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Mixed contact problems in plane elasticity II') 

J. Mvi 

Der Beitrag ist die direkte Fortfuhrung des Artikels [2] des Verfassers. Zuni.chst wird der 
Index des in [?] erhaltenen singularen Integralgleichungssystems mit unstetigen Koeffizienten 
nach der Theorie von N. P. Vekua berechnet. Di Rechnungen werden durch einige zuvor be-
wiesene Folgerungen aus den Ergebnissen von Vekua vereinfacht. Die Existenz von *regu 
liiren Losungen der Kontaktaufgabe wird bewiesen unter der Voraussetzung, daB die physi-
kalisehen Lsbarkeitsbedingungen erfullt sind. Die'Existenz von E- bzw. e-regulkren Losungen 
setzen das Erfülltsein ziisatzlicher Losbarkeitsbedingungen voraus, deren Anzàhl vom Index 
des singulhren Integralgleichungssystems abhangt. 
flpoonaeTcn 113y'lenHe npo6JIeMbI 113 cTaTbu [2] anTopa. MHeHc noJly'leHHofl B[2]cMCTeMU 
ciiiryinpiiux ITu'erpaJIbHbix ypanHcH11l C pa3p1ABHb1M Roe44uhLI4eHTal1I B1I q 11CJ1HCTCH HO 
eopnii 1-1. 11. Beiva. BH'111cnel1l1n o6nera1oTcH HK0T0bIM11 goRa3aHH1J.N1H B pa6ore cJ!e(cT-
1HMII pe3y.TIbTaTOB Beiya. Loxa3a1BaeTcn, '-iTo )uiauecKue YCOBllH paspewnocii 

HBJIHI0TCH Heo6xo3I1MuMH It AOCTaTO 1JHbnm JJ,JTH cynecTBoBaIIlIa *pery.rIHpHoI.o peuieiiu 
K0HTaHTH0fl 3aaqH. CyuecTBonaHIIe e*..peryjlnp[Ioro it e-pery.irnpiioro peweHiiH o6ecneq ia-
naecn AonOJIHHTCJ1bHEaM11 yCMOnMHMH, 'IHCJIO HOTOpbIX BaBHCHT OT I1lleKca CHCTCMb1 CBH-
ryJ1elpIulx tiHTcrpaJJbHbIx ypaBHe1ull. 
The paper continues the considerations in the previous 'one [2] of the author. Using N. P. Ve- 
kua's theory; the index of the singular integral equation system with discontinuous coefficients 
obtained in [2] is calculated. By establishing some corollaries from the theory of Vekun, the 
calculations can be simplified. Furthermore, the existence of a *regular solution of the contact 
problem is proved, provided that the necessary physical conditions are fulfilled. The existence 
of e- or -régular solutions requires supplementary conditions, whose number depends on the 
index of the singular integral equation system. 

This paper is the direct continuation of the considerations in its first part [2]. In [2] a 
general mixed contact problem of plane elasticity has been rigorously stated (pro-
blems C*, Ce and C* of [2]). Mor'eover, the problem of uniqueness has been investi-
gated. Using before-defined regularity conceptions and some properties of the single 
layer potential, the contact problem is, by certain manipulations, reduced to the 
integral equatidn

= w + A2w1 + A 292w2 , ' A 1 - arbitrary constants. ' (5.10) 

The aim of the present paper is the exact analysis of (5.10) including the calculation 
of the index. For this purpose, the necessary tools of integral equations theory by 
N. P. VEKUA 17 1 and MusxELIsIrvmI [6] with some additional remarks are placed 
at disposal in § 7. The relatively extensive and'irksome considerations in connection 
with the determination of the , index are carried out in § 8-10. § ii and 12 deal 
with the contact problem' C* in the class of *..regular solutions; namely, . 11 is 
concerned with the case of uniqueness, but § 12 with selected cases having eigen-

1) Tell I erschien in dieser Zeitschrift in H. 3 (1983). 

31 Analysis Bd. 2, Heft 0(1983)
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solutions; In the smaller classes of r- and e*regular vectors (comp. with § 2) the 
contact problem (C. and Ce*) is studied in § 13. 

The paper is furnished with its own bibliographic references. Formulas, theorems 
and lemmata of [2] are referred to as in the following patterns: (5.10) = formula 
(5.10) of § 5 in [2]; Theorem'4. 1 = Theorem 1 in § 4 of [2] etc. Supplementary biblio-
graphic informations can be fOund in [2].	 - 

§ 7 Singular integral equation systems with discontinuous coefficients	 - 

The theory of singular integral equation systems with discontinuous coefficients 

A(t) 4)(t) + B(t)f	 dr +f K(t, r) 4)(r) dr = F(s),	t E L	(7.1) 

has ben stated by N. P. VEKuA in [7]. For ourpurpose,(7.1) shall bestu&ied under 
the following assumptions: 

Let L be a simple closed curve of the class C' (0< ' 1) in the complex plane C. 
Let m pairwise disjoint points a 1 , . . ., am (so-called "nodes") be 'arranged on L in 
counter-clockwise sense. Let A, B, K be (n,n)-matrices (n -^> 1) and 4), F n-vectois. 
Let the components of A, B belong to the class 110 and, additionally, to the :class 
C°' (a 1 , a1 , 1) (i = , J , ..., rn). The components of the matrix K(t, r) ,are supposed to 
belong to II, in both variables, but those of F(t), also to H; The solution 4) of (7.1) is 
sought in the class H* or in subclasses still to be defined. 

Now a short summary without proofs of Vekua's results concerning the system 
(7.1) should be given:	 -.

(7.1) is called of regular type if 

det (A + B) + 0,	det (A - B) == 0 everywhere on L.	(7.2) 

- (In the nodes a 1 this relation is to' be understood as applying to the one-sided limits.) 
The adjoint system is 

AT (t)	
- 

1]: BT(r)W(r) dr +f. Ii T (r, t) W 

Where the matrics A T , B T and KT are obtained from A, B and K by transposition. 
•	Let (7.1)be of regular type. Setting	 - 

g(t) = [A(t) + B(t)]- 1 [A(t) - B(t)],	 -	 (7.4) 

• let us define the matrices	 - 

= y(a1) = g 1 (a1 ±0)g(a1 —0),	(= 1,..., m)	 (7.5)

in each node a 1 . Let us consider the characteristic equations 

det [y' - E] = 0	(j = 1, . .., m)	 (7.6) 

• (E - (n,n)-unit matrix). Let A', ..., A,,1 be the roots of (7.6), counted with their 
multiplicity. In virtue of •	 - 

1-7 Al i =detg'(a ±O)detg(a1-0)==0 

we have A' =1= 0 fOr every 1 . = 1, ..., n, = 1, ..., m.
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'The coIiplex numbers e l i are defined by 

2,' = e2' 1 ' and —1 <'Reeg < 1	(l,= 1,..., ii). -	 (7.7) 

If Re o l j = 0 for 'every. 1 = 1, ..., n, the node a1 is called special, and otherwise, non-
special.  

Now, we agree to choose the numbers pi for fixed j in 'such a way that either 
Ree,'^O for all l=l,...,norRee,'^!O for alll=l,...,n. 

Let the nodes aj, ..., air be nonspecial. We divide the set {a11 , ..., a3,} into two' 
subsets: a1 , ..., zj and ai,, ... a10 , ..., ai, . Stipulating Re	0 for I = Ii, ••, Iq 
and Re Lo j i	0 for j —='jQ', •.., j (1 =' 1, ..., n), respectively, we give the following 
definitions.  

Definition 1: 1. The vector 4) belongs to the class h = h(a1 , ...,a,0) if 4) € H* 
and. 4) € H. in the neighbourhood of the nodes a 1 ,, ..., a10 , a1,,,, ..., a1,,. 

2. The class h(a10 ,, ..., a,) is called ad joint to h(a,; .., a0). 
In short notation, we will speak of the class h, which denotes 'a certaiwclass h(a1,, 

aj) . Furthermore, the class: h(a,, ..., a 1) is called h0, and h*, the related adjoint 
class. Obviously, the class h* is the largest, and h,, the smallest one. In the case where 
r = m (i.e. special nodes do not exist) we have h* ,H* and h = H0. 
- In the following, theorem the main result of' N. P. Vekiia concerning 'equations of 

type (7.1) is formulated. The proof canbe found in [7: pp. 95-160]. 

Theorem 1: Let F, G € Iii . Let the matrices A, B and Ksatisfythe above-mentioned 
assumptions.. Then- Noet her's theorems are valid for the equations (7.1) and (7.3) with 
respect to solvability in the class h(a 10, ..., a;,, ) with the related ad joint class h(a ,, ,,, ..., 
respectively. 

The index x = ............. .= Xh of (7.1) can be calculated by the formula 

MI, 1 [arg	defg(t 

	

m to

,[J [[ (t -	L 

Here z0 is an arbitrary point located within the bounded domain D with cD = L. The 
numbers g l i are to be chOsen in accordance with Definition 1, and the branches of the 
functions (t - z0)" are to be defined in such a way that these functions are holo-
'morphic with respect to Vin the complex plane C, which is out out across the line 
z0a,00. The symbol [--], means the increment on L of the function in square brackets. 

For large n, the actual calculation of 2,' is, in general, very extensive and irksome. 
Therefore the following lemma will be very useful. 

Lemma  1: Let the matrix A consist of real elements and the matrix B of' purely 
imaginary ones. Let equation (7.1) be of regular type. Then the following relations hold: 

a) Idet gj = 1;	' Idet y(a1) = 1	(j = 1, ..., m).	 -. 

b) g 1 =,	det (y- ') = det. 

c) If f()) = det [y(a1 ) - AE] = b012" + b 1 12' +	+ Q . is the characteristic 
equation at the point aj , then we have 

J(1) = (- 1) (det y(a))1 111

(7.8) 

3j*
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d) The coefficients of the characteristic equation fulfil* the relations 

= (—l)'(dety(a))'bk	(Ic = 1,	n + 1), 

= (-1)",	b	dety(a,). 

e) if det (A + B) is either real or purely imaginary, then 

detg = ±1,	dety(a,) = ±1.	. 

Proof: First we have (A.+ B) . = (A — B). This implies det g = (det (A ± B))' 
x det (A. - B) = (det (A — B)) 1 det (A - B) and Idet g	1, Idet y(a1 )l = 1 (j = 

.,m).Hencefollowsg = ((A+  B)'(A - B)) 1 = (( A - B)' (A + B)) 1 = (A +13) -1  

X (A - B) = , dety'(a) = det[(g(a + 0) g(a1 — 0))'] = det [g'(a,—O) 
X g(a1 + 0)] = det [g(a, - 0) g(a 1 + 0)- 1 = det[g(a1 + 0)_1 g(a1 — 0)] = det y(a,). 
Because the characteristic equations of the matrix products SD and DS coincide (S, 
P — arbitrary (n,n)-matrices), we have 

det [g -'(a, + 0) g(a, — 0) — )E1 = det [g(a, + 0) g(a 1 — 0)' - ,E] 

=A t3 det[f-g(ai ±0)g(a1 —.0)'. _E]	 . .	. 

= An det {(ai ± 0) g(aj — 0) 1	E — g(a1 - 0)g(a1 + 0) 

= A"(det y(aj))' (-1)" dct 1g(a j ± 0)-1 ,(a— 0) — -- E] 

= An (det y(a,))' (-1)" 11 (+)	 .	.	S - 

This also implies proposition d. Let det (A + B) be real or purely imaginary. Then 
the same is true for det(A — B) = det (A + B). From this, det g = ±1, det y(a,) 
= ±1 is easily seen. The leninia is completely proved I 

Furthermore, the following lemma holds. 

L em in a.2: Let Idet g(t) I be a continuous function on L. Then the numbers j2 j j fulfil 
the relations	 . 

= 0	(7=1, ...,m).	 (7.9) 

Proof: Me start from (7.8). It is a result of Vekua's theory that the expression in 
brackets in (7.8) is a eontinuous non-vanishing function on , L. By setting	= 

' + ifl, the bracket of (7.8) is of the foim  
detg(t) 

/arg
[7 JJ (t - 

1 = 1 1=1	 . 

(	m n  
= arg det g(t) Ii /1 [I t - zol_ (1,'+IPi') fl, Ja19(t_z0) e_it1ar(_zo)] .	(7.10) 

j=1 1=1	 p 

If we consider the absolute value of (7.10), the formula (7.9) follows immediately 
from the continuity I	.	.
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Coro11aris: 1. Lemma' 2 is true, especially,i/ the assumptions of Lemma 1 are 
fulfilled. 

2. Let the assumptions of Lemma 2 be satisfied. Then the formula (7.8) can be simpli-
fied to	 -	 - 

=argdet:g(t) 
M 

	 S	 (7.11) 

I	1111 (t—z0)' 
iL 

where al l = Re a,'. 
The first proposition follows immediately from Lemma 1.d. Obviously, both the 

first and second factor in the square brackets of (7.10) do not change the argument 
by circulation on L. This implies the second proposition I 

Furthermore, we remark that under the assumptions of Lemma 2 (or Lemma 1) it 
is sufficient for the calculation of the index x j, to determine the quantities arg (Ak') 
of the roots of the characteristic equations. This follows from 

arg A1 '	e2fh.	 (7.12) 

§ 8 Dominant part of (5.10). The matrix g(t) 

Henceforth, let us assume again that L € C2 . In consequence of the results in § 4, 
the integral equation (5.10) satisfies the assumptions of Theorem 7.1. By using (4.2) 
and (4.3), one can separate the dominant part from the system (5.10). This dominant 
part is

A(t) (t) +1f	dr  

where	 S 

A(t) B(t) t from 

[OOO 01 0 a1 01 - 
1 0000 1

[—a, 
.	0—a0 0 au . 1 1010 1  0	c00—c1 

ob!] —c0	0 c 1 0 - 

[0	0 — n2 n, 1 F	0 0 c1n 1 c1n2 1 
n	—n 0 0 41 - c0n2 0 0 
0	0 0 0 —a0n	—a0n2 an, a1n2 

L n 1	n2 7f, n2 J [ -c0n2 con, c 1n2 —c1n1 

[0 0 0 0 1 [	0 0 —a1n2 an1 1 - 
0 0 0 0 .	—an2 a0n1 0 0	f 
0	0 0 0 —a0n —a0n2 a1n1 a1n2 

L	1 fl2 n n2 J L —c0n2 cn1 cn2 — c1n1 .	5 

0	0 0 0 1 F	0 0 an, a1n2 1 
.0	0 0 0 an1 a0n2 0 0 
0	0 0 0 an2 —a0n 1 — a1n2 an, (8.2) 

L — n2 n — n2 n1 J [ —cn1 — c0n2 c 1n1 cn2 (8.3)
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A(t)	 •. B(t)	.	,	 '	 '	t from 

0	0	ni '2l	 [ 0	0	c1n2 —ii 1 
I—n 1 —n2 0 0	 c,n2 —con 1	0	0 

0	0, 0 0 I	I	a0n2 —a0n1 —a 1n2 a1iç 
L n2 n 1 n2 n1 j	[ —c0n —c0n2	c1n 1	c1n2 

100001	 [a0 00 
I0000l	'	' . 10a000 .L6. 
1 0000 1	 .	I°°'° 
L0000i	 :	•,[ 000a1 
1- 1 0 ' 0 01	.'	 0 ' 0 
I .0 -	I-1 '0 0 I	 '.Ic0- .0	0	0 i	 :	 . 

0 1 0	 I 0	0 0 —c1 

L 0	0 '9 i]	'	,	c	0 , '	 (8.2) 
0	0	0 .0 	 [aon, an2 '0	0 1 '	1(8.3) 
n2	n 1	0 0	'	 con, c0n2 0	0  
0	0	0 0	 0	0	a1n 1 a1n2 
o	0 —n2 nJ	 o	0	' c1n 1' C 1fl2	 - 

0	0	0. 0 ]	-	' 1 —an2	a0n 1 0	0 1	= 
—n'	0 0 

f	
c0n2 —cn 1 0	-0 

0	0	0' 0 k'	' 	0	0	—a1n2, a1n1 
L	0	n1 n2 ] ,	L 0	0'	c1n2 —c1n1 

and  

__1u______	 (A,,',>0:l0,1).	(8.4) 2,(A, + 21u1 )	A, +2u:  
n1 , n2 are the direction cosines of the normal vector n at the point I E L: 

It is immediately seen, that the system (5.10) with its dominant part (8.1) satisfies 
the assumption of Lemma 7.1. As consequence of Lemma 7.1a, (5.10), is of regular 
type. The assumption of Lemma 7.1e is additionally true. Using the multiplication 
theorem for determinants, one obtains	- 

d t (1 1'	
i for I EL1 uL6 0 L7 uL8 uL9	 '	(85) e g 

'— i-- i for tEL2uLuL4uL. 

In the sequel, the explicit form of the matrices g(I) is - also needed. The results of the 
calculations are given in the following formulas. 

With the abbreviations 

,A ='(a0c1 —a 1c0), B='a02 —a 12 , Q=a0 +a1; 	(86) 
= 1 + c1 2 , F, = 1 - 42, 'F CO=  + c1 , 0 = c0c1 (1 = 0, 1) 

one gets	 .	'..	. 

	

[—A 2 +B —2ia1A" ' -2dC	—2ia1A	. 
1 I 2ia 1A '	.A2'+B 2ia 1A	' —2aC 

g(t) = 'NI —2a0C	—2ia0A ' —A 2 - B —2a0A	for. t € L1 , (8.7a) 

L2itA	—2a0C	2ia0A	—A2 - B

N = C2 -A2;
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0 a1c	 a1Fn1n2	a1(cn2 — c1n12) 
1

2
—aico 0	 a1(c1n22 — c0n 12) —a1Fn1n2 

g(t) =
—aciFnin2	a0(cn12 — C,	2) 0 
a0(c 1n12 cn22)	a0Fn,1n2	a0c1 0 

[aiDo + a0E 1 (n22 — n12)	—2a0E 1n1n2 241(n12 —Gn22) 

• —2a0E1nn2 a1D0 + a0E1(n12 — %2) 2a1(1 + 0) n1n2 
2a(n12 - On22 ) 2a0(l + 0) n1n2 a01)1 + a1E0(n22 - n12) 

[ao(1 + 0) n1n2 2a0(n22 - GnII) 
•

'	2a1(1.+G)n1n2 1 
2a(n22—	2)

I 
•

— 2a1E0n1n2
for	t E L21 (8.7b) 

a0D1 + a1E0(n12 - n22) 

M = i(a0E1 + a1E0); 

L 
g(t)= 

[aj(n12 — n22) — a0 2a1n1n2	 2a1n12 2a1n1n2 
2a 1n1n2	 - ai(n22 — n12) — a0	2a1n1n3 •2an2 

X 2a0n12	- 2a0n1n2	 a0(n12 — n2 2 )	a	2a0n1n2 
•	[2a0n1n2' 2a0n22	 2an1n2 a0(n22 —. n 12) — a1' 

for	1€ L3 ; • • (8.7c) 

g(t) = •• 

[aj (n2 2 - n12) — a0 —2a 1n1n2	2a1n22 •	—2a1nn2 
—2a1n1n2 a1 (n1 2 — n22) - a0	—2a 1n1n2 •	2a1n12 

X 2a0n2 2 —2a0n1n2	a0(n22 - n1 ) a1	—2a0n1n2 
•	[-2an1n2 • •2a0n22	 —2a0n1n2 a0(n12 — n22 ) — a1 

,	for	• t E L4 ;	-' •. (8.7d) 

[0	• •	'a1c	 —aFn1n2	•	a1 (c0n12 — c1n22) 
-	1	• 

g(t)=— 21
—a1c0 0	 • a(cnj2 —b 0n2 2) a1Fn172 

•M a0Fn1n2 a0(c0n22 — c1n12	0 —a0c1 
[ao(c1n2 2 — 0n12)	—a0Fn 1n2	, •	0	- 

[a1Do 4- a0E1 (n1' — n2 2)	2a0E1n1n2' •2a1 (n22 — 

• 1 2a0E1nn2 a1D0 + a0E,(% 21	n12) —2a1(1 ± G)n1n2 
2a(n22	On12) —2a0(1 ± 0) nLnl - 'a01)1 +	iEo(ni2 - n22) 

L'-2ao(1 + 0) n 1n2 2a0(n12 2a1E0n1n2 
•	- —2a1(1 + 0) n1n2 '	- 

2a 1 (nj — Gn2)  
•	'	- •

 
2a1E0n1 n, for	£ E L-; (8.7e)

a0D1 + a1Eo(n22 — n12 
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r-i 0 0.01 

I g(t)-1	
0 0-1 0	

for tEL6; 

L 0 0 0-1 

l + c02	—2jc0	
0	0 1—c02	1—c02 

2ic0	1+c02	0	0 co2	1—c02 g(t) =	
1 + c12	2ic 0	0	
lr—c12 1—c12 

'	—2ic	1 +c 0	0
1_ '-' 2 1_2

(8.7f) 

for tEL7 ;	(8.7g) 

L.	 1 

[ n22 _m_ 	—2n 1n2	0	 0 
I —2nn2	- n2 2	0	 0 

g(t) = I	.	 for tEL8 ;. (8.7h) 
—2 0.	0	 n2—n1	n1n2 

[ 0	0	—2n1n2	nl 2 - 

[ n 12 —n 2 2n1n	0	0 
I 2n1n2	2 - -n12	 0 

g(t) = I	. -	 •.	 for t E £9.	(8.7i) 
I 0	..	0	j112	n222n1n2 L 0	0	2n1n2	- 2 

§ 9 Determinant and trace oYy'	 . 

For the analysis of index of the system (5.10), the roots As', A21 1 ... I A41 of the charac-
teristic equations (7.6) of matrices y (7.5) have to be determined. Because the nodes 
a, of the problem C" can be of 72 different type, each of those possibilities must be 
discussed.	 .	 . 

In virtue of Lemma 7.1 b we have' 

y 1 (a1) = g'(a1 - 0) g(a1 + 0) = g(a, -- 0) g(a, + 0)
(9.1) 

y(a,) = g 1 (a + 0) g(a, - 0) = g(a7 + 0) g(a, —0). 

-Thus, the coefficients of the characteristic equations of y 1 (aj ) and y(a1) are con-
jugate complex.	 .	 . 

The following . analysis shows that the characteristic equations are real for all 
possible combinations. Consequently, the characteristic equations at a node a i of the 
type L, - 4 are the same as for the type 4 - L, (j, k = 1, 2,..., 9). Hence it is 
sufficient to consider 36 different type of characteristic equations. 

The problem of finding the characteristic equations is equivalent to the determination of the 
inväriants b4 = det yi, b 1 = - tr (y1 ) and the iecond invariant b2 . The remaining invariants 
can be obtained by using Lemma 7.1 d. 

• The values of b4 1 follow immediately from (8.5).  
More difficult is the analysis of the traces. For this purpose, the diagonal elements of the 

matrices yj must be calculated. In order to distinguish the matrices Y i for nodes a7 of different



.
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kind, these matrices are designated by Yl_k;' which means the matrix y' at the node a7 of 
type L,—L(l,k==1,2.....9;1+k).	 1 

First, let us consider the case L1 —L2 . Let Y,=	................ (the constants 
N, M are defined by (8.7 a) and (8.7b)). Then one obtains for the diagonal elements 

'kk + Qkki2 + Bkkn22 + 8kk1"2	(k = 1, ..., 4) 

and 
P11 = —ia[(A 2 - B) D0 + 4a1c0A] = P22 1 Q11 = ia0[E1 (A2 - B) - 4a1C + 4a1c1A] = B221 

= —ia[E(A2 - B) +4a1 c0A - 4a1CG] = B11, 
= 4a0a[AE1 + CF - A(1 + C)] = 

P33 = —ia0[(A2 + B) D1 - 4a0c1 A] = F441 

= —ia[4a0C + 4a0c0A - (A 2 + B) E01 = 

	

= ia[4a0c1 A + 4a0CG - (A 2 + B) E01 = B331	- 

$33 = 4a0a[—CF - A(1 + C) ± AE 0]= 844• 

Taking into account (8.6), one can show 
4	 4 

—NM tr (Y12)) = E - tkk Z (kk + Qkk) = —2NM; 
k=1	k=1 

hence follows 

tr (Yj-2)) = 2.	 (9.2)

Let us consider the case L1 - L3 . Setting 

j3) = —[LIk]j.k_l.....4 NC 

and

Lkk = Pkk +Qkknl2 + Rkkn22 + 8kk12	(k = 1, ..., 4), 

we get
P11 = a0(A2 - B) = P221	P33 = a1 (A2 + B) =P441 

= a1(B - A2) - 4a0a1C = B22 ,	Q33 = —a0 (A2 + B) - 4a0a1C = B441 

R11.= a1 (A2 - B) = Q221	B33 = a0(A2 + B) = 

	

4ia12A + 4ia0a1A =22	833 = 4ia0a1 A + 4ia02A = —S44. 

4 
Therefore —NC tr (yj1.) = .^T Lkk = —2NC, this implies 

k=1 

t  (y_) = 2.	 (9.3)

The same result is obtained for the cases L1 —L4 and L1—L5: 

tr (y14)) = tr (Yli-5) = 2.	 V	 (9.4) 

It it not difficult to get	 V 

tr (Yi)) =	= w1 .	 (9.5)
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With [H k] . k=1.4 one obtains ç- 

1111 = _42)_ 4a1c041 = Fl23 ,	H3s + [_Di (A2 + B) + 4a..61A]= H44, 
EO

tr (y_)	
-- 

(ac0E1 _aiciEo)2 W2	

. .	

(9.6) EOE,	A2 

The calculated values for tr	- k)) and det (Y1k)) are collected in the fol-
lowing table: 

type i—k type 	det (yz—k)) tr (yg—k)) det (y_)	tr (y'(,.—k)) 

1-2 —1 .	2 3-7	—1 ' 
1-3 '	—1	2 3-8	—1 2 
1-4 —1	2 3-9	—1 —2' 
1-5 —1	2 4-5	1 0 
1-6 1	 w1 '4-6	' —1 '2 
1-7 1	 W2 4-7	—1' 

.	1-8 1	0 4-8	—1 —2 
1-9 1	0 .4-9	—1 2 
2-3 1	0 5-6	—1 w4. 
2-4 1 5-7	—1

'	2 
2-5 1	0 5-8	—1 2 
2-6 —1	 (04 5-9	-1 —2 
2-7 —1	2 6-7	1	, , 
2-8 —1	—2 ,	'6-8'	1 0 
2-9 -1.	2 6-9	1 0 
3-4 i	0 ('7-8	1 0 
3-5 1 :	7-9	1 0 
3-6 —1	2	, 8-9	,	1 —4 

Here, co, and W2 are given by (9.5), and (9.6), respectively. Furthermore, we have 

(03
4a0a1F2 

-

S

(9.7) 

C(a	+ a1E0)'	, .	'	
' 

2(a jD0 + a0D 1 ) '. 
a1E0 + a0E1  

.
(9.8). 

-(05 2 EGE 1C + 2(a0c02E1 + a1c12E0)
(9.9) ,	

E0EC '	
5 

(0 =jJ.. (DOE, + D 1 E0). ' (9.10) 

Because of0<ck=	/2k	 and ak>0(k=0,1)wehaveS 
Ak+2/Ak	2 

(a0c1 -' a1c0) 2 1/4(a0 + a1 ) 2	4 -. 
0	—4 
- + a1 )2 — (a0c1 -	1c0)2 

> 
(a a. -	3/4(a0 + a1 )2	- .13 (9.11)

II 
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Assuming without loss of generality that E0	one obtains 

0 ^ =	%CE + a 1 2c 12E02 - 2a0a 1c0c 1E0E1 1 > —4-(a0 + a1 ) 2 - (a0cj - a1c0)2	E0E1 

a02c02 + a 12c 12	 1 l/4(a0 + a 1 )2 -	16 X	 (9.12) 

	

(a0 + a1 )2 --- (ac1 - a 1c0 )2	- 3/4 3/4(a0 + a1 ) 2 - 

Similarly, taking into account -- E > 2ck2 (k = 0, 1), we get  

0 > w	—4	a0a1(c0 + c 1 )2
	
(a0 + a 1) (co + c1)2 

(a0 + a 1 ) (a0E1 + a1E0) -	(a0Ej + a 1E0 )	 - 
I ' (C + C1)	4 
-	3/4	

>	.	 (9.13) 

and	. 

—2> o> 10
	

(9.14) 

—2> 5>	 - . (9.15) 

-s 

§ 10 Roots Xj f o! the characteristic equations and index )Ch of the operator 92d 

For determination of the indices. x j, by formula (7.8), some additional information 
concerning the roots A l i of the characteristic equations (7.6) of the system (5.10) with 
its dominant part (8.1) is necessary. Since the assumptions of. Lemmata 7.1 and 7.2. 
are fulfilled, the indices can be calculated by using the more simple formula (7.11). 

• Hence, the values oc l i = Re 0, 1 = arg A1 1 give sufficient information to determine the 
indices.  

A first possible way for the further considerations might be the direct counting of 
the second invariant b,f of matrices y(a,). However, this approach is connected with 
very extensive calculations, which are not worth while, especially for nodes of the 
types (1-2), (2' 3), (2-4), (2-5), (1-5), and others, for instance. Therefore 

• another less extensive way will begone. This approach makes use of results obtained 
in § 5, 6.	 . 

In preparation of the following considerations we prove the following lemma. 
Lemma  1: Let 91 be a linear manifold of 4-component vectors on L containing the vectors - 

W,,. -W2 of. 5. Let the veètors ii E 9? satisfy the assumptions of §2. Suppose that the homogeneous 
problem C has exactly 1 linearly independent solutions. Consider the linear manifolds 

•	={EI1*/d=h,hE91},	 (10.1) 

Wi0 = T"E Wi/f cp°(y).ds= 0..	 .	(10.2) 

	

L	 J 
Then we have dim Wi h +8, dim WiO ' h + s - 2 provided that s'= dim 9?.	- 

For proof we remark that the problem C5 with contact data in 91 permits, in virtue of 
linearity of C5, no more than h + s linearly independent solutions. The continuation is the 
rather precise repetition of the, proof of Lemma 5.1 I 

For the further considerations concerning the characteristic equation in,a given node a 1 of 
the type (1 - k) (1, k = 1.....9; 1 + k), the following auxiliary problem Ca—k) is important.
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This problemis defined by the following figure 1. The auxiliary problem C(1—k) has 10 no- 
des a1 , a2 . ... . a10 , whose normal vector n is the same as at the considered node a 1 = a7 of the 
.original problem C*. Moreover, the boundary of b, is constructed in such a way that the homo-
geneous problem C(*I—k) does not permit any additional solutions from the tables 2-4 of § 3. 
Consequently, the homogeneous problem Ca—k) has exactly 2 linearly independent solutions, 

ft	f t t	ft	ft 

4 iL ).	D, 

Auxiliary problem 

if 1 and k have one of the values 1, 2, 5, or 7. In the remaining cases the homogeneous problem 
C(*I—k) allows only the trivial solution. It is important that the characteristic equations (7.6) 
at the node a 1 a1 are one and the same for the problems C(*,_k) and C*. Using the formula (9.1), 
it is easily seen that the characteristic equations at a2 , a4 .. .... a10 have conjugate complex 
coefficienth regarding the characteristic equation at 5, Moreover, we have 

= y 1(d) for j = 2, 4, 6,' 8, 10 
and	y(a,) = y(a1) for j = 3, 5, 7, 9.	 - 

Let A, 22 , A, 2 be the roots of the characteristic equation /(A) = det (y(a5) - AE) = 0. 
Then the roots of the characteristic equation 

-	/,(A) = /(A) = det (y(a,) - AE) = 0	(j = 2, 4, 6, 8, 10) 
are A 1, )29 A31 24 . In virtue of the considerations above, we have in the sense of set theory 

-	(Ar' '2' A 31 24 1 = (2_1, )', )', A'}.	 .	(10.3) 
Afterthesereparations, let us consider the characteristic equations f,(2) = 0. In consequence 
of Lemma 7.1 d, the second invariant b,li of the matrices y(a7 )satisfies the following relations 

Re b21  0 for det y(a,) = —1	
(10.4) 

Tm b2 = 0 for det y(a,) = 1. 

First, the cases with det y(a,) = —1 are studied. From the table in §9 one can see the follow-
ing form of the characteristic equations (using Lemma 7.1d). 
Case!: /,(2) = A' - 223 + ial° + 22-1 = 0	 (10.5) 

(for nodes a, of the type (1-2), (1-3), (1-4), (1-5), (2-7), (2-9),(3-6),(3-8), 
(4-6),(4-9), (5-7), (5--8)). 

Case 2: /(A) = 1'+ 21 + icil° - 21 - 1 = 0	 (10.6) 
(for nodes a, of the type (2-8), (3-9), (4-8), (5-9)). 

Case 3: /,(1) = A' - w423 + id 2 + w42 - 1 = 0	 (10.7) 
(for typo (2-6) and , (5-6)). 

Case 4: /,(2) = 2 - w523 . f- icil° + w52 - 1 = 0	 (10.8) 
(for type (3-7) and (4-7)). 

Lemma 2: Let dety(a,) = —1. Then /ollows b2 = 0.
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For proof suppose b2 r 0. Then we have b2 = id (a 4 0, real). The characteristicequation 
•11(A) = 0 is of the form (10.5), (10.6), (10.7) or (10.8), where the considered node a j is supposed 
to be of the type 1 — k. Let 

= rhe2 ' s"	(h = 1.....4)	
5	

(10.9) 

be the roots of the characteristic equation. Because of c 0 we have x h' + 0, ± !.;	+ 0. 
Now we consider the auxiliary problem C(*I—k). Let the corresponding integral equation 

system be	-	 S 

= Aw1 + A2Sw21 -. 

which is to be studied in the class h*. Hence 
< ah <0	 (10.10) 

4 
and, consequently, the nodes a 1 ,..., a10 are nonspecial. Because of the relation H 21ii  

we have one of the following sums	 h1 

	

1	3	5	7	-	 - 
E =	 --

h=1	2	2	2	2 
This implies

4	 1	3	5	7 
2chk__,__,__,__ for k=1,3,5,7,9	 (**) 

h=1	2	2	2	2 
and,because of (10.3), 

4	 4	 7'5	3	1 
= (-1— 5 k') = --, --, --, -- for k = 2,396,8,10. 

h=1 -	h1	 2	2	2	2 
Taking into account (**) and (***), the index x5. of (*) is calculated by formula (7.11) as 
follows:	 . 

	

i[arg	1	1	1 I=—[arg(t--z0)20JL=20. 'r 2r	104	 I	2 
ii 11 (t — z)(1'I

 j=lk=1	 iL 

Hence, the equation (*) permits at least 20 linearly independent solutions 4, 46, • 

On the other hand, (*) is equivalent to	 S 

^d cD = A 1w1 + A 2w2 + h,	ii E ker 62P S	 W. 
The dimension of the linear space ker S2 P can be obtained by formula (6.11). For case 1 we get 
dim ker 92P = 5. Since the homogeneous problem Ck) allows at most 2 linearly independent 
solutions, and because of dim £{w 11 w21 ^5 2, the use of Lemma 1 shows that the equation (+) 
permits at most 9 linearly independent solutions.	 S 

This contradiction proves the proposition in case 1. In the case 2, 3, 4, the formula (6.11) 
implies dim ker 62 P = 15. Consequently, (+) allows at most 19 linearly independent solutions, 
which also contradicts the existence of at least 20 linearly independent solutions of equation(*). 
The lemma is completely proved I 

In virtue of Lemma 1, the coefficient a in (10.5)—(10.8) is equal to 0. Hence we have 

	

= (A — 1) (A + 1) in case 1,	.	 (10.5') 

	

= (A + 1) (2. —1) in case 2,	 5	

(10.6') 

•	 /.(A) ='. + 1) (2. — 1) (A2 - eA + 1) in case 3,	 (10.7') 
/ . (A)= (A + 1) (A — 1) (A2 — o05A + 1) in case 4..	 (10.8')
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• Because of (9.14), (9.15), the quadratic polynomials in (10.7'), (10.8') have only negative real 
roots. Using formula (7.11), one obtains as results 

a,i= Ro 1 = ---,	x'=Re 91 i =0	(1=2,3,4)	in case 1, (10.11) 

= Roe11 = _-!.	(1 = 1, 2, 3);	cx 7 = Re 4 J	0	in the cases 2-4. (10.12) 

Next, we consider, the cases with dt (y(a,)) = 1. Particularly, we have - 
Case 5: /1 (A) = A + aA2 + 1 = 0,	 S	 •S (10.13) 

•	(for nodes a1 of the type (1-8), (1-9), (2-3), (2-5), (3-4), (4-5), (6-8), (6-9), 
• ,
	 (7-8), (7-9)), 

Case 6:	/,(A) = A4 -- a2' + aA' — w 1A +. 1= 0 (10.14) 
(type (1-6)), 

Case 7:	t, (A) = A — coA' + aA2 — .,A ' + 1 = 0 (10.15) 
(type (1-7)), 

Case 8:	f,(A) =	— w2A3 + aA2 — W3A + 1 = 0 (10.16) 
(type (2-4)' and (3-5)), 

Case 9:	=!	6A3 + o'A' — w6A + 1 = 0 (10.17) 
(type (6-7)),	 - 

Case 10: /A) = A4 ± 4A' + a).' + 4,'. + 1 = 0 (10.18) 
(type (8-9)). 

Here, a is a real, number. 
In the two last cases, the constant a can be calculated directly. One obtains 

•	/)(A)=(A,+21+cl).+l(A2+21+coA±l=O	in case 9 (10.17') 
01 21—c0' 

and
f,(A) = (A' + 0	= 0	in'case 10.	,	 , (10.18') ' 

Bearing in mind 1 + ci-,	> 1	(1 = 0, 1), we get	 - 1—c1'

061 7 ^ Re 011 = _-.-.	(l.= 1,2,3,4) in the cases 9 and 10.	(10.19) 

For the cases 5-8 we first remark that, in consequence of (10.3) and the reality of the co-
efficients in (10.13)—(10.16), the following equality holds in the sense of set theory 

{A,, A,, A,, All — 1A 1 , A,,.,.,, A l l = Ar ', A,-', ).3	)4}	 (10.20)
Lemma 3: The equations (10.13)—(10.16) have only real roots. 

Proof: Letus assume on the contrary that there exists a complex root A = p + ig (q + 0). 
Then ).3 = p — iq also solves the characteristic equation /,(A) = 0.	 • - 

First, we suppose the 'existence of another pair of complex roots 4 4 = Pt ± iq, (q1	0). 
Besides, if p' + q'	1, this is a consequence of (10.20). Now, we consider the auxiliary 
problem Ct_k) and set —1 < cx = ce i = arg (A1)	0 (1 = 1, ..., 4). 
The index x,. of the integral equation  

-	n,d' = A,w1 + A 2nw2	 .	 •.	 '	 (*) 
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is obtained by

— [arg	1

IL

[(C - = 20.
10	4 
H H (C  

Consequently, (*) has at least 20 linearly independent solutions. On the other hand, the equation 
d4= A 1w1 + A 2w2 + h,	h  ker SI

P
	 (**) 

is equivalent to (*). Because of (6.11), one gets 
dim ker2r=1O.	 S 

For this reason, the equation (**) (and (*) too) permits at most 14 linearly independent o-
lutions. Therefore the roots 23 , 24 cannot be complex.' 

Moreover, it follows that p2 + q2 = 1. Let. 

A 1 =p + iq= e21 , 12 p — q	 < 0;	

2) 

23 = s,	A'=t (s, C real; s, C == 0). 
Now, the assumption 8, C < 0 leads to the same contradiction as above. 

We show that s, C > 0 is also impossible. Indeed, the assumption s, C >.O implies by (10.20) 
the relation C = ---. We have	 . 

Al + ) 2 + 23 + 2	2 cos a + (s ±	0.  

But in regard of (9.11), (9.12), (9.13), the relations	 .	. 

Cot =21 +22 +23 +A4 '^O	(l=l,2,3;wj=0 in case 5) 
must hold in contradiction to (***)..	 U	 - 

We still have to consider the cases < 0 < C. Here, (10.20) implies s = —i,t = 1. Considering. the auxiliary problem 

-	

Ca_k), one obtains 

= - [arg (C - zO)15]L   2i.  
Thus, the equation  

•	= A,92pw, = A 2 2 w2 

has at least 15 linearly independent solutions. However, the equivalent equation	 ' S 

	

• , d4' = A 1w 1 + .e1 2w2 + Ii,	h E ker S2
P

 

has at most 14 linearly independent solutions. This is a contradiction, which shows the im-
possibility-of s < 0 <'C.	.	 . 

Consequently, 'the assumption of existence of a complex root of the characteristic equation - 
= 0 is not true. Thus Lemma 3 is proved I  

Now, the values a 1 1 = arg,A, l of the roots of the characteristic equations (10.13)—(10.16) 
required for the index calculation can be established. Here the assumptions 

a1 = a2 =a3 1 = a4 1 =	or a1 1 = a2 7 = a3 1 = --i--,	a41 = 0 

can  easily be led to a contradiction by using the auxiliary problem C (*I—k) . Further, from the 
assumption a 1 = a2 = a3 = a,1 1 = 0 follows A i + 221 + A3 + 241> 01 which contradicts 
to the sign of the coefficient by A 3 of, thO characteristic equation.
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The same contradiction occurs in the case 

= X3 = 0,	0'4 = 

for (10.20) implies for instance
1 and ).1'+ )If +3'+_A'±A3'>0. 

Thus, we have 

cc ij= a2? =	,	=	=	in the cases 5-8.	 (10.21) 

Now, we have complete information for determination of the index of the operator ?..,d. 

Using formula (7.11) and (10.11), (10.12), (10.19), (10.21), one obtains for the index 
Xh* in the largest class h* 

Who=	[arg (t - zo) 8 ] L = 8,	 (10.22) 

where  
85(Ajk) 

= {(A l2 ±A 13 +A 14 ±A 15 +A 27 +A29 +A 36 +as +A46 +A49 +A 57 +A') 

• 2(A 16 + A17 + A 19 + A 19 + A21 + A 24 + A25 + A 34 + A35 + A 45 + A68 

• A69 + A + A79) 

• 3(A 26 + A + A37 + A39 + A 47 + A48. + A56 + A59) 

+ 4(A 67 + A 89)}.	 (10.23) 

In comparison with (6.11) one gets 

= s(A 1,) = r - q = dim ker 92,,.	 '(10.24) 

For investigation of the operator 12P4 in an arbitrary class h =h(a,,, a1 , ..., a10) let 
us agree upon the following notation: Let A be the niTrnber of the q nodes of type 
(i - k) in whose neighbourhood the solution of the equation (5.10) is assumed to 
belong to the class H. Then it is easily seen that 

=	- 2s(A k),	 -	- ( 10.25)

Especially, we have 

= — Xh • .	 S	
(10.26) 

Thus,-the following theorem is proved.	 - 

Theorem 1: The system (5.10) is a singular integral equation system of regular 
type with nonspecial nodes only. Its index h' in the class h* is given by (10.22). Moreover, 
the relation (10.24) holds. 

In an arbitrary class h = h(a 10 , ..., a.) the index Xh is given by (10.25).
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§ 11 Existence of -regular solutions 

Now one can show that there exists a *regular solution of the considered contact 
problem (i.e. a solution of problem C*) . First let us assume that the solution of pro-blem C' ià uniquely determined. Then the homogeneous problem C' permits the 
trivial solution only (the case of nontrivial solutions is treated in § 12). 

By-the single layer potential setup (5.1) for the solution u of C* with density vector 
satisfying the additional condition 

fcpO(y)ds=o	 -	(5.2) 
one obtains the integral equation system  

A4' = A 1w1 + A 2 w2 ± w	
S	 (5.4) 

with the four-component density ' vector cb and the real constants A' !, A 2 to be deter-
mined., Using the linear operator S2 defined in , 5, one gets the integral equation 
system

QPAcII = A l 2w1 + A 2S2w2 + &2,,w, '	(6.10) 
which is equivalent to 

	

-	 AiWj+A2W2+W+h,	11Eker92.-  
In order to obtain a *-regular solution of C*, the systems (5.4), (5.10), (11.1) are considered in the class h*. In accordance with Theorem 10.1, the system (5.10) is of 
regular type and has nonspecial nodes only. Therefore, the class h* coincides with the - class 11*. 

Let us consider the following linear manifolds: 

9)1 = {4 E.a*/,Q4 = A 1S2w1 + A292w2},	 (11.2)...
= ( 4b E 9)1/f y°(y) ds = 0).  

Obviously, 9)1 can also be characterized by 

9J1 = {4' € II*/,jt4I = A 1w1 + A 2w2 + h; h E ker c2,1.	-	(11.4)
For the further considerations, the following lemma is crucial. 

Lemma 1: Let the homogeneous problem C* have only the trivial solutions. Then 

dim 9)1 = xhe + 2,	 - (1 1.5a) 
dim 9310=Xh•.	 .	 (11.5b) 

The proof makes use of Theorems 10.1 and 7.1. Because of (6.3) and the definition 
of v 1 , w2 (see § 5), we have 3(w 1 , w2 ) n ker S2,, = 0. For this reason, a (xh. + 2)-dimen-sional linear manifold is situated on the right-hand side of the equation 

	

- S	 c/t = A 1w 1 + A 2w2 + h,	h E ker S2	 - 

defining 9)1. Now Lemma-10.1 implies 

dim9Jl ^5 x. + 2 and dim9)10	- - 
32 Analysis Bd. 2, Heft 6 (1983)	 -
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/ 

Let us consider the linear subspace 

ker (Q() = 10 e H/A = O} 

By the aid of Noether's theorems, we have 

Ch* ^5 ker (Sit) ;5 XS + 2.	 (11.6)

Let us define 

q = dim ker (Qpc/) - x•.	t	 (11.7) 

Then the inequalities 0 q 2 hold. In the case where q = 2, the proposition 
(11.5 a) follows immediately. The assumption 0 q 1 implies that the homogeneous 
adjoint integral equation system 

(S2,,cJl)' 'V =0.	 .	 -	'.	(11.8) 

has exactly q linearly independent solutions.. By a simple consequence of Noether's' 
theorems one can easily' see that there exist (2 - q) linearly independent vectors 

M2-:.q € £{w 1, W2) 'such that the equations	. 

• .	= 

	

M i	 q)	 .	 (**) 

are solvable. Assume that	•,	are' any solutions of the (2 —'q) equations (**).
Moreover, let the vectors 2-q+1' ..., 'IXj* + 2 be linearly ,independent and form a basis 
of the linear space ker	Then the vectors 0 1, 4 .... . ,cbxXh.+2 are linearly inde- 
pendent and belong to 9R. Taking into account (*), the proposition (11.5a) is proved. 

By a simple consideration, one can select Xhø linearly independent vectors from 
2{4 1 ,	 +2} which satisfy the additional condition (5.2). Thus, using (*), 
(11.5b) is also proved I 

Let 'F i, ..., 'Vq be linearly independent solutions of (11.8). Then we have by Noe-
ther's theorems the necessary and sufficient conditions 

•	fW(y).v(y)ds=0	(i= 1,..,q)	 (11.9) 
L 

for solvability of	S2,4 = v ('F, . v is the scalar product in R4).' 

Corollary 1: We have  

rf 'V1^,,w1ds ... f W^,wids.]	 .' 
rank 

L 
W1Qw2ds .. .f Wq2pW2dS 

=	 :	

-. (lull) 

Indeed, the rank cannot be greater than q. Suppose that the rank were less then q. 
Then we could find at least q + 1 linearly independent vectors rn 1 , ..., mq+ j E 2{w 1 , w21 
such that the equations (**)' are solvable for the vectors in 1 (i = 1, ..., q + 1). 
Clearly, this consequence would contradict (1.5a). Thus the corollary is proved .1 

Corollary 2: Let 43, , '2,	4h.+2 be a basis of the linear manifold i))?. Without 
loss of generality one can assume  

..., (,. E	'xhs+1;	,hs+2 4 9J10.  
'Them	. 

rank {f yO

	

h'	
(y)ds,	,f (Phs+24)l8Y] = 2.	•	 (11.12)
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Of course, therank cannot be greater than 2. But the assumption <2 would imply 
that dim 9310	+ 1, in contradiction to (11.5b). Thus, (11.10) is shown I 

Now we consider the problem C* with contact data w0 contained in the linear 
space

	

3 ={w0/w0 =A 1w 1 +A2w2 +h;	h Eker SIP , 

A 1 , A 2 arbitrary real constants}..	 (11i3)

We have dim 3 = 'ca. +2. 
- Lemma 2:- Let the homogeneous problem C* have' only the trivial solution. Then the 
problem C* with contact data w0 E $ has exactly one solution u. This solution u can be 
represented by	 S 

U0(x) = A 1c1 '+ A 2 i,2 + V°(x p0) for x E D0	 (11.14) 

:	&(x) = V'(x; cp') for, X  

where the vector ck	
[] 

and the constants A 1 , A 2 solve the integral equation 
Y0  

= A 1cw, + A2Sw2  

and the additional condition (5.2).	 - 
• Proof: In virtue of (11.5a), the - equation (11.15) has exactly ce +2 linearly inde-

•	pendent solutions	 Assume that the conditions of the corollary are
satisfied. Then, using Theorem 4.2, one finds that the potentials 

[Vo .	0 1
cp (x,	k)	 = , ..., X,s	 ( 

are *regular solutions of C* with contact data belonging to . By nondifficult 
considerations (using the equivalence property of V'(x; cp') and the results on integral 
equation (4.15)), one obtains the linear independence of the- potentials (11.16). 
Consider the vectors 

Vj	10 for
 : : : Do (i = 1,2).	 '	 -(11.17) 

These' vectors Y j have the contact data w 1 , w2 respectively. Bec.ue of (4.7) the Xhs +2vectors  

V(x;	..., V(x;	 V1, V2  

are 'linearly independent. Thus, th vectors represent a basis in the linear space of 
solutions of C* with contact data in $. The lemma is prved I 

Now, we obtain 

Theorem 1: Let L E C2' (0 </1 1). Let the homogeneous problem C" have only 
the trivial solution. Let the contact data f, f, fk, fk, 1k g, g g , Ilk, hk satisfy the assumptions 
of § 2 and the compatibility conditions (1.6a)—(1.6 x). Then there exists a *regular so- 
lution u of the problem C"'. U is representable in the form (11.14) (see also (5.1)). 43, and 
the constants A 1, A 2 are uniquely determined by the inIegiil equation (5.10) with the 
additional condition (5.2).	

S	 j	-•	 - 
32*
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For proof consider the system (5A0) with arbitrary arbitrary A 1 , A 2 . First we show that 
(5.10)'has a solution 4' for suitable constants A 10 , A 20 . In the case q= 0 (see (11.7)) 
this is immediately seen. Otherwise, the formula (11.11) guarantees the existence 
if a suitable pair A 10 , A 2° and a vector 4' with 

= A 10Sw 1 + A 2 0npw2 ± npw. (11.18) 

At the same time, we have	 - 

= A 10w 1 + A 20w2 .+ h,	h E ker	 '	(11.19)

The general solution 4' of (11.18) is 
-	h*+l  

4' = 4' +	C4' 	C - arbitrary constants, 

with the vectors 4', of Corollary - 2. Using this corollary, one can assume that 4b fulfils 
the condition (5.2). Finally, because of ,Lemma 2 there exists a vector 4P satisfying 
(5.2) such that the vectors 

u°(x) = —A 10V 1 - A 20V2 +V0(x; o),	u1(x) = V'(x; 1) 

are solutions of C* with contact data —A 10w 1 - -A 20w2 - h. Obviously, by setting 
4' = 4' + 4' and A 1 = — A 10, A 2 = — A 20 in (11.14), one obtains the solution 
of problem C*. 

The uniqueness of 4' and A 1 , A, is a consequence of the equivalence ofV 1 and (4.15)1 

§ 12 *-regular solutions in the ' case oI'eigensolutions 

In the case of nontrivial solutionsof the 'homogeneous problem C some more so-
phisticated considerations are necessary. The general result is here that a solution 
of the inhomogeneous problem C* exists if and only if the contact data satisfy the 
physical conditions for solvability of § 3. Moreover, the solution u of G* can always 
be represented in the form (5.1), provided that the physical conditions are fulfilled. 
The aim of the present section is to demonstrate the general ideas of the proof. 
Especially, the two examples of § 3 with exactly one eigenvalues are considered in 
detail. For the remaining examples of § 3. theresults are given in outline. 

First, let us assume that the homogeneous problem C permits h linearly indepen-
dent solutions (h	1). Furthermore, let us suppose that h linearly independent --



solutions 'Ps, %F,, ., '1',, of the homogeneous adjoint system 

(n.4)' 'I' d	0	(i = 1, ..., h)	-	 - (12.1)

are explicitly known. These vectors IF,, ..., 'F,, imply the solvability conditions -
+Qw)ds=0	(i= 1,2,...,h) 

for the system (5.10). By the second'assumption
 

-.	f'F2w1ds=o	(i=1...,h;j=1,2),	 -	(12.2) 

the solvability conditions reduce to  

f '4'Qwds = 0	(i	1; 2, ...,h).	 ,	-	(12.3) -



	

Contact problems in plane elasticity	501 

• With the accepted assumptions, the general pattern for solving the problem C" is the 
following. As in § 11 we consider the sets 9)?, 9)IO ((11.2), (11.3)). The crucial lemma is 

Lem ma  1: Let the above-mentioned assumptions be satisfied. Further, let the homo-
geneous problem C* have exactly h linearly independent solutions. Then 

dim 9)?'=h+d+h.,	 '(12.4a) 
•	dim 9J1= h + d + '. - 2,	 :	 (12.4b)
where

d .= dim 9-{w 1 , w2 }.	 ,	 (5.5) 
For pro of;the argumentation of Lemma 11.1 is essentially repeated. In distinction 

from (11.6), one gets	 - 

h	<dim kern4 h + d +	•	 ( 12.5) 
in consequence of Noether's theorems and of the assumptions concerning the system 
[12.1) I'	• 

In virtue of (12.5), the sytcm (12.1) has h ± q linearly independent solutions 
'F1, W2 , ..., 'Fh+q. Here, q is defined by	- 

= dim ker SI4 - - h. 
Let 'F11	%Fh be the above-mentiond solutions of (12. 1), but Fh,,, ..., 
additional solutions. Similarly as in § ii, we obtain the following corollaries. 
- Corollary l:'Wehave  

f-W+iSwids ... f W+,92,,wds 

•	rai?k hwds	f F.1 .1S21w2ds] = .	 •	( 12.6) 
L	 L 

Corollary 2: Let	, . .., 4)h+d+xhØ be a basis of the linear space 9N. Then we can 
assume	 - 

42, ...	h+d_2+,,hsE 9J?;	4h+d-1+xhs	4'h+d+. 
- Further, we have 

rank { f Ph+d_l+,,5ds, I cP+d+,.ds] = 2:	 (12.7) 

By insignificant modification of the considerations in § 11, the following theorem 
can be proved.	. 

Theo r e rn 1: Let the above-mentioned assumptions be satisfied. Moreove, let L € C2P 
(0 < fl f-, 1) and let the homogeneous problem C" have exactly h linearly independent 
solutions. Let the contact data f, f, fk, /k 1k g, g' g,gk,hk satisfy the assumptions of § 2, 
besides these , the compatibility conditions (1.6 a) —(1.6 x) and, additionally, the physical 
solvability conditions of § 3. Then there exists a *-regular solution u of the problem C*. 
U is representable in the form (11.14). cI and the constants A, A 2 are determined by the 
integral equation (5.10) with the additional condition (5.2). Furthermore, the physical 
conditions coincide, of necessity, with the relations (12.3). 

For instance, let us consider the secnd example of § 3 with one eigensolution' 
(L = L2 u L5 u L7, see [2: Figure 2]). Here, the homogeneous adjoint integral equa-
tion system 

AT(z) 'F(z) + 2f [KT(y - z) + pItT(y - z)] 'F(y) ds = 0	-	( 12.8)
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with
[0	,n2	0-	n, 

•
I	0--n,	On, I for	z€L,, • , I—n2 ,	0	On, 

•	. L	n1	1 0	0-	n, - 
[0.	n1	.0	—n, , - 

•	AT(z)
=

0 1	—n,-0	n, 
0 for	z E L,,	 , (12.9) 

• [n,	00 .	'. 

[-1	0 00 '•	. 
-

I	o.—ioO
for	Z ' EL 7 ,. 0	1	0 . 

[	o	o	0	1  
and KT(y _,Z) =	 ' 

(Y(ny)F°)T8(y) __ (r0(y - z) n(y))	•_(Y(ny)F0)Tn(y) 1 
[

,	y.eL2 
(Y(ny)F 1 )T s(y)	 - (F'(.y - z) n(y))	(3(n) F')T n(y)	

] 

((ny) r°)T n(y) _	(ro(y	z) s(y)) - (Y(ny) r0)T s(y)1 
I,	yE 

'	"	,	(r'(y - z) s(y)) -	(.Y(n)F')T s(y)
j 

F')T n(y) , , 

[(n;) F°(z - ,y)')T-  0.
yEL7. (12.10) 

-
(9-(n,) F1(y - z))Tj  

Because of the special geometrical shape of L, we have ñ . c,? = o, s = Bc e' on L2 ; B 
is a function that is constant on evry are S i belonging to £2 . Analogously, we have' 
S	c 3 = 0, it = D(z) c 3 'for ZE L,. We define  

- s.cv3 '	•'	•	 '	' 
• ''0 '	- 

for	zEL, 

0 - . 

n.cv3 •	•	'	-	 •	• 
T(Z)

= [	]

for	z E L (12 11) 

• for	zEL7. 
LcI '.	-,•	.	•	S
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Then the equation (12.1) is equivalent to the identity 

c 3 (z)	(Yon) F1 (y -, z))T c'(y) d& = 0, 

which follows from (4.4). The vector (12.11) gives rise to the necessary condition for 
solvability (3.8) stated in' 3. Our considerations imply the sufficiency of these physi-
cal conditions in the class of *regular vectors. 

The considerations for the first example with one eigensolution of § 3 (L i 1 . 0 L4 
u L7, see [2: Figure 1]) are a little different from the above ones. First, one obtains 
the following lemma. 

•	L e mth a 2: Let 4' be an arbitrary solution of the integral equation 

= A l2w1 + A2w2	:	 (12.12) 

in the considered special case of the problem C*. Then the relation 

f(c.. p0) ds	0	 (12.13) 

holds true. 

For proof, the equation (12.12) (concerning the explicit form of the operator S2p4 
see (5.10)—(5.14)) is multiplied in the sense of scalar product . with the following fac-
tors:  

[00] for z EL1, [
	

- ] 

for z E L: and [T] for z E L7. 

(s.c) 

It is not difficult to see that the scalar product on the right-hand side is 0. Using the 
formulas (5.12)—(5.14), the left-hand side can be calculated. Taking into account the 
relations s = +c,, for z E L4 , one obtains the formula	. 

 + cp 1 (z) + __ f 
(-q- ( n, ) F 1 (y ._ z))T y1(y) ds f cw JyO(z., 

•	-	
((n,) F0(y))T q°(y) ds} ds = 0.	 -• 

The integrating order of the double integral can be altered. Using formula (4.4), we 
get 2f c,. cp°(z) ds = 0. The lemma is proved	 .	

• 
Applying the same procedure to the equation	 -•.	 S 

= 92w + A l 2,w 1 + A 2 2 w2 ,	 •	 S	 • 

one obtains	•	 . 

•	2 f	p°ds = f c . gds + f (s . e,) gds + f c0,. (g1 - g0) ds.	(12.14) 
-	•L	 L,	 • 

This formula shows'that the relation (12.13) is fulfilled if and only if the physical 
condition (3.7) is satisfied. In order to study the problem C*, let us consider the 

-	I
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equation

= Aw1 +A 2flw2 ,	 (12.15)
which is equivalent to 

4F=A 1' w 1 +A2w2 +h,	hEker2.	 (12.16)
We define the linear manifolds 

	

= { !j € IJ*/S2 c, = A 1flw1 .+ A 2Sw2 1	S	 (12.17)
and

JJlo ={4 € Uljf cp°ds = O}. 

By nondifficult considerations (especially, using [5: Hilfssatz 9.1] and the continuity 
of the potential of single layer), formula (12.13) implies that the equation 

= A l 2w1 + A2nw2 
is unsolvable for at least one pair A 1 , A 2 . Let * = A 1w1 + A2w2 . Then the equation 

= Aca,,*,. A	0,	 (12.18)•• 
is unsolvable. 

Lemma 3: In the considered case we have 
•	dim 9R = x. +2 and dimDl0 = Xh. + 1. 

Proof: Bearing in rnind(12.16), the relation dimker S2 p = xj,. and the unsolvability 
of equation (12.18), one obtains 

dim JJl:E^,ch.+2 and dim 91o,h.+1. 

In order to prove dim 9J = . + 2, we mention the inequalities - 

?Ch. + 1 :!^ dim ker(2d) ^5 Xh*+ 2.	 S 

By Noether's theorems,, the first inequality is a consequence of the unsolvability of 
equation (12.18). In the case where dim ker (2,it) = c,. + 2 the equation dim '1J1 = xh. + 2 is evident. Assume dim ker (S24) = x,. + 1. Then theadjoint homo- 
geneous equatipn (S2A)' 'F = 0 has exactly one linearly independent solution. Now, 
using the unsolvability of (12.18), one can easily prove that the linear space 2{w 1 , w2} 
contains a nontrivial vector * such that 

= ga,*	 S	
' (12.19) 

is solvable. Thus, dim P1 = '. + 2 is also true. 
- Let	, ...	be 'a basis of 9R. Taking into account (12.13), we can assume 
without loss of generality  cp°ds = 0 for' I = 1, ...,	+, 1. This implies dim 9J 

h' + 1. Thus, dim DIO =	± 1 is also proved I	.	. 

Corollary 3: Let cD,, ...,	be a basis of 9R, chosen as in the proof of Lemma 
3. Then we have

-	 (12.20) 

The corollary is proved , in analogy to Corollary 2 of § 11 1 .-	-
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Obviously, the adjoint equation (92)' 'F = 0 permits -either 1 or 2 linearly inde-
pendenf solutions. Let 'F1, ..., 'F (k = 1, 2) be the solutions of the adjoint equation. 
Then the following corollary holds. 

Corollar y 4: We have

fwi.cwds+o 

for k = land

f q' . f'y1ds' 

'F2 • Qw1ds 

in the case k = 2.

(12.21) 

f 'F1 . 

f'Fs.12w2ds] +0
	 (12.22) - 

The opposite assumption is easily led to a contradiction by the pattern of Corollary 1 
of11 I 

Now, let us consider the lineare space Li of solutions of the problem C* with contact 
data belonging to the linear manifold	 - 

3.= {wJw = A 1w 1 + A 2w2 + h,	h E ker}.	 (12.23) 

Lemma 4: The linear space Li has the dimension ,. + 3. A basis of Li is gven by 
the vectors 

V(x;	. . . , V(x;	XhS-1)	V 1 , V2	 (12.24) 

where the vectors-	(j = l . .., c. + 1) are those of Corollary 3, but V1, V2 are given by 

Indeed, the vectors (12.24) are linearly independent and belong to Q. Otherwise, in 
consequence of dim 3 = Xhs + 2 we have dim Li Xhs + 3. The lemma is proved I 

Now, we consider the equation	- 

= 62,w + A 1S2w 1 + A 2S2w2 .	 ( 12.25)
Because of Corollary 4, the constants A i can be chosen in such a way that the equation 
(12.25) has a solution 4. Using Corollary 3, the solution can be assumed to satisfy 
the condition	 - 

f c,, 1 . c,°ds = 0. 

Suppose that the physical condition (3.7) is fulfilled. Then we have 

f c . c°ds = 0,	in virtue of (12.24). 

Now, using Leiiiina 4, the existence of a *regular solution of the problem C* is easily 
proved, provided that the physical condition (3.7) is satisfied. Thus, the following 
theorem is proved. 

Theorem 2: Let  E C2.0 (0 < 1), and let the situation o/ the firstexanipleof3 
[2: Figure 11 occur. Furthermore, let the contact data satisfy the assumptions of § 2, the 
compatibility conditions (1.6a) - (1.6x) and, additionally, the physical condition (3.7). 
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Then there exists a *..regular solution U of the problem C*. u is representable in the 
form (11.14). (P and the constants A 1, A2 are determined by the integral equation (5.10) 
with the additional condition 

• cp°ds = 0.	 ,(1226) 

We still remark that the necessary and sufficient condition for solvability of Q* in 
the considered' case' is not a consequence of solutions of the adjoint integral equation' 

- system Instead of this, by (12.14) the condition (3.7) causes the relation 

	

c. p°ds	0, 

which is responsible (together with (12.26)) for the *..regularity of the potential 
V(x;4). 

Finally, let us give the results for the remaining examples of § 3. 
In the first example of dimension 2 the solution of 

= SL,,'w + A 1f2w1 + A,92 PW2	 ,	 (*) 

satisfies the condition f p° da = 0 if and only if the conditions (3.9) are fulfilled. Further, we 
have dim ¶J = . + 2 = dim No. The above defined linear space has the dimension x . + 4. 
In analogy to Lemma 3, the vectors V(x;	.., V(x;	V11 V2 (, ... , X,.+2 form a 
basis- of DI) generate. the linear space Q. Without any restrictions there exists a solution of the 
equation (*) One obtains .a '-regular solution u of C' if and only if the conditions (3.9) are 

-' fulfilled.  
In the second example of dimension 2 (see [2: Figure 3]), every solution of (*) satisfies the 

relation f c, i cp°ds = 0, if' and only if (3.10) holds. The adjoint homogeneous equation 
L 

'F = 0 has the solution '  
(s . c,3 )	-  

[	] 

=
 

	

0	y e L7 ,	 '	 ( 12.27) 
LcyJ	 - 

S	

[  

0
], 

yEL' 

(fl . Cy3 )	 - 

which gives rise to the condition (3.11). One can prove the sufficiency of (3.10) and (3.11) for 
the problem C' also in the considered case. 

In the two cases of dimension 3 (see § 3 [2: Figure 4]), the conditions (3.12) imply f VV8 = 0 
L	-' 

for every solution of (*). The adjoint homogeneous equation allows the following solutions: 

	

-	
(S.Cy3)  

	

[	

]for YELs 

0 'a(Y) 	 (12.28) 

	

.101	 5 

	

•	 1.0	I	for	e	 S	 • -. 

Lc 3i



in the first case, and

0	for yEL2 

WSW	0 ] 101 
0	for yEt7 

.LcJ
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(12.9) 

in the other one.  
Finally, every solution 4D of (*) in the last example of dimension 4 (3 [2: Figure 5]) satisfies 

f p0db = 0, if and only if the conditions (3.15) are valid. The vectors 
L

[(h•cv3)1
for yet5 

[	] )	 (1230) 
101	- 

0	for yEt7 
Lci 

and
[(h.ci)]	 - 

•	 for y E L5 

'P5(y) = •[	0	]	 (12.31) 
101 

0	for yEt7	 - •	
Lc']	 I 

solve the adjoint homogeneous system. 

The common result is the necessity and sufficiency of the physical conditions for 
solving problem C*. Using the ideas sketched above, this result can also be established 
for the other conceivable situations of problem C*. 

§'13 £- and £*regu1ar solutions 

Studying the integral equation (5.10) in an arbitrary class h(a11 , ..., ak), some results 
on the solution of the problems Cand C' may be expected in virtue of Theorem 4.2. 
Essentially, the general pattern of this theory resembles those considerations which 
have been developed in detail for boundary value problems of micropolar elasticity 
and thermoelasticity in [1] and [4]. 
Let 

M =dimker(1 9c4),	m' = dim ker(924)'.	 (13.1) 

Then we have, because of Noether's theorems, -	 S	 S -. 

m — m=xh.
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Let the homogeneous problem have exactly h linearly independent solutions. By the' 
assumption on the' integral equation (12.1) of § 12, one easily obtains the relations 

max ( + h, 0) ;;^ m :^-, Ch s + h,
(13.2) 

max (h, -) m'	- Xh + h. 

Th'eseestirnates can be 
'
improved. 	for h > 0 the solutions of the homogeneous

problem C* (Ce, C*) are regular. Therefore it is not difficult to' deduce 

dim ker (S2)	h	 S 

for every class h and in any case. For this reason one gets 

max (?Ch + h, h) m	+ h,
(13.2) 

max (h, -h - Xh) m' xhs - x + h. 

Let
q=xhs+h—m,	p=m'—h.	 (13.3)

Then we have 

p + q = Xh s - (m - m') = - . ' (13.4) 

Now, one can show by thealready mentioned argumentation of [1] that there exist 
exactly h + p + q independent conditions for solvability of the considered problem 
C* (Ce). The following theorem holds. 

Theorem 1: Let L E C2. (0 <	1). Let the homogeneous problem C,* (Ce) have 
exactly h linearly independent solutions. Let the contact data 1, I, £k, Ik, 1k g, g, g , 9k, hk 
satisfy the assumptions o/ § 2, the compatibility conditions (1.6a)—(1.6 x) and the physical 
solvability conditions of § 3. 

Then the problem C (Ce) permits an e*regular (e-regular) solution U if and only if the 
contact data fulfil exactly	-Xh additional solvability conditions. 

The first p of these additional solvability conditions are given by p additional sblutions - 
of 'the homogeneous ad joint equation 

p4)' W = 0.	 (13.5)

The remaining q conditions can be interpreted as solvability conditions for the equation 

a(P = h, " h E ker S2,,	 '	 .(13.6)

in the class h(a11, ..., afl.  
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