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Mixed contact pro'blems in plane elasficity m)

J. MAUL

Der Beitra.g ist die direkte Fortfithrung des Artikels [2] des Verfassers. Zundchst wird der
Index des in [2] erhaltenen singularen Integralgleichungssystems mit unstetlgen Koeffizienten
nach der Theoric von N. P. Vekua berechnet. Die Rechnungen werden durch emlge zuvor be-
wiesene Folgerungen aus den Ergebnissen von Vekua vereinfacht. Die Existenz von *-regu-
liren Losungen der Kontaktaufgabe wird bewiesen unter der Voraussetzung, daB die physi-
kalischen Losbarkeitsbedingungen erfiillt sind. Dié Existenz von &*- bzw. &- reguliren Losungen

.setzen das Erfiilltsein zusitzlicher Losbarkeitsbedingungén voraus, deren Anzahl vom Index
des singuldren Integralgleichungssystems abhingt.

Tlponoskaercsa nayyenne npobnemsl u3 crarey {2] aBropa. Mnaekc monyueHHo B[2] cucreMul
CHUFYJAPHBIX MUTErPAIBLHEIX YPABHEHHA € PA3PHIBHLIM KOEDPQUIMENTAMI BHYNCIACTCH N0
reopun H. II. Bem'a Bruucaenna o6Jer4anTcs HEKOTOPHIMU [OKa3aHHEIMK B paboTe creycr-
BHAMIL. pesysibTaToB Bexya. J{okasmBaeTcA, uTo (U3NYECKHE YCJIOBHA PA3PeIINMOCTH
HBJIAIOTCA HEOOXOAMMEIMM M HOCTATOYHEIMHM JJA CYLIECTBOBAHHA *-peryisApHOro peleHus
KOHTaKTHOII 3agauu. CymecTBOBaHUE £*-PEryIAPHOTO M g-peryJApHOro peleHuli obecnedn-
BAETCH JNOMOJHHTEABHEIMHI YCIOBHAMH, YHCIO KOTOPHX 3aBHCHT OT HHEEKCA CHCTEMEl CUH-
PyJAPHKHX MHTETPAJIBHEIX yPpaBHeHit. '

The paper continues the considerations in the previous one [2] of the author. Using N. P. Ve-
kua’s t,heory, the index of the singular integral equation system with discontinuous coefficients
obtained in [2] is calculated. By establishing some corollaries from the theory of Vekua, the
calculations can be simplified. Furthermore, the existence of a *-regular solution of the contact
problem is proved, provided that the necessary physical conditions are fulfilled. The existence

"of &*- or e-régular solutions requires supplementary conditions, whose number depends on the
index of the singular integral equation system.

- This paper is the direct continuation of the considerations in its first part [2]. In [2]a
general mixed contact problem of plane elasticity has been rigorously stated (pro-
~blems C*, C, and C.* of [2]). Moreover, the problem of uniqueness has been investi-
‘gated. Using before-defined regularity conceptlons and some properties of the single

layer potential, the contact problem is, by certain manipulations, reduced to the
integral equatxon : .

QAP =w + Alﬂpw1 + A,82,w,, ° A; — arbitrary constants. = (5.10)

The aim of the present paper is the exact analysis of (5.10) including the calculation
of the index. For this purpose, the necessary tools of integral equations theory by
N, P. VEEUA [7] and MUSKRELISHVILI [6] with some additional remarks are placed
at disposal in § 7. The relatively extensive and irksome considerations in connection
with the determination of the'index are carried out in §§ 8—10. §§ 11 and 12 deal
with the contact problem C* in the class of *-regular solutions; namely, -§ 11 is

concerned with the case of uniqueness, but § 12 with selected cases having eigen-
. , :
——— - /
1) Teil I erschien in dieser Zeitschrift in H. 3 (1983).
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solutions: In the smaller classes of e- and e*-regular vectors (comp. with § 2) the
.contact problem (C. and C.,*) is studied in § 13. .

The paper js furnished with its own bxbhographlc references Formulas, theorems
and lemmata of [2] are referred to as in the following: patterns: (5.10) = formula
(5.10) of § 5 in [2]; Theorem'4.1 = Theorem 1 in §4 of [2] etc. Supplementary ‘biblio-
graphic mformatlons can be found in [2]. g

§7 Si’ngular integ'ra"l‘_equation systems with discontinuous eoefﬁcients
- The theory of singular inteéral equation systems with discontinuous coefficientsl

:A(t) D) +B—n(—;—)f% dr +'f K¢, 7) 'd>(z) dr =i‘(t), L teL (1)

.. has been stated by N. P VEKUA in [7]. For our purpose, (7 1) shall be studaed under

the following assumptions: .

Let L be a s1mple closed curve of the class C* (0°< g ='1)in the complex plane C.
Let m pairwise disjoint points a, ..., @, (so-called “nodes” be-arranged on L in
counter-clockwise sense. Let A, B, K be (n,n)-matrices (n = 1) and P, F n-vectors.
‘Let the components of A, B belong to the class H, and, addltlonally, to the class"”
C%Ya;, a;yq) (=1, m). The components of the matrix X(¢, v).are supposed to
. belong to H, in both varlables, but those of F(t), also to H,. The solutlon ® of (7 1) is

g sought in the class H* or in subclasses still to be defined.

Now a short summary wnthout proofs of Vekua’s results concerning the system
(7.1) should be given: :

-{7.1) is called of regular type if -

‘det (A +B)+0, det(A—B)+0 everywhere onL. (1.2) -

" - (In the nodes a; this relatnon is to be understood as applying to the one-sided limits.)
The a,d]omt system is :

ATO ¥ - %f%‘f” dr +f.KT(r, 0¥ dr = 60, a3
L . ’

where the matricés AT BT and K7 are , obtained from AB and K by transposntlon
Let (7.1)-be of regular type. Setting -

B =[A® + BOI[A® —B@®), - _ (4
let us define the matrices : -
DY = yie) =g N +0) gl —0), (=1,..,m) (7.5) -
in each node a;. Let us consider the characteristic equations | _ o .
‘ det[y' —AE] =0 (j=1,...,m) (7.6)

. (B — (n,n)-unit matrix). Let 4,,..., 4, be the roots of (7.6), counted with their
multiplicity. In virtue of . L '

n . oo .
’17 i = det g7Y(a; + 0) det g(a; — 0) = 0
.wehave/l,’=‘,=0foreveryl-—1 ,n,;-l , M. -

!
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"The complex numbers g, are defined by
M N - o) .
i =e?i) and —1 <Regl<1 (l=1,..,n).. ) (1.7).

If Re g = 0 for every !l = 1, ..., n, the node a; is called special, and otherwise, non-
special. - -
- Now, we agree to choose the numbers g, for fixed j in such a way that elther :
Reg/ <Oforalll=1,...,n0r Regf =0foralll =1,. : -
Let the nodes a;, ..., a; be nonspecnal We divide the sct {aj,, .. ,a,} into two:
subsets: @iy -+ T, and Gjy ove Tjys o Shpulatmg Reg’ =0 for F=11 07
and Re g < 0 for j = 7q+1, R A () —'1 ., n), respectively, we give the following

. deflmtlons

Definition 1: 1. The vector ® belongs to the class h = h(a,,, ooy a,) 1f <I> € H*
and & € H.in the nelghbourhood of the nodes aj,, ..., ;, a;.,, .-, @,

2. The class k(aj,,.s .-+, ;) is called adjoint to h(a,,, Lo @) )
In short notation, we w1ll speak of the class A, which denotesa certain.class aj, ...
- a;;). Furthermore, the class k(aj, ..., a;) is called &, and A*, the related adjoint
class. Obviously, the class A* is the largest and.h,, the smallest one. In the case where
. 7 = m (i.e. special nodes do not exist) we have »* = H* and h, = H,.

" Tn the following. theorem the main result of N, P. Vekua concerning ‘equations of
type (7.1) is formulated. The proof can. be found in [7: pp. 95—160].

Theorem 1: LetF, G € H,. Let the matrices A, B and K satisfy the above- mentwned
assumptions.. Ther Noether’s theorems are valid for the equations (7.1) and (7. 3) wrth -
respect to SOl’b(&b’Ll’Lty in the class k(a;,, ..., a;) with the related adyomt class h(a,q“, <o Q)
respectively. : . :

~ The index » = Hn(a5, ey | = #h of (7.1) can be calculated by the formula

!

2y = % arg M— . - ' (7.8)
]7 H(t — 2g)® ' '
j=11=1 L

Here z, is an arbitrary pomt located within the bounded domain D w1th oD = L. The
numbers g,/ are to be chosen in accordance with Definition 1, and the branches of the
functions (¢ — 2,)®’ are to be defined in such a way that thesc functions are holo-
‘miorphic with respect to ¢in the compléx plane €, which is cut out across the line

— \
24a;00. The symbol [=];, means the increment on L of the function in square brackets.
For large n, the actual calculation of A/ is, in general, very extenswe and 1rksome :
" Therefore the following lemma, will bc very useful. :

Lemma. 1: Let the matriz A consist of real elements and the matriz B of purely
wmaginary ones. Let equation (7.1) be of regular type. Then the following relations hold:

a) [detg] =1, «ldety(e)l=1 (j=1,...,m).

b) g =g, det(y™!) =det7. .

cy If fi(2) = det[y(a;) — AE] = bofA* + b/t + ... + b7 is the characteristic

equation at the point a;, then we have S ‘ :
fi(dy = (—1)" (det y(a;))* A7f; (7)

31 ‘ o ’ o
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d) The coefficients of the chamcteri's.tz'c equation fulfil the relations
boi = (—1)" (det y(a)) b (k=1,..,n+1),
b = (—1)", . by = det y(a)).
e) If det (A -+ B) is either real or purely imaginary, then
detg = +1, det y(a;) = +1. ' '
Proof: First we have (A.+ B) = (A — B). This implies det g = (det (A + B))!
x det (A.— B) = (det_ (A — ‘B))‘1 det (A — B)and |detg| = 1, |[dety(a;)| =1(j =1,
,m). Hencefollowsg™! = ((A + B)"1(A —B))"'= (A —B)'(A +B)) = (A +B)}
X (A — B) = g, det y™}(a;) = det|(g -l(a, + 0)- gla; — 0))Y = det [g7(a; — 0)

X gla; + 0)] = det [g(a; — 0) ga; + 0)* = det'[g(a; + 0)7* gla; — 0)] = det y(a;).
Because the characteristic equations of the matrix products SD and DS coincide (8,
D — arbitrary (n,n)-matrices), we have '

Fid) = det [g(a; + 0) gla; — 0) — AE] = det [g(d; + 0) gla; — 0)! — 2E]

= A% det [i

|3 etes + 0 st — 0t |

| ' 1 :
= et {gtay +0)gle; — 0 [ 7 B — oy — 0.ty + 07|
— infdet (o)) (~1 det|gfa, + 0 lo— 0 — 7 B

_7"(dety(a,))1(—1)"f,() . - - o A ' T

This also implies proposition d. Let det (A + B) be real or purely imaginary. Then'

the same is true for det (A — B) = det (A + B). From this, det g = 41, det Y(a,)
= +1 is easily seen. The lemnia is completely proved

Furthermore, the following lemma holds.

Lemma 2: Let |det g(t)| be a continuous function on L. Then the numbers o7 fulfil
the relations

m(£eﬁ)=0 G=1.om. = : (7.9)
Proof: We start from (7.8). It is a result of Vekua’s theory that the expression in

brackets in (7.8) is a continuous non-vanishing function on L. By setting o = o,
T4 zﬁ,’, the bracket of (7.8) is of the form . .

. det gt
. arg——_9etg®) __ :
TT IT (6 — zg)est+ion S
j=11=1 -
= arg {det g(t) H H [lt _ zol—(a‘:+,’p‘1) efiarelt—zo) e—ia‘lafg(t—z,)]}' (7:10)

If we consider the abgolute value of (7 10), the formula (7.9) follows 'immediately
from the continuity 1 '
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Corollaries: 1. Lemma 2 is true, especially, if the assumptions of Lemma 1 are -
fulfilled.
2. Let the assumptions of Lemma 2 be satisfied. Then the /ormula (7.8) can be szmplz-
fred to : . A
xn= 5= | arg — Ciet,g() 1 - ’ (7-11)

2
" TT IT (6 — 2)*
j=1 i=1 . *

where a;) = Re g/1.

The first proposition follows immediately from Lemma 1.d. Obvxously, both the
first and second factor in the square brackets of (7.10) do not change the argument
by circulation on L. This implies the second proposition |

" Furthermore, we remark that under the assumptlons of Lemma 2 (or Lemma 1) it
is sufficient for the calculation of the index x, to determine the quantities arg (4)
of the roots of the characteristic equations. This follows from

' arg if = e®isd, ‘ (7.12)

§ 8 Dominant part of (5.10)‘. The matrix g(t)

Hencefort'h, let us assume again that L € C>. In consequence of the results in § 4,
the integral equation (5.10) satisfies the assumptions of Theorem 7.1. By using (4.2)
_and (4.3), one can separate the dominant part from the system (5.10). This dommant
part is

\

(¢ ®(7). ' . :
A(t) D(s) 4 —)f-—()— dr - . (8.1)
4 T —1 i .
. ‘ T .
whefe |
A(t) - . B(t) . "~ tfrom
000 0 . a2, O a O .
0000 , - : 0 —a, O a, A
1010 0 g 0 —¢
| 0101 |- L—¢6 O ¢ O
K 0 —1;2 7, - 0 0 eny Gny |
n, —=n, 0 0 i Coy " Cgmyg O - O L
0 0 0 0 ) —any —agn, amy a,n, 2
| 7, g My My oy G Gy —CM J
0 0 0 0 , - o 0 —amn, . aym ]
000O0 ’ ;| —ane agm 0o o L ’
000 0 ' ) %y —QoRg 4Ny N :
L% % 7y 7 L6 GM . Gy —O Ty ]
- 0 o 0o 0 [ 0 o’ amn, amn,
0 0 0 o i agn, agn, O 0 ' I
00 0 0 Ggny —agny —ayn, any | ‘ (8.2)
L —n, n =y My ’ L —Co™1 —Cotz C1% Oy, ' (8.3)

'



A0 . . ;“‘ -‘ ,,B:(t) _ . . t from

- -0 0wy my - r o (U CiNg —CiMy
—ny —my 0 O : cony —Con, O 0 L
.0 -0, 0 O Qgny —aghy —a Ny M -~
[ -y my =y my T [ —Co™y ;'Coﬂz an 6y
000 0 o "a, 0 0 0
0000 : 10 a0 0 r
0000 - . 10 0.a0. Je
oooo] -~ Lo 00 a '
—1 00 0 0 —co 0 0 '
L0—1'0 0 Sl 00 of
0 0 10 1o 0 0 —¢ - ?
0 00 1 lo . 0. o) - (8.2)
0y 00 0 07 Cagn, “agn, 0 0 . (8.3)
n, —mn, 0 0|’ ’ ;| o coma 0. O ‘ ’ ] LV ’ o
0 0 0o 0 0 0 aym,  an, ) 8
0~ 0 —ny, n L 0 0 emy emy, . ‘\ ) .
- 0 0 0.0 1 [ @y agm O 0 e
—n, —n, O CoMy - —Cony O -0 L.
0 0 00 [ -0 0 —am, amy °.
|~ 0 0" =n m ). B o Gy —OM
and ) ' A _ )
P k. N (1,,,u,>0l—0 . (8.4) -

2uy(d + 2m)’ LT + 2u;

n,, Ny are thc direction cosines of the normal vector n at the point ¢ € L.
It is immediately seen, that the system (5.10) with its dominant part (8.1) satlsﬁes
- the assumption of Lemma 7.1, As & consequence of Lemma 7.1a, (5.10).is of regular
" type. The assuraption of Lemma 7.1¢ is addltlonally true. Usmg the multiplication
theorem for determmants, one obtams

1 for tELluLﬁuL7uLsuL,
1 for lELgUL3UL4UL5 '
In the sequel, the expllclt form of the matrices g(t) is’also needed. The- results of the -

calculations are given in the followmg formulas, -
With the abbreviations , - "

det g(t). = { ‘ (85)

A =-(ay — asco), B=a¢—ap, C=ay+a; : : 4
D =1+ ¢ Ey=1-—¢? F =7é0' + ci, G =ce, (1=0,1), "

T

[(86)

one gets R - .
: —A4% + B, —2ia, 4" -—2a10 —2%a,4

o 1| %ad T <A+ B %A - 2,0 -
—_ 112 , _ T teLy, (8.7a)
BO="N| 200 = —fiaA" —4°— B —figd |} E/ 1 (8.7a)
- L2ed.  —2C  Zad ). —4*-B

N=‘02—A2;‘ :
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N ¢
 ay(cgns? — eymy?)

0 Y a, F'nyn,
: 1 —aycy - -0 ag(cine® — cony?) —.aIF’nlnﬂ .
g(‘) = TM‘ 2 \ '2 ) N ’
. M- —aok'nn, ag(cgny® — cime®) 0 T GeCy
agein® — cna?)  agFnyn, Aol 0 )
a\Dy + aok 1(”22‘f %) . —2a0E . n, 2?11(”12-—%22) .
+4 —2a,E n1my ayDy + aoE,(n,? - n9%) 2a,(1 + G) nyn,
' 2a4(ny® — Gny?) 2ao(1 + G) nyn, ' aoDy + ayEo(ns? — ny?)
. 2,?0(1' + G’) nn, 2‘1'0(_7?'22 — Gny?) . —2a1E'9nln2
2a,( 1",+ G) nyn,
2as(ns? — ) PSR
2B, ff)r te kL, (8.7b)
\ ) aoD, + 0741Eo(’"v12 — n?).
"M = d(aoE, + a,E,); ‘
‘ . 1 . . - -
gle) = el
ay(n,? — ”Léz) — ag 2amm, 2“1"”'12,‘ 2a,nymy : ]
2amny ai(ne® — ny%) — ag 2a1’”i"}a : 2“17522 .
_2010”12 2agn Ny ay(n,® — "éz) — ay 2a4m,m, - )
2a4nny , 2a4m,° © 2amymy ao(ng® — ny%) — a4
“for te€ Ly; (8.7¢)
1 ‘
8t =5
ay(ng? — my?) — ac;A T2¢1”L.1"na 2“1”2? —2ayn,my ]
—2a,n3my a(n? — n?) — ap —2a,mm, ) 2an,%
2a4n, —2aqn,n, a(me? — my) — @y —2agnm,
—2agnn, 2agn,? fq2aonn_nz . ag(ny? — %) — ax_J
for .t e Ly . (8.7d)
Y , ' I_alco —a;Fnyn, - a(comy® — eymy?) ]
1 | —aiC 0 - alemy® —eony?®) aFngn,
g(t)=—12 X . -
- M agFnyn, aglcons? —eyny® 0 —QCr
ad(c}ngz — ¢ony?) ) —aoFnyn, gty 0 , _
a}Do + aoll(n' — %) 2a0E nyn, 2a,(n.? — Gny?)
‘+ i 2a,E 0, arDy + aoBy(ny? — m%)  —2a,(1 + G)'nyny

2ay(ns? — Gny?)
1 ;2a0(1 + G) nny

—2a9(1 + G) nymy-
2ag(ny? — Gny?)
—2ay(1 4 @) nymp.
2ay(ny, — Gny?) .
2a,Eqnyn, )

ayDy + a,E(n,? — n,?)

“aeD; + ('hEo(nlz — ny?) -

20, Eqnn, .

-for 'it € L;; ' (8:7e)
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- =1 0 0 0 .
o= 71 O O g ver; BN X §
g 0 0—1 o] O fE% (8.79)
0 0 0 —1
1 2 —2 7]
+c? 1Co 0 0 .
1— 602 1— 002
2 1 2
. 1 ?/C;)z' - +202 0 0 . ~
1) = — Co ) — Co . L . .
) 8() . . Lhot 2 for teL; (8.7g)
o l—? 1= ey?
T —%ie;, 142
O . 1 1
| 5 0. 1—¢ 11— c,?
" % —n? —2nm, 0 ’ 0 ‘
¢ _2"‘"2 mt—mt 0 0 for te L B.1h)
8lt) = 0 Lot —2ngm, or t€ ki OI0)
L O 0 —2n,n, 7,2 — my?
2 — 2 2nm, 0 0
2”1712 ) ne? —m® 0 0 : } - U
‘g(t)'— 0 0 e tmm for te L. (8.v71)
Lo 0 2nn, 2122 — n,2

§9 Determinant and trace of v

For the analysis of index of the system (5.10), theroots 2,7, 4,4, ..., 4, of the charac-

teristic equations (7.6) of matrices y! (7.5) have to be determined. Because the nodes

a; of the problem C* can be of 72 dlfferent type, each of those possnblhtxes must be

- discussed. -
In virtue of Lemma 7.1b we have’ .

Y Hey) = g7Ha; — 0) gla; + 0) = gla; — 0) gla; +0)

. - (9.1)
Y(a;) = g7 Ya; + 0) gla; — 0) = g(a; =+ 0) g(a; — 0). -

-Thus, the coefficients of the “characteristic equations of y~¥(a;) and -y(a;) are con-
jugate complex. A
The following .analysis shows that the characterlstxc cquatlons are real for all
possible combinations. Consequently, the characteristic equatlons at a node a; of the
type L; — L, are the same as for the type L, — L; (j, k = 1, 2, ..., 9). Hence it is
suffncxent to consider-36 different type of characternstlc equatlons : ’

The problem of finding the characteristic equations is equivalent to the determination of the
- invariants b, = det Y’ b,/ = — tr (y/) and the $econd invariant b,/. The remaining invariants
can be obtained by using Lemma 7.1d.
" The values of b,f follow immediately from (8.5). . -
- More difficult is the analysis of the traces. For this purpose, the dw.gona.l elements of the
" matrices ¥’ must be calculated. In order to dlstmgulsh the matrices y/ for nodes a; of different
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v

kind, these matrices are desngnated by y“_k,, which means the matrix y/ at the node g; of
type Ly — L, L k=1,2,...,9; 1 & k).

First, let us consider the case Ly—L, Let 'Yu—'-) = _Fl}y_{[ ilik=1,..4 (the constants‘

N, M are defined by (8.7a) and (8.7b)). Then one obtains for the diagonal elements

My = Py + Quuna® + Rymy® + Sumn,  (E=1,...,4)

. and . )

P, = —ia,[(42 — B) Do + 401604] = Py, Qu = iao[Ey(4? — B) — 40,0 + 40,0, 4] = Ry,
Q,; = —iay[E,(4A% — B) + 4alcoA — 44,CG) = R,,, ’
Sy = 440%[}11:1 + CF — A(1 + Q)] = —8,,,
Py, = —iag((A% + B) D, — 4aoclA] P,

A Qss = —ia,[4a,C + 4a,ced — (A"’ + B) E,] = Ry,

Qu = it,[4a,c, A + 4a,CG — (42 + B) Ej] = Ry,
833 = 4aga,[—CF — A(1 4 @) + AE,] = —8,,.

-

- Taking into account (8.6), one can show
’ ) 4 4 .
—NM tr (Y], =k2 My = X (P + Q) = —2NM;
- =1 k=1 )

hence follows
tr (Yi—e) = 2. , ©.2)

Let us consider the case Zl — L. Setting
. 1 .
Yoo = — vo Lilik-1....q

and ' . ' A '
Lik = Py + Qua® + Byng® + Sumny, (k= 1,...,4),

we get

. Py = ay(4* — B) = Py, Py3 = a,(4? + B) = «’ ' -

Qu =B — 4% — 4a,0,0 = Ry, Qo3 = —0o(4? + B) - 4agnC = Ry,

Ry=a,(4* — B) = Qu, Ry =ay4’+ B) = Qi ,
Sy, = 4ia,24 + diaga, 4 ='~—s22, Sy = diaga, A + 4ia2A = —8,,.

: . . .
Therefore —NC tr (Y);—g) = X Ly = —2NC, this implies : .
k=1 :

tr (Yh—s) = 2. - ‘ _ (9.3)
The same result is obtained for the cases L, —L, and L, ~L;: .
tr (Vi) = tr (Yhs) = 2. o . ‘ (9.4)

It it not difficult to get

i A i ‘
tr (Yi—e) = —4 o : (9-5)

:
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1

. With 7{1_7) = —ﬁl- [H.;k].-,k=1,_,,,4 one obtains

1 . 1 : o
Hy, = . [Do(B — 47) — 4aycod] = H,y, Hyy = E_1[_D1(A2 + B) + 4a.0,4] = H,,,
ad 1] . o 1 ,

AL N

—4 (aoc.oly'l — a6, F,)* ‘ ) : '
= W,. . . - - .6
EE, c: — 4% 2 ' . . © ),‘

- tr (Yen) =
_ The calculated values for tr (y},_, (I — k)) and det (Yi,_s) are collected in the fol-
lowing table: : ' . R S

typel—k  det(vjm) trivi_w)  typel—k  det(yjn) tr(vi—u)
1—2 . -2 3—7. -1 . ws
1-3 - —1 2 3-8 —1 2
1—4 —1 2. '3—9 —1 -2
1-5 —1 2 4-5 1 0
1—6 "1 w, -~ 4—6 | 2
17 1 w, 47 —1 : w;
v, 1-8 1 0 4-8 —1 -2
1—9 i 0 4—9 -1 2
23 1 0 5—6 —1 w,.
2—4 1 w, 5-17 -1 - S 2
2-—5 1 0 5—8 —1 T2
2-6 —1 w, 5—-9 =1 —2
217 -1 2 6—17 1 O wg
28 —1 —2 68 1 ]
29 — 2. 6—9 1 0
3—4 1 0 71-8 1 0
3—5" 1 wy D 7—9 | 0
3—6 —1 2 8—9 1 —4

Here, a;l and w, are given by (9.5), and (9.6), respectively. F urthermoré, we have

2 ) .
4a,a.F ©.7)

Wy = —
SN ClaeBs 4 aiBo) .
__ 2(aiDg + aoD)) : ' ‘ )
N TTaB, el e
EoE\C + 2(awce’E, + a‘lcleO)“
= —9 : .
wWs - EoEIC N (9 9)
_——2 A : TN - i
We =<.E0,E1 (DOEI + leo). . (9.10)
Because of 0 < g = 24— < = and a,>0(k=0,1) we have,
3 M . .
: " - 2 . a2 : .
0= =—4- (@cy — a460) 1/4(ao +a1)® _ _4 RCR Y

—4 - -
=T T e + = @ — e S(a + el 3

(
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:

Assuming without loss of géner:ility that E, < E,, one obtains

\ a2c2E2+a202E2—2a'.acocEE 1 E,
0 g W = _4 0 “0 1 14 0 01 1449441 > —4!
- ? : (@0 + a1)% — (@cy — alco)2 EOEI ’ E,
~ a2 + a,%c,? 1 1/4(ay + 01)2 .16
X > =4 ="—— (9.12
T (@ + @y)? = (agcy — ayco)? 3/4 3/4(% + a)? 9 ( )
Simila.rly, tdking into account % E, > 262 (k =0, 1), we get : S
0> 0= agy(cy + ¢1)° > (a0 + ay) (co + cy)? i
o (ao + ay) (aol, +- axEo) (aoky + a,Ey)
[ ’
(co 4 ¢1)? 4
> 0 T _—, .1
> 374 3 (9. 3),
and i ) . -
—2> o, > ;% . : S (914)
—2> 0> . . | o @a5)

J
§10- Roots 7\,’ of the characteristic equatlons and index %, of the operator Qo

’ For determmatlon of the mdlces xp by formula (7.8), some additional mformatlon

concerning the roots 4,7 of the characteristic equations (7.6) of the system (5,10) with
its dominant part (8:1) is necessary. Since the assumptions of. Lemmata 7.1 and 7.2.
are fulfilled, the indices can be calculated by using the more simple formula (7.11).

. Hence, the values &, =Re ¢,/ = arg 1/ give sufficient information to determine the

indices. -
A first possible way for the further considerations mlght be the direct countmg of

the second invariant b,! of matrices y(a;). However, this approach is connected with

very extensive calculations, which are not worth while, especially for nodes of the

- types (1—2), (2-3), (2—4), (2—5), (1—5), and others, for instance. Therefore
- another less extensive way will be gone. This approach makes use of results obtained
. in §§ 5, 6. ' .

In prepamtlon of the followmg considerations we prove the followmg lemma,

Lemma 1: Let R be a linear manifold of 4-component vectors on L containing the vectors
Wy, W, of § 5. Let the vectors h € R satisfy the assumptions of §.2. Suppose that the homogeneous

-problem C* has exactly h linearly independent solutions. Consider the linear mam/olds

M= {(PecHYFS=hheM, , o)

My = {¢'€ s):'n/'f (p°(y),ds;,‘= 0}.. : e (10.2)

A:Then we hate dim M Sh+sdmM'Sh 45— 2 provided t,hat s'='dimN.

For proof we remark that the problem C* w1t11 contact data in N permits, in virtue of
linearity of C*, no more than h+s linearly independent solutions. The continuation is the
rather precise repetition of the proof of Lemma 5.1 § ) :

For the further considerations concerning the characteristic equation in,a glven node a; of
the type (l —ky(Ek=1,...,9;1 =% k), the fol]owmg auxnlmry problem Cl=p is 1mportant

i
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. / - ! . .
This problem C{j_;, is defined by the following figure 1. The auxiliary problem C{;_, has 10 no-
des @,, @, - .., G)9, whose normal vector n is the same as at the considered node @, = a; of the
original problem C*. Moreovér, the boundary of D, is constructed in such a way that the homo-

geneous problem C{_;, does not permit any additional solutions from the tables 2—4 of § 3.
Consequently, the homogeneous problem Cf_;, has exactly 2 lmearly independent solutlons,

A A A L

G o 5. 4
. ,. ~
a .

10

—— =
i o, 4, a}/ai-a1 N

figure 1

Auxlliary problem Lfi.y)

'if ! and k have one of the values 1, 2, 5, or 7. In the remalﬁmg cases the homogeneous problem
C{i—i allows only the trivial solution. It is important that the characteristic equations (7.6)
at the node @, = g; are one and the same for the problems C3j_, and C*. Using the formula (9.1),
it is easily seen that the characteristic equations at d,, dy, ..., @, have conjugate complex
coefficients regarding the chara.ctenstlc equation at a,, Moreovcr, we have

¥(@)) =y~ }(@) for j=—2,4,6810 -,
and (a,) =vy(a,) for 1=23,5,7,9.

Let 4, 2,, 2.3, A4 be the roots of ‘the chara.ctensmc equatlon H(d) = det (Y(a,) — )E) =0.
Then the roots of the characteristic equation

. i) =F1d) = det ((@) —AE) =0 (j=2,4,6,8,10)
are 1,, ,, A3, A4 In virtue qi the considerations above, we have in the sense of set theory
R Ao A, ) = 7% 2274 478 A7) T (10.3)

After these preparations, let us consider the characteristic equatlons f;(2) = 0 In consequence
of Lemma 7.1d, the second invariant b,/ of t.he matrices y(a;)’ sa.txsﬁes the following relatlons

Re bf =0 for det y(a;) = . (10 4)

Imb,f =0 for det Y(e;) = ‘1 _
First, the cases with det y(a;) = —1 are studied. From the table in § 9 one can see the follow-
ing form of the characteristic equations (using Lemma 7.1d).
Case 1: /,(2.)—}.‘——2).3+io).2+22.— 1=0 . (10.5)

(for nodes a; of the type (1—2), (1—3), (t— 4) 1—5), (2 7, (2-9), (3 6), (3—8),
(4—6), (4—9), (5—7), (5-8))..

Case 2: '/,(A)—).‘+2A3+w}.2—2).—1__0 L Co _ (10.6)

‘ " (for nodes a; of the type (2—8), (3-9), (4—8), (5—9)).

Case 3: f;(4) = A4 — w‘ls + oA+ 0w —1=0 : ) ’ (10.7)
(for type (2—6) and (5—6)). o
Cased: fi{A) =2 — ot 02 + wyd — 1 =0 ‘ o (10.8)
\

- (for type (3—7) and 4=7).
Lemma 2: Let det y(a;) = —1. Then /ollows b,f = 0.




For proof supi)ose by + 0. Then we have b,i = i5 (6 % 0, real). The characterlstlc'équa;tion B

1;i(A) = 0 is of the form (10 5), (10.6), (10 7) or (10. 8), where the considered node g; is supposed
to be of the type ! — k. Let . . )

).,,’=r,.e2"‘“u" h=1,.. . 4) _ L L (10.9)

be the roots of the characternstlc equatlon Because of ¢ % 0 we have oc,,’ +0, + —, Ty # 0.

Now we consider the au“llary prob]em C(l—k) Let the correspondmg mtegral equation
system be i - i

Qp.szﬂb = A4,Q,w, + 4,2,w,, - T (%)
which is to be studied in the class A*, Hence
—l<ai<0 , . B . T (1010) ¢
and, consequently, the nodes g, ..., G,, are nonspecml Because of the relatlon ]] Mf=—1,
we have one of the following sums | ) A=1
4 1 3 5 7 -
AT T T T Ty
. . ]
This implies
4 : - . .
“&f:—i,—i,—i,—l for k=1,3,5,17,9 (%)
=1 2 2 2 2 . . '

and,hecause of (10.3),

a 4 75 3 1 - R
Tk =3 (—1'— ) = ——, ——, — =, —— for k=23,6,8,10. i C(k%%)
A=1- - A=1 22 22 2 0 ' -

.Taking int:o account (*%) and (x%%), the index x,e of (%) is calculated by formula (7.ll)has
follows: - ) . Sy

Hpe = ‘2175 arg r ! C= %[arg (i —_ 20)20]14 = 20.

0 4
oA

L

Hence, the equa.tlon (*) permlts at least 20 lmearly mdependent solutlons d’l, D, ..., Do,
On the other hand, (%) is equivalent to :

gD = AW, + Agw, +h, | hekerQ, - ~ o S ()

, The dimension of the linear sp-u.ce ker 2, can be obtained by formula (6.11). For case 1 we get -

dim ker Q,, = 5. Since the homogencous problem C{j_y, allows at most 2 linearly independent
solutions, a.nd because of dim £{w,, w,} < 2, the use of Lemma. 1 shows that the equation (+)
permits at most 9 linearly independent solutions.

This contradiction proves the proposition in case 1. In the case 2, 3, 4, the formula (6. 11)
implies dim ker £, = 15. Consequently; (+) allows at most 19 linearly independent solutions,
which also contmdlcts the existence of at least 20 linearly mdependent solutions of equation (x).
The lemma’ is completely proved 1

In virtue of Lemma 1, the cocffncncnt oin (10 5)—(10.8) is equal to O Hence we have

i) =@—1P@A+1) in case 1, . S T (10.5)
() = @A+ 10 (2 =1) incase?, - - (0l
[ ="+ 1)@2—=1)(* — 0@+ 1) incase3, (10.7")

1i2)= (2 + 1) (A — 1) (A2 — wgd + 1) in. case 4.. * (10.8")

Contact problems in plane éla.st,icit;y L, 4937
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'Because of (9.14), (9.15), the quadratlc polynomials in (10.7%), (10.8’ ) have only negative real
roots. Using formula (7.11), one obtains as results

o = Re g = _E’ RS - Re 6 =0 1=2,3,4) incase1,  (10.11)
. N . \
o, =Regl = e ¢t=123); af’ = Reg/ =0 in the cases 2—4.'(10.12)

Next we consider, the cases with det (v ('q,-)) = 1. Particuldrly, we have
Case 5: f;(A) = 74 + 0}t + 1 =0, v . L . (10.13)
(for nodesa of the type (1—8), (1—9), (2 3), (2 5) (3—4), (4 o), (6— 8), (6—9),
- (7—8), (1—-9)),

Case 6: fi(d) = 4 — 0, + okt — wli + 1,= 0 o o (10.14)
o (type (1—8)), : L ' '
Case T: [ i) =M — w0 02— wA+1=0 : (10.15)
(type (1=7)), -
Case 8: . fy(A) = A — w,2* + oA* — wsl +1=0 : : . (10.16)
(type (2—4) and (3—5)), ’ '
Case 9: f;(A) = 7* — we® + ok — wed + 1 =0 ‘ ‘ 1047
" (type (6—-7)), o ,
Case 10: fi(i) = /4 + 48 +67° 442 +1=0 o ' (10.18)

(type (8—9)).

"Here, o is a real. number.
In the two last cases, the constant ¢ can be caiculated dlrectly One obtains

£y = (1“ +2 T2 Vol ) (z" +2 T Lte, o ) incase9  (10.17)
-t -k . !
and - : . S '
Ji{d) = (X 4+ 1) =0 in%case 10. ) . , . (10.18%)
\ . ' .
Bearing in m_md + 1tof > 1 (t=0,1), we get ' -
: ot ’ .
o7 = Re 0‘11 = _-—% - (1.=1,2,3,4) in the cases 9 and 10. (10.19) -

For the cases 5—8 we first remark that, in consequence of (10.3) and the reality of the co-
efficients in ( 10 13)—(10.16), the following equality holds in the sense of set theory

. Ay 2, 23, 14} = {A, 32, g A} = XY, 12 257 A7 ‘ . (10.20)
Lemma 3: The equatzons (10. 13)—(10 16) have only real roots.

.

Proof: Let us assume on the contra.ry that there exists a complex root, h=p+1(g+0)
Then A; = p — g also solves the characteristic equation f;(4) = 0.

First, we supposc the ‘existence of another pair of complex roots )3 =0+ g (g =#- 0).
Besides, if p® + ¢% 4= 1, this is a consequence of (10.20). Now, we consider the a.uxnhary
problem Cfi_;, and set —1 < ) = «&,f = arg Ah = 0 t=1,...,4).
The index ;s of the integral equatlon

| QAD = A4,Q,W, + 4,2,W, ' . E ‘ (%)
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\ \ ..

is obtained by
1

A 1 , ' '
e — = — [(t — 2.)201, — .
I 2y -— om arg — y = 2 [(¢ — =) ]L,. 20. e
Co , 7 I ¢+ zo)“‘ -
; . - =1 =1

Consequently, (*) has at least 20 linearly mdependent solutxons Onthe other hand the equa,txon

AP = AW, + 4,w, +h, hecker®, ’ , (%)
is cquivalent to (*). Because of (6.11), one géts . ‘

' dim ker , = 10. ‘ .
For this reason, ‘the equation (#*) (and (%) too) permlts at most 14 ]mearly mdcpendent so-
lutions. Therefore the roots A3, 24 cannot be complex. " :
Moreover, it follows that p? + ¢% = 1. Let. .
A =p+ig=ctwi, J,=gp— qi=e2mi (—1 <a< 0; o = T%)’
TRy =s, A=t (s,tredl-s,t:!:O) r

Now, the assumption s, t < 0 leads to the same contradiction as above
We show that s, ¢t > 0 is also lmpossuble Indeed, the assumption s, ¢ > 0 lmphes by (10 20);

the relatxon t = i We have -
8 ) . ,
}.l+).2+13+/‘.4=2cosa+(s+—1-)>0. ' . ~'(**'*)
. s . . .
But in regard of (9.11), (9.12), (9.13), the rclations

o=kttt A S0 (I=1,2350 =0 in case 5)

. must, hold in contradiction to (#¥*)..
] We still have to consider the case s < 0 < ¢. Here, (10. 20) 1mphes s=—1,t=1. Cg')nsidelfing-
the auxiliary problcm Cl—t), One obtams .

PR —l—[arg (¢ — 2,)8], = 15. - . \
: 27 L . . .

Thus,l the equation
- R, P = A,R,w, = 4,Q,W, y

v

has at least 15 linearly"independen\t solutions. However, the equivilent equation
d‘b = Alw + A,w, + h; h ¢ ker R, -

has at most 14 Imearly independent solutions. ThlS is a contradlctxon, which shows the im-

. possibility-of s < 0 < t. .
.Consequently, -the assumption of existence of a comple\t Toot of the characterlstlc equntlon -
f;{A) = 0 is not true. Thus Lemma 3 is proved |

, Now, the values o:,’ = arg 4,7 of the roots of the characteristic equations (10. 13) (10.16)
required for the index calculation can be established. Here the assumptions '
g i 1 ; ; 1 ;
0‘1’=°‘2’=°‘a =af=—— or « —oc27—o:;, =—— " a?=0

> - P "
ean easily be led to a contmdlctlon by using the auxiliary problem Cf_;,. Further, from the
assumption «,’ = a,f = oy} = «,f =0 follows 4,7 + 2,7 + A 4 A > 0, which contradicts
to the s:gn of the coefficient by A3 of the charactenstlc equation. :

v
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The same contradiction occurs in the case

.. .. . l
1—a27=¢x3f=0 a4f=——’

for (10.20) implies for instance '
oAM=, )f——l cmd 77+).2+).3f+) = A} + A7 > 0.

Thus, we have

oyt = &yl = -5 o = o = —;— in the cases 5—8. (10.21)
I

‘Now, we have completé information for determination of the index of the operator SZX',&( . :

Using formula (7.11) and (10.11), (10.12), (10.19), (10.21), one obtains for the index
xpe in the largest class h* ' '

' 1 . .

e = o [arg (t — zq)’]L =8, (10.22)

where - ‘

s = 8(Ay)

1 o . '
=3 {(Aip + 4y + A + Ays + Agy + Agg + Ags + Asg + Aus + Ao + A5z + Ass)

+ 2(4ys + 417 + 4ig ‘+ Ase _+ Agy + Apy + Azs + Agq + Ags + Ay + Aeg
+ Ag + An + An) |
+ 3(Ags + Ao + A3z + Asg + Agz + Acs + 456 + Ass)
+ 4(Ae7 + Ago)}. . ) (10.23)

In compa-rison with (6.11) one gets K

e = s(Ay) = 7 — ¢ = dim ker ,,. o . (10.24)

For investigation of the operator £2, A in an arbxtrary class b = k(a;,, ah, cens @) let
' us agree upon the following nota.tlon Let AY, be the nimber of the ¢ nodes of type
(I — k) in whose nelghbourhood the solution ® of the equatlon (D 10) is assumed to
‘belong to the class H,. Then it is easily seen that

| Elajrnagy = e 2s(A,k> ' - (10.25)
Fspemally, we have o v ) ,'
L= —ge. B ‘ (10.26)

Thu\s,~the following theorem is proved.

(]

'

Theorem 1: The system (3.10) is a singular integral equation system of regular
type with nonspecial nodes only. Its mdea: xpe i the class h* is given by (10.22). Moreover,
the relation (10.24) holds.

In an arbitrary class b = hia;,, ..., a.q) the index x, ts given by (10.25).
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. |
§ 11 Existence of *-regular solutions

Now one can show that there exists a *-regular solution of the considered contact
problem (i.e. a solution of problem C*). First let us assume that the solution of pro-
blem C* is uniquely determined. Then the homogeneous problem C* permits the
trivial solution only (the case of nontrivial solutions is treated in § 12),

By the single layer potential setup (5.1) for the solution u of C* with dens}ty vector
- @ satisfying the additional condition ‘ '

'f<p°(y)ld§y=0, ' A . (5.9

L

one obtains the integral equation system )

AP = A,w, + Azw; +w ‘ : ‘ - (5.4)

with the four-component density vector @ and the real constants 4,, 4, to be deter-
mined. Using the linear operator 2, defined in § 5, one gets the integral equation
system . .

QAP = 4,Q,W, + 4,Q,w, + Qw, : (6.10)

which is eduivalent to
©. AP =AW, + 4w, + w4 b, " b€ ker e, . ' (11.1)

" In order to obtain a *-regular solution of C*, the systems (5.4), (5.i0}, (11.1) are
considered in the class 2*. In accordance with Theorem10.1, the system (5.10) is of

- regular type and has nonspecial nodes only. Therefore, the class A* coincides with the
" class H*. '

Let us consider the following linear mépifolds: _
M= (B € HYQAD — 4,Q,w, + 4,9,w,), ' (11.2), .
My = (P € M/ [ @y) dsy = 0). . ' - (11.3)
L ' S . .

Obviohsly, M can also bé characterized by . o
M = (P € H¥AP = AW, + A,w, +h; he ker Q). . (114)

For the further considerations, the follow.ingAlem\ma is crucial,
. P .
Lemma 1: Let the homogeneous problem C* have only the trivial solutions. Then

dim M = xpe - 2, ‘ .  (11.5a)
dim My = %pe. — " (11.5Db)

The proof makes use of Theorems 10.1 and 7.1. Because of (6.3) and the definition
of Wy, W, (see § 5); we have 2{w,, w,} n ker £2, =0. For this reason, a (#pe + 2)-dimen-
sional linear manifold is situated on the right-hand side of the equation

!
AP = Al‘wl + A2W2 + h, : h € ker gp -
- defining M. Now Lemma-10.1 implies »
dimM < e +2 and dim MWy < rpe. | K (%)

32 Analysis Bd. 2, Heft 8 (1983) . . ’
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v

. . /
Let us consider the linear subspace
 ker (Qp) = (@ € HY QAP = 0.
By the a_i& of Noether’s thg;)rems, we .,have. .
xpe < ker (R,4) < xpe + 2. : - S (11.6)

_Let us define . .
= dim ker (R,4) — .t

Then the inequalities 0 < ¢ < 2 hold. In the case where ¢ = 2, the proéositidn
(11.58) follows immediately. The assumption0 = ¢ = 1 implies that the homogeneous
adjoint integral equation system ‘ o

(1L7)

L (RA) ¥ =0. T | (L8,

has exactly g linearly independent solutions. By a simi)le consequence of Noether’s

theorems one can easily- see that there exist (2 — g) linearly independent vectors
m,, ..., My, € £{W,, W} such that the equations : . o o

.9,A¢=mi" (.z‘_=°1,...,'2—q)‘ ’ : (*x)

are solvable. Assume that ®,,...,®,, are any solutions of the (2 4——‘q) equations (#x*).
Moreover, let the vectors ®;_g4y, ..., Pxpe + 2 be linearly independent and form & basis
of the linear space ker (82,4). Then the vectors D, P,,..., Px,,. 12 are linearly inde-

pendent and belong to 9R. Taking intd account (x), the proposition (11.5a) is proved.

~

By a simple consideration, one can select xye linearly independent vectors from -

. Q{P), Py, ..., Pyjuto) which satisfy the additional condition (5.2). Thus, using (%),

(11.5b) is also proved |

‘Let ¥, ..., ¥, be linearly independent solutions of (11.8). Then we have by Noe-
ther’s theorems the necessary and sufficient conditions
A M. .

JE(y) -v(y)dsy =0 (@=1"..9) (11.9)
L , v : :
for solvability of ,4® = v (W;-v is the s\lcalar product in R%).
Corollary 1: We have -v - - oo L
[ W.R,wds... [ ¥Qwds. - .
rank -t (11.11)

L j— -
| [P Qwds ... [ ¥, Qwuds | Z
‘L . L A

Indeed; the rank cannot be greater than g- Suppose that the rank were less then g.

Then we could find at least g -+ 1linearly independent vectorsmy, ..., Mg, € Q{w,, W

such that the equations (%) are solvable for thc vectors m; =1..,q+1).
Clearly, this consequence would contradict (11.5a). Thus the corollary is proved .B
. : : /

Corollary 2: Let ®,, ®;, ..., Q,‘h.;}.g be a basts o/' the linear manifold M. Without -

loss of generality one can assume

By, P € Mos . Py Prgar2 § Mo .

rank [ L S Biely) dr) =2. ~ (12
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Of course, the rank cannot be greater than 2. But the assumption < 2 would imply -
that dim 9y = xpe + 1, in contradiction to (11.5b). Thus, (11.10) is shown 8

Now we consider -the problém C* with contact data W, contained in-the linear
_.8space - o : * -

% == {W0/W0=A1Wl +A2W2 +h; h Ekel‘gp, , )

" . A, 4, arbitrary real constants}.. o B (11.13)

1

‘We have dim B = xpe + 2.

‘Lemma 2: Let the homogeneous problem C* have only the trivial solution. Then the
problem C* with contact data, Wy € B has exactly one solution u. Thus solution u can be
represented by o : .o ' : : C

WO(x) = Ay0 + Aye? + VO(x; %) for' x € Dy . (L
Cul(x) = Vi(x; @l) for. x€D,, . S . )

’

where the vector ® = [‘Pl] and the constants A,, A, solve the integral equation
o . P j .

K
\

QAP = 4,Q2,w, + 4,Q,w, : ‘ (1)
and the addstional condition (5.2). ' e

Proof: In virtue of (11.5a), theequation (11.15) hasexactly x;e + 2 linlea-r]y inde-

pendent solutions ®,, :.., (lek.“. Assume that the conditions of the corollary are . ~

. satisfied. Then, using Theorem 4.2, one finds that the potentials

. ' Vo(x; °) .
; = =1, ..., %pe
V(X, Qlt) N [VI(X; (Pl) R (1" E] s Xp )
are '*-régular solutions of C* with contact data beiohg-ing to B. By r{(_;ndifficult
considerations (using the equivalence property of V(x; ') and the results on integral
.equation (4.15)), one obtains the linear independence of the- potentials (11.16).

(11.16)

) N ’

" Consider the vectors B
: . ) \ .
¢t for xeD, . 4 :
P = ' =11, 2), L
Vi .{o. for x€D, - =12 A A _ (11.17)
" These: vectors Vi have the contact data w,, W, respectively.  Because of (4.7) the xye
- <+ 2 vectors ' - \ T
' - V(X, ¢l)i ooy V(X, ¢x)‘1’)) -Vlr v2 o . '. B} ] (*)

are linearly independent. Thus, the vectors represent a basis in the linear space of
‘solutions of C* with contact data in B. The lemma is proved ' §

Now, we obtain

Theorem 1+ Let L'e C*f (0 < 8 < 1). - Let the homogeneous problem C* have only
the trivial solution. Let the contact data §, f, %y, fi, I, £, 9, &, Gir Py satisfy the assumptions
of § 2 and the compatibility conditions (1.6a)—(1.6x). Then there exists a *-regular so- .
lution u of the problem C*. u s representable in the form (11.14) (see also (5.1)). ® and
the constants A,, A, are uniquély determined by the integral equation (5.10) with the -
addritional cond\z’tion (5.2). R :

32*
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- For proof consider the system (5.10) with arbitrary 4,, 4,. First we show that
(5.10) has a solution & for suitable constants 4,°, 4,°. In the case ¢ = 0 (sce (11.7))
this is immediately seen, Otherwise, the formula (11.11) guarantees the existence

“if a suitable pair 4,%, 4,° and a vector & with ' '

’

QD = A,°2,w, + ALR,W, + R,W. o o (1118)
_ At the same 'time, we have o o
AP = A%, + 4,°W, + h, heker®, - (11.19)

The general solution ) of (11.18) is :
s . et L p ' ) : -
® =>4 3 C®,;, .- C; — arbitrary constants, - o
i=1 o . : ’

Pl
.

with the \;ectqrs_flsi of Copollary'2. Using this corollary, one can a;ssume that ® fulfils

- the condition (5.2). Finally, because of Lemma 2 there exists a vector ® satisfying

.(5.2) such that the vectors , : :
w(x) = —4,0V; — 4PV, + VOx; 9%, uix) = Vi(x; @)

are solutions of C* with contact data —Al°w1 —A,%w? — h. Obviously, by setting

=>4 P and 4, = —4,° A, = —4,° in (11.14), one obtains the solution '

of problem C*, L , .
The uniqueness offP-and A,, A, is a consequence of the equivalence of V! and (4.15)1

\

A}
§ 12 *-regular solutions in the caso of eigensolutions

In the case of nontrivial solutions of the homogeneous problem C* some more so-

- phisticated considerations are necessary. The general result is here that a solution.
of the inhomogencous problem C* exists if and only if the contact data satisfy the
physical conditions for solvability of § 3. Moreover, the solution u of C* can always

- be represented in the form (5.1), provided that the physical conditions are fulfilled. .

_The aim of the present section is to demonstrate the general ideas of the proof.
Especially, the two examples of § 3 with exactly one eigenvalues are considered in .
detail. For the remaining examples of § 3. the results are given in outline. - :

First, let us assume that the homogeneous problem C* permits & linearly indepen--
dent solutions (k = 1). Furthermore, let us suppose that A linearly independent -
solutions W,, ¥,, ..., ¥, of the homogeneous adjoint system S o

(@A) ¥, =0  (=1,...8) a2y
are e‘xplicitly known. These vectors ¥, ..., ¥, imply the solvability ,cOndi'tions .

T, (A4,QW, £ 4,Q,W, + QW) ds =0  (i=1,2..h
14 ; 14 t4
L . .

“for the system (5.10). By the second’assumption - _ A
CJ¥Quwds=0  (=1,.,hj=12), _ S (122)
L : , . .

the soivability conditions i‘educe to

[ WRwds =0 (=152,.,h). (12.3)
L B \ - . ) ’
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. With the accepted assumptlons the general pattern for solvmg the problem O*is the
- following. As in § 11 we consider the sets 9, M, ((11.2), (11.3)). The crucial lemma is

Lemma 1: Let the ‘above- mentioned assumptions be satisfied. Further, let the homo-
* geneous problem C* have’ exdctly k Linearly m(lependem solutions. Then

dim M = 12 + d + stpe, ' - (12.4a)

dim My=h +d + xpe — 2, e . (12.4b)
where - . : < .
. di= dim &{w,, w,}. (5.5)

For proof the argumentation of Lemma 11.1 is essentially repeated. In dlstmctlon
from (11.6), onc gets

h—}—yn.<d1mker§2a¢Sh+d+,c,.. . (12.5)
in consequence of Noether’s theorems and of the assumptlons concerning the system
[12.1) 1. . :

In virtue of (12.5), the systcm (12.1) has k + ¢ lmear}y mdepcndcnt solutlons
‘I’,_, v, .. ‘I/,W Here, g is defined by : .
q—dlmkerﬂc/l—w,,.—h .

Let ‘i",, Y,, ..., ¥, be the above- mentloned solutions of (12.1), but ‘I’,‘H, vers Whig
additional solutlons Similarly as in § 11, we obtain the following corollarles ‘
Corollary 1: We have

.o’

/ . [ ¥ Rwids ... [ W, ,wds
rank | ¥ . L ’ =gq. - 12.6
\ f W, Q,Wods ... [, RQ,wds | T , ( A)
P L \.
Corollary 2: Let cors Prtdng. be a basis o/'the linear space M. Then we can
. assume: ' ' -7 o :
P, ... s Phra—2+xe€ Mo; Dhrd—14xpes Phidinge § Mo. -
- Further, we have
rank[ f(p,,,d_l,,‘h.ds fcp,,+d+x.ds] =2 - ‘ (12.7)

By insignificant modification of the considerations in § 11, the following theorem
can be proved.

Theorem-1: Let the above-mentioned ussumptions be satisfied. Moreover, let L € C“
(0 <. ='1) and let the homogencous problem C* have exactly h linearly independent
" solutions. Let the contact data §, f, %, fe» b, &, 9 B> Gr» Tu satisfy the assumptions of § 2,
besides these the compatibility conditions (1.6a)—(1.6x) and, additionally, the physical
solvabzhty conditions of § 3. Then there exists a *-reqular solution u of the problem C*.
u s representable in the form (11.14). @ and the constants A,, A, are determined by the
wntegral equation (5.10) with the additional condition (5.2). Furthermore, the physical
conditions covncide, of necessity, with the relations (12.3). )

For instance, let us consider the second example of § 3 with one . eigensolution-
(L= L, v Ls u L,, see [2: Flgure 2]). Here, the homogeneous ‘adjoint integral equa-
tion system js '

AT() o) + = f K7y — ) + PRy — )] ¥y)dsy, =0 (128)
L ' . '

\
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wi/th
: [~ 0 n, O nq
0. —n 0 n, : :
—MNg. O ‘ 0 n) forv z¢ Le’
.m0 0 (M L !
[0. "—n; 0 —ny ’ ,
e 0 0 my . L
—1 0 0 0
0. —1 0 0 o
) 0‘ 01 0 for z'¢ L,,.
Lo 001 o
and K¥(y — z) = ' - x
[0 d
0o ' . (7 (n,) I'°) 8()’ —d—(I‘O(y—z) (Y)) —(7 (ny)T)Tn(y)
ST :' 0 . . ) ’ Y.GL:z
(Z @) s(y) ' (I“(y — 1z) n(y)) (T () T nyy |-
\_ N .
0 '
- - (T (ny) TYT n(y) ——(I‘°(y —2)s(y) — (Z(ny) I‘°)T s(y)
0 - . ds ,
0 - ! d . ’ ‘Y € LC\ A
’ L(ﬂ' (n ') o @ —2s) - (TmITTs)
(7 () To(z — - g o , »
0 2o S , Y€ L. L . (12:10)
0o " o TmwITy-—a) - | R

Because of the spccnal geometrlcal shape of L, wehaven-¢,®* = 0,8 = Bc,, onL,; B
is a function that is constant on every arc S; bélonging to L,. Analogously, we have
s-¢°=0,n = D(z) c.,3 for z € L;. We defme

8. ¢,

for zeL,

Fe= for z €Ly R ¢ o3 8
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"+ Then the equation (12.1) is equivalent to the identity
o) + f (7(09) Ty — 2T e35) dsy =0,

whlch follows from (4.4). The vector (12 11) gives rise to the necessary ‘condition for
solvability (3.8) stated in'§ 3. Our considerations imply the sufficiency of these physi- -
cal conditions in the class of *-regular vectors.

., The considerations for the first example with one eigensolution of § 3 (L LyuL,
u L,, see [2: Figure 1) are a little dlfferent from the above ones. First; one obtains
the following lemama. ‘

Lemma 2: Let @ be an arbitmry solution of ‘the integral equation ‘

, Q (A¢ A prl + A2 pW2 '_ . ! ' ° (12.12)
in the conszdered special case of the problem C* Tken the relation ' o
j (Cu - 0) ds =0 - " (12.13)

| . -holds true.

‘For proof, the equation (12. 12) (concerning the explicit form of the operafor QA4 -
see (5.10)—(5.14)) is multiplied in the sense of sca]ar product with the fo]]owmg fac-
tors: - .

0y. g . SR A A
0| for zeL, [ | for z€L and [T"‘"] for 7€ L,.
Cu S - (s;cw) \ _‘ N

It is not difficult to see that the scalar product on the right-hand side is 0. Using the.
- formulas (5.12)—(5.14), the left-hand side can be calculated. Taking into account the
relations 8 = +e, for z € L4, one obtains the formula. . :

b f Ca- {‘P0(7)+<P‘(z) + 5 f (7)) Ty — 2)7 @H(y) dsy

- = f (7( ny) T'o(y))T (y) d.s,,}dsz = 0.

The mtegra.tmg order of the double mtegml can be altered. Using formula (4. 4), we
. get 2 fc - ¢@%(z) ds; = 0. The lemma is proved 1 _ :

\

Applymg the same procedure to the equation
QAP = .Q,,w +4,Q,w, + A4 Qsz,

~

one obtams '

2ch : <p°dé—_-jc,,, - gds + f (8 - €u)gds + f Co- (81— &) ds.  (12.14)

Y

This formula. shows-that the relation (12.13) is fulfilled if and only 1f the physical
condition (3.7) is satisfied. In order to study the problem C*, let us con51der the

o
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. - f
!

equafion ) .
’ QAP = 4\RQ,W, + A, 2,w,, : ‘ ' (12.15)
which is equivalent to |
' AD — AW, + A,W, +h,  h€ker SZ;,. , (12.16)
We define the linear manifolds : )
M= (P € H/QuAP = 4,Q,w; + 4,Q,w)} .- = (12.17)

-and N
My = {4> Eim/lf s = 0}.

,By nondifficult c,onsiderations.(especial]y, using [5: Hilfssatz 9.1]. and the continuity

of the potential of single layer), formula (12.13) implies that the equation
QAP = 4,Q,w, + 4,2,w, | o

-i8 unsolvable for at least one pair. A, zf o Letw=A,w, + 4 2Wa. Then the equation

D QAP =AQw, . A+o0, | : (12.18)

is unsolvable. ' ' o -
Lemma 3: In the considered case we have

dim M =.x,,o + 2 ‘ and ~dim My = e+ 1.

) Proof: Bearing in mind (12.16), the relation dim ker €2, = xpe and the unsolvability
of equation (12.18), one obtains

dim M < wpe + 2 and  dim Mg < w0 - 1.
In oidier- to prove dim M = x;+ + 2, we mention the inequa-litiles
e +1 dim ker (de) g Hpe + 2.
By Noether’s theorems, the first inéqudlity is a consequence of the unsolvability of
equation (12.18). In the case where dim ker (§2,4) = x,» + 2 the equation dim 9N
=y + 2 is evident. Assume dim ker (2,4) = x4e + 1. Then the adjoint homo- -

geneous equation (2,4)' ¥ = 0 has exactly one linearly independent solution. Now, .

using the unsolvability of (12,18), one can easily prove that the linear space £{w,, W}
contains a nontrivial vector W such that .

QAP = QW o (12.19) -

is solvable. Thus, dim M = x4 + 2 is also true. . _

- Let ®,, ..., P, .. bea basis of M. Taking into account (12.18), we can assume

without loss of gencrality f(pi"ds =0 for*7=1, ..., x4 + 1. This implies dim Ve,
. ~ L .

= upe +1. Thus, dim M, = x4+ + 1 is also proved B

Corol‘lary 3: Let @, ..., P,,.12 be a basis of M, chosen usm the proof of Lemma
3. Then we have ' :

[ Gpre-ctdseo. SRR ()

The corollary is proved in analogy to Corollary 2 of § .11 @
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Obviously, the adjoint equatlon (R2,4) ¥ = 0 permits-either 1 or2 linearly 1r1dc-
pendent solutions. Let Wy, .., ¥ (k= 1, 2) be the solutxons of the adjoint equation.
Then the following corollary holds .

. Corollary 4: We have »
(¥, Q,wds =0 ' ' - (221)
L

for k = land.
' f‘!’ - Q,wyds f‘l’ S;Z,,wgds

"
det
o f\v - Q,wids f\r Qs | T O

(12.22)

in the case k = 2

The opposxte assumptlon is easily led toa contradlctlon by the pattern of Corollary 1
rof §11 8

Now, let us consider the lineare space £ of solutxons of the problem C* with contact
data: belongmg to the linear manifold

B= (W/Wo = AWy + AW, +h,  heker®,). (12.23)

Lemma 4: The linear space L has the dzmenszmz xpe + 3. A basis of O is given by
the veclors

V(x; 4’1),...., V(x; Pypoi1)s A ’ ‘ (12.24)

‘where the vectorS'<1>,~ (G=1,..., s + 1) are those of Corollary 3, but Vl, V, are given by 4
(11.17).

" Indeed, the vectors (12.24) are lincarly independent and belong to . 0therw1sc in
consequence of dim P = x,« 4 2 we have dlm 0 = xpe o+ 3 The lemma is proved ]

Now we consider the equation

QAP = Q,w + 4,2,w, + AQQ,,W2 (12.25)

Because of Corollary 4, the constants A4; can be chosen in such a way that the equation
(12.25) has a solution &. Using Corollary 3, the solutxon & can be assumed to satisfy
‘the condition * .

fcl- 50ds — 0.

. Suppose that the physmal condltlon (3.7) is fulfilled. Then we have .
f C, - PYs = O in virtue of (12.24).

\

‘ \low using Lemma 4, the existence of a *-regular solution of the problem C* is easily
_proved, provnded that the physical condition (3. 7) is satisfied. Thus, the following
theorem is proved.

Theorem 2: Let L € C*# (0 < § = 1), and let the situation of the first ea:wmple o/§ 3
[2: Figure 1] occur. Furthermore, let the contact data satisfy the assumptions of § 2, the
compatibility conditions (1.6a)—(1.6x) and addztzonally, the physical condition (3. 7)
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Then there exists a -regutar .solutwn u of the problem C*. u is répresentable tn-the
form (11.14). @ and the constants A,, A, aredetermined by the mtegral equation (5.10)
. with the additional condition

fcl- “ds =0. . ' (1226

We st111 remark that the necessary and sufficient condltlon for solvabxhty of C* in

the considered: case’is not a consequence of solutions of the adjoint integral equation’ -

- system: Instead of this, by (12.14) the condition (3. 7 causes the rela.tlon
f Co odS = 0 E . . . o .. ¢

’
’

which is responsxble (togcther with (12. 26)) for the *-regularity of the potentlal
V(x; ).

Finally, let us give the results for t.he remaining examples of § 3.

In the first example of dimension 2 the solution D of y .

QAP = QW+ 4 S'Z,,w1 + Az.Q W, : . ' (*)
satisfies the condltlon fcp° ds = 0 if and only if -the condltlons 3. 9) are fulfnlled Further, we
have dim M = ,c,,o + 2 = dim 9M,. The above defmed linear space has the dimension ;e + 4.
In analogy to Lemma 3, the vectors V(x; ®,),..., V(X; ®u,e12) Vi, Vo (P, ..., Py 42 form a

basis_of M) generate. the linear space £.. Without any restrictions there exists a solution of the
‘equation (x). One obtmns a *-regular solution u of C* if a.nd only if the conditions (3.9) are
- fu]ﬁlled ! '

In the second example of dlmensmn 2 (see [2: Flgure 3]), every solution of (*). satlsiles the
relation fc l<p°ds =0, if’ and only if (3.10) holds The adjoint homogeneous equation .

(S2p) ‘i’ = 0 has the solution _ -

. . . . )
1

[ (8- ¢5°) ]~
0 .
) 0 9, ’ELz ‘
| 0
. 1ro A - : ‘
W, (y) = 0}, yeL,, o AR ¢ b 22
~ Lcya : . .
C o | ‘
. . 1, L . IR .
. 0 ye¢ sA' ) ) ) .
|_(n - ¢5®) ' . ’

which gives rise to the condition (3.11). One can prove the sufficiency of (3.10) and (3.11) for )
the problem C* also in the considered case.
In the two cases of dlmenslon 3 (see § 3 [2: Flgure 4]), the conditions(3.12) imply f <p"ds =0

for every solutlon of (x). The ad]omt homogeneous equatlon allows the followmg solutlons
’ ! (8 - ¢5°) L )
: 0 Cfor yel, v o

0
0 - ) (12.28)
] for y E L, o ’ e

T Wy(y) = L
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1

in the first case, and

(S * cm) .
‘ g ' for ye€ L, :
y(y) = 0 (12.29)
01 . o
0 for yeL '
_cw )

in the other oﬁe

Finally, every solution ® of (%) in the last examplc of dimension 4 (§3 [2: Flgure o]) sa.tlsiles
[ @%ds = 0, if and only if the condltlons (3.15) are valid. The vectors

I‘ .
" ep) A '
0
for L
0 Y€ L , _ L
¥y)={L o 7 : : : (12.30)
. - 0 . : AN .
0 for y € L,
" and
—(h'cwl) ’ ’
0 ‘ .
, o | rvel : ~ :
¥(y)={L o A ’ _ o - (12.31)
- =N L , | A
: 0 for y€L, . -
N . .. . 1 ¢

solve the adjoint homogeneous system:

_ Tlié common result is the necessity and sufficiency of the physical conditions for
solving problem C*. Using the ideas sketched above, this result can also be established
for the other conceivable situations of problem C*.

>

§'13 &- and e*-regular solutions

Studying the integral equation (5.10) in an arbitrary class A(a;, ..., a; ), some results -
on the solution of the problems C, and C,* may be expected in virtue of Theorem 4.2.
Essentially, the general pattern of this theory resembles those considerations which
have been' developed in detail for boundary value problems of mlcropolar elasticity
and thermoelastnclty in [1] and [4]. '

TLet

m = dim ker (Q,4),  m =dimker (R,4). } (13.1)°
Then we have, because of Noether’s theoréms, . : , ' i

: ’
m—m = X.
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Let the homogeneous problem have exactly 4 linearly independenf solutions. By the’
assumption on the integral equation (12.1) of § 12, one easily obtains the relations

max (%, + h, 0 §m§xo+k,
§ba ) ! (13.2)
max (b, —u,) S m' X xpe — %y + h.

‘These-estimates can be improved. Indeed, for 2 > 0 the solutions of the homogeneous
problem C* (C,, C *) are regular. Therefore it is not dlfflcult to'deduce

. dim ker (R,4) =k ’ ' C _ ;
for every class h and in any case. For this reason one gets

max (xh + h’ h) g m éixh‘ + h’

(13.2)
max (b, h — %) S m' =< xpe — xp + b
Let - - ) . . v
qg=1sp +h—m, p=m' —h. ‘ A (13.3)
. Then we havc l )
LD g = — (M — ) = e — . , ' - (134)

Now, one can show by the already mentioned argumentation of [1] that there exist
exa.ctly k - p 4 q independent conditions for solvability of the considered problem -
* (C,). The following theorem holds.

-Theorem'1: Let L € C2# 0 < B = 1). Let the homogeneous problem C.* (C.) have
exactly h linearly independent solutzons Let the contact data 8, [, $4, fi, L, & 95 k> k> P
. satisfy the assumptions of § 2, the cmnpanbzhtycondztwns (1.6a) —(1 6 x) and the physical
solvability conditions of § 3. -

Then the problem C.* (C.,) permats un e*-regular (e-regular) solution u if and only zf the
contact data fulfil exactly sxpe — 3, additional solvability conditions. -

The first p of these additional solvability condznons are gwen by p additional solutzons
o/ the homogeneous adjornt equation .

Q) ¥ =0. : : (13.5)
‘The remmmng q conditions can be interpreted as solmbzlzty conditions for the equation
AP =h, hEkchZ . ‘ . (13.6)

in the class k(aj,, ..., a; ).
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