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Modulation Spaces on the Euclidean it-Space 

H. TRIEBEL 

Die Arbeit bcschäftigt sich mit dem Problem der Spuren von Funktionen aus Modulations-
raumen aiif der Ortindlage der Fourier-Analysis und der Maximalungleichungen. 
B pañoTc	MaTp1,1I3acrcn aaaa 0 cieiax tj)viiiiiil 113 FIOCTHCTB MOJ VT1 H11101 Yia OCIIO-




Banun anajivaa (l)ypbe it IaKcll1lajl1,Hb1x IIepaI3dncT13. 
The paper deals with the problem of the traces of functions belonging to modulation spaces on 
the basis of Fourier analysis and maximal inequalities.	

= 

1. Introduction 

Let	0 be a compactly supported infinitely differentiable function on the 
euclidean n-space R,. Let	 - 

Z= {k I k E R, k = (k ..., ks ) ) k, integers}	 (1) 

and k(X) =	- k) with k E Z,. We assume that!' k(X) = 1 in R (smdoth reso- 
kEZ, 

lution of unity in Rn). Let a = { ak}kEz, he a sequence of positive numbers. The paper 
deals with the spaces B q(Kn ) and F(R), which are characterized by the quasi-
norms

( Z akq I!P1iqkF1] I L(R)J[Q ' IQ	.	 (2) 
/ 

and
( E  kEZ, a. I(F'[ç kFt] (.)j1Q 1(11)	 (3) 
\	 / 

respectively. Here 0 < p, q c (with p < oo in the case of the spaces F q (lt•n)). I' 
and F stand for the Fourier transform and its inverse, respectively, on the Schwartz 
space S(R). For our purpose it is sufficient to assume that / belongs to S(R) with 
supp F1 compact. By a suggestion of H. G. Feichtinger we denote B q(Rn ) and Fq(Rn) 
as modulation spaces. The main aim of this paper is to study the trace problem: What 
can be said about the trace operator .R, 

R : /(x)	/(x', 0), where x = (x', x), 

as a mapping from B" g(Jtn ) or F q(R i ) onto corresponding spaces on R -1 ? Our main 
results are formulated in the Theorems 1 and 2, and in the Corollary. Furthermore, 
Theorem 3 contains a continuous version of (2) and (3). We give detailed proofs as far 
as the spaces B q(lln) are concerned and outline the proofs for the (technically more 
complicated but also more interesting) spaces F(R).

.4'
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The interest on the above spaces conies from two quite different sources. H. G. 
FEICILTINGER introduced in [21 spaces of Wiener type on locally compact abelian 
groups, cf. also [3, 41. It comes out that FB (R) (the Fourier image of B.q(Rn)) 
with 1 p, q ^ 00 is a space of Wiener type on R in the sense of Feichtinger. So one 
can try to look at spaces of type B q with 1 p, q co on locally compact abelian 
groups in the framework of the technique used there, cf. [5]. Our approach is restric-
ted to R, but includes the spaces Fa (RJ and extends the range of p, q to 0 < p, 

PIq 

q 00 (p < 00 for F(R,)). The other source is the spaces B q(Rn) and Fq(Rn) 
where again 0 <p, q oo and -oo <s < 00. These two scales include many well- 
known spaces of functions and distributions, e.g. Holder-Zygmund spaces, Sobolev - 
spaces, Besov spaces, Besse]-potential spaces, Hardy spaces and BMO. Let 

Qk ={xlx = (xl ,...,xn)ERn, 1x11_:^-_2"}, 

Pk =Qk1 1 —Qk if k=l,2,3,... and P0=Q1. 

The corridors Pk with k = 1, 2, ... can be divided in an obvious way in cubes with 
side-length 2k One obtains a covering of R by "dyadic" cubes instead of a covering 
of R by congruent cubes, which underlies (2) and (3). Roughly speaking, the quasi-
norms of the spaces B .q(R n ) and	are defined in the same way as in (2) and 

PP (3), respectively, where the covering of R by congruent cubes is replaced by the 
above dyadic covering and Uk 

= 2k8 The theory of the spaces B .q(Rn ) and F.q(Rn) 
from the just-described standpoint has been developed in the three books [13, 15, 161. 
It seems to be natural to ask whether the covering of R. by dyadic cubes can be 
replaced by other coverings. The first question is for what coverings of R. (or locally 
compact abelian groups etc.) definitions of type (2), (3) make sense. Considerations 
what coverings are admissible can be found in [14: Chapter 2] and [1, 7], the latter 
one in locally compact spaces. The second question is whether one can characterize 
elements of corresponding B-spaces and/or F-spaces and their quasi-norms in other 
terms, e.g. via differences and derivatives of functions, approximation procedures 
or as traces of harmonic functions or temperatures (just as in the case of the spaces 
B(R,,) and F,(R)). Some work in this direction has been done. Beside [14: 
Chapter 21 we refer to the papers by M. L. OOL'DMAN [8, 91, G. A. KAIJABnc [11, 121 
and S. JANSON [10]. The feeling is that some regularity assumptions for the admissiblC 
coverings of II, are necessary in order to get substantial results (cf. the papers by 
Kaljabin, Gol'divan and Janson). Probably the congruent. covering is a limiting case 
for that purpose and of peculiar interest may be coverings which are "between" the 
congruent and the dyadic covering or coverings where the cubes (or more general, 
rectangles) grow even more rapid than in the dyadic case. In this sense this paper is 
also a contribution to the study of the limiting case "congruent covering". In particu-
lar we wish to show what is different in comparison with the "dyadic covering". 

As far as the above spaces B q(Rn) with 1 p	oc (and 0 < q oo) are con- 
p. 

cerned we refer to M. L. Gol'dman's paper [9]. His approach covers these spaces as 
a special case. Compare in particular Theorem I and the Corollary below with 
Theorem 7, remark 1 on p. 57, and Subsection 4.1 in [9]. 

Adnowlcdgement: The first draft of this paper has been written during a visit of the 
author in November 1981 in Vienna. I take the opportunity to thank illy colleagues 
in Austria for their hospitality and Dr. H. G. Feichtinger and P. Grobner from the 
University of Viennafor stimulating discussions about the subject of this paper. As an 
outgrowth we planned this paper and [5] (cf. also [6], which is a survey, including a 
description of further research).
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2. Definitions and Preliminaries 

As in the Tntroduction, R stands, for the euclidean n-space and the lattice Z. is 
given by (I). Let S(R,,) be the Schwartz space of all complex-valued infinitely diffe-
rentiable rapidly decreasing functions on R. The Fourier transform and its inverse 
on S(R) are denoted by F and F- ', respectively. Let Sc(R) be the collection of all 
/ € S(Rn) such that F/ has a compact support. if 0 <p < cc then 

ifI Lp(RI 
= (R 

lf(x)I dx) 

and IV I L(R)II = sup I/(x)I. Finally, let {k(X)}kEZn be essentially a smooth resolution 
XER 

of unity related to the lattice Z,,, i.e.: 

(i) 9k(X) € S(R),	supp 'pk c {y I y = ( yi, ", Yn) E R, IYj - 1 I	1} 
where	k = (k 1 , ..., Ic,,) € Z,,, 
(ii) for every multi-index l' there exists a number c 7 such that 

il)'wk(X) I < c for all Ic € Zn, 

(iii) there exists a positive number c such that 
C < ,' 9k(X) for all x € It,,.')	 (4) 

kEZ,,	 S 

if f 99k(X) = 1 then we have a smooth resolution of unity. For technical reasons the 
kEZ,, 

bit more general version (4) is convenient for us. {q(x)}kz with (i)—(iii) we call 
admissible systems. 

Definition 1: Let a = {ak} k(z be a sequence of positive numbers with 

— ak	 - 
0<c 1 ^ ^	c2<00 for all k€Z,, and kEl,, 

ak 

with Ic - = 1,	 (5) 

where c, and c, are two suitable positive number. Let 91= {k(x)}kEZ bean admissible 
system in the bove sense. 

(I) Let 0 <p no and 0 <q no. Then S C(Rn) equipped with the quasi-norm 

Ill I B•q(R)II' = ( ' a I1F '[kF/]	 S	 (6)
kEZn / 

is denoted as B(R,,) (usual modification if q = cc). 
(ii) Let 0 <p < no and 0 <q cc. Then Sc (R,, ) equipped with the quasi-norm 

If I ap  (R.)Ij9 	(	' a, Q jF'[pkF/] (.)Q \1I Lp(ltn )	 (7) 
kEZn 

is denoted as F ,q(Rn) (usual modification if q = no). 

Remark 1: For sake of brevity we write F- 1 pkFl instead of F 1 [ kF1] in the 
sequel. Of course, (6) and (7) make sense, in particular, by the Paley-Wiener-theorem, 
F*pkF/ is an analytic function (belonging to S(It,,)). Of course, (6) and (7) are quasi-
norms (norms if p ^ 1 and q	1). We recall that a quasi-north It has all the prop-

I) All unimportant positive numbers are denoted by c, c1 .... . c', ... where the numerical values 
of these numbers may differ from formula to formula.
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erties of a norm, only the triangle inequality is replaced by 

IIk + h 211	c (I[h iIl + IV2ID 
where c	I is independent of h 1 and h2. 

Remark 2: For sake of simplicity we restrict our considerations to S c (R,,). The 
idea is to extend the definitions of B(R) and F q(lt n) to suitable distributions 
from S'(R,,) or from other appropriate spaces of distributions. (From that point of 
view it would.he better to denote Se(R,,) equipped with (6) by h q(R) etc.) To find 

- . -- suitable distribution spaces for an extended definition of B"q(lln) and Fa (1t) is a 
somewhat delicate question.. A detailed discussion may be found in 1. 9), cf. also [14: 

	

•	2.2.31. However it is quite clear that the assertions of this paper can be extended via 
•	limiting processes to extended spaces of type B q ( Rn) and Fg(Rn). 

Remark 3: As has been said in the introduction the dyadic counterpart of B q (Rn) p. 
and F", q(R•n) are the spaces B .q(R•n) and 1i'(R.,,), respectively, -oo < s < co. For 
these spaces we have an elaborated theory at hand, cf. 115, 16]. Some parts of that 

• - theory are independent of the underlying covering of R. if it is regular enough (e.g. 
congruent or

'
 dyadic coverings). Tn particular, for given p's and q's the quasi-norms 

(6) for all adissible systems 99 are pairwise equivalent (i.e. for two admissible sys-
teins p the quotients of the corresponding quasi-norms (6) can be estimated from 
above and from below by positive constants, which are independent of the elements 

• of Se(R,,)). Similarly for the quasi-norms (7). In this sense we write IV I Bq(ltn)Ij 
and It I F" (R.)II instead of IV I B q (Rn)I1 and Ill I F q(R n)Iv, respectively, in the 
sequel. Furthermore, it is no problem to prove Fourier multiplier theorems and maxi-
mal inequalities for the spaces B q (Rn) and F q ( Rn ) in the same way as this has been 
done in [16] for the spaces B(R) and F, 0(R,,) (cf. the Proposition below). Other 
properties are different, e.g. the traces on hyperplanes, which is the subject of this 
paper. 

Definition 2 (Maximal/unctions): Let b > 0, d > 0 and/ € ,S(It,,). Let {p(x)}k(z - 
be an admissible system in the above sense. Then 

I(PwkF/) (x - y)I

	

xEit,,, kEZ,,	 (8)
( pk/)* (x) = sup  
y(R,,'	l+IyIb 

•	and
* (x) = sup I(F kF/) (x', x. - t	x = (x', x,,) E R,,, k € Z,,. (9) 

+tERI i1t 

Remark 4-: We have 
(f)* (x)'	(w/)* (x)	l(FwkF/) (x) I,	X  It,,.	 (tO) 

Of course, (9)k/)* (x) and ( k/).* (x) depend on b and d, respectively. However this is 
unimportant (under the restrictions formulated below). So we omit b and d as indices. 
Of course, (8) and (9) make also sense if (4)is not satisfied. 

	

Proposition: (i) Let 0 <p 00 and  <q oo. Let b >	in (8)and d> 
in (9). 'Then	 •	 7) 

	

IS	( 2' (1.	!@pkt)* I 
\kEZ,,  

•	and	.	- 
'	

S 
(	II(cokf)n* I[•.(It,,)IIQ''IQ 

/

(El)
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are equivalent quasi-norms in 13 q(Rn) (modification if q = oo). 11(4) is not ensured 
then the expressions from (Ii) can be estimated front above by the quasi-norm in Bq(Rn). 

	

(ii) Let 0 <p <c and 0 <q ^ 00. Let b>	n	
and (1> 

in. (9). Then.	 flhiii (p, q)	nun (1, p) 

' akq. I(p,cf)* (.)I q I Iq Lp(Rn) 
kEZ,, 

and

	

kEZ' 

(1 q (q f )fl * (.)l)ifQ L(R)	
J 

are equivalent quasi-norms in F(R. ) (modification if q = oo). If (4) is not ens-ured 
then the expressions from (12) can be estimated from above by the quasi-norm in Fq(Rn). 

Remark 5: The Proposition is an easy consequence of Theorem 1.4.1 and The-
orein 1.6.2 in [16]. It is the counterpart of corresponding maximal inequalities for the 
spaces J3 q( 11 ,) and FP (R) in [15, 161. 

3. Traces of B,q(Rn) 

3.1. Main Assertion 

The trace operator R is given by 

RI = f(x', 0), where f(x) E SC (R•n) and x = (x ' , x), x' € R_ 1 .	(13) 
Our aim is to find a space B'q (Rn_ i ) with a suitable sequence a' = {Uk '}k'(z, of posi- 
tive numbers such that I? is a linear and bounded operator from the given space 
B(R) onto B q(Rn _ i ). Furthermore, 1? is called a retraction if there exists a linear 
and bounded operator T from B q (1tn _ i ) into B(R) such that 

RT = I (identity in B'q(Rn_i)).	 (14) 
(In that case it is clear that .R maps "onto".) We call T it coretraction (to the re-
traction R) or an extension operator. 

Theorem 1: Let 0< p ^5 00, p = mm (1, p) and 0< q iL, 00. bet a = 
be a sequence of positive numbers with (5). If k € Z. then we put k = (Ic', k) with Ic' E Z,_ 1 and /c n € Z 1 . Let Ic' € Zn_i, 

a''=infa(k',)>0 if 0<q^S	 .	 (15)

£EZ, 

and

	

I I	1 ak' = E a ( . n< oo with	 Yj<q:5:oo.	(16) 

	

a	p	q 
Then B'Q ( Rn_ i ) is a space in the sense of Definition I (i). If there exists a positive num-
ber A such that a' ^ Aa(k'o ) for all V € Zn_ i , then 11 is a retraction from B q(Rn ) 01110 
B 11 '9i(Rn_i). Furthermore, there exists a corresponding coretraction 'I' in the sense of (14), 
which is independent of a, p and q. 

Proof: Step 1. it is easy to see that the sequence a' = {a'}k'€z,,_, satisfies (5) with 
n -. I instead of n. Hence, B,' q (Rn_ i ) is a space in the sense of Definition 1 (i).

(12)
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Step 2. Notations with respect to	=	y E R,1 , y = (y' ,O)} are indicated by 
In particular, F and F'-' are the Fourier transform and its inverse on S(R n_ i ). If 
/(x) E S°(Rn) then /(x ' , 0) E SC(Rn_ i ). Let ' = { (')}',,_, be an admissible system 
in the above sense (with respect to R_,). We have to calculate 

V-1'99' F'(/(x', 0))} (y') =' {F'''F'[(F'çvjF/) (x ' , 0)11 (y') 

with y' € Rn_ i . By elementary arguments we have 

F''q'F'[(FT'q7iF/) (x', 0)1} (y') = (Fçv','qjF/) (y', 0), 

where the left-hand side is considered as a function in R_, and the right-hand side as 
a function in R. Obviously,	'(x') q21(x', x) = 0 if k' = (k1,  
and max I/ct - l > 1. Consequently 

£=1... n—i

'F'(/( . , 0)) (x')	Z(1'(k'.mI) (x ' , 0) + ... = hk'(X') +
(17) 

where + ... indicates sums of the above type where P(k'.m) must be replaced by 
with max jk j -	= 1. Of course, 1' = (1 1, ..., l_,). It will be sufficient to deal only 

t—i.... . n—i 
With hk'(x') in the sequel. The above Proposition can be applied to {1pk(x)}1'(z with 
lPk(X) = 'k'(X ') (k'. h )(x) where x € R and k = (k', ks). if 1	x,,	2 then we have 

(F'lpkFf) (x', 0)1	c(tpf)fl*P (x) where x € (x', Zn).	 (18) 

-. We put (18) in (17). Let 0 <p	1. Afterwards Ave apply the inequality 

(' 
.)P :E^ f a ip if	0	 (19) 

and integrate over Rn_ i x [1, 2. Then we have 

Lp(Rn_ i )II'	C 2: ll(P(k.m/)n* (.) I Lp(1tn)II",	0 < p	1.	(20)

M= -00 

TI 1 :E^ p	cc. then we use the triangle inequality instead of (19) and obtain that 

IIhk) I Lp(Rn1)II	C EII(V(k.rn I) n* (.) I L(R,	1	p	.	(21) 

Let 0 <q p ^ 1, in particular we have = p. Then (15) and (20) yield 

' a IIhk' 
k'EZ_ 

c	a Il( P(k. ,n il) n* Lp(R)j :!^-_ c 2: alq IRVthn*	 (22) M 0 k'EZ.,	 1€Z 

We have similar estimates for the terms indicated in (17) by + . Now it follows from 
(17), (22) and the Proposition that 

IIt( 0) 1 B q (Rn_i)I[	C f B •q (R•i)II.	 (23) 

Hence, 1/is a bounded operator from 13 q ( Rn) into B'q(Rn_i)• Let 0 <p	1 and

p <q cc. Again we have p = . Then we apply Holder's inequality with respect to
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+ P.= 1 to (20) and obtain that  
q	a

I L(R._)Jj7'	 S 

1	

00

	 p/a	oo	 p/q 
c ( E a m))	(a'm) I!((k,m/)n* H Lp(Rn )IIq)	 (24) 

rn	00 

We use(16), take the i--power of (24), sum over k' E Z,, and apply again (17) and 

the Proposition. The result is (23). The case 1	p	co follows the same line where 
one has to replace (20) by (21). Hence, (23) holds in all cases under consideration.	

S	
S 

Step 3. We construct an extension operator T from B q (Rn_ i) into B(R) which 
satisfies (14). Let y(t) € S(R) be a function with 

supp y(---, -i-) and (F, 1 z) (0) = 1,	 .	(25) 

where F1 - 1 is the inverse one-dimensional Fourier transform. Let g(x') € B'q(Rn_i)• 
We use the above notations and put 

/(x) = (Tg) (x) =	(F,-17) (x5 ) (F' 1 F'g) (x'),	x = (x', x5 ).	(26) 
k'EZ,	 S 

Of course, T is linear. Let Z (x') = 1 in R5_ 1. Then we have /(x', 0). = g, i.e. (14) 
holds. Let (k(x))kEz be an admissible system in R. ,, where we may assume that 

k(X) =	(x') k(Xn),	k = (k', k u ),	x = (x', x5 ),	 V	 - 

with appropriate functions .(X,), m € Z 1 . We may assume that em(t) x(t) = 0 if 
mtO.Wehave	

S	
V 

(FpkFf) (x) = (F, k x) (x5 ) (Y- 10k F'g) (x') + ...	 (27) 

where ± •.. must be understood similarly as in (17). Again we can restrict our atten-
tion to the first term on the right-hand side of (27). If k5 + 0 then (F'pkF/) (x) = 0 
by our assumption. Then it follows that .	 S 

00	 5 

V'	Q'17-I	P1 T Il) \ qjj 1 (k'.m) I	( k'.m)1'f	11p • nj 
M=_00	 5. 

C(4'o) IIF''F'g L(R51) + ...	 .	(28) 

(modification if q = co). By our hypotheses we have a1',0	A'a'k'. Hence,'(28)	V 
can he estimated from above by	 V 

F'',F'q L(R.5_1) + ...	 -	 ( 29)

We sum over V. € Z, 1 and apply the Proposition. We obtain that 

IT11 I J3 q (Rn)Il	C h g I B'(R_1)hI	
V	

( 30) 
for all admissible p's, q's and a's. The proof is complete. I	 S 

	

Remark 6: The operator T from (26) is independent of a, p and q. This has some	S 
advantages, in particular if one wishes to apply interpolation methods, where couples 
of different spaces of type B q(Rn) and F(R. 5) come in. This will be done in Sub- 

29 Analysis Bd. 2, Heft 5(1983)	 5
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section 4.2. The price for the independence of 'P on a, p, q is paid by the aditional 
assumption a' ^ In the next subsection we shall show that this assumption 
can he omitted (at least for some p and q), but the extension operator T depends on 
the sequence a (and hence is not useful for interpolation purposes). 

3.2. Modifications 

It is our aim to remove the condition a' > Aa(k'o ) from Theorem 1. 
Corollary: Let 0 <p	oo,	= mm (1, p), and 0 < q ^5 co. Let {ak } kEz, be a 

sequence of positive numbers with (5). Let a' = {U'}k'(Z,,_, be given by (15) and (16), 
respectively. If 

either 0 <q	 (31) 
OP*	1p<qoo J 

then I? is a retraction, from B(R) onto Bq(Rn_i). 

Proof: We used the additional assumption	Aa(k.o) from Theorem I only

in Step 3 of the proof of this theorem. In other words, only the construction of the' 
extension operator 'P from (26) must be modified. Let 0 < q	. If k' E Z,_ 1 then 

we choose 1 = i(k') E Z 1 such that	 If x is given by (25) then we pu t.

= 7(t - 1). We modify (26) by 

I(x) = (7'g) (x) = L' (F 1 '71(k1) (xe ) (F'-'.F'g) (x'),	x = (x', xe ). (:32) 
k'EZ_, 

Again we have f(x', 0) = g(x'). The modified estimate (28) with a(k'() instead of 
U(k'.0) and the arguments afterwards show that 'P has the desired properties. Let 
1 !E^ p <q . Then T9 = 1. If k' E Z,_ 1 then we choose a natural number N(k') 
and a number C(k') with 1 < C(k') < 2 such that 

C(k') L'
	

(33)


cf. (16). Let 

AX) = ('I'g) (x) = L' C(k') E -- (F 1 - 1 71 ) (x,,) (P'	F'g) (x)',	(34) 

	

k'EZ_	lj.V(k') U(kj) 

x = (x', xv ). We have f(x', 0) = g(x'). We use (27). Then the counterpart of (28) 
reads as follows, 

	

Uk',n) V ' (k ',m )EI I	 ) I Iq
 

M	CO

CO 

	

ca	iFF'g	 + ....	 (35) 

	

- (modification if q = oc). We have	+ --- = I and consequently q(l - a) = —a


and a(q - 1) = q. Then it follows that 

	

IF' (k' .fl, ) Pf I L(11)I	co JF''F'g I L(J_j° +	(36)


which yields the desired result by the above arguments. I
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Remark 7: in contrast to (26), the operator T from (32) and (34) depends on the 
sequence a = {ak}kEz. Of course, (31) does not cover all cases. What remains is the 
case 0 <p < 1, p <q. Probably the Corollary remains valid also in this case. One 
must modify (34) (replacement of F,- '7 1 by more sophisticated functions). However we 
we have not checked this proposal in detail. 

4. Traces of F;,q(Rn) 

4.1. Main Assertion 

All notations have the same meaning as in Subsection 3.1. 

Theorem 2: Let 0 <p < oo and 0<q;5  , Let a = {ak}k€Z be a sequence of 
positive numbers with (5). If k E Z. then we put k = (k', kn ) with k' E Z_ 1 and k E Z,. 
By assumption there exists a positive number c such that 

a(k' ffi) ^ c jmI.a(k'o) with , > max ( 
p 

i, -.---, 1 
q '
	 (37) 

\  
holds for all k' E Z_, and m E Z 1 . Then F q(Itn_) with p. 

a' = {a.' = a(k'.o)}k'Ez_, 

is a space in the sense of Definition 1 (ii) and B is a retraction from F g(R n ) onto 
F :q(1tn i). Purthermore, 'P from (26) is a corresponding coretraction. 

Proof (Outline): Step 1. it is easy to see that F'(It_,) is a space in the sense of 
Definition I (ii). Furthermore, it follows from the arguments in Step 3 of the proof 
of Theorem I that 'P from (26) is an extension operator with the desired properties. 

Step 2. We must prove that 11 is  bounded mapping from fi'a . (R) into 
Pq Let 1 = b0 < b, < b, < b 3 < .... We beginn in the satne way as in Step 2 of the 

proof of Theorem 1. Instead of (118) we use 

J(F'ipFf) (x', 0)1 1	cb +l (1pk/) fl * A (x),	 (38) 

where x = (x', Xn), bm :^-, Xn	bm+ i , k = (k', in) with m ^! 0 and 2. > 0. Here d has

the meaning of (9). Integration yields 

I(F' kFf) (x', 0)1 2	cb,(bm+1 - bml 
'—' f (pk/) n * l (x', x,,) dx,,	(39) 

b. 

with k = (k', rn), in ^ 0. A similar formula holds if m < 0. Let 0 < 2< nun (p, q). 
Let e.g. 0 < q	1. We use the abbreviation- hk , (x') from (17). Then we have 

E. a jh(x') 

E	Z a (F(k',fl)Ff) (x', 0) 
ln=—oo 

00 (	 b,,,,	 1Q/At2/q)(Ql1) 
^ c  [a" (b.+l — bm) b 2 1 * l (x',x,,) dx,,

,nO tkEZ_, 	 b,,,J J
(40) 

29*
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where + indicates a corresponding term with m = —1, —2, —3, if one uses 
the triangle inequality for tq' then one obtains a corresponding formula with q > 1. 
We pitt temporarily 

ak = a' . (b 1 — bm) - 'R b	if k = (k', m) with m ^ 0.	(41)


Because ^ > 1, the first term on the right-hand side of (40) can he estimated from 
• S

	 above by
( b+,	 -	 -	lop 

c	f [ E	 (x', x)12I (i'x . .	 (42) 
,n=0 I,,,	LkEZ_	 J	J 

Because 5- > I, it follows from Holder's inequality that 

•	 q/A	

Q

,	 qip 

{i [•• ]A/q dx}	^ 	i...1J0 (lxfl )	(hm , i — be,)	 (43) 

•	Letp <q and 

(4 = ak(bm+l	bm)	= U'(bm^ i	bm)	b 1 , d >	,	 () 

with k = (k', m), m ^ 0. Then (40), (42) and (43) yield 

f ( 4 h(x')I°	(lx'	c	f (	)P/ dx' + 
\k EZ_,	 /	m=0 R,,_,

CO	bm+l 

•	 c'	f f[	a(kn,)((k.m)t)fl	(x', xn)1 P'° dx0 dx' -{- 
- m=0 R,,_, b,, Lk'EZ,,_,	 J 

c' u(/)fl*Q (x', x,,)JPI dx dx' ± 
,n=0 R,,.., b,,, lkEZ,, 

:!z^c' f [ z akQ(kflfl*Q W p1q dx.	 (45) 
-	R,,, LkEz,,	 J 

Because p q and d> --- it follows from the Proposition that the right-hand side 

of (45) can be estimated from above by c l y I F 0(R.) P . Together with (17) this yields 
the desired assertion, provided that 0 <p	q	I and that ak and a, are related 

by (44). Tf q	1 and p > q then we apply HOlder's inequality with --- + -- = 1 
•	 p 

to	in{ ...} in (40). if follows that 
7,1=0

/s3	 \q/p 

,' {...} =	(1 -I- ni)° {...} (1 -f-in)	c (	' (1-)-- fl1)P/° {...}P1Q 

•	 S	 m0	m0	 \m=0 

if ca-> 1, i.e.	p	q In that case (i.e. q	I and p > q) we replace (44) by - 

a = 4(bm+i — bm)' 1 b 1 (l + m) 14 ,	d >	 (46) -
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with k = (Ic', in), m > 0. The rest is the same as in the case 0 <p	q	I. The ease

q> J can be treated in a similar way, where one has again two subcases, p q and 
P > q. 

Step 3. Let again q	I. We discuss (44) and (46). We recall that b0 = I and put 

bm+i - bm = (1 +rn) if m = 0,1,2,..: and 0< 6 <1. Then we have 
(1 ± rn)'. With ô near 1 we have	 1=1 

—+e 

Uk 4(1 + m) ,	e> 0, if p <— q <— 1	 (47) 

and

ak -' 4(1 + m' ,	a> 0, if q<1 and p	q.	 (48) 

The desired estimate is now a consequence of (37). Similarly one deals with the case 
q>1.I 

Remark 8: The question is whether our choice of the numbers bm in Step 3 of the 
last proof is optimal.. Our limiting exponents x from (37) are shown in Fig. . If oie 
asks the same question, i.e. 

C mJ U(k'O) with c > 0,	x	0,	k' € Z,,_ 1 and rn E Z1, 

1	-	 1 

/	 0  

1	 1	 1 
Fig.1	 P	 .	 Fig.2	 P 

3	 4-

 Fig. 3	 Fig. 4 

for the spaces J3 q (Rn) then one has to examine (15) and (16). - The corresponding 
limiting exponents x are shown in Fig. 2. Because B,,(R) = F(1t) one can try to 
interpolate these two figures and to improve the assertions for F q(Rn ) on that way. 
We sketch this possibility in the following subsection.

N
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4.2. Improvements 

In [16: 2.4.9] we developed a complex interpolation method which can also be applied 
to our situation. (One has to replace the dyadic covering of R by the congruent co-
vering in the sense of the introduction.) Without any further explanations we use the 
notations introduced in [16: 2.4.9]. In particular if F':,(R) and F q,(It) are two 
spaces with the sequences a° {ak°)kEz and a 1 = {ak 1 41z,, then the complex inter-
polation (., .)o with 0 <0 < 1 yields 

- P. • (It), F 1 (R )) = p,q	/	',q1'

0 , 1	— — 
= {ak° = (a	

1	1	0 
-+- k°)'° (ak 1 )°}kEz,	=	- - = 1 0

	0 + - . (50) 
Po	Po	Pi qo	g0 

If a T ' a (k 'o ) (l + jm)' with k = (k', m) and r = 0, 1 then ak°	a ( k ',o ) (l + IrnI)n0 
with X = x0(1 .-0) + 0 and	= (a k ',o ) )° (a'k'o))°. If the hypotheses of 

Theorem 1 for F ,( R) = R .q,(Rn) and the hypotheses of Theorem 2 for 
are satisfied then we have the well-known standard situation of interpolation theory: 
The restriction operator (R/) (x') = /(x', 0) and the extension operator '1' from (26) 
are the same for both spaces. Then the interpolation property yields that B is also 
a retraction from F 1q9 (R,,) onto Fp,,(R_) with a'° = {a= ak'.Ot}k'Ez_, and that  

P0 	 00 
from (26) is a corresponding coretraction. Now one can apply this procedure in 
order to improve the limiting exponents for these spaces Fa ,q ( Rn ) from Fig. 1. We 
describe an example, cf. Fig. 3. Let q	1 and p8 < q be given. We choose a number 

P <o and determine 0 such that ---- = 1 — 0 +
	We wish to interpolate 

F(R) = B°(R) and 'q(Rn) via (49) with ±= 1 0 ± and go q (this 

corresponds to the heavy line in Fig. 3). From p —k 0. follows 0 —k 0. Now we 
identify x0 and x with the limiting exponents from Fig. 2 and Fig. 1, respectively, i.e. 

= I — and Y, = 
1-. Then Ave have	 I 

q	.	7) 

xo = ( l - 0 ) x0-l- 0 1 = ( 1 _0)(1 _-)+ 

,Po	\	qj	P0	q	q 

In other words: .R is a retraction from	00 (R) onto F '9 (1_ 1 ) where po and q have 
the above meaning if a = {ak}k(z with a(k'm)	c 1mm a(k'O), c.> 0, x > ;CO, and 
a' = {a' = a(k'.o)}k'ez,. If 1 q 2 then this is an improvement in comparison 
with Theorem 2. If we calculate the best possible limiting exponents x which can be 
obtained on that way then Ave arrive at Fig. 4, which is (at least partly) an improve-
ment of the limiting exponents from Fig. 1. However we are not sure whether these 
limiting exponents are natural (in contrast to the limiting exponents for the spaces 
B q(Rn ) front Fig. 2).

(49)
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5. Continuous Version 

Let (x)	0 be a compactly supported infinitely differentiable function on R with,

say, 

99W = 1 if x	(x 1 , ..., x,) E R.	and lx i i ^ 1, where j = 1, ..., n.	(51) 
Let Wy(X) =	- y) if x E R and y E R. . Of'course, {pk (x)}kEz is an admissible

system in the sense of Section 2 after the immaterial replacement of condition (i) 
from Section 2 by the assumption that supp op is compact. Roughly speaking we shall --

try to replace the discrete sequence {k(X)}k(Z in Definition 1 of the spaces Bq(Rn) 
and F q(Rn) by its continuous counterpart {(x)} ER. We extend the definition of the 
maximal function from (8) by 

______________	 - ( .P"/) * (x) = sup	
b	 X E R,,	y € It,,,	 (o2) 

ZER	 I .+ IZI 
.IESC (Rn) and b>0. 

Theo Fe in 3: Let a(y) > 0 be a continuous function on R,, with 
a(y) 5 ca(s) if y 6 It,,,	z 6 R. and l - z i	1,	 (53)


where c > 0 is an appropriate number (which is independent of y and z). Then d = 
= a(k)} L. Ez satisfies (5). 

(i) Let 0 <p < co and 0 <q oc. Let b > in (52). Then 
-	 p 

(1 a(y) JF-''t 1 L( It.)Ilq (i/) hIQ	 (54)


and

( f a(y) ll('f) I L(B,,)l[Q (iq)I/Q	 (55)

Rn 

are equivalent quasi-norms on B', q (Rn ). (Usual modification if q = (?o). 

(ii) Let O<p<oc and O<q - ̂oo.Letb>

	

	 in (52). Then  mm (p, q) 

( f a(y) j(F-'F/) (•)I dV)h/ L(R,,)1	 ' (56)

Rn 

and -	 S 

(f a(y) I(f)* ()I (lY)	L(R,,)	 (57)


are equivalent quasi-norms on !' q(R n)• Usual niodi/caon if q = co). 
Proof: Step 1. it is obvious that the sequence a satisfies (5). We prove (i). 'By 

the multiplier theorem from [16: 1.5.2 or 1.6.3] it follows that there exists a positive 
number c such that 

IJF 19i'1 I L(R,,)II	C jjP'Ef I Lp(R'n)ll + ...	 '	(58) 

for all y E R,, and all / € Se (R,, ) , where k € Z,, is the nearest lattice point to y, and 
+ •.. indicates terms with F 1 99 1Ff where 1 € Z,, and 1 1 - kl c' (the constant c' 
depends only on p). Conversely, if k € Z. and y € R,, with 1k - yI 5 1, then we have 
by the same multiplier theorem that there exists an appropriate positive number c



	
-	 V - 
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such that

I L(R)I1-	c IIF- ' Ft I L(R)I1 +	 (59) 

for all / E Sc(R) Here + ... indicates terms with	instead of 99, where o € Z,, 
and IgI ^ c' (again c ' depends only on 92). Integration over y with 1k - y 1 in 
(59), multiplication with a(y), resp. a(k), q-power summation over k and a similar 
p.rocedure starting with (58) show that (54) is an equivalent quasi-norm on Bq(lln). 
Under the same hypotheses as in (58) and with the same interpretation of +	we

have

(/)* (x) 5 c(/)* (x) ± ...,	X E 'n	 (60) 
This follows from formula (1.6.3/2) in [161. Similarly we have 

( 92k1)* (x) ^s c(92y/)* (x) +	,	X €	 (61) 

under the same hypotheses as in (59) (and with the same interpretation of + ...). By 
•	the Proposition from Section 2 and the above described procedure follows that (55)


is an equivalent quasi-norms on 

Step 2. We outline the proof of (ii). By the above procedure it follows from (60), 
(61) and the Proposition from Section 2 that (57) is an equivalent quasi-norm on 

• Fq(Rn). Of course, the quasi-norm in (56) can be estimated from above by the quasi-
norm in (57), and hence by c if I F (R)ll. The proof is complete if we can find a con-
stant c such that 

I
' a(k) I(F'wkFf) (.)Iq 1jq L(R) 

•	 GEZ,.	 / 
c	a(y)	

(62)

I(F192F/)	dY)l/	

11

L(R) 



holds for all/ € S'(Rn). For the purpose we introduce 

Pk(v) 
= f 92y (X) dy,	k € Z,,. 
Iu—kI1 

Then {k(x)}kez is an admissible system in the sense of Section 2 (again with an im-
material modification of condition (i), from Section 2). In particular, the left-hand 
side of (62) can be estimated from above by a corresponding quasi-norm with Pk 

•	instead of 92k We have 

•	 (FpkF/) (x) 
= f (F 192F/) (x) dy.	 • (63) 

•	 •	 y—kJ^1 

lf'q	I then }lölder's inequality yields 
(F 1 ipk17) (x)N	C f I(F 1 92kFt) (x)1 Q dy. 

Iy—kIi 

• •
	 and (62) follows easely. If 0 <q < I then we obtain from (63) and (60) that 

• -	 (F1ipF1) (x)i	c f I(F 92 P1) ()J dy((92fl*1_Q (x) +	),	(64) 
-•	 jy—kj1 

where + .•• has the same meaning as in (60). By Holder's inequality with q + (1 - q) 
=lwehave 

• •	 E aQ (k) J(F 1 tpkF/) (x)l' 
kEZ 

<(a(k) f (F- 1 92 Ff) (x) Iq dy\ (	aQ(k) (92/) *q ()\' —Q + 
kEZ,,	Iu-LIi	 ) \keZ	 /
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Now it follows from (62),.a second application of Holder's inequality with.respect to 
pq + p(l - q) p and the Proposition from Section 2 that 

It Fq(R)I) 

C	a(y) I (F 5 F/)	dy) 1jq I LP(Rn)Ir lit! Faq(R•n)!!'Q, 

which yields the desired inequality. I 
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