oo).

(ii) Let 0 < p < o0 and 0 < ¢ < co. Then SR,) cquipped with the quasi-norm
lIf | 5, (Ra)l> = ” Z a? [F '[9 Ff] (¢) I" ”"iL (7)

is denoted as F§ (R;) (usual modification if ¢ = o0).

Remark 1: For sake of brevity we write F~l¢,Ff instead of F~'[gFf] in the
sequel. Of course, (6) and (7) make sense. In particular, by the Paley-Wiener-theorem,
F~lg,Ff is an analytic function (belonging to S(R,)). Of course, (6) and (7) are quasi- -
norms (norms if p = 1and g = 1). We recall that a quasi-norm || - || has all the prop-

1) All unimportant positive numbers are denoted by ¢, ¢,, ..., ¢, ... where the numerical values
of these numbers may differ from formula to formula. '
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erties of a norm, only the triangle inequality is replaced by
ey + Aol = clibal] + [1Ral),
where ¢ 2 L is independent of 4, and hy.

Remark 2: For sake of simplicity we restrict our considerations to S¢(R,). The
idea is to extend the definitions of B} (R,) and Fj§ (R,) to suitable distributions
- from &’ ( ») or from other appropnate spaccs of dlstrlbutlons (From that point of -
view it would .be better to denote S°(R,) equipped with (6) by B" R, ete.) To find .
- - suitable distribution spaces for an extended definition -of B" (R,,) and F" (R,,) isa-

somewhat delicate question.. A detailed discussion may be found in [9], ct also [14
2.2.3]. However it is quite clear that the assertions of this paper can be extended via
limiting processes to extcnde(l spaces of type BS (R,) and Fj (R,). ' N

Remark 3: As has been said in the introduction the dyadic counterpart of Bj (R,)

-~ and F (R, ) are the spaces Bj (R,) and 7, (R,), respectively, —oo < § < co. For
these spaces we have an claboratcd theory at hand, cf. [15, 16]. Some parts of that
theory are independent of the underlying covering of R, if it is regular enough (e.g.

". congruent or dyadic coverings). In particular, for given p’s and ¢’s the quasi-norms -

(6) for all admissible systems @ are pairwise equivalent (i.e. for two admissible sys-
tems ¢ the quotients of the corresponding quasi-norms (6) can be estimated from
above and from below by positive constants, which are independent of the clements
of 8°(R,)). Similarly for the quasi-norms (7). In this sense we write [[f | By (R,)]]
and |If | 5 (R,)]| instead of /| B (R, )[® and [If | F§ (R,,)Il" respectively, in the
.sequel. Furthermore, it is no problem to prove Fourier multlpher theorems and maxi-
mal inequalities for the spaces Bj (R,)and F o(Ry) in the same way as this has been
done in [16] for the spaces B;, (R,) and F;, q(Ru) (cf. the Proposition below). Other
properties are different, e.g. the traces on hyperplanes, which is the subject of this
paper.

Definition 2 (Maximal functions): Let b > 0,d > 0and f € S(R,). Let {%(x)}kea -
. bé an admissible system in the above sense. Then

(P19, F)) (x — o)

* () = sup. , z€R,, ke, ®
| (@e)* (2) ”:;‘}: - T Ty x “ R (8)
and
lF_lq)F/) (x':xn—t)l v, . o
(ef)a* (@) = sup T T (', @) € Ruy k€ Zue (9)
Remark 4 We have ‘
(@)* (2) 2 (@uf) )a* () = |(F- Yo kf) (2) zeR,. (10)

Of course, (¢f)* (x) and (@ef)n* (z) depend on b and d, respectively. However this is
uniimportant (under the restrictions formulated below). So we omit b and d as indices.
Of course, (8) and (9) make also sense if (4) is not satisfied.

1
Propositior} (iy Let 0 < p S 00 and 0 < q S co. Let b > — in 8yand d > —
in (9). Then r P

( 2w (@ef)* | Ly(Ry, ”q)”"
keZ,

and « , S | (-
(5 @ lpDa® | Ly(Roe) e
keZ, .
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are equivalent quasi-norms in Bg_q(R,,') (modification of ¢ = o). If (4) 1s not ensured
then the expressions from (11) can be estimated from above by the quasi-norm in B, o Ra).

. 1
(it) Let 0 <p <o and 0 < ¢ < oo, Letb>#undd>.—
in (9). Then min (p, ¢) min (1; p)
(& @ N@eh* ()1%)fe| Zy(Ro)
keZ,
and . (12)

11( Z @ U@eh)a* ()10)0 | Ly(R.)
[ (& Ha® ey

are equivalent quasi-norms in K2 (R,) (modification if ¢ = oo). If (4) is not ensured
q q P q

then the expressions from (12) can be estimated from above by the quasi-norm in K J(Ry).

Remark 5: The Proposition is an easy consequence of Theorem 1.4.1 and The-
orem 1.6.2 in [16]. It is the counterpart of corresponding maximal inequalities for the
spaces By, ((R,) and F% (R,) in [15, 16].

3. Traces of By ,(Ry)

3.1. Main Assertion
The trace operator R is given by
Rf = [(z',0), where f(z)€ S%(R,) and z = (2,2,), z € R,,. (13)

Our aim is to find a space B;:q(l{,,_,) with a suitable sequence o’ = {4 }wez,., of posi-
tive numbers such that R is a linear and bounded operator from the given space
B3 (R,) onto B,“,:q(R,,_l). Furthermore, R is called a retraction if there exists a linear
and bounded operator 7' from B% (R,.,) into B; (R,) such that

»q

RT =1 (identity in BY (R,_,)). (14)

f .
(In that case it is clear that R maps “onto”.) We call 7' a coretraction (to the re-
traction R) or an extension operator.

Theorem 1: Let 0 <p < o0, p=min (1, p) and 0 < ¢ < co. Let a = {au} ke,
be a sequence of positive numbers with (5). If k€ %, then we put k= (k', k,) with
k€2, ,and k, € 1,. Let‘k’ € Z,i, .

ay =infayy>0 if 0<g<P A (1)
€2, '
and
. 5 — _< . 4 1 1 1 / P<q< (”)
wy’ = ag’ o with —=——— ¢ g =< oo. ]
k L 0 p 7 p Z { ¢

Then B;‘,: o Racy) sa space 1n the sense of Definition 1 (i). If there exists « positive num-
ber A such that ay = Aaye) for all k' € Z,_,, then R is a retraction from B3 (R,) onto

By (R,_y). Furthermore, there exists « corresponding coretraction I' in the sense of (14),
which is tndependent of a, p and q. :

Proof: Step 1. 1t is easy to see that the sequence a' = {up}yez, , satisfies (3) with

n — 1 instead of n. Hence, B;‘,:q(ll,,-,) is a space in the sense of Definition 1 ().
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’

Step 2. Notations withrespect to R,y ="{y |y € Ry, y = (3’ ,0)} are indicated by '.
Tn particular, F' and F'~! are the Fourier transform and its inverse on S(R,—y). If
f(x) € S¢(R,) then f(z', 0) € S%(R,_,). Let ¢' = {@} (2')}wez,., be an admissible system
in the above sense (with respect to R,_;). We have to calculate

{F"‘tpfaF (&', 0)} ) = ZAF g F(F o)) (2, OB ()

€7y

with ¥’ € R,_,. By elementary arguments we have

PGP IFeF) (@, 0 ) = (FigkaF) i, 0),

where the left-hand side is considered as a function in R,_; and the right-hand side as
a function in R,. Obviously, gi(z') gi(z, z,) = 0 if k' = (ky, ..., kpor), L= (s - 1)

and max [k — I > 1. Consequently
¢=1,.. ,n—1

FOgeF(fe, 0) @) = X (FgipwmF/) @, 0) + - = he(@) + -
(17)

where 4 --- indicates sums of the above type where g,m must be replaced by @u.m

with max |k, — ;| = 1. Of course, I’ = (I, ..., ln—y)- It will be sufficient to deal only
t—=1,....n—1 :

with k,(z') in the sequel. The above Proposition can be applied to {y(%)}rez, with

(@) = Qi) P k() where £ € R, and k= (K, k,). H1 =2, = 2 then we have

(F- ' Ff) (@, 0)|P < o(wef)a*? (x) where z € (2, 2). - (18)
We put (18) in (17). Let 0 < p = 1. Afterwards we apply the inequality
(Z (Xi)p é thi” lf &; g 0 (19)
i : .

i
and integrate over R, X [1, 2]. Then we have

‘

[l (-) | Lp(Rp )P = € f lpwmf)a® ()| Lp(Ra)IP, 0 <p=1. (20)

m=-—0o0
T{ 1 = p < co. then we use the triangle inequality instead of (19) and obtain that

() | Lo(Rao))ll < € f lww.mha* O LRI, " 1=p=oc0.  (21)

m=—00

Let 0 < ¢ < p < 1, in particular we have p = p..Then (15) and (20) yield

2 al b | Lp(Ru- )l

kK€L,

é c Z Z a’;tq’ ”('/J_(k',m)/)n* l pp(Rn)llq = 015 a? “(wlf)n* I Lp(Rn)”q- (22)

m=—00 k'€l

We have similar estimates for the termsindicated in (17) by + ---. Now it follows from
(17), (22) and the Proposition that ‘

1 0) | BE (Ra)ll < ¢ If [ B (R (23)

Hence, R is a bounded operator from ]jglq(ll,,) into Bg'q(R',,'_l). Let 0 <p =<1 and
p < ¢ < oo. Again we have p = P. Then we apply Hoélder’s inequality with respect to



Modulation Spaces 449

%'-}- ]al == 1 to (20) and obtain that

o) | Lp( R )P
-y, o) — plo 0 ¢ ) vl i
=c ( 2 “(k’.m)) ( 2 aly.m l(pw.mf)a® () | Lp(Rn)”q) . (24)
m=—oo - m=—0o0
We use (16), take the -%-power of (24), sum over k' € Z,_, and apply again (17) and
the Proposition. The result is (23). The case 1 < p < oo follows the same line where
one has to replace (20) by (21). Hence, (23) holds in all cases under consideration,

Step 3. We construct an extension operator 7T from B“ (R,,_l) into Bg (R.,,)I which
satisfics (14). Let »(¢) € S(R,) be a function with

1 1\ , ,
suppzc(—x,z) and (Fyh ) (0) = 1, - (29)

.

where F';"! is the inverse one-dimensional Fourier transform. Let g(z") € B;:Q(R,',_l).
We use the above notations and put ) - . -

@) = (Tg) (m) = 5 (FiYy) (@) (F9kFg) (@), == (2, a).  (26)

k'€Ziny

Of course, 7' is linear. Let ¥ q)k = 1in R,,. Then we have f(z', 0). = g, i.e. (14)
holds. Let {%(x)}kez,. be a.neza"(_i‘mlsmb]e system in R, where we may assume that
D) = Gele) o), k=K E, 7= (), SR
with appropriate functions op(x,), m € Z,. We may assume that o,(¢) x(¢) = 0 if
m =+ 0. We have . o :
(F7'@uFf) (x) = (Fy"o,2) (%a) (F'90F'g) (&) + -0 (27)

where 4 --- must be understood similarly as in (17). Again we can restrict our atten-
tion to the first term on the right-hand side of (27). If &, 4= 0 then (F~lg Ff) (z) = 0 -
by our assumption. Then it follows that

co
Z U(k m W o my Ff | Lp(R)|9
= C(L?k’.o) [F'~g f"F"g | Ly(Ra )l + -+ : (28)

{modification if ¢ = oo). By our hypotheses we have a0y = A7 'ay. Hence, (28)
can be estimated from above by :

cald |IF" '@ F'g | Ly(Ry )9 + -+ . (29)
We sum over &' € Z,_, and apply the Prpposition. We obtain that
1Tg | By ((Ra)ll = clig | By ((R-y)l] ' (30)

for all admissible p’s, ¢’s and a’s. The proof is complete. 1

Remark 6: The operator 7' from (26) is independent of a, p and ¢. This has some'
advantages, in particular if one wishes to apply interpolation methods, where couples
of different spaces of type Bg_q(R,,) and Fg’q(l{,,) come in. This will be done in Sub-

29 Analysis Bd. 2, Heft 5 (1883)
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scction 4.2. The price for the independence of 7’ on q, p, ¢ is paid by the aditional
assumption ap = Aday ). In the next subsection we shall show that this assumption -
can be omitted (at least for some p and g), but the extension operator 7" depends on
the sequence a (and hence is not useful for interpolation purposes).

2. Modifications

Tt is our aim to remove the condition af = Aay g from Theorem 1.

Corollary: Let 0 < p £ 00, P = min (1 7)) and 0 < ¢ < co. Let {alpez, be a
sequence of positive numbers wzth (B). Let a' = {uk}k ‘ez, be given by (15) and (16),
respectively. If

either 0 < ¢ <7 ‘ }

31
or lESp<g=s oo 3D

then R 1s a retraction /"rom‘Bg' q(R,,) onto B; q(R,,_l).

Proof: We used the additional assumption aj = day o) from Theorem 1 only
in Step 3 of the proof of this theorem. In other words, only the construction of the -
extension operator 7' from (26) must be modified. Let 0 < ¢ = . If &’ € Z,_, then

1 \
we choose I = I(k') € Z, such that ap = 5 - If x is given by (25) then we put
7i(t) = y(t — 1). We modify (26) by -

flx) = (Tg) (x LZ (Fi ) (@a) (B9 F'g) (2), z = (2, 7). (32)
‘ Zinms
Again we have f(z',0) = g(2’). The modified estimate (28) with «, instead of
awo and the arguments afterwards show that 7' has the desired properties. Let
l<p<qg=oo. Then p=1. I & €¢Z,_, then we choose a natural number N(k’)
“and a number C(&') with 1 < C(k') < 2 such that

o) ¥ = iy, g ' C(33)

M= NG Ay

of. (16). Tet

/n

flx) = (Tg) (x) = 3 C(k') J Py ) (@) (B geFg) (8, (34)

Kl HISA (k)u'(k £

z = (2, z,). We have f(2', 0) = g(z'). We use (27). Then the counterpart of (28)
reads as follows, \

Z “(k m |1 F Ypue,mES | Lp(Ra)|1

m= — 00
< ca B GEF g | Lyl Ry Z_m“"““” SERRE (35)
(modification if ¢ = oo) We have —+ —'— 1 and consequently ¢(1 — 6) = —¢

and o(¢ — 1) = ¢. Then it follows thdt

Z e I e m Y | Lp(Ro)llF < caid |F 7' 9¢F g | Ly(Ra- ) -+ - (36)

M= —00

which yields the dcsired result by the above arguments.
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Remark 7: In contrast to (26), the operator 7' from (32) and (34) depends on the
sequence 0 = {;},ez,. Of course, (31) does not cover all cases. What remains is the
case 0 < p < 1, p < q. Probably the Corollary remains valid also in this case. One
must modify (‘34) (replacement of F';71y; by more sophisticated functions). However we
we have not checked this proposal in detail.

4. Traces of F, (R,)

4.1. Main Assertion

All notations have the same meaning as in Subsection 3.1.

Theorem 2: Let 0 < p < 00 and 0 < g < 0o, Let 0 = {w}yez, be a sequence of
. positive numbers with (5). If k € Z, then we put k = (K', k) with k' € Z,_, and k, € Z,.
By assumption there exists a positive number ¢ such that

Aurmy = C Mm% ay g with 2 > max (1, e ?) (37)

holds for all k' € 2, and m € Z,. Then F% (R,.,) with
a’ = {ak = aw.olrez,.,

8 a space in the sense of Definition 1 (i7) and R vs a retraction from Ff (R ) onto
F (R,,_ ). Furthermore, ' from (26) is a corresponding coretraction.

Proof (Outlme) : Step 1. Tt is easy to see that F“ o Baoy) is a space in the sense of
Definition 1 (ii). Furthermore, it follows from the arguments in Step 3 of the proof
of Theorem 1 that 7' from (26) is an extension operator with the desnred properties.

Step 2. We must prove that R is'a bounded mapping from ¥4 (R,) into F“ o Racy).
Let 1 =b, < b, < by, < by < ---. We beginn in the same way ‘as in Step 5%0f the
. proof of Theorem 1. Instead of (18) we use

(F g Ff) (@, 0)1* = cbiliy(wiuf)a™* (), - (38)

where z = (', 2,), by < %w = bpiy, & = (K, m) with m = 0 and 2 > 0. Here d hdS
the meamng of (9). Integration ynclds
bmél
[(F 'y Ff) (', 0))* < Cb',‘..‘ﬂ_(bmﬂ —ba)t [ (e (&, 2,) da, (39)
bm
with £ = (&', m), m = 0. A similar formula holds if m < 0. Let 0 < 2-< min (p, g).
Let e.g. 0 < ¢ < 1. We use the abbreviation k;/(z') from (17). Then we have

PR “;:q' e (27)|9 s

k'€l
A =)

= XX aliF ywmFf) (o, 0)

m=-—00 k'€,

oo y Omas ' al2) (Alg)-4al)
w ’
Sc) 2 | a(bmer — bm)™? m +1 j (Y m)f T (@,.2q) dz, + -,
m=0 \k'€Z,_, . bm o

(40)
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where - .- indicates a corresponding term with m = — 1, —2, =3, ... If one uses
the triangle inequality for [, then one obtains a corresponding formula with ¢ > 1.
~ We put temporarily

G = tp(bpar — b))~ VA0E ., if k= (K,m) with m =0. (41)

Because % > 1, the first term on the right-hand side of (40) can be estimated from
above by
oo f bma N T = q/i
c ) {f [ P agk'.m)(ll"(k’,m)/)n*q (', x")]u’tz (1:11,,} . (42)
om

m=0 k'€l,_,

~

Because % > ‘l\, it follows from Hoélder’s inequality that

bryts v ai o [bma alp it
{f [...Js dxn} < (f [...]pIe dzn); bz — bw) P (43)
bm bm
Let p < g and
1.1 _1 1
W = Blbmsy —bm)' 7 = @ho(bpsy — bp) P L., d > . ©(44)

with k = (k', m), m = 0. Then (40), (42) and (43) yield\

f(z ad (') [")”"’(lx <('Z‘ [ (... P da’ +

R, \K€Zp, m=0 R,_,
o0 by .
<cx [ [ Xy, m,(w(k min* (& 2 ]’”“ dz, da’ - -
.m=0 R,_, b, Lk'€Z,,
- _
é 2 Z f f 2 a‘k Wk/ *a (I :L")]p/q dxn dx’ + - h
m=0 R,_, b, Lk€Z,
<cf [ 3 al(pif)a* (x)}p/v dr. o 43)
R;, keZ, :

Because p < gand d > % it follows from the Proposition that the right-hand side

of (45) can be estimated from above by c||f | F LRI Together with (17 ) this yields
the desired assertion, provided that 0 < p S q =< 1 and that g, and a,‘ are re]ated

by (44) If ¢ < 1and p > q then we apply Holder’s inequality with = + ; =1
to Z’{ Jin ( 40) If follows that

m=0
3 2(1 +m)e {.) (1 + m)"e <c(.§ (1 + m)ewlo {...}va)°'"
m=0

P—4q

if oo > 1, ie. g > — q In that case (i.e. ¢ < 1 and p > ¢) we replace (44) b
r .

' 1 "
a = a';t’(bmﬂ —b ) i bm+1( + m,)?/‘l, d> E‘t . (46) -
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with k = (£, m), m = 0. The rest is the same as in the case 0 < p < ¢ =< 1. The case
q > 1 can be treated in a similar way, where one has again two subcases, p = ¢ and
P>q .

Step 3. Let again ¢ < 1. We discuss (44) and (46). We recall that by = 1 {l;ld put

bniy — bn = (1 +m) if m =0, 1,2, ... and 0 <8 < 1. Then we have b, ~ 3 I
~ (1 4 m)!~% With 0 near 1 we have ' =1

. 1
—4e
a~ap(lL+mP ., >0, if pSgs1 - (47)
and ’
_}_3 .
ak~ak'(1+m)" , €>0, if ¢g<1 and p=g. (48)

The desired estimate is now a consequence of (37). Similarly one deals with the case
g>11

Remark 8: The question is whether our choice of the numbers b, in Step 3 of the

last proof is optimal. Our limiting exponents » from (37) -are shown in Fig. 1. Tf one

asks the same question, i.c.

Qe .my = € |m* awop Wwith ¢>0, == 0,. k'€Zy,, and m€Z,, .

LA 14
1
, q 3 q 0
1 1
4
1 1.1
14 4 - -
1 1-3 P g
. 1 T ! 1
Fig.1 -~ P fFig. 2 p
14 14 S ET
9 / 9 4 L 79 P
/ 7 +
Ve - 1.1
7/ ‘- P9
"= - 1 e
7| 1.1 49-1
| A WAV R RN
/ 13.1) (4,3 Al . —
/ Py 9 P9 2
s I L 1
/ ’ P
1 - I -
1 1 1 1 1
? . z P
Fig. 3 Fig. & .

for the spaces B§ (R,) then one has to examine (15) and (16)."The corresponding -

limiting expom,nts x are shown in Fig. 2. Because B (R,) = F“ o(R,) one can try to -

interpolate these two flgurcs and to improve the assertlons for F“ ,(Rz) on that way.
We sketch this possibility in the following subsection.

°
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4.2. Tmprovements

In [16: 2.4.9] we developed a complex interpolation method which can also be applied
to our situation. (One has to replace the dyadic covering of R, by the congruent co-
vering in the sense of the introduction.) Without any further explanations we use the -

notations introduced in [16: 2.4.9]. In particular if F“p:_qo( ») and F;. o(Ry) are two

spaces with the sequences a® = {@,% ¢z, and a' ='{a,'}4cz, then the complex inter-
polation (-, -)g with 0 << 6 < 1 yields

(Foe(Ra), Fo (R), = Fy o (Ra), (29)

Po.qs Pgdg

"1 1—06 _ 6 1 1—6 8
o’ = {u,% = («.ON 8 (a,1)? y — — +_‘y—= +—' (50)
(o = (W= (@ ez o= —— o =

If a7 ~a(,, ol + lm|)"r with £ = (k' m) and r = 0, 1 then a,’ ~ aly (1 + |m))*
with g = %4(1 — 0) + #,0 and a9y = (a(k o) (@l o))’ Tf the hypolhcses of
Theorem 1 for Ff;wo(]{,,) = BS‘:q.( ») and the hypotheses of Theorem 2 for F,,l o(R2)
are satisfied then we have the well-known standard situation of interpolation theory :
The restriction operator (Rf) (z') = f(2', 0) and the extension operator 7' from (26)

“are the same for both spaces. Then the. interpolation property yields that R is also
a retraction from F”o"’o (R,) onto Fp gy (Ra) with a’® = {a}f = aly o) liez, , and that 7’

from (26) is a corresponding coretractlon Now one can apply this procedure in
“order to improve the limiting exponents for these spaces F4 (R,) from Fig. 1. We

describe an example, cf. Fig. 3. Let ¢ = 1 and py < q be glven "'We choose a number
1—
p < ps and determine 6 such that 1 = —0 —I— —. We wish to interpolate
. Pe q
. . o a . L1 1 f ,
Fy (R,) = By (R,) and F¢ (R,) via (49) with — = o 4+ — and g¢p ¢ (this
o : . N P8 q P
corresponds to the heavy line in Fig. 3). From p — 0. follows 6 — 0. Now we
identify x, and %, with the limiting exponents from Fig. 2 and Fig. 1, respectively, i.c.

1 1
x=1— ? and », = —. Then we have
: D

1 0
29:(1—0)7{0—*-0%12(1—9)(]—'?)-*‘1—)

2 11 1
—-—+(1—o (1——)—>———+1——.
) q P g q

In other words: R is a retraction from F"o (R,) onto 1v° o(Razy) where ppand ¢ have

the- above meaning if a = {ay)yez, With aypm =c¢ [m[" aw.0, ¢ > 0,% > %, and
a' = {ay = awolwez,,. 11 1 = ¢ < 2 then this is an improvement in comparison
with Theorem 2. If we calculate the best possible limiting exponents » which can be
obtained on that way then we arrive at Fig. 4, which is (at least partly) an improve-
ment of the limiting exponents from Fig. 1. Ho“ ever we are not surc whether these
limiting exponents are natural (in contrast to the limiting exponents for the spaces
. B (R;) from Fig. 2).
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5. Continuous Version

Tet ¢(x) = 0 be a compactly supported infinitely differentiable function on R, with,-
say, : :

plz) =1 if 2= (2),...,2,) € R, and |oj| <1, where j=1,..., 7. (51)

Let g,(x) = p(x — y) if z € R, and y € R,. Of course, {gi(2)}rez, is an admissible
system in the sense of Section 2 after the immaterial replacement of condition (i)
from Section 2 by the assumption that supp ¢ is compact. Roughly speaking we shall
try to replace the discrete sequence {@(x)}4ez, in Definition 1 of the spaces B; (R,)
and F§ (R,) by its continuous counterpart {g,(z)},er,. We extend the definition of the
“maximal function from (8) by '

(F\p,Ff) (x — 2)]
((py/)* (3') il:‘{) _l + |z]b

, z€R,, yeR,, (52)

’ .fESC(Rn) and b > 0.

Theorem 3: Let a(y) > 0 be a continuous function on R, with
aly) S calz) f ye€R,, z€R, wnd |y—2 =1, (53)

where ¢ > 0 is.an appropriate number (which is mdepcndent of y und 2). Then a = {a;
= a(k)}rez, sutisfies (5). ‘ -

(i) Let 0 <p=coand 0 < q = oo. Let b > ; m (52)._ Then

( [ a%@) IF g, Ff | LR, ll.l/)”" (54)
R'l ’ . .
and .
(fa"(J) ll(%/)* [ Lp(Rp)|® (Il/)”" (55)
R, : .

© are equivalent quusi- norms on Bt (R,). (Usual modification if ¢ = o0).
q q Pa qg=2

(ii) Let 0 < p<cound0 < qg =< oo Letb > _n_ wn (52). Then
1 min (p, q)

” f a%(y) (F'g,Ff) ()1447/)1/« »(R)

and

( [ @) l@,h* (-)I"(l.f/)"" L,(R,)

Rn

" are equivalent quasi-norms on F [(Ry). Usual modification if ¢ = oo).

Proof: Step 1. Tt is obvious that the sequence a satisfies (5). We prove (i). By
* the multiplier theorem from [16: 1.5.2 or 1.6.3] it follows that there exists a positive
number ¢ such that

IF @, If | Ly(Ro)ll = ¢ I @ubf | Ly(Ro)| + --- - (58)

for all ¥y € R, and all f € S¢(R,), where k£ € Z, is the nearest lattice point to y, and
4 e mdlcau,s terms with F-lgFf where 1 € Z, and [l — k| < ¢’ (the constant ¢’
depends only on ¢). Conversely, if k£ € Z, and y € R, with |k — y| < 1, then we have
by the same multiplier theorem that there exists an appropriate positive number ¢
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such that

WE @ Ff | Lp(Ro)l. = ¢ |F~ g, Ff | Lp(Ro)l| + - (59)

for all f € Sc(R,,) Here -+ ... indicates terms with ¢,,, instead of @,, where 9 € Z,
and lg| = ¢’ (again ¢ depends only on ¢). Integration over y with |k — y| S 1in
(59), multiplication with a(y), resp. a{k), g-power summation over k£ and a similar
procedure starting with (58) show that (54) is an equivalent quasi-norm on Bj (R,,).

"Under the same hypotheses as in (58) and with the same interpretation of + - we

have _ ) . )
(@)* (2) = cl@ef)* () + -+, z € Ry, (60)
This follows from formula (1.6.3/2) in [16]. Similarly we have
(@ef)* (@) S cl@N)* (@) + -, € Ry, : (61)

under the same hypotheses as in (59) (and with the same interpretation of + ---). By
the Proposition from Section 2 and the above described procedure follows that (55)

" is an equivalent quasi-norms on B3 (R,).

Step 2. We outline the proof of (u) By the above procedure it follows from (60),
(61) and the Proposition from Section 2 that (57) is an equivalent quasi-norm on
F3 (R,). Of course, the quasi-norm in (56) can be estimated from above by the quasi-
norm in (87), and hence by c|lf| #4 (R,)|. The proof is complete if we can find a con-
stant ¢ such that '

“ :é‘:,,aq(k) KF—"P/‘F/) (-)|q)1/a’

(fa"(y) (F1g,Ff) ()] dy)""
R,

Ly(Ry)

62
L,(R) (6%

holds for all f € S¢(R,). For the purpose we introduce
f () dy, ke€Z,.

ly—kiS1
Then {y(2)}kez, is an admissible system in the sense of Section 2 (again with anim-
material modification of condition (i). from Section 2). In particular, the left-hand
side of (62) can be estimated from above by a corresponding quasi-norm with ,
instead of ¢;. We have

(P (@) = [ (F19,Ff) (@) dy. | (63)

ly—kl<1

If'g=1 then Holdcr s inequality yields

(F 'k f) @)= c [ (F @ Ff) (@) dy.

, PRSES ,
and (62) follows easely. If 0 < ¢ < 1 then we obtain from (63) and (60) that
(£~ %F/ Y@ Zc [ [(FgFf) @) dy((@)* 0 (z) + ), . (64)
ly—k1=1

where - --- has the same meaning as in (60). By Holder’s inequality with g 4 (1 — q)
=1 we havc .

2 (k) [(F 'y Ff) ()|
keZ,

S (Za) [ (g @F dy)f (2 o) ()™ @)~ T

KeZ,  ly—kIst ket
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- Now it follows from (62), a second application of Hélder’s inequality wi>th‘réspect to
" pg + p(1 — ¢) = p and the Proposition from Section 2 that

WIFsRY )
= ( [ a%y) | (F- "9k ( e d?/))""

R’l

SR 1] FS (RS,

which yields the desired inequality. i
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